
Statistical Pattern Recognition with Neural Networks: Benchmarking Studies

Teuvo Kohonen, Gyorgy Barna, and Ronald Chrisley
Laboratory of Computer and Information Science

Helsinki University of Technology
Rakentajanaukio 2 C

SF-02 150 ESPOO, Finland

Abstract

Successful recognition of natural signals, e.g., speech recognition, requires substantial
statistical pattern recognition capabilities. This is at odds with the fact that the bulk of work on
applying neural networks to pattern recognition has concentrated on non-statistical problems.
Three basic types of neural-like networks (Backpropagation network, Boltzmann machine, and
Learning Vector Qumtization), were applied in this work to two representative artificial
statistical pattern recognition tasks, each with varying dimensionality. The performance of each
network's different approach to solving the tasks was evaluated and compared, both to the
performance of the other two networks, and to the theoretical limit. The Learning Vector
Quantization was further benchmarked against the parametric Bayes classifier and the k-nearest-
neighbor classifier using natural speech data. A novel Learning Vector Quantization classifier
(LVQ2) is introduced the first time in this work.

1. Introduction. - The "Bayes Machine"

Some of our colleagues have claimed that the biological neural networks, due to their
inherent nonlinearities, mostly implement decision processes (cf., e.g., Hopfield, in press).
Whatever the truth about their purpose, if we concentrate on this aspect with artificial neural
networks, then evaluation of their decision-making accuracy ought to be based on standard
decision-theoretic analyses. At least one might speculate that the simple least-square error
criteria that are often used would perhaps be unsatisfactory with real statistical problems.

By and large the only generally valid statistical decision theory is based on the average
cost or loss in misclassification, formulated in terms of the Bayes expressions for conditional
probabilities (briefly called "Bayes classifier") (cf., e.g., Devijver and Kittler 1982, Kohonen
1988a, Patrick 1972). In standard pattern recognition theory, and obviously with most of the
problems that occur in neural computing, too, it is reasonably accurate to assume the unit
misclassification cost the same for all classes. Assume then that x E Rn is the vector of input
observables (pattern elements, set of attribute values, etc.), and (Ci, i=1,2, ..., IQ is the set of
classes (identities) to which x may belong. Let p(xlCi) be the probability density function of x in
class Ci, and P(Ci> the a priori probability of occurrence of samples from class Ci; in other
words, di(x) = p(XlCi)P(Ci) corresponds to the "class distribution" of those samples of x which
belong to class Ci. Here the di(x), or any monotonically increasing functions of them like the
logarithms, are also called discriminant functions (cf. section 7.1). The average rate of
misclassifications is minimized if x is conclusively classified according to the following rule:

'

x is assigned to Ci iff di(x) > dj(X) for all j # i.

1-61

.- - _ -

(See the one-dimensional case in Fig. 1.) The main problem, of course, is to obtain analytic
expressions for the di(x). Notice that even a large number of samples of x, as such, does not
define any analytical probability density function. One has to use either parametric methods, e.g.
by fitting the samples to parametrized Gaussian functions, or nonparametric methods whereby
some fixed kernel function that is everywhere continuous must be defined around every
available sample of x. For general distributions, none of these methods is satisfactory. Either the
accuracy may remain low (like in parametric methods), or the computations become heavy
(nonparametric methods). The dream about an ideal "Bayes machine" has therefore been around
for a while.

The "Boltzmann machine" and "Backpropagation network" are based on a least-square
error criterium. If enough training samples and internal parameters are available, it might seem
that their input-output transformations can be defined to an arbitrary accuracy. However, since
their design is not based on decision-theoretic arguments, it is not obvious how well they
perform in conflicting cases, i.e., when the "class distributions" intersect. We found this problem
of such a fundamental importance in practical applications with stochastic data, that we decided
to "benchmark" these models, together with a few others, on certain typical-looking statistical
data. In this work we have concentrated on statistical accuracy, although comparison of certain
other figures like computing speed would also have been interesting. It seems, however, that it is
not so easy to define comparison criteria for the latter, because, for instance, the "sigmoid
function" in Boltzmann machines and Backpropagation networks can be computed in many
different ways. In the concluding section we are trying to report our general experiences about
typical computing times. Roughly speaking, of the methods studied, the LVQ is the fastest, then
the Backpropagation network, and fmally the Boltzmann machines. The statistically best
Boltzmann machine, however, contains circuit elements (plenty of precision level detectors for
all input signals) which are very difficult to realize in massive circuits and may thus not be
practicable with real problems.

Fig. 1. Minimization of misclassification rate.

2. Selection of the tasks

Fig. 2. Illustration of the two
tasks. (Square roots of the va-
riances are indicated by circles.)

Numerous neural network studies have been performed with discrete, class-separable data.
Some benchmarking studies have earlier also been performed on low-dimensional statistical data
(Huang and Lippmann, 1987). Based on practical experiences, however, we felt that the nature
of the statistical problems might change with higher dimensionality of input vectors. Therefore
we introduced a model of artificial data with dimensionality ranging from 2 to 8.

1-62

Intentionally, we thus defined our benchmarking data to represent statistically difficult
cases, where we wanted to have: 1. Heavy intersection of the class distributions. 2. High degree
of nonlinearity of the class boundaries. 3. High dimensionality of the input vectors. - To this end
we defined two artificial data sets and had two natural data sets available.

As far as the above three properties are taken into account, it is not desirable to load the artificial
datum model by any further unnecessary details or complexities. For benchmarking purposes
we thus decided to use for the artificial data symmetric, heavily overlapping Gaussian
distributions (with different variances for the classes) because it is then easy, for reference, to
compute the themtical accuracy limits of the Bayes classifier. With artificial data, we also
restricted to a two-class problem, since we believed it yields answers to the most essential
questions. Let us denote x=(51,52,..&). Class C1 was represented by a multivariate normal
distribution with zero mean and square root of variance equal to 1 in all the dimensions, class C2
by a normal distribution with mean Zi=(E1,0,0, ..., 0) and square root of variance equal to 2 in all
dimensions, respectively. In one task the relative offset between classes was 51=2.32 (“easy
task), in the other (“hard task“), respectively (cf. Fig. 2).

We also wanted to make experiments with natural data.To that end we had available
manually segmented real speech spectra (computed over 30 millisecond intervals) with which it
was possible to test the Learning Vector Quantization methods against theoretical limits. These
tests were carried out for 18 phonemic classes simultaneously. The different classes had different
statistics. We have not yet been able to carry out the corresponding tests for the Backpropagation
network and Boltzmann machines, because these experiments are very time-consuming indeed,
whereas for LVQ, computing time is no problem.

3. Backpropagation

Backpropagation (BP) is a learning algorithm for multi-layer feedforward networks, as
introduced in Werbos (1974) and Parker (1982).

3.1. Particular configuration

A standard, two-layer backpropagation network as described in Rumelhart, Hinton, and
Williams (1986) was used. Two, as opposed to three, layers were used since the optimal decision
regions for all tasks were known to be convex, and it has been shown in Lippmann (1987) that a
two-layer network is sufficient to form convex decision regions. The advantage in convergence
time that a three-layer network sometimes has over two-layer networks was irrelevant, since
asymptotic mor rates were the only basis of comparison. The learning rate was 0.01 and the
momentum coefficient was 0.9. There were 8 nodes in the hidden layer, with a number of inputs
equal to the dimensionality of the input vectors and the number of output nodes equaling the
number of classes, which was 2 in all tasks. This, combined with a bias weight for each node,
provided for a total of 8.d + 26 weights, where d is the dimensionality of input. Although it is
possible that increasing the BP resources per dimension at a faster rate could allow BP to better
track the theoretical limit in the higher dimensions, it has also been noted that adding units to a
BP network does not always result in improved performance.

During training, it was stipulated that the correct output for a sample of a given class
should be 1 for the node corresponding to the sample’s class, and 0 for the other node. For
recognition and testing purposes, the network was considered to have correctly classified the
sample if the output node with the greatest activation from that sample was associated with the
sample’s class.

1-63

3.2. Experimental results

Table 1 gives the assymptotic error rates for BP's performance on both tasks. Notice that
for a constant amount of computational resources (weights), and as dimensionality increased,
BP's performance improved at a rate significantly less than the rate improvement of the
theoretical limit. Lowering the learning parameter frequently caused the network to get stuck in
local minima, while raising the rate often prevented convergence.

4. Boltzmann machines

The Boltzmann machine (BM) is a parallel computing network, consisting of simple
processing units which are connected by bidirectional links. The links are represented by real
numbers while the units can be in the states 'on' or 'off'. For details, further references and
applications see Ackley, Hinton and Sejnowski (1983, Prager, Harrison and Fallside (1986).

4.1. Particular configurations

Although the BM was originally designed for binary units, the tasks described in Section 2
require continuous inputs. Two types of input units were therefore used (as in Prager et al.,
1986):

In case a) the input values were shifted to the positive range. In case b) in each dimension the
input range was divided into 20 subranges. Thus, 20 input units must be used for each
dimension. All of them were set 'off' except the one which is associated with the subrange
containing the input value of the dimension, which is set 'on'. We call this scheme "BM2".

In addition, there were always 2 hidden and 2 output units. This corresponds to the
numbers of weights equal to 80-d + 3 in case a) and 4.d + 3 in case b). When the output units are
clamped, the clamping patterns are {on,off} and {off,on} for class C1 and C2, respectively. The
probabilities for two units being simultaneously 'on' in the unclamped and clamped modes,
respectively, were estimated over 10,OOO samples.

a) continuous input units, allowed by the generalization of the learning rule;
b) groups of binary input units, used with a binary coding scheme.

For updating the Wij weights, only the sign of Awi. was determined by the gradient
descent learning algorithm detailed in Ackley et al. (19853. The absolute value of Awij was
constant (Aw) for each update and slowly decreased over time.

4.2. Experiments

The experimental results for the above configurations are shown in Table 2. Increasing the
number of input or hidden units did not decrease the error significantly. The value of Aw was
initially about two times the average of the absolute values of wi' and slowly decreased (to 1/5th
of the initial value at about the 500,000th sample). Reaching tie minimal error level required
about 4-500,OOO samples.

5. Learning Vector Quantization

Learning Vector Quantization (LVQ) is a nearest-neighbor method operating explicitly in
the input domain (Kohonen 1988a, 1988b). It consists of a predetermined number of
processing units, each unit having a d-element reference vector, and each unit being associated
with one of the classes of the input samples. Let c be the processing unit that is the closest to x,

1-64

in some appropriate metric; this is then also the classification of x . During learning, unit c is
updated. Here t is the discrete-time index (integer). The exact form of this change is:

if x and the closest unit belong to the same class ,

if x and the closest unit belong to different class ,

mc(t+l) = mc(t) + W(x(Q-q(t))

mc(t+l) = mc(0 - ~(t)(x(t)-q(t))

mi(t+l) = mi(t) for izc ,

where 0 < a(t) c 1, and a is decreasing monotonically with time.

5.1. Particular configuration

The number of processing units was chosen to be 5.d, thus resulting in 5.d2 weights. For
calculating the closest unit the Euclidian metric was used.

Since the LVQ learning algorithm assumes a good initial state, the traditional k-means
clustering (cf. Makhoul et al., 1985), was used to initialize the processing units. Then each of the
processing units was associated with one of the classes, by running the system without learning
and collecting statistics on how frequently each of the processing units was the closest to the
samples from each class.

During learning, a decreased from 0.01 to 0 over 100,OOO samples.

52. Experimental results

The experimental results are in Table 1. We have found that if the number of processing
units in LVQ can be increased without limits, we might reach the theoretical limit. Here the
number of units was kept comparable to that used in the other methods.

Error percentages for artificial data. All figures in the last four
columns are given with 0.1% accuracy.

Table 1

dim. theoretical BP BM BM2 LVQ -
limit (continuous) (binary)

&=2.32 2
3

16.4
13.7

4 11.6
5 9.8
6 8.4
7 7.2
8 6.2

2 26.4
21.4 3

4 17.6
5 14.8
6 12.4
7 10.6
8 9.0

* no convergence was observed.

El=O

16.4
14.0
12.5
11.0
10.8
9.72
11.3

26.3
21.5
19.4
19.5
20.7
16.7
18.9

29.2
26.2
24.5
23.9
23.4
22.9
22.7

16.5
14.0
11.7
10.2
8.7
8.2
6.7

26.5
21.6
18.0
15.2
12.7
11.0
9.4

17.0
14.6
13.1
12.2
10.7
10.1
10.0

26.5
21.8
18.8
16.9
15.3
14.5
13.4

1-65

6. Another Learning Vector Quantization (LVQ2)

The method discussed in this section is being introduced the first time here.

The basic LVQ can easily be modified to better comply with Bayes' philosophy. Consider
Fig. 3 which represents a one-dimensional two-class case. Assume that the neighboring reference
values mi and mj are initially in a wrong position. The (incorrect) discrimination surface,
however, is always defined as the midpoint ("midplane") of mi and mj. Let us define a
symmetric window with nonzero width around the midpoint and stipulate that corrections to mi
and mj shall only be made ifx falls into the window, on the wrong side of the midpoint. If the
corrections are made according to Eq. (3), it will be easy to see that for vectors falling into the
window, the corrections of both mi and mj, on the average, have such a direction that the
midplane moves towards the crossing point of the class distributions (cf. Fig. l), and thus
asymptotically coincides with the Bayes decision border.

mi(t+l) = mi(t) - a(t)(x(t)-mi(t)) ,

mj(t+l) = mj(t) + a(t)(x(t)-m,(t)) ,

if Ci is the nearest class, but x
belongs to Cj $ where Cj is

more x must fall into the "window".

m

x the next-to-nearest class; further-

window In all the other cases,

Fig. 3. mk(t+l) = m(t) . (3)

7. Experiments with speech data

Benchmarking studies for LVQ and LVQ2 were also made on real 15-channel speech
spectra which were manually picked up from stationary regions of (Finnish) speech waveforms.
We applied two independent data sets, each consisting of 1550 phonemic samples, using one
data set for training, and the other for testing, respectively. All results of this section have been
collected to Table 2.

7.1. Parametric Bayes classifier

For a reference we used the familiar parametric Bayes classifier, in which each class is
described by a multivariate normal distribution (in reality, two times the logarithm of the class
distribution, from which a constant term has been dropped)

di(x) = 2 log P(Ci) - log lvil- (x-Zi)T vi-' (x-Q (4)

where vi is the covariance matrix of those x values that belong to class Ci, and lvil its determinant,
respectively; Ei the class mean of XE Ci. In the case that vi-' does not exist for the set of samples
from which vi is computed, it may be replaced by the pseudoinverse vi+ (cf. Albert 1972,
Kohonen 1988a).

After the vi and 5ii were computed from the training data set, classification was performed
on the test data set like in Eq. (1).

1-66

7.2. k" (k-nearest-neighbor) classifier

In this classification algorithm, a large number of training or reference data is collected for
each class, and each of the test vectors x is compared against all of them. A majority voting over
k nearest reference vectors is performed in order to decide to which class x belongs. This method
is computationally heavy, and it approximates the Bayes classifier only if the number of
re fence vectors is large.

In our tests we compared all the 1550 test vectors against all the 1550 training vectors,
using k=5 or k=6 in voting (this seemed to be the optimum in the present case).

73. LVQ and LVQ2

The same training and test data sets as above were used in this method. Because LVQ and
LVQ2 need an appreciable number of training cycles for asymptotic convergence, the training
data were applied reiteratively. It turned out that half a dozen iterations over the training data
were sufficient for final accuracy. There were 117 nodes in the network.

7.4. The results

Table 2 represents the results of Secs. 7.1 through 7.3. On the first row, data set 1 was used
for training and data set 2 far testing; on the second row, the roles of the data sets were switched.

Table 2 Speech recognition experiments; error percentages for independent
test data

Parametric
Bayes k" LVQ LVQ2

Test 1 12.1 12.0 10.2 9.8

Test 2 13.8 12.1 13.2 12.0

8. Discussion

Notice that for both tasks with artificial data, the relative offset of the two class
distributions was constant, whereby it is a natural phenomenon that the theoretically minimal
error rate decreases with increasing dimensionality, since the relative value of the "probability
mass" of the intersection is then a decreasing function of dimensionality.

It is interesting to note that one of the methods, the BM2 with the dynamic range of each of
its inputs divided into 20 subranges, almost followed the theoretical accuracy limit. This method,
however, is a brute-force approach, and it is questionable how the precision input discrimination
levels can be implemented in massive networks. It also needs a much higher number of units and
weights than the other methods. A typical learning time for the BM models, even in this simple
two-class problem, was five hours of CPU time on our Masscomp MC 5600 computer, although
it had the fast (3ooo-whetstone) "Lightning" floating point processor!

The BP network, while being reasonably accurate at low dimensionality (e.g., 2) was
significantly inferior with higher dimensionalities, especially in the "hard task" &=O). Typical
learning time for this particular BP network would be somewhat less than an hour on Masscomp.
The BP results seem to be much more unstable than those obtained by the other methods.

1-67

With regard to accuracy, the Learning Vector Quantization models fell between these
extremes. Typical learning time was a couple of tens of minutes on the Masscomp. On the other
hand, LVQ has previously been programmed for microprocessors, and in speech recognition
experiments, re-learning all the phonemic classes then only required about 10 minutes on an
IBM PC/AT! Notice that the "sigmoid function" in BMs and BP networks is computationally
much heavier than the distance computations in Learning Vector Quantization methods; the
latter can even be based on integer arithmetic. On the other hand, it seems that comparable
accuracy needs roughly similar amounts of nodes and interconnects in any of the models studied.

As we were not yet able to make comparative studies on speech data using Boltzmann
machines or BP networks, we do not dare to speculate anything about their relative merits in this
task. The very good accuracies yielded by the LVQ methods for speech may be explained by the
fact that vector quantization of the pattern space is very advantageous, if the class regions are
"piled up" such that there are neighboring classes on all sides of most classes. This was not the
case for the artificial two-class problem, where the reference vectors of class C2 in particular had
to surround those of class C 1 on all sides, which is difficult if the dimensionality is high.

In any event, these results show that in statistical pattern recognition, the Learning Vector
Quantization is a very viable alternative to the comparatively older BM and BP, and is
statistically superior to those BM and BP approaches which are realistic in practice.

Acknowledgement. The work of one of the authors, Ronald Chrisley, was made possible via a Fulbright
Graduate Study Grant under the Fulbright-Hayes Exchange Program.

References

Ackley, D.H., Hinton, G.E., and Sejnowski, T.J. (1985): A learning algorithm for Boltzmann machines. Cognitive

Albert, A. (1972): Regression and the Moore-Penrose Pseudoinverse. Academic, New York.
Devijver, P.A. and Kittler, J. (1982): Pattern recognition: A statistical approach. Pratice Hall, London.
Hopfield, J.J. (in press): Neural computations and neural systems. Proc. of Conference on Computer Simulation in

Huang, W.Y. and Lippmann, R.P. (1987): Comparisons between neural net and conventional classifiers.

Kohonen, T. (1988a): Selj-organizatwn and arsociative memory. (2nd ed.) Springer, Berlin-Heidelberg-New York-

Kohonen, T. (1988b): An introduction to neural computing. Neural Networks 1.3-16.
Lippmann, R. (1987): An introduction to computing with neural nets. IEEE ASSP Mag. 4,4-22.
Makhoul, J., Roucos, S., and Gish, H. (1985): Vector quantization in speech coding. Proc. IEEE 73, No. 11,1551-

Parker D.P. (1982): Learning logic. Invention Report, S81-64, File 1, Office of Technology Licensing, Stanford

Patrick, E.A. (1972): Fundamentals of Pattern Recognition. Prentice-Hall, Englewood Cliffs, NJ.
Prager, R.W., Harrison, T.D., and Fallside, F. (1986): Boltzmann machines for speech recognition. Computer

Speech and Language 1.3-27.
Rumelhart, D.E., Hinton, G.E., and Williams, RJ . (1986): Learning internal representations by error propagation. in

Parallel Dishibuted Processing: Explorations in the Microstructure of Cognition, Volume I : Foundations.
MIT Press, Cambridge. pp. 318-62.

Werbos, P.J. (1974): Beyond regression: New tools for prediction and analysis in the behavioral sciences. Thesis in
applied mathematics, W a r d University, Aug. 1974.

Science 9,147-69.

Brain Science, Copenhagen, Denmark, Aug. 20-22,1986. Cambridge University Press.

Proceedings of the 1st IEEE International Conference on Neural Networks, Vol. IV, 485-94.

Tokyo.

88.

University.

1-68

