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Abstract

As a fundamental task in computer architecture research,
performance comparison has been continuously hampered
by the variability of computer performance. In traditional
performance comparisons, the impact of performance vari-
ability is usually ignored (i.e., the means of performance
measurements are compared regardless of the variability),
or in the few cases where it is factored in using parametric
confidence techniques, the confidence is either erroneously
computed based on the distribution of performance mea-
surements (with the implicit assumption that it obeys the
normal law), instead of the distribution of sample mean of
performance measurements, or too few measurements are
considered for the distribution of sample mean to be nor-
mal. We first illustrate how such erroneous practices can
lead to incorrect comparisons.

Then, we propose a non-parametric Hierarchical Per-
formance Testing (HPT) framework for performance com-
parison, which is significantly more practical than standard
parametric techniques because it does not require to collect
a large number of measurements in order to achieve a nor-
mal distribution of the sample mean. This HPT framework
has been implemented as an open-source software.

1 Introduction

A fundamental practice for researchers, engineers and
information services is to compare the performance of two
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architectures/computers using a set of benchmarks. As triv-
ial as this task may seem, it is well known to be fraught with
obstacles, especially the selection of benchmarks [31, 33, 3]
and performance variability [1]. In this paper, we focus
on the issue of performance variability. The variability
can have several origins, such as non-deterministic architec-
ture+software behavior [6, 26], performance measurement
bias [27], or even applications themselves. Whatever the
origin, the performance variability is well known to severely
hamper the comparison of computers. For instance, the geo-
metric mean performance speedups, over an initial baseline
run, of 10 subsequent runs of SPLASH-2 on a commodity
computer (Linux OS, 4-core 8-thread Intel i7 920 with 6 GB
DDR2 RAM) are 0.94, 0.98, 1.03, 0.99, 1.02, 1.03, 0.99,
1.10, 0.98, 1.01. Even when two computers/architectures
may have fairly different performance, such variability can
still make the quantitative comparison (e.g., estimating the
performance speedup of one computer over another) con-
fusing or plain impossible. Incorrect comparisons can, in
turn, affect research or acquisition decisions, so the conse-
quences are significant.

The most common and intuitive way of addressing the
impact of variability is to compute the confidence of per-
formance comparisons. The most broadly used techniques
for estimating the confidence are parametric confidence es-
timate techniques [1, 27]. However, at least two kinds
of wrongful practices commonly plague the usage of such
techniques, potentially biasing performance comparisons,
and consequently, sometimes leading to incorrect decisions.

The first issue is that computing a confidence based on
a statistical distribution implicitly requires that distribution
to be normal. However, the Central Limit Theorem (CLT)
[4] says that, even if a distribution of performance measure-
ments is not normal, the distribution of the sample mean
(a sample is simply a set of performance measurements)
tends to a normal distribution as the sample size (the num-
ber of measurements in each sample) increases. The prob-
lem, though, is that the confidence estimate is often erro-



neously based on the distribution of performance measure-
ments (with the implicit assumption that it obeys the normal
law), instead of the distribution of the sample mean. That
wrongful practice could still lead to a correct estimate of the
confidence if the distribution of performance measurements
is, by chance, normal, but we will empirically show that the
distribution of performance measurements can easily hap-
pen to be non-normal, so that such erroneous usage of the
confidence estimate is harmful.

The second issue is that, even if parametric confidence
estimate techniques are correctly based on the distribution
of the sample mean, the number of measurements collected
is usually insufficient to achieve a normally distributed sam-
ple mean. In day-to-day practices in computer architec-
ture research, such techniques are commonly applied when
about 30 performance measurements have been collected.
However, we will empirically show that a very large number
of performance measurements, on the order of 160 to 240,
are required for the CLT to be applicable, so that current
practices can again lead to harmful usage of the parametric
techniques.

In this paper, we introduce the Hierarchical Performance
Test (HPT) which can correctly quantify the confidence of
a performance comparison even if only a few performance
measurements are available. The key insight is to use non-
parametric Statistic Hypothesis Tests (SHTs). Parametric
statistical methods (such as the paired ¢-test or confidence
interval) rely on some distribution assumptions, while the
non-parametric SHTs quantify the confidence using data
rankings. Non-parametric SHTs can work when there are
only a few performance measurements, because they do not
need to characterize any specific distribution. To help dis-
seminate the use of non-parametric SHTs, we design a self-
contained Hierarchical Performance Test (HPT) and the as-
sociated software implementation, which will be openly
distributed.

In summary, the contributions of this paper are the fol-
lowing. First, we empirically highlight that traditional per-
formance comparisons simply based on means of perfor-
mance measurements can be unreliable because of the vari-
ability of performance results. As a result, we stress that
every performance comparison should come with a confi-
dence estimate in order to judge whether a comparison re-
sult corresponds to a stochastic effect or whether it is sig-
nificant enough. Second, we provide quantitative evidence
that two common wrongful practices, i.e., using the dis-
tribution of performance measurements instead of the dis-
tribution of sample mean, and using too few performance
measurements, are either harmful or render parametric con-
fidence techniques impractical for our domain. Third, we
propose and implement the HPT framework based on non-
parametric SHTSs, which can provide a sound quantitative
estimate of the confidence of a comparison, independently

of the distribution and the number of performance measure-
ments.

The rest of the paper is organized as follows. Section
2 motivates the need for systematically assessing the confi-
dence of performance measurements, and for using the ap-
propriate statistical tools to do so. Section 3 investigates
the impact of using the wrong distribution or of collect-
ing an insufficient number of performance measurements
for the normality assumption of parametric confidence tech-
niques. Section 4 introduces the non-parametric hierarchi-
cal performance testing framework. Section 5 empirically
compares the HPT with traditional performance compari-
son techniques. Section 6 reviews the related work.

2 Motivation

In this section, we introduce two examples to motivate
this study. The first example shows the significance of us-
ing statistical techniques in performance comparisons, and
the second example shows the importance of selecting ap-
propriate statistical techniques.

In a quantitative performance comparison, the perfor-
mance speedup of one computer over another is tradition-
ally obtained by comparing the geometric mean perfor-
mance of one computer (over different benchmarks) with
that of another, a practice adopted by SPEC.org [31]. Fol-
lowing this methodology, the performance speedup of Pow-
erEdge T710 over Xserve on SPEC CPU2006, estimated by
the data collected from SPEC.org [31], is 3.50. However,
after checking this performance speedup with the HPT pro-
posed in this paper, we found that the confidence of such
a performance speedup is only 0.31, which is rather unre-
liable (> 0.95 is the statistically acceptable level of con-
fidence). In fact, our HPT reports that the reliable perfor-
mance speedup is 2.24 (with a confidence of 0.95), imply-
ing that the conclusion made by comparing geometric mean
performance of two computers brings an error of 56.2% for
the quantitative comparison.

Let us now use another example to briefly illustrate why
using parametric confidence techniques incorrectly can be
harmful. In this section we emulate the wrongful prac-
tice of computing the confidence based on the distribu-
tion of performance measurements, instead of the distribu-
tion of sample mean. We consider the quantitative perfor-
mance comparison of another pair of commodity comput-
ers, Asus PSE3 Premium and CELSIUS R550. In Figure 1,
we show the histograms of the SPEC ratios of the two com-
puters (collected from SPEC.org). Clearly, neither of the
histograms appears to correspond to a normal distribution.
We further evaluated the normality of the distributions using
the Lilliefors test (Kolmogorov-Smirnov test) [24], and we
found that, for both computers, the normality assumption is
indeed incorrect for confidences larger than 0.95.
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Figure 1. Histograms of SPEC ratios of two com-
modity computers.

Voluntarily ignoring that observation, we incorrectly use
the confidence interval based on the non-normal distribu-
tion of performance measurements for the quantitative com-
parison. The confidence interval technique says that Asus
P5SE3 Premium is more than 1.02 times faster than CEL-
SIUS R550 with a confidence of 0.95, and 1.15 times faster
with a confidence of 0.12. According to the HPT, the Asus
P5E3 Premium is actually more than 1.15 times faster than
the CELSIUS R550 with a confidence of 0.95. So the con-
fidence of the claim “Asus PSE3 Premium is 1.15 times
faster than CELSIUS R550” is drastically under-evaluated
(0.12 instead of 0.95), or conversely, the assessment of
the speedup for a fixed confidence of 0.95 is again largely
under-evaluated (1.02 instead of 1.15).

In summary, it is important not only to assess the con-
fidence of a performance comparison, but also to correctly
evaluate this confidence.

3 Issues with Current Performance Compar-
ison Practices

In this section, we empirically highlight that the distribu-
tion of performance measurements may not be normal, and
thus it cannot be used to directly compute the confidence.
Then, we empirically again show that a large number of
measurements are required in order to use the Central Limit
Theorem (CLT).

3.1 Checking the Normality of Perfor-
mance Measurements

To compare the performance of different computers,
we expect that the performance score on each benchmark
can stably reflect the exact performance of each computer.
However, the performance of a computer on every bench-
mark is influenced by not only architecture factors (e.g.,
out-of-order execution, branch prediction, and chip multi-
processor [34]) but also program factors (e.g., data race,
synchronization, and contention of shared resources [2]).
In the presence of these factors, the performance score of a

computer on a benchmark is usually a random variable [1].
For example, according to our experiments using SPLASH-
2 [33], the execution time of one run of a benchmark can be
up to 1.27 times that of another run of the same benchmark
on the same computer. Therefore, it is necessary to pro-
vide some estimate of the confidence of a set of computer
performance measurements.

As mentioned before, the confidence is sometimes in-
correctly assessed based on the distribution of performance
measurements, which can only lead to a correct result if
that distribution is normal. We empirically show that this
property is not valid for the following set of rather typi-
cal performance measurements. In our experiments, we run
both single-threaded (Equake, SPEC CPU2000 [31]) and
multi-threaded benchmarks (Raytrace, SPLASH-2 [33] and
Swaptions, PARSEC [3]) on a commodity Linux worksta-
tion with a 4-core 8-thread CPU (Intel i7 920) and 6 GB
DDR2 RAM. Each benchmark is repeatedly run for 10000
times, respectively. At each run, Equake uses the “test” in-
put defined by SPEC CPU2000, Raytrace uses the largest
input given by SPLASH-2 (car.env), and Swaptions uses the
second largest input of PARSEC (simlarge). Without losing
any generality, we define the performance score to be the
execution time.

To check the normality of the performance, we empiri-
cally study whether the normal Probability Density Func-
tion (PDF) obtained by assuming the normality of the ex-
ecution time complies with the real PDF of the execution
time. In our experiments, we utilize two statistical tech-
niques, Naive Normality Fitting (NNF) and Kernel Parzen
Window (KPW) [28]. The NNF technique assumes that the
execution time obeys a normal law and estimates the cor-
responding normal distribution, while the KPW technique
provides the real distribution of the execution time without
assuming a normal distribution. If the normal distribution
obtained by the NNF complies with the real distribution es-
timated by the KPW, then the performance score obeys a
normal law. Otherwise, it does not. Statistically, the NNF
technique directly employs the mean and deviation of the
sample (with 10000 measurements of the execution time) as
the mean and standard deviation of the normal distribution.
In contrast, without assuming the normality, the KPW tech-
nique estimates the real distribution of the execution time
in a Monte-Carlo style. It estimates directly the probability
density at each point via histogram construction and Gaus-
sian kernel smoothing. By comparing the PDFs obtained
by the two techniques, we can easily identify whether or
not the distribution of performance measurements obeys a
normal law.

According to the experimental results illustrated in Fig-
ure 2, the normality does not hold for the performance score
of the computer on all three benchmarks, as evidenced by
the remarkably long right tails and short left tails of the
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Figure 2. Estimating Probability Density Functions (PDFs) on Equake (SPEC CPU2000), Raytrace (SPLASH-2) and
Swaptions (PARSEC) by KPW (black curves above the grey areas) and NNF (black curves above the white areas), from
10000 repeated runs of each benchmark on the same computer.

estimated performance distributions for Equake, Raytrace
and Swaptions. Such observations are surprising but not
counter-intuitive due to the intrinsic non-determinism of
computers and applications. Briefly, it is hard for a program
to execute faster than a threshold, but easy to be slowed
down by various events, especially for multi-threaded pro-
grams which are affected by data races, thread scheduling,
synchronization order, and contentions of shared resources.

As a follow-up experiment, we use a more rigorous
statistical technique to study whether the execution times
of the 27 benchmarks of SPLASH-2 and PARSEC (using
“simlarge” inputs) distribute normally; each benchmark is
repeatedly run on the commodity computer for 10000 times
again. Based on these measurements, the Lilliefors test
(Kolmogorov-Smirnov test) [24] is utilized to estimate the
confidence that the execution time does not obey the nor-
mal law, i.e., the confidence that the normality assump-
tion is incorrect. Interestingly, it is observed that for ev-
ery benchmark of SPLASH-2 and PARSEC, the confidence
that the normality assumption is incorrect is above 0.95.
Our observation with SPLASH-2 and PARSEC is signifi-
cantly different from the observation of Georges et al. [12]
that single-benchmark performance on single cores (using
SPECjvm98) distributes normally, suggesting that the per-
formance variability of multi-threaded programs is fairly
different from that of single-threaded programs.

In fact, the same can be observed for the performance
variability of a computer over a set of different bench-
marks. Considering the performance score of a computer
which may vary from one benchmark to another, we em-
pirically study whether the distribution of the performance

score obeys the normality law. Figure 3 illustrates the nor-
mal probability plot [5] for the performance of a commodity
computer (4-Core Intel Core 17-870, Intel DP55KG moth-
erboard), where the data is collected from the SPEC online
repository [31]. In each probability plot presented in Figure
3, if the curve matches well the straight line, then the perfor-
mance distributes normally over the corresponding bench-
mark suite; if the curve departs from the straight line, then
the performance does not distribute normally. Obviously,
neither of the figures shows a good match between the curve
and straight line, implying that the performance of the com-
puter does not distribute normally over both SPECint2006
and SPECfp2006.
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Figure 3. Graphically assessing whether the perfor-
mance measurements of a commodity computer dis-
tribute normally (normal probability plots [5]) using
performance scores (SPEC ratios) for SPECint2006
and SPECfp2006.

Finally, we use the Lilliefors test [24] to analyze the
data of 20 other commodity computers randomly selected
from the SPEC online repository [31]. Using the whole



SPEC CPU2006 suite, all 20 computers exhibit non-normal
performance with a confidence larger than 0.95. For
SPECint2006, 19 out of 20 computers exhibit non-normal
performance with a confidence larger than 0.95, and for
SPECfp2006, 18 out of 20 computers exhibit non-normal
performance with a confidence larger than 0.95.

So we can consider that, in general, the distribution of
performance measurements does not obey the normal law,
and thus, it should never be used to directly estimate the
confidence of these measurements with parametric tech-
niques. Only the distribution of the sample mean should
be used, as stated by the Central Limit Theorem.

3.2 Checking the Applicability of the Cen-
tral Limit Theorem

So far we have empirically shown that the performance
of computers cannot be universally characterized by normal
distributions. However, it is still possible to obtain a nor-
mally distributed mean of performance measurements (in
order to apply parametric techniques) given a sufficiently
large number of measurements, as guaranteed by the Cen-
tral Limit Theorem. More specifically, let {21, za, ..., 2, }
be a size-n sample consisting of n measurements of the
same non-normal distribution with mean g and finite vari-
ance 02, and S,, = (3°1"_, z;)/n be the mean of the mea-
surements (i.e., sample mean). According to the classical
version of the CLT contributed by Lindeberg and Lévy [4],
when the sample size n is sufficiently-large, the sample
mean approximately obeys a normal distribution. Never-
theless, in practice, it is unclear how large the sample size
should be to address the requirement of “a sufficiently large
sample”. In this section, we empirically show that the ap-
propriate sample size for applying the CLT is usually too
large to be compatible with current practices in computer
performance measurements.

In order to obtain a large number performance measure-
ments, we use the KDataSets [7]. A notable feature of
KDataSets is that it provides 1000 distinct data sets for each
of 32 different benchmarks (MiBench [14]), for a total of
32,000 distinct runs. We collect the detailed performance
scores (performance ratios normalized to an ideal proces-
sor executing one instruction per cycle) of a Linux worksta-
tion (with 3GHz Intel Xeon dualcore processor, 2GB RAM)
over the 32,000 different combinations of benchmarks and
data sets of KDataSets [7]. In each trial, we fix the number
of different samples to 150, leading to 150 observations of
sample mean, which are enough to obtain a normal distri-
bution as predicted by the CLT [15]. In order to construct
each sample, we randomly select n performance scores out
of the 32,000 performance scores, where the sample size n
(i.e., number of measurements) is varied from 10 to 280
by increments of 20. For each trial with a fixed sample

size, we estimate the probability distribution of the sam-
ple mean via the statistical technique called Kernel Parzen
Window (KPW) [28]. Technically, the KPW has a parame-
ter called “window size” or “smoothing bandwidth”, which
determines how KPW will smooth the distribution curve. In
general, the larger the window size, the smoother the curve.
But if we choose a too large window size, there is a risk that
a non-normal curve is rendered as normal by KPW. In or-
der to avoid that, in each trial we start from a small window
size, and we increase it until the distribution curve becomes
smooth enough. After that, we judge whether the distribu-
tion has approached a normal distribution by checking if it
is symmetric with respect to its center. The different proba-
bility distributions over the 15 trials are illustrated in Figure
4.

Clearly, the sample mean does not distribute normally
given a small (e.g., n = 10 — 140) sample size. When
the sample size becomes larger than 240, the distribution
of the mean performance seems to be a promising approx-
imation of a normal distribution. In addition, we further
carry out the Lilliefors test for each trial, and we find that
the mean performance does not distribute normally when
n < 160. The above observation implies that at least 160 to
240 performance measurements are necessary to make the
CLT and parametric techniques applicable, at least for this
benchmark suite. However, such a large number of perfor-
mance measurements can rarely be collected in day-to-day
practices; most computer architecture research studies rely
on a few tens of benchmarks, with one to a few data sets
each, i.e., far less than the aforementioned number of re-
quired performance measurements. In order to cope with a
small number of performance measurements, we propose to
use a non-parametric statistical framework.

4 Non-parametric Hierarchical Performance
Testing Framework

Statistical inference techniques are popular for decision
making processes based on experimental data. One crucial
branch of statistical inference is called Statistical Hypothe-
sis Test (i.e., SHT).

More specifically, an SHT is a procedure that makes
choices between two opposite hypotheses (propositions),
the NULL (default) hypothesis and the alternative hypothe-
sis. The NULL hypothesis represents the default belief, i.e.,
our belief before observing any evidence, and the alterna-
tive hypothesis (often the claim we want to make) is a belief
opposite to the NULL hypothesis. In performance compar-
ison, a typical NULL hypothesis may be “computer A is
as fast as computer B”, and a typical alternative hypothe-
sis may be “computer A is faster than computer B”. At the
beginning of an SHT, one assumes the NULL hypothesis to
be correct, and constructs a statistic (say, Z) whose value
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Figure 4. How many performance measurements are required to construct a sufficiently-large sample?

can be calculated from the observed data. The value of Z
determines the possibility that the NULL hypothesis holds,
which is critical for making a choice between the NULL
hypothesis and the alternative hypothesis. The possibility
that the NULL hypothesis does hold is quantified as the so-
called p-value (or significance probability) [21], which is a
real value between 0 and 1 that can simply be considered as
a measure of risk associated with the alternative hypothe-
sis. The p-value is an indicator for decision-making: when
the p-value is small enough, then the risk of incorrectly
rejecting the NULL hypothesis is very small, and the con-
fidence of the alternative hypothesis (i.e., 1 — p-value) is
large enough. For example, in an SHT, when the p-value
of the NULL hypothesis “computer A is as fast as computer
B” is 0.048, we only have a 4.8% chance of rejecting the
NULL hypothesis when it actually holds. In other words,
the alternative hypothesis “computer A is faster than com-
puter B” has confidence 1 —0.048 = 0.952. Closely related
to the p-value, the significance level acts as a scale of the
ruler for the p-value (frequently-used scales include 0.001,
0.01, 0.05, and 0.1). A significance level a € [0, 1], can
simply be viewed as the confidence level 1 — . As a statis-
tical convention, a confidence no smaller than 0.95 is often
necessary for reaching the final conclusion.

Among the most famous and broadly used SHTs, many
are parametric ones which rely on normally distributed
means of measurements. In the rest of this section, we in-
troduce a Hierarchical Performance Testing (HPT) frame-
work, which integrates non-parametric SHTs for perfor-
mance comparisons.

4.1 General Flow

Concretely, the HPT employs Wilcoxon Rank-Sum Test
[35] to check whether the difference between the perfor-
mance scores of two computers on each benchmark is sig-
nificant enough (i.e., the corresponding significance level is

small enough), in other words, whether the observed superi-
ority of one computer over another is reliable enough. Only
significant (reliable) differences, identified by the SHTs in
single-benchmark comparisons, can be taken into account
by the comparison over different benchmarks, while those
insignificant differences will be ignored (i.e., the insignifi-
cant differences are set to 0) in the comparison over differ-
ent benchmarks. Based on single-benchmark performance
measurements, the Wilcoxon Signed-Rank Test [9, 35] is
employed to statistically compare the general performance
of two computers. Through these non-parametric SHTs, the
HPT can quantify the confidence for performance compar-
isons. In this section, the technical details of the HPT will
be introduced.

Let us assume that we are comparing two computers A
and B over a benchmark suite consisting of n benchmarks.
Each computer repeatedly runs each benchmark m times
(m > 3). Let the performance scores of A and B at their
j-th runs on the i-th benchmark be a;; and b; ; respec-
tively. Then the performance samples of the computers can
be represented by performance matrices Sa = [ai jlnxm
and Sp = [b; j]nxm. respectively. For the corresponding
rows of S4 and Sp (e.g., the 7-th rows of the matrices,
T =1,...,n), we carry out the Wilcoxon Rank-Sum Test to
investigate whether the difference between the performance
scores of A and B is significant enough. The concrete steps
of Wilcoxon Rank-Sum Test are the following:

e Let the NULL hypothesis of the SHT be “H, o: the per-
formance scores of A and B on the T-th benchmark are
equivalent to each other”; let the alternative hypothesis of
the SHT be “H, 1: the performance score of A is higher
than that of B on the T-th benchmark” or “H »: the per-
formance score of B is higher than that of A on the T-th
benchmark”, depending on the motivation of carrying out

1Users who are not interested in the mathematical details of the non-
parametric SHTs can omit the rest of this subsection.



the SHT. Define the significance level be «a,; we suggest
setting a.; = 0.05 for m > 5 and 0.10 for the rest cases.
eSortar1,ar2,...,0rm,br1,br2,...,br, in ascending
order, and assign each of the scores the corresponding rank
(from 1 to 2m). In case two or more scores are the same,
but their original ranks are different, then renew the ranks
by assigning them the average of their original ranks?. Af-
terwards, for A and B, we can define their rank sums (on the
7-th benchmark) to be:

m m
Ror = ZRankT (arj);, Rpr= ZRankT (br.j)s
j=1 j=1

where Rank, (-) provides the rank of a performance score
on the 7-th benchmark.
e Case[mn < 12]°: When the alternative hypothesis of the
SHT is H. i, we reject the NULL hypothesis and accept
H, 1 if R, - is no smaller than the critical value (right tail,
Wilcoxon Rank-Sum Test) under the significance level «,.
When the alternative hypothesis of the SHT is H, o, we
reject the NULL hypothesis and accept H, 5 if Ry, is no
smaller than the critical value under the significance level
a [15].
o Case[m > 12]: Define two new statistics zq r and zp ~ as
follows:

Ra,r — 3m(2m + 1)
Zayr = N

Sm2(2m +1)

Ry — sm(2m +1)

Sm2(2m+1)

Under the NULL hypothesis, z, - and z; » approximately
obey the standard normal distribution AV (0, 1). When the al-
ternative hypothesis of the SHT is H - 1, we reject the NULL
hypothesis and accept H. 1 if z, - iS no smaller than the
critical value (right tail, standard normal distribution) under
the significance level «;; when the alternative hypothesis of
the SHT is H; 2, we reject the NULL hypothesis and accept
H o if 2z, is no smaller than the critical value under the
significance level o [15].

After carrying out the above SHT with respect to the 7-th
benchmark (7 = 1,...,n), we are able to assign the differ-
ence (denoted by d,) between the performance of A and B.
Concretely, if the SHT accepts H, ; or H, » with a promis-
ing significance level (e.g., 0.01 or 0.05), then we let

d, = median{a; 1,ar2,...,0rm}

—median{b; 1,07 2,...,brm}, T=1,...,n.
Otherwise (if the NULL hypothesis H o has not been re-

jected at a promising significant level), we let d, = 0, i.e.,

2For example, if two scores are both 50, and their original ranks are 5
and 6 respectively, then both of them obtain a rank of 5.5.

31n statistics, when m < 12, the critical values for Wilcoxon rank sum
test are calculated directly. When m > 12, the corresponding critical
values are often estimated by studying the approximate distribution of the
rank sum.

we ignore the insignificant difference between the perfor-
mance scores of A and B. dy,ds,...,d, will then be uti-
lized in the following Wilcoxon Signed-Rank Test for the
performance comparison over different benchmarks:

o Let the NULL hypothesis of the SHT be “Hy: the gen-
eral performance of A is equivalent to that of B”; let the
alternative hypothesis of the SHT be “H;: the general per-
formance of A is better than that of B” or “Hs: the general
performance of B is better than that of A”, depending on
the motivation of carrying out the SHT.

e Rank dy,ds,...,d, according to an ascending order of
their absolute values. In case two or more absolute values
are the same, then renew the ranks by assigning them the
average of their original ranks. Afterwards, for A and B, we
can define their signed-rank sums be:

R4 = Z Rank(di)—i—% Z Rank(d;),

ird; =0

Rp = Z Rank(di)Jr% Z Rank(d;),

ird; =0

where Rank(d;) provides the rank of the absolute value of
d;, which was described above.

eCase[n < 25]*: When the alternative hypothesis of the
SHT is H;, we reject the NULL hypothesis and accept H;
if R 5 is no larger than the critical value (one-side Wilcoxon
Signed-Rank Test) under the significance level «; When
the alternative hypothesis of the SHT is H», we reject the
NULL hypothesis and accept Hs if R4 is no larger than
the critical value under the significance level a. The crit-
ical values of Wilcoxon Signed-Rank Test are available in
statistics books [15].

eCase[n > 25]: Define two new statistics z4 and zg as
follows:

Ra—in(n+1)
VA +1)(2n+1)

Rp — in(n+1)
VA + )20+ 1)

ZA = , 2B =

Under the NULL hypothesis, z4 and zp approximately
obey the standard normal distribution N'(0,1). Hence,
when the alternative hypothesis of the SHT is H;, we re-
ject the NULL hypothesis and accept H; if zp is no larger
than the critical value (lower tail, standard normal distri-
bution) under the significance level «; when the alterna-
tive hypothesis of the SHT is H», we reject the NULL hy-
pothesis and accept Hy if z4 is no larger than the criti-
cal value under the significance level «. For the compari-
son over different benchmarks, the outputs of the HPT, in-
cluding the comparison result and its confidence, are finally
presented by the above Wilcoxon Signed-Rank Test. For-
mally, given a fixed significance level o for the HPT, we

4In statistics, when n < 25, the critical values for Wilcoxon signed
rank test are calculated directly. When n > 25, the corresponding critical
values are often estimated by studying the approximate distribution of the
signed rank sum.



utilize Con fidence(HPT : S4 > Sp) > r to represent the
following conclusion made by the HPT: “A outperforms B
with the confidence r”’, where r = 1 — a.

4.2 Quantitative Comparison: Statistical
Speedup Testing

So far we have shown how to carry out qualitative per-
formance comparison with the HPT. In addition to the qual-
itative comparison, in most cases we are more interested
in quantitative comparison results such as “Computer A is
more than  times faster than Computer B”, where v > 1
is defined as the speedup-under-test. Traditionally, such
kind of arguments are often obtained directly by comparing
the means of performance scores with respect to computers
A and B. Taking the SPEC convention as an example, if
the mean (geometric) SPEC ratios of A is ten times that of
B, then one would probably conclude that “A is ten times
faster than B”. Such a quantitative comparison is danger-
ous since we do not know how much we can trust the re-
sult. Fortunately, the HPT framework offers two solutions
for tackling speedup arguments. The first solution requires
us to specify the concrete value of v before the test. After-
wards, we shrink the performance scores of computer A by
transforming the corresponding performance matrix S4 to
S 4 /7 (without losing generality, we employ the normalized
performance ratio as the performance score with respect to
each benchmark, where a larger performance score means
better performance). Considering a virtual computer with
performance matrix S 4 /7, if the HPT framework states that
the virtual computer outperforms computer B with confi-
dence r, then we can claim “A is more than ~ times faster
than B with confidence r”. In general, if we specify a
more (less) conservative speedup -y before speedup test-
ing, the corresponding speedup argument will have a larger
(smaller) confidence r. Users should keep a balance be-
tween the speedup and the corresponding confidence, so as
to make a convincing yet not-too-conservative conclusion.

In many cases, instead of deciding a speedup y before the
statistical test, one would like to know the largest speedup
that results in a reliable comparison result (for a given con-
fidence r). To address this need, our HPT framework also
offers an alternative way of estimating the speedup and cor-
responding confidence. Guided by the above notion, we

formally define the r-Speedup (computer A over computer
B, r-Speedup(A, B)) to be

sup {'y > 1; confidence <HPT : %SA > SB) > r} .

To be specific, the r-Speedup of computer A over com-
puter B is the largest speedup of A over B for confidence r.
In practice, we can restrict the precision (e.g., 2 decimals)
when estimating the r-Speedup via heuristic optimization

techniques. After predefining the confidence level r (e.g.,
r = 0.95), the r-Speedup can be viewed as a quantita-
tive indicator of performance speedup with the guarantee
of confidence r. The whole HPT framework, including the
r-Speedup, has been implemented, and it will be dissemi-
nated as an open-source software [16].

4.3 An Example of Quantitative Perfor-
mance Comparison

In this subsection, the quantitative performance compar-
ison of two commodity computers, X (Linux OS, 4-core 8-
thread Intel i7 920 with 6 GB DDR2 RAM) and Y (Linux
08, 8-core AMD Opteron 8220 with 64 GB DDR2 RAM) is
presented as an example of applying the HPT and speedup
test. In our experiments, each SPLASH-2 benchmark (8
threads) is repeatedly run 5 times on each computer, us-
ing the default workloads of SPLASH-2. By specifying the
speedup-under-test v to be 1.76, we use the HPT to test
how reliable is the proposition “Computer X is more than
1.76 times faster than Computer Y over SPLASH-2. Test-
ing such a proposition is equivalent to testing “Computer
X is faster than Computer Y over SPLASH-2, where X
is a virtual computer whose performance scores are always
1/1.76 of the corresponding scores of the real computer X.
Table 1 presents the details of the comparison. To be spe-
cific, all performance scores are normalized to the first run
of computer Y on each benchmark. In order to conduct a
quantitative comparison, we divide all performance scores
of X by 1.76 times (we store these reduced scores in S'g),
and utilize the HPT to compare the reduced scores against
those of computer Y (stored in Sy). For the 7" bench-
mark (7 = 1,...,n), “Stat. Win.” indicates the winner
whose performance on the 7¢" benchmark is significantly
(with confidence 0.95) better. We indicate “X” if the re-
duced performance of X still wins, and we indicate “Y™ if
the performance of Y wins over the reduced performance
of X. In case there is no definite winner, we indicate “Tie”.
“Med.” indicates the median of the five performance scores
(of A and B), “Dift.” shows the (significant) difference be-
tween the median performance scores of A and B, “Rank”
shows the rank of the absolute value of d,. According to
the HPT, the virtual computer X beats computer Y sig-
nificantly on 8 benchmarks, ties on 2 benchmarks, loses
on 4 benchmarks. Following the flow introduced in Sec-
tion 4.1, the proposed HPT concludes that “Computer X is
faster than Computer Y with confidence 0.95”, suggesting
that “Computer X is more than 1.76 times faster than Com-
puter Y with confidence 0.95” (i.e., the 0.95-Speedup of
Computer X over Computer Y is 1.76 over all SPLASH-2
benchmarks), where 0.95 is the statistically acceptable level
of confidence.



Table 1. Statistical quantitative comparison of computers X and Y over SPLASH-2 (Speedup: 1.76).

Sz Med. Stat. Diff. Rank Med. Sy
Win. (d+)

1.barnes 053 054 054 053 054 | 054 Y -0.50 10 104 | 100 105 104 103 1.04

2.cholesky 097 095 093 096 096 | 096 Y -0.03 3 099 | 1.00 098 101 099 098

3.t 074 076 074 078 076 | 0.76 Y 027 | 65 103 | .00 103 102 105 103

4.fmm 107 103 105 1.02 105 | 1.05 || Te | 0001 | 15 104 | 1.00 105 104 104 105

5.lu-con 129 126 127 127 125 | 127 X 027 6.5 100 | .00 101 102 098  1.00

6.lu-ucon 146 148 138 153 155 | 148 X 0.49 9 099 | .00 096 104 087 099

7.0cean-con 117 115 094 Ll6 113 | LIS X 0.17 5 098 | 1.00 091 100 098 0386

8ocean-ucon || 195 198 192 193 193 | 1.93 X 0.95 13 098 | 1.00 098 097 090 098

9.radiosity 101 101 101 099 101 | 101 Tie | 00.01) | 15 100 | 100 100 100 100 1.00

10.radix 247 251 253 244 211 | 247 X 150 14 097 | 1.00 086 095 103 097

11.raytrace 141 139 143 121 137 | 139 X 032 8 107 | 100 109 107 114 107

12.volrend 092 094 092 092 093 | 092 Y -0.08 4 100 | 100 100 100 100 1.00

13.water-ns 164 166 159 164 163 | 1.64 X 0.69 11 095 | 1.00 095 084 093 096

14.water-sp 184 188 178 180 177 | 180 X 0.80 12 100 | 1.00 102 098 087 1.04
5 Experimental Comparisons 56.3%. Meanwhile, compared with the acceptable confi-
dence 0.95, the loss of confidence brought by the unreliable
5.1 Comparisons Using the Geometric GM-Speedup ranges from 28.4% to 87.4%, showing that all

Mean Performance

In traditional quantitative comparisons, the Geometric
Mean (GM) of the performance scores of a computer over
different benchmarks is often utilized to estimate the per-
formance speedup of one computer over another. In most
cases, such comparison results, presented without confi-
dence estimates, are often unreliable. Taking the perfor-
mance comparison between computers X and Y presented
in Section 4.3 as an example, the GM-speedup (the per-
formance speedup obtained by comparing the geometric
mean performance score) of computer X over computer
Y is 2.14. The corresponding confidence of this perfor-
mance speedup (estimated by the proposed HPT) is 0.64,
which is far less than the acceptable level 0.95. We then
perform the following more extensive experiments: we col-
lect the (SPEC CPU2006) performance reports of 14 dif-
ferent computers from SPEC.org [31], and analyze both the
0.95-Speedup (performance speedup estimated by the HPT,
with the guaranteed confidence 0.95) and GM-Speedup of
one computer over another with the proposed HPT. Table
2 presents the performance speedups and the correspond-
ing confidences over 7 pairs of computers®. It can be ob-
served from Table 2 that the GM-Speedup is higher than the
0.95-Speedup on all 7 pairs of computers, and the largest
error between the GM-Speedup and 0.95-Speedup can be

5The 14 computers are: Al: Dell Precision T7500 (Intel Xeon); A2:
ProLiant DL380 G4 (Intel Xeon); B1: PowerEdge T710 (Intel Xeon);
B2: Xserve (Intel Dual-Core Xeon); C1: PRIMERGY TX100 S2 (Intel
Core 13-550); C2: Intel DG965WH motherboard (Intel Core 2); D1: Acer
AB460 F1 (Intel Xeon); D2: Dell Precision 380 (Intel Pentium Exteme
Edition); E1: Asus P5E3 Premium (Intel Core 2); E2: Intel D975XBX
motherboard (Intel Pentium Extreme Edition); F1: Asus P6T Deluxe (Intel
Core i7-920); F2: HP Integrity rx6600 (Dual-Core Intel Itanium 2); G1:
Asus P5E3 Premium (Intel Core 2); G2: CELSIUS R550 (Intel Xeon).
Their SPEC ratios are available at SPEC.org [31].

7 GM-Speedups are rather unreliable.

5.2 Comparisons Using Parametric Tech-
niques

In this subsection, the proposed non-parametric HPT
is compared against two parametric statistical techniques
(confidence interval and paired ¢-test) requiring normally
distributed sample mean. Ideally, a fair comparison be-
tween a non-parametric technique and a parametric tech-
nique requires that both the non-parametric and parametric
techniques are built upon the same statistic, the mean of
the measurements. However, using this statistic in a non-
parametric manner requires more performance measure-
ments, e.g., several hundred different machines, and more
sophisticated statistical techniques such as the permutation
test or bootstrap. Due to the lack of available performance
data on SPEC.org, we leave this improved comparison for
future work.

Let us first recall the example presented in Section 4.3.
Using the assertion “Computer X is more than 1.76 times
faster than Computer Y, we compare the effectiveness of
HPT against that of the parametric techniques. Techni-
cally, the effectiveness of each technique (HPT, paired ¢-
test and confidence interval) can be statistically measured
by the “statistical power” of the technique [9, 11], which is
a broadly adopted criterion for comparing the effectiveness
of SHTs. The power of a statistical technique for testing the
confidence of a hypothesis can be approximately estimated
by the probability of accepting the alternative hypothesis
[9]. For the comparison result “Computer X is more than
1.76 times faster than Computer Y, the power of each sta-
tistical technique can be estimated by carrying out 1000 re-
peated runs of SPLASH-2 on X and Y, and studying the
average confidence of the comparison result over 1000 re-



Table 2. Quantitative Performance Comparisons based on SPEC CPU2006, where the 0.95-Speedups are obtained by
the proposed HPT, each GM-Speedup is obtained by comparing the geometric mean SPEC ratios of the corresponding
pair of computers, and all HPT-confidences are estimated by the proposed HPT.

Al-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2
0.95-Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
GM-Speedup 3.35 3.50 1.70 3.6 1.98 167 127
Speedup Error +26.9% +56.3% +22.3% +33.1% +12.5% +84% +10.4%
HPT-Confidence 0.18 0.31 0.33 0.17 0.12 0.68 0.15
Confidence Loss | -81.1%  -67.4%  -65.3%  -82.1% -87.4% -284% -84.2%

Table 3. Comparisons of confidences obtained by the HPT and parametric techniques, where the HPT-Confidences are
obtained by the proposed HPT, CI-Confidences are obtained by the confidence interval, and ¢-Confidences are obtained
by the paired t-test. According to the statistical convention, the confidences in bold are the acceptable ones (> 0.95),

and the rest are unacceptable ones (< 0.95).

Al-A2 B1-B2 C1-C2 DI1-D2 EI1-E2 F1-F2  GI-G2
Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
CI-Confidence 0.82 0.90 0.91 0.89 0.79 0.73 0.12
Confidence Loss | -13.7%  -5.3%  -42% -6.3% -16.8% -232% -87.4%
t-Confidence 0.91 0.95 0.96 0.94 0.89 0.87 0.52
Confidence Loss | -4.2% 0% 0% 11%  -6.3%  -84%  -45.3%

peated statistical tests using the same technique. According
to our experiments, the power of HPT, estimated over 1000
repeated runs of SPLASH-2 on computers X and Y, is 0.89,
which is significantly larger than that of the confidence in-
terval (0.67), and that of the paired t-test (0.76). Statis-
tically, this shows that HPT significantly outperforms the
paired ¢-test for the performance comparison of computers.

Now, we carry out another experiment using the data
collected from SPEC.org [31], with the goal of showing
that the parametric techniques can be rather inaccurate com-
pared to HPT. Our empirical study still involves the 7 afore-
mentioned pairs of computers. By fixing the performance
speedup for each pair of computers, Table 3 compares
the confidence obtained by the HPT with those obtained
by parametric techniques. We can observe that the confi-
dence provided by the confidence interval technique is often
rather inaccurate, and the largest confidence estimate error
is 87.4%. At the acceptable confidence level of 0.95, the
confidence interval technique is so conservative that all 7
comparison results are incorrectly considered to be unreli-
able (while the HPT accepts all of them). The paired ¢-test
performs slightly better, though it still rejects 5 out of the
7 comparison results due to the inaccurate ¢-Confidence.
In summary, using inappropriate statistical techniques can
simply result in incorrect conclusions on the validity of a

performance comparison.

Finally, we also compare the performance speedups ob-
tained by parametric techniques against those obtained by
HPT when the level of confidence is set to 0.95. As pre-
sented in Table 4, the speedup error with respect to the con-
fidence interval ranges from 6.5% to 44.7%, while the error
with respect to the ¢-test ranges from 1.4% to 21.6%. Again,
these results highlight the impact of statistical techniques on
the outcome of performance comparisons.

6 Related Work

Traditionally, performance comparisons of computers
mainly rely upon one metric (e.g., geometric mean and
harmonic mean) [8, 17, 20, 25, 30], though this approach
can be rather unreliable. Having realized the importance
of statistical inference, Lilja suggested to introduce sev-
eral parametric statistical methods (e.g, confidence inter-
val) to evaluate computer performance [23]. Alameldeen
and Wood carried out in-depth investigations on the per-
formance variability of multi-threaded programs, and they
suggested to use the confidence interval and ¢-test, two para-
metric techniques, in order to address the issue of variabil-
ity [1]. Later, in the context of Java performance evalua-
tion, Georges et al. [12] found that single-benchmark per-



Table 4. Comparisons of 0.95-performance speedups obtained by the HPT and parametric techniques, where each

speedup has a confidence of 0.95 for each technique.

Al-A2 BI1-B2 Cl1-C2 DI1-D2 EI-E2 Fl1-F2 GI-G2
0.95-Speedup (HPT) 2.64 2.24 1.39 2.45 1.76 1.54 1.15
0.95-Speedup (Confidence Interval) 1.46 1.41 1.30 1.79 1.45 1.29 1.02
Speedup Error 44.7%  -371%  -6.5% -26.9% -17.6% -162% -11.3%
0.95-Speedup (Paired ¢-test) 2.07 2.28 1.41 2.39 1.59 1.38 1.04
Speedup Error 21.6%  +1.8%  +1.4% -245% -97%  -104%  -9.6%

formance (SPECjvm98) on several single-core computers
can, in general, be characterized using normal distributions,
and thus, they can recommend using the confidence inter-
val technique in this case. While valid, their observation
does not seem to generalize to the broader case of multi-
core systems and multi-threaded applications, based on our
own experiments. Igbal and John’s empirical study [19]
generally supported the log-normality for characterizing the
SPEC performance of computers. However, their exper-
iments were conducted after removing all “outlier bench-
marks” in SPEC CPU2006. They also proposed a perfor-
mance ranking system [19]. But unlike the Wilcoxon test
which uses rank information to construct statistics for com-
puting confidence, the system directly offers a performance
ranking without presenting the corresponding confidence.

However, we observed that few computer architecture
studies yet acknowledge the importance of proper confi-
dence estimates for performance comparisons and measure-
ments: among 521 papers surveyed at ISCA (194 papers,
2006-2010), HPCA (158 papers, 2006-2010) and MICRO
(169 papers, 2006-2009), only 28 papers (5.4%) resort to
confidence estimates in order to assess the variability of per-
formance measurements, among which 26 (5%) rely upon
the confidence interval technique, and only 3 (0.57%) use
the more sophisticated but still parametric ¢-test.

At the same time, many other statistical techniques have
already been used to cope with various issues in computer
architecture research. For instance, statistical techniques
were used for sampling simulation [36], principal compo-
nents analysis was used to evaluate the representativeness
of benchmarks [3, 29], and regression techniques were used
to model the design space of processors [10, 13, 18, 22].
Therefore, the computer architecture community is already
largely familiar with complex statistical tools, so that em-
bracing a more rigorous performance measurement and
comparison process is only a logical extension of the cur-
rent trend.

7 Conclusion

We first highlight the importance and impact of variabil-
ity in performance measurements and comparisons, as well
as the risk of inappropriately using current parametric con-
fidence techniques, and the fact they require a large number
of performance measurements when applied to multi-cores
and multi-threaded applications, making them largely im-
practical.

We propose a framework for achieving both a rigorous
and practical comparison of computer architecture perfor-
mance. In the proposed HPT, we adopt non-parametric
SHTs which do not require a normal distribution of the sam-
ple mean of performance measurements, and thus, which
can accommodate few such measurements. Besides the
benefits for performance comparisons, we have imple-
mented the HPT as an easy-to-use open-source software,
requiring no mathematical background.
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