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Abstract

As IC technologies scale to finer feature sizes, it becomes increasingly

difficult to control the relative process variations. The increasing fluc-

tuations in manufacturing processes have introduced unavoidable and

significant uncertainty in circuit performance; hence ensuring manufac-

turability has been identified as one of the top priorities of today’s IC

design problems. In this paper, we review various statistical methodolo-

gies that have been recently developed to model, analyze, and optimize

performance variations at both transistor level and system level. The

following topics will be discussed in detail: sources of process varia-

tions, variation characterization and modeling, Monte Carlo analysis,

response surface modeling, statistical timing and leakage analysis, prob-

ability distribution extraction, parametric yield estimation and robust

IC optimization. These techniques provide the necessary CAD infras-

tructure that facilitates the bold move from deterministic, corner-based

IC design toward statistical and probabilistic design.
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Introduction

As integrated circuit (IC) technologies continue shrinking to nanoscale,

there is increasing uncertainty in manufacturing process which makes it

continually more challenging to create a reliable, robust design that will

work properly under all manufacturing fluctuations. Large-scale process

variations have already become critical and can significantly impact

circuit performance even for today’s technologies [14, 72, 73, 100].

Figure 1.1 shows the relative process variations (3σ/mean) predicted

by the International Technology Roadmap for Semiconductors (ITRS)

[100]. These large-scale variations introduce numerous uncertainties in

circuit behavior and make it more difficult than ever to achieve a robust

IC design.

In addition, when we consider some of the promising new device

structures (e.g., carbon nano-tube [8, 34], FinFET [20], etc.) that have

been recently proposed to maintain the aggressive pace of IC technology

scaling, it is apparent that applying them to high-volume production

will be a challenging problem due to the manufacturing uncertainty, or

even their likelihood of failure. While it has already become extremely

difficult to reliably manufacture nano-scale devices and achieve high

product yield (defined as the proportion of the manufactured chips
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Fig. 1.1 Relative process variations (3σ/mean) predicted by [100].

that function correctly) with today’s technologies, it would be almost

impossible to do so affordably with tomorrow’s technologies using exist-

ing deterministic design methodologies. For this reason, a paradigm

shift in IC design is required to simultaneously improve circuit perfor-

mance and product yield when using manufacturing technologies that

present significant uncertainty.

The yield loss in a manufacturing process can be classified into two

broad categories: catastrophic (due to physical and structural defects,

e.g., open, short, etc.) and parametric (due to parametric variations

in process parameters, e.g., VTH, TOX, etc.). As process variations

become relatively large due to technology scaling, parametric yield loss

is becoming increasingly significant at 90 nm technologies and beyond.

Therefore, we focus on the parametric yield problem in this paper.

We will review a number of recently-developed techniques that handle

large-scale process variations at both transistor and system levels to

facilitate affordable statistical integrated circuit design. Especially, we

will focus on the following two questions:

• When should process variations be considered? Ideally, we

want to take into account process variations in the earliest

design stage. However, this strategy may not be necessary

and/or efficient in practice. During early-stage system-level
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design, many simplified models must be used to make the

large-scale design problem tractable. The errors of these

system-level models may be comparable to, or even larger

than, the uncertainties caused by process variations. In such

cases, it is not meaningful to model and analyze process

variations at system level. As the design moves from system

level down to circuit level, more accurate circuit-level mod-

els become available. We should start to consider process

variations at the stage where circuit models are sufficiently

accurate and process variations become the dominant uncer-

tainties that impact performance.
• How should process variations be considered? For example,

the simplest way to model process variations is to define a

number of process corners. That is, every process parameter

is assigned with a lower bound and an upper bound, and the

best-case and worst-case circuit performances are computed

by enumerating all possible combinations of the extreme

values of process parameters. The aforementioned corner

model is simple; however, such a corner-based approach may

result in large error, since it completely ignores the corre-

lation among different process parameters. In addition, it is

not guaranteed that the best/worst-case performance always

occurs at one of these corners. An alternative approach to

model process variations is to use statistical device models

where process parameters are modeled as random variables.

(More details on statistical device models can be found in

Chapter 2.) The statistical device model is much more accu-

rate, but also expensive, than the traditional corner model.

One of the major objectives of this paper is to review and compare

different statistical IC analysis and optimization techniques, and ana-

lyze their trade-offs for practical industrial applications. The following

topics will be covered in this paper:

• Sources of process variations and their models. We will

briefly review both front-end of line (FEOL) variations and

back-end of line (BEOL) variations in Chapter 2. Several
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techniques for variation characterization and modeling will

be presented for both device-level and chip-level applications.
• Transistor-level statistical methodologies. In Chapter 3,

we will discuss and compare a number of transistor-

level statistical modeling, analysis and optimization tech-

niques. In particular, the following topics will be covered:

Monte Carlo analysis, response surface modeling, proba-

bility distribution extraction, parametric yield estimation,

and robust transistor-level optimization. Several recently-

developed methodologies, including projection-based per-

formance modeling (PROBE) and asymptotic probability

extraction (APEX), will be described in detail.
• System-level statistical methodologies. Most system-level sta-

tistical analysis and optimization techniques utilize a hierar-

chical flow to partition the entire system into multiple small

blocks such that the large-size problem becomes tractable.

In Chapter 4, we will discuss a number of system-level sta-

tistical methodologies that have been recently proposed. In

particular, we will focus on the statistical timing and leakage

problems for large-scale digital systems.

Finally, we will conclude and propose several possible areas for

future research in Chapter 5.



2

Process Variations

Process variations are the deviations from the intended or designed

values for the structural or electrical parameters of concern. In this

paper, we focus on the parametric variations due to the continuously

varying structural or electrical parameters. For modern semiconductor

manufacturing processes, transistors and other active devices are first

fabricated on top of semiconductor substrate. After that, metal layers

are deposited to connect transistors and supply power. Based on the

manufacturing steps, parametric variations can be classified into two

broad categories: front-end of line (FEOL) variations for devices and

back-end of line (BEOL) variations for interconnects. In this chapter,

we briefly review the sources of these variations and their models.

2.1 Front-End of Line (FEOL) Variations

FEOL variations mainly refer to the variations at device level. The

major sources of FOEL variations consist of transistor gate length and

gate width variations, gate oxide thickness variations, doping-related

variations, etc. After transistors are fabricated, these variations can

be observed by measuring the corresponding device characteristics,
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including drain-source current (IDS), threshold voltage (VTH), gate

leakage current (IGate), etc. For example, poly critical dimension (CD)

variations can change IDS, and gate oxide thickness variations and

doping-related variations can change VTH.

In nano-scale IC technologies, transistor gate length, or poly crit-

ical dimension, can significantly vary due to its small feature size.

The sources of CD variations typically include exposure system varia-

tions, mask errors, and resist effects. Exposure system variations may

have optical, mechanical or illuminative explanations [108]. Optical

performance (e.g., flare) can introduce non-uniform exposure dose.

Mechanical performance (e.g., vibrations during reticle scanning and/or

wafer scanning) can cause focus variations. Illumination performance

is mainly related to the polarization control of the laser.

As shown in Figure 2.1, mask errors can be puncture, burr, blotch,

mask bias, etc. [118] Since mask errors affect all the dies within the

same mask, the variations caused by mask errors are systematic. Fur-

thermore, regions within a design with relatively low aerial-image con-

trast will be subject to larger amplification of mask errors.

Resist effects result in line edge roughness (LER) [7], as shown in

Figure 2.2. LER has caused little worry in the past since the critical

dimensions of MOSFETs were orders of magnitude larger than the

roughness. However, as the aggressive technology scaling moves into

nanometer regime, LER does not scale accordingly and becomes an

increasingly large fraction of the gate length.

Along with gate length, gate width also shows substantial varia-

tions. Since many transistors in a practical design typically have much

Fig. 2.1 Examples of mask error (showing puncture, burr, blotch, and mask bias).
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Fig. 2.2 A typical LER effect on poly.

bigger gate widths than their gate lengths, gate width variations are

not as dominant as gate length variations. However, for minimal-width

transistors, gate width variations can significantly impact transistor

performance.

Part of the transistor gate width variations comes from shallow

trench isolation (STI) polish [35]. STI is a method used for electrical

isolation of microstructures during IC manufacturing. It is a replace-

ment of the old Local Oxidation of Silicon (LOCOS) for technologies

beyond 0.35µm. STI uses a nitride mask to protect transistor regions

and expose isolation regions. It etches trenches into a wafer, and then

fills the trenches with oxide. Afterwards, it uses chemical mechanical

polishing (CMP) to polish away any excess oxide. During the etching

and filling step, some parts of the device area might be consumed (as

shown in Figure 2.3) and, therefore, the effective width of the poly

becomes smaller. This effect is especially significant for narrow-width

transistors.

Another source of gate width variations is from the rounding effect

due to patterning limitations, as shown in Figure 2.4. Rounding affects

both transistor gate length and gate width. In Figure 2.4, the effective

gate width for the left-most transistor is increased by the rounding
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Fig. 2.3 Top view of shallow trench isolation. (a) Top view of the drawn poly. (b) Right
edge of the ploy where part of its area is consumed by the etching and filling step.

Fig. 2.4 Example of rounding effect.

effect at diffusion. Meanwhile, the effective gate length is increased by

the rounding effect at poly for the right-most transistor. To mitigate

the problem, strict design rules must be applied so that the rounding

effect can be minimized.

Threshold voltage is another important device parameter that

exhibits significant variations. Threshold voltage variations consist of

two major components: (1) die-to-die variations and (2) random within-

die variations. The die-to-die variations mainly come from wafer-

level non-uniformity (e.g., non-uniform temperature distribution during

thermal oxidation). On the other hand, the random within-die varia-

tions are mainly caused by random channel dopant fluctuations and

poly dopant fluctuations. In today’s leading-edge manufacturing tech-

nologies, there are only about 500 dopant atoms in one MOSFET chan-

nel. The fluctuation of the number of dopant atoms affects the threshold

voltage of each device independently, and the resulting threshold volt-

age variation can be approximated as a zero-mean Normal distribution

whose standard deviation is inversely proportional to the square root
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of the effective gate width and the effective gate length [65, 84, 111]:

σ
(

∆V Random
TH

)

∼ 1√
WEff · LEff

, (2.1)

where WEff and LEff are the effective gate width and length,

respectively.

2.2 Back-End of Line (BEOL) Variations

BEOL variations refer to the variations of metal interconnects. For

example, metal width, metal thickness, and inter layer dielectric can

have both systematic and random variations. Subsequently, the electri-

cal parameters of interconnects including both resistance and capaci-

tance exhibit corresponding variability.

At 90 nm technology node, metal thickness variations can be up to

30%∼40% of the nominal thickness. Such large-scale variations can sig-

nificantly impact the resistance and capacitance of a wire and lead to

severe timing and/or signal integrity issues. Metal thickness variations

depend on wire width and metal density, and have short range inter-

actions [82]. Thickness variations are influenced by process maturity,

location of the metal layer in process stack and other process operating

conditions. One important source of metal thickness variations is the

copper loss during chemical mechanical polishing (CMP). Such copper

loss is a function of metal pattern density (erosion) and metal width

(dishing) as shown in Figure 2.5.
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Fig. 2.5 Metal thickness variations due to chemical mechanical polishing. (a) Ideal case
after copper CMP. (b) Realistic case after copper CMP.
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Fig. 2.6 ILD thickness variations due to chemical mechanical polishing. (a) ILD thickness
after oxide deposition but before oxide CMP. (b) ILD thickness after oxide CMP.

In addition to metal thickness, inter-layer dielectric (ILD) thick-

ness is another important process parameter that varies significantly

in nano-scale technologies. ILD is the dielectric that separates two

adjacent metal layers and it strongly impacts the parasitic capaci-

tance of metal interconnects. ILD thickness variations come from the

fluctuations of the oxide CMP polishing rate that are influenced by

the lower-layer metal density [110]. It can be modeled as a function of

the underlying metal pattern density and the pad planarization length,

as shown in Figure 2.6.

The third major component of BEOL variations is the metal

width/spacing variation. Metal width/spacing variations are primar-

ily due to lithography effects. The width variation of a critical wire

segment (also known as selective process biasing) is primarily deter-

mined by the metal width and the spacing to its neighbors. Process

engineers typically measure width variations in silicon and create a

two-dimensional table to model width variations as a function of

metal width and spacing. This table is typically incorporated into the

process-technology file that can be further used by the capacitance-

and-resistance extraction engine to account for the effect of width

variations.
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2.3 Variation Characterization

Modern IC manufacturing typically involves hundreds of, or even

thousands of, steps, and, therefore, the true causes of manufacturing

variations are highly complicated. For example, they can be caused by

fluctuations in equipment conditions, fluctuations in wafers, consum-

able material characteristics, layout and topography interactions with

the process, and their combinations. Generally, process variations man-

ifest themselves in both temporal and spatial manner. In this chapter,

we classify process variations into different categories based on their

statistical or geometrical properties. We also briefly describe the test

structures for variation characterization. Due to the difference in their

underlying nature, variations in different categories typically require

different test structures to characterize them.

2.3.1 Statistical Categorization

From statistical point of view, process variations can be classified into

two broad categories: systematic variations and random variations.

Systematic variations refer to the variation components that can be

attributed to a specific deterministic cause. It is usually dependent on

the component position in the die and its surrounding properties such

as metal density. For example, gate length and width variations contain

systematic components that mainly come from the fluctuations of focus

and exposure of the lithography system for different layout patterns.

Part of metal thickness variations is caused by CMP and, therefore, is

systematic.

Systematic variations are deterministic and can be predicted by

process simulations (e.g., lithograph simulation). However, accurately

predicting systematic variations may not be feasible for many practical

designs because of the following two reasons. First, accurate process

simulations can be extremely expensive and may not be applicable

to large-size circuits. Second, a lot of design information may not be

available at the earlier design stages, further limiting the accuracy of

process simulation. For example, placement and routing information is

not available at schematic design phase and, therefore, it is difficult

to predict systematic variations for schematic design. From this point
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of view, systematic variations can be viewed as the repeatable but

unpredictable modeling error due to the lack of computational resource

and/or design information.

On the other hand, random variations refer to the variation com-

ponents that correspond to unrepeatable uncertainties due to insuffi-

cient process control and intrinsic fluctuations. An important example

here is the threshold voltage variation caused by doping fluctuation. In

modern IC technologies, there are only about a few hundred dopant

atoms in one MOSFET channel. It would be extremely difficult, if not

impossible, to precisely count the dopant atoms during manufacturing.

Therefore, the fluctuations of the number of dopant atoms introduce

random threshold voltage variations for MOSFETs.

As IC technologies are scaled to smaller feature sizes in the future,

both systematic and random variations may further increase. To reduce

systematic variations, IC designers start to utilize restricted layout pat-

terns for both digital circuits [48, 86] and analog circuits [121, 123].

Random mismatches, however, can hardly be controlled by circuit lay-

out. As feature sizes become smaller and each transistor contains fewer

atoms in its gate channel, random mismatches are expected to become

the dominant variation component in 65 nm technologies and beyond.

2.3.2 Geometrical Categorization

According to the spatial scale of their manifestation, process varia-

tions can be classified into four different levels: lot-to-lot, wafer-to-wafer

(within-lot), die-to-die (within-wafer), and within-die [109]. The first

three variations are also called the inter-die variations: they model

the common/average variations across the die. The within-die varia-

tions are also called the intra-die variations or on-chip variations: they

model the individual, but spatially correlated, local variations within

the same die. Intra-die variations further consist of two different compo-

nents: correlated variations and independent mismatches. The spatial

correlation of intra-die variations is distance-dependent. Such a spatial

correlation occurs mainly because systematic variations are modeled as

random variables [109]. Figure 2.7 summarizes the geometrical catego-

rization of process variations.
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Process Variation
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Lot-to-Lot Die-to-DieLot-to-Lot Die-to-Die Correlated Independent 

(Mismatch)

Fig. 2.7 Categorization of process variations according to geometrical scale.

2.3.3 Test Structures for Variation Characterization

Device parameters (e.g., gate length, gate width, etc.) can be directly

measured from the chip. However, such measurement is typically

expensive and sometimes even impossible. To avoid directly physi-

cal/mechanical measurement, various test structures are designed for

process characterization. These test structures can translate the device

parameters of interest to a set of electrical characteristics (e.g., ring

oscillator frequency, I–V curve) that are easy to measure.

Ring oscillator is an important test structure that has been widely

used to characterize inter-die variations and long-range correlated intra-

die variations [11, 77, 79, 80]. The performance of interest of a ring oscil-

lator is its oscillation frequency. The digital output of a ring oscillator

can be easily delivered out of chip and its frequency can be accurately

measured without any distortion. For this reason, ring oscillators can

be easily distributed at both wafer level and die level. The frequency

information of different ring oscillators is then collected to extract the

spatial map of process variations.

Most ring oscillators, however, are not sensitive to random mis-

matches, since the random per-transistor variations can be averaged

out when cascading a large number of inverter blocks to create a ring

oscillator. Recently, transistor array has been proposed as a promis-

ing approach for mismatch characterization [75]. The basic idea here

is to have a great number of regular transistors and measure the I–V

curve for each of them. A major design challenge for transistor array

is to build high-performance analog circuit to accurately deliver analog
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voltage and current signals out of chip for measurement through a lim-

ited number of I/O pins.

2.4 Variation Modeling

To facilitate statistical analysis and optimization of integrated circuits,

variation models must be carefully created to abstract and approximate

the physical phenomenon during IC manufacturing. The accuracy of

these models directly impact the quality of the final statistical anal-

ysis and optimization results at chip level. In this chapter, we briefly

review the statistical models at both device level and chip level. We do

not explicitly distinguish systematic and random variations and statis-

tically model both of them as random variables. It should be noted,

however, that systematic variations are not truly random. They are

modeled statistically, because accurately predicting their exact values

is not feasible due to the lack of computational resource and/or design

information.

2.4.1 Device-Level Variation Modeling

Commercial IC foundries started to incorporate manufacturing vari-

ation information into their device models long time ago. The early

variation-aware device models are mostly corner-based. Namely, in

addition to offering device models for nominal process conditions, addi-

tional models are provided for a number of process corners. Basic pro-

cess corners, for example, include FF (fast PMOS and fast NMOS), FS

(fast PMOS and slow NMOS), SF (slow PMOS and fast NMOS), and

SS (slow PMOS and slow NMOS).

While corner models have been widely used in the past, they suffer

from a few major limitations that become increasingly critical in nano-

scale technologies [71]. First, it is not guaranteed that the worst-case

performance always occurs at one of these corners. Different circuits

with different topologies and performance metrics typically show differ-

ent sensitivities with respect to process variations and, therefore, reach

the worst case at different process corners. In other words, the “realis-

tic” worst-case corner should be topology-dependent and performance-

dependent. Figure 2.8 shows the relative performance variations for an
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Fig. 2.8 Performance variations (normalized to [0, 1]) of an industrial voltage-controlled
oscillator design in a commercial 0.13µm CMOS process. (a) Center frequency. (b) Gain.
(c) Output voltage swing. (d) Power.

industrial voltage-controlled oscillator design in a commercial 0.13µm

CMOS process. The color maps in Figure 2.8 indicate the performance

sensitivities with respect to inter-die VTHP (threshold voltage of PMOS)

and VTHN (threshold voltage of NMOS) variations. Studying Figure 2.8,

one would notice that the performance gradients are completely differ-

ent for the four performance metrics of interest.

Second, corner models are typically created for inter-die varia-

tions only. Ignoring intra-die variations can result in either pessimistic

or erroneous results, depending on the circuit topology and perfor-

mance metric of interest. Figure 2.9(a) shows a simple digital path

that consists of several logic gates. Corner models assume that all gate

delays in this path are fully correlated and they reach the worst case
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(a)

(b)

Fig. 2.9 Ignoring intra-die variations can result in either pessimistic or erroneous results.
(a) A simple digital path (pessimistic results). (b) A simple sequential digital circuit with
D flip–flops (erroneous results).

simultaneously, thereby yielding pessimistic results. Such pessimistic

results may lead to unnecessary over-design which implies large chip

area and/or high power consumption for digital circuits.

While Figure 2.9(a) gives an example of pessimism, Figure 2.9(b)

shows another practical case where corner models yield erroneous

results if they are not correctly used. In this example, the clock path

delay (DCLK) must be greater than the data path delay (DDATA) to

avoid setup timing failure. Since DCLK and DDATA are not fully cor-

related due to intra-die variations, simulating both DCLK and DDATA

at the same corner (e.g., FF or SS) incorrectly assumes that DCLK

and DDATA perfectly track each other (i.e., simultaneously increase

or decrease), thereby yielding erroneous results. In this example, the

true worst case occurs when the clock path is fast and the data path

is slow.

In addition to the digital circuit examples in Figure 2.9, intra-die

variations are even more important for analog circuits. Many basic

analog building blocks (e.g., differential pair, current mirror, switched-

capacitor amplifier, etc.) rely on device matching to achieve the cor-

rect analog functionality. In other words, these circuits are designed to

be robust to inter-die variations, but they are extremely sensitive to
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intra-die variations (particularly, device mismatches). In these cases,

intra-die variations must be carefully considered for worst-case perfor-

mance analysis.

There have been various ways to improve corner models, e.g., replac-

ing manufacturer-defined corners by application-specific corners [101]

(also called user-defined corners). The basic idea here is to look at the

performance change with respect to process variations to determine the

specific location in the random variation space that yields the worst-

case performance value, as shown in Figure 2.10. In this case, intra-die

variations can also be incorporated to determine the worst-case cor-

ner. Considering intra-die variations for corner extraction, however,

will increase the problem complexity, as additional random variables

must be utilized to model intra-die variations, thereby resulting in a

higher-dimensional variation space.

Given a fixed circuit topology and a number of pre-defined perfor-

mance metrics, the aforementioned application-specific corners are not

fixed; instead, they depend on the design variable values of the circuit

(e.g., transistor sizes, bias current, etc.). In practice, a great number

of corners may be required to capture the worst-case performance over

a reasonable range of design variable values. For example, it is not

uncommon to end up with more than 1000 application-specific cor-

ners for an industrial mixed-signal design in 65 nm technologies. Such

VTHN

V∆ THP

Performance gradient and 

application-specific corer

Fig. 2.10 Extract application-specific worst-case corner based on performance gradient.
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vary ε1 dist = gauss std = 1

vary ε2 dist = gauss std = 1

model NMOS b∼4

+ type = n

+ tox = 4e-9 + 1e-10*ε ε1 – 1.3e-10* 2 + ...

+ vth0 = 0.6 + 0.24*ε ε1 + 0.3* 2 + ...

+ ...

Fig. 2.11 A simple example of statistical device model where ε1 and ε2 are used to model
inter-die variations.

a large number of corners can result in expensive simulation cost during

verification.

To address the fundamental limitations of corner models, many

commercial IC foundries start to provide statistical device models [104].

In these models, a number of random variables are defined to capture

both inter-die and intra-die variations and the device model param-

eters are represented as functions of these random variables. Taking

Figure 2.11 as an example, two independent random variables ε1 and

ε2 are extracted by principal component analysis (more details in Sec-

tion 2.4.3) to model the correlated inter-die variations of TOX and VTH.

It should be noted that an industrial statistical device model can be

much more complicated than the simple example in Figure 2.11, as

a great number of pre-defined random variables must be utilized to

capture all process variations with spatial correlation.

2.4.2 Chip-Level Correlation Modeling

As shown in Figure 2.7, process variations consist of three major com-

ponents: inter-die variations, on-chip long-range correlated variations,

and independent device mismatches. Good statistical device models

should accurately capture all these three components. At chip level,

the long-range correlated variations are most difficult to model. The

challenging problem here is how to use the silicon data measured by

test structures to accurately extract the spatial correlation for the entire

chip that consists of millions of transistors. To solve this problem, the

following two questions must be properly addressed: (1) What is the
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correct correlation function that is distance-dependent? (2) How can

we efficiently and robustly handle the large problem size?

One useful approach for modeling correlated intra-die variations is

to partition the entire die into a number of grids [18], as shown in

Figure 2.12. The intra-die variations in the same grid are fully cor-

related, while those in close (far-away) grids are strongly (weakly)

correlated. Taking Figure 2.12 as an example, the gates a and b are

in the same grid and, therefore, their process parameters are fully

correlated. The gates a and c lie in two neighboring grids and their

process parameters are strongly correlated. The gates a and d sit

far away from each other and their process parameters are weekly

correlated.

The authors in [2] proposed another hierarchical approach for mod-

eling correlated intra-die variations. The key idea is to hierarchically

divide the entire chip into a number of regions using a multi-level quad-

tree partition, as shown in Figure 2.13. At each level i, the die area

is partitioned into 2i by 2i rectangles. The 0th level, for example,

contains one rectangle only that covers the entire chip. An indepen-

dent random variable εij is assigned to each region (i, j) to model

a portion of the total intra-die variations. The overall variation of

a gate k is expressed as the sum of the individual components εij

aa

bb

cc

dd

Fig. 2.12 Grid-based model for spatial correlation.
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Fig. 2.13 Hierarchical model for spatial correlation.

over all levels of the regions that overlap with the location of the

gate k.

The techniques proposed in [2] and [18] have been successfully

applied to many practical problems. Since both techniques rely on

partition, the trade-off between model accuracy and model com-

plexity can be easily controlled by the number of total partitions.

However, such partition-based approaches suffer from one major limi-

tation: the approximated correlation function is not continuous in dis-

tance. Discontinuity will appear at the boundary of every individual

region.

Most recently, several techniques have been proposed to address the

aforementioned discontinuity problem. The authors in [119] proposed

an efficient numerical algorithm to extract the spatial correlation func-

tion based on measurement data. The correlation extraction is formu-

lated as a nonlinear optimization problem that can be robustly and

efficiently solved by a projection-based algorithm. Bhardwaj et al. pro-

posed an alternative algorithm to address the similar problem [10]. The

algorithm proposed in [10] is based on the Karhunen–Loève expansion

borrowed from stochastic process theory. It attempts to find a compact

set of nonlinear basis functions to approximate the two-dimensional

spatial correlation.
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2.4.3 Principal Component Analysis

While many physical variations (e.g., ∆TOX, ∆VTH, etc.) are correlated,

most statistical analysis algorithms can handle independent random

variations much more easily than correlated variations. For example, it

is easy to draw independent sampling points from a random number

generator for Monte Carlo analysis (more details in Chapter 3). If one

wants to create correlated random samples, the computational cost

will be significantly increased [92]. For this reason, there is a need

to mathematically represent correlated physical variations by a set of

independent random variables. Principal component analysis (PCA)

[98] is a statistical method that finds a compact set of independent

factors to represent a multivariate Normal distribution. The random

variables from a multivariate Normal distribution are also called jointly

Normal.

Given N process parameters X = [x1,x2, . . . ,xN ]T , the process vari-

ation ∆X = X − X0, where X0 is the mean value of X, is often

approximated as a zero-mean multivariate Normal distribution. The

correlation of ∆X can be represented by a symmetric, positive semi-

definite covariance matrix R. PCA decomposes R as

R = V · Σ · V T , (2.2)

where Σ = diag(λ1,λ2, . . . ,λN ) contains the eigenvalues of R, and

V = [V1,V2, . . . ,VN ] contains the corresponding eigenvectors that are

orthonormal, i.e., V T V = I (I is the identity matrix). Based on Σ

and V , PCA defines a set of new random variables:

∆Y = Σ−0.5 · V T · ∆X. (2.3)

These new random variables in ∆Y are called the principal com-

ponents or factors. It is easy to verify that all elements in ∆Y =

[∆y1,∆y2, . . . ,∆yN ]T are uncorrelated and satisfy the standard Nor-

mal distribution N(0,1) (i.e., zero mean and unit standard deviation):

E
(

∆Y · ∆Y T
)

= E
(

Σ−0.5 · V T · ∆X · ∆XT · V · Σ−0.5
)

= Σ−0.5 · V T · E
(

∆X · ∆XT
)

· V · Σ−0.5

= Σ−0.5 · V T · V · Σ · V T · V · Σ−0.5 = I, (2.4)
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where E(•) stands for the expected value operator. In addition, jointly

Normal random variables are mutually independent if and only if they

are uncorrelated [98]. Therefore, Equation (2.4) also implies that all

elements in ∆Y = [∆y1,∆y2, . . . ,∆yN ]T are mutually independent.

The essence of PCA can be interpreted as a coordinate rotation of

the space defined by the original random variables. In addition, if the

magnitudes of the eigenvalues {λi} decrease quickly, it is possible to use

a small number of random variables, i.e., a small subset of principal

components, to approximate the original N -dimensional space. More

details of PCA can be found in [98].

2.4.4 Non-Normal Process Variations

In most practical cases, process parameters are modeled as a multi-

variate Normal distribution, which allows us to apply many mathe-

matical techniques to simplify the statistical analysis problem. PCA,

for example, can decompose correlated jointly Normal variables into

independent ones. If the random variables are non-Normal, mutual

independence must be checked by high-order moments and, therefore,

PCA cannot be applied to such cases.

There are a few cases where process variations are non-Normal, as

observed from the measurement data. For example, systematic varia-

tions often exhibit non-Normal distributions, since they are not truly

random. In these cases, if the non-Normal variations are mutually inde-

pendent, they can be either directly incorporated into statistical anal-

ysis engine (e.g., for Monte Carlo analysis) or converted to Normal

distributions by a nonlinear transform. Next, we briefly describe the

nonlinear transform that converts independent non-Normal distribu-

tions to independent Normal distributions.

Given a set of random variables ∆X = [∆x1,∆x2, . . . ,∆xN ]T , we

assume that all these random variables {∆xi; i = 1,2, . . . ,N} are non-

Normal and mutually independent. A set of one-dimensional functions

{∆yi = gi(∆xi); i = 1,2, . . . ,N} can be constructed to convert ∆X to

∆Y = [∆y1,∆y2, . . . ,∆yN ]T such that {∆yi; i = 1,2, . . . ,N} are Normal

[98]. The transform function gi(•) can be found via the following two

steps [98].
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First, the random variable ∆xi is converted to a uniform distribu-

tion ∆ui ∈ [0,1] by defining

∆ui = cdf∆xi(∆xi), (2.5)

where cdf∆xi(•) is the cumulative distribution function of ∆xi. Since

any cumulative distribution function is monotonic, we have

P (∆ui ≤ t) = P
[

∆xi ≤ cdf−1
∆xi

(t)
]

, (2.6)

where P (•) denotes the probability and cdf−1
∆xi

(•) stands for the inverse

function of cdf∆xi(•). Therefore, the cumulative distribution function

of ∆ui is equal to

cdf∆ui(t) = P (∆ui ≤ t) = P
[

∆xi ≤ cdf−1
∆xi

(t)
]

= cdf∆xi

[

cdf−1
∆xi

(t)
]

= t.

(2.7)

Equation (2.7) shows the fact that ∆ui is a uniform distribution.

Second, we convert the uniform distribution ∆ui to a standard Nor-

mal distribution ∆yi by defining

∆yi = cdf−1
N(0,1)(∆ui), (2.8)

where cdfN(0,1)(•) is the cumulative distribution function of standard

Normal distribution. Given the uniform distribution ∆ui, the follow-

ing equation proves why ∆yi defined in (2.8) is a standard Normal

distribution

cdf∆yi(t) = P (∆yi ≤ t) = P
[

∆ui ≤ cdfN(0,1)(t)
]

= cdfN(0,1)(t). (2.9)

Since the random variables {∆xi; i = 1,2, . . . ,N} are mutually inde-

pendent, the random variables {∆yi; i = 1,2, . . . ,N} are also mutually

independent and their joint probability density function is given by

pdf∆Y (∆y1,∆y2, . . . ,∆yN )

= pdf∆y1
(∆y1) · pdf∆y2

(∆y2) · · ·pdf∆yN
(∆yN ). (2.10)

It is easy to verify that the random variables in ∆Y constitute a mul-

tivariate Normal distribution [98].

The aforementioned nonlinear transform approach, however, is not

applicable to correlated non-Normal distributions. At first glance, the
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nonlinear transform approach seems still valid. The one-dimensional

nonlinear functions {∆yi = gi(∆xi); i = 1,2, . . . ,N} can be constructed

to convert each non-Normal random variable ∆xi to a Normal variable

∆yi. Unfortunately, after the nonlinear transform is performed, the

random variables {∆yi; i = 1,2, . . . ,N} are not mutually independent

and their joint probability density function is not equal to the product

of the marginal probability density functions, i.e.,

pdf∆Y (∆y1,∆y2, . . . ,∆yN )

�= pdf∆y1
(∆y1) · pdf∆y2

(∆y2) · · ·pdf∆yN
(∆yN ). (2.11)

In this case, the random variables {∆yi; i = 1,2, . . . ,N} are not guar-

anteed to be a multivariate Normal distribution. In other words, even

if the random variables {∆yi; i = 1,2, . . . ,N} are marginally Normal,

they might not be jointly Normal [98]. This property can be understood

from the following example described in [98].

Consider two random variables ∆y1 and ∆y2, and their joint prob-

ability density function:

pdf∆Y (∆y1,∆y2) = pdf1(∆y1) · pdf2(∆y2)

·
{

1 + ρ · [2 · cdf1(∆y1) − 1]

· [2 · cdf2(∆y2) − 1]
}

, (2.12)

where |ρ| < 1, and pdf1(∆y1) and pdf2(∆y2) are two probability density

functions with respective cumulative distribution functions cdf1(∆y1)

and cdf2(∆y2). It is easy to verify that [98]

pdf∆Y (∆y1,∆y2) ≥ 0
∫ +∞

−∞

∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y1 · d∆y2 = 1.

(2.13)

Equation (2.13) shows that the function in (2.12) is a valid joint proba-

bility density function. In addition, directly integrating the joint prob-

ability density function yields [98]:
∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y2 = pdf1(∆y1)

∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y1 = pdf2(∆y2)

(2.14)
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implying that pdf1(∆y1) and pdf2(∆y2) in (2.12) are the marginal prob-

ability density functions of ∆y1 and ∆y2, respectively. In particular, let

pdf1(∆y1) and pdf2(∆y2) be Normal distributions. In this case, both

∆y1 and ∆y2 are marginally Normal; however, their joint probability

density function in (2.12) is not a multivariate Normal distribution.

Correlated non-Normal random variables must be characterized by

their joint probability density function, thereby making them extremely

difficult to handle in statistical analysis. Even Monte Carlo simula-

tion becomes impractical, if not impossible, in such cases, since it is

difficult to draw random samples from a general, multi-dimensional

joint probability density function [92, 94]. In addition, using corre-

lated non-Normal distributions also increases the difficulty of process

characterization, because extracting the multi-dimensional joint prob-

ability density function from silicon testing data is not trivial. For

these reasons, how to efficiently model and analyze correlated non-

Normal process variations remains an open topic in the IC design

community.

2.5 Manufacturing Yield

The large-scale process variations significantly impact circuit perfor-

mance in nano-scale technologies. From the product point of view, they

directly affect the manufacturing yield. Yield is defined as the propor-

tion of the manufactured chips that function correctly. As process vari-

ations become relatively large in 65 nm technologies and beyond, yield

becomes one of the top concerns for today’s integrated circuit design.

In this sub-section, we briefly review several important concepts related

to yield.

First of all, it is important to note that the yield of a specific prod-

uct manufactured with a specific technology is not static [61]. Yield

is typically low when a new process is initially developed. It must be

substantially improved before high-volume production is started. Oth-

erwise, the manufacturing cost would be extremely expensive or even

unaffordable. The yield improvement could be achieved via various tun-

ings by both design engineers and process engineers. Such a tuning

procedure is called yield learning, as shown in Figure 2.14.
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Fig. 2.14 Yield learning curve for a specific product manufactured with a specific technology.

The faults in a manufacturing process can be classified into two

broad categories: catastrophic faults (due to physical and structural

defects such as open, short, etc.) and parametric faults (due to para-

metric variations in process parameters such as VTH, TOX, etc.). Both

catastrophic faults and parametric faults play important roles in inte-

grated circuit manufacturing. In general, it is difficult to emphasize

one of them while completely ignoring the other. There are several

important observations of catastrophic and parametric faults for most

commercial manufacturing processes.

First, catastrophic faults are often critical at the initial stage when

a new technology node is developed. As the manufacturing technology

becomes mature, catastrophic faults can be significantly reduced and

parametric faults become increasingly important. Second, catastrophic

faults are most important for large-size circuits that consume large

silicon areas. For example, digital system-on-chip (SOC) designs and

memory circuits significantly suffer from catastrophic faults. Finally,

as process variations become relatively large due to technology scaling,

parametric faults are becoming increasingly crucial at 90 nm technolo-

gies and beyond.

In summary, the relative importance of catastrophic faults and para-

metric faults varies from time to time as manufacturing technologies

become more and more mature. It is also circuit-dependent and process-

dependent. Therefore, for a specific design, both catastrophic and para-

metric faults must be carefully studied for yield learning.
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Transistor-Level Statistical Methodologies

Transistor-level statistical analysis and optimization techniques focus

on a single circuit block consisting of a few hundred devices. A cir-

cuit block can be, for example, a standard library cell, an interconnect

wire, an analog amplifier, etc. Analyzing these circuit blocks involve

transistor-level simulation using SPICE-like engine (e.g., Cadence

SPECTRE, Synopsys HSPICE, etc.). For nano-scale IC technologies,

even though a circuit block is small, the corresponding statistical anal-

ysis and optimization problem is not trivial mainly because of the fol-

lowing reasons:

• Device models are extremely complex at 65 nm technolo-

gies and beyond. The state-of-the-art BSIM4 model contains

more than 20,000 lines of C code to describe the behavior

of a single MOS transistor! It, in turn, results in expen-

sive device model evaluation for transistor-level simulation.

In many practical applications, it is not uncommon that more

than 50% of the simulation time is consumed by device model

evaluation.
• Large-scale process variations must be characterized by com-

plex statistical models. A statistical device model typically

358
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contains a great number of random variables to capture

various device-level variations, thereby further increasing

device model complexity. For example, a commercial 65 nm

CMOS process may contain more than 300 independent

random variables to model inter-die variations. If device

mismatches are simultaneously considered, it will intro-

duce more than 10 additional random variables for every

transistor!
• Interconnect models become increasingly sophisticated. As

the continuous device scaling pushes operational frequency

to GHz region, a physical on-chip interconnect model can

consist of hundreds of (or even thousands of) RC elements.

In many high-speed applications (e.g., micro-processor pack-

age, high-speed data link, RF transceiver, etc.), parasitic

inductance starts to play an important role, which further

complicates both parasitic extraction and transistor-level

simulation.

In this chapter, we review various statistical techniques that

address the transistor-level analysis and optimization problem. Sev-

eral recently-developed methodologies, including projection-based per-

formance modeling (PROBE) and asymptotic probability extraction

(APEX), will be discussed in detail.

3.1 Monte Carlo Analysis

Monte Carlo analysis is an important technique for statistical circuit

analysis [92, 94]. It attempts to estimate the probability distribution

of the performance of interest (e.g., gain, bandwidth, power, etc.) via

three steps: (1) generating a set of random samples for process parame-

ters, (2) running transistor-level simulations and evaluating the perfor-

mance values at all sampling points, and (3) estimating the performance

distribution by bin-based histogram or advanced kernel smoothing

methods [102].

The relative cost of the aforementioned three steps is application-

dependent. In general, it is difficult to identify which one of these

steps dominates the overall computational time. For transistor-level
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Monte Carlo analysis, the second step is often the most time-consuming

part, since it involves a large number of expensive transistor-level

simulations.

The accuracy of Monte Carlo analysis depends on the number of

random samples. In practice, a huge number of sampling points are

required to achieve sufficient accuracy, which is one of the major lim-

itations of Monte Carlo analysis. Next, we will discuss this accuracy

issue in detail.

3.1.1 Accuracy of Monte Carlo Analysis

Monte Carlo analysis is a statistical sampling technique. Theoretically,

we cannot get identical results from two separate Monte Carlo simula-

tions. It, therefore, implies that Monte Carlo accuracy must be analyzed

by statistical methodologies. We will use the following simple example

to show such statistical analysis.

Assume that x is a random variable with standard Normal distribu-

tion (i.e., zero mean and unit variance) and we attempt to estimate its

mean value by Monte Carlo analysis. For this purpose, we randomly

pick up M sampling points {x1,x2, . . . ,xM} and estimate the mean

value by

µx =
1

M
·

M
∑

i=1

xi, (3.1)

where µx is called a point estimator of the mean value [81].

Since {x1,x2, . . . ,xM} are drawn from a random number generator

that follows the probability distribution of x, all {x1,x2, . . . ,xM} are

standard Normal distributions. In addition, all {x1,x2, . . . ,xM} should

be mutually independent, if the random number generator is sufficiently

good, i.e., the period of its pseudo-random sequence is sufficiently large.

Given these two assumptions, we can theoretically calculate the first

two moments of µx

E(µx) = E

(

1

M
·

M
∑

i=1

xi

)

=
1

M
·

M
∑

i=1

E (xi) = 0 (3.2)
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E
(

µ2
x

)

= E





1

M2
·
(

M
∑

i=1

xi

)2


 =
1

M2
·

M
∑

i=1

E
(

x2
i

)

=
1

M
. (3.3)

Equation (3.2) demonstrates that the expected value of µx is exactly

equal to the mean value of x. Therefore, the point estimator in (3.1)

is called an unbiased estimator [81]. The variance value in (3.3) has

a twofold meaning. First, given a finite value of M , the estimator µx

does not yield a deterministic value. In other words, we cannot get

identical results from two separate Monte Carlo simulations. Second, as

M increases, the variance in (3.3) decreases and, therefore, the accuracy

of Monte Carlo analysis is improved.

The accuracy of Monte Carlo analysis can be mathematically spec-

ified by a confidence interval [92]. The α-level confidence interval is

defined as an interval where the statistical measurement (e.g., the esti-

mator µx in the aforementioned example) falls corresponding to a given

probability α. For a fixed value of α, the α-level confidence interval

shrinks (meaning that Monte Carlo analysis becomes increasingly accu-

rate), as the number of random samples increases. However, due to the

statistical nature of Monte Carlo analysis, there is always a small prob-

ability (i.e., 1 − α) that the statistical measurement will fall outside the

confidence interval. From this point of view, even if a large number of

samples are used, Monte Carlo analysis may still (although unlikely)

yield a “wrong” result.

For a given accuracy specification defined by confidence interval,

we can calculate the required number of Monte Carlo sampling points

(i.e., M). In the aforementioned example, since all {x1,x2, . . . ,xM}
are Normal distributions, the estimator µx in (3.1) is a linear com-

bination of multiple Normal distributions and, therefore, is also Nor-

mal [81]. The 99.7%-level confidence interval is corresponding to

the ±3σ boundary of µx. If we require the 99.7%-level confidence

interval to be [−0.1,0.1], the required number of sampling points is

equal to

M ≥
(

3

0.1

)2

= 900. (3.4)
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If we require the 99.7%-level confidence interval to be [−0.01,0.01], the

required number of sampling points is equal to:

M ≥
(

3

0.01

)2

= 90,000. (3.5)

Studying (3.4) and (3.5), one would notice that Monte Carlo error

is only reduced by 10×, if the number of random sampling points is

increased by 100×. To achieve sufficient accuracy, a great number of

sampling points are required, which is one of the major limitations of

Monte Carlo analysis. In many practical problems, a typical selection

of the number of random samples is around 1,000 ∼ 10,000.

One major advantage of Monte Carlo analysis is that its accuracy

is independent of the underlying problem dimension (i.e., the number

of random variables in the stochastic system) [92, 94]. This property

implies that we do not have to increase the number of Monte Carlo

sampling points as problem dimension becomes increasingly large, e.g.,

when both inter-die variations and device mismatches must be simulta-

neously considered for statistical analysis. For this reason, Monte Carlo

analysis can be more attractive than other techniques (e.g., response

surface modeling methods) for large-dimension problems. A detailed

comparison between Monte Carlo analysis and other techniques will be

given in Section 3.2.4.

3.1.2 Latin Hypercube Sampling

As discussed in 3.1.1, Monte Carlo analysis often requires a large num-

ber of random sampling points, thereby resulting in expensive com-

putational cost. There are various techniques to control Monte Carlo

samples to reduce the overall analysis cost. Instead of directly draw-

ing random samples from a random number generator, these methods

attempt to create sampling points from a controlled random sequence

such that the estimation accuracy can be improved. Latin hypercube

sampling (LHS) [64, 83] is one of these fast Monte Carlo techniques

that we will discuss in detail in this sub-section.

The key idea of Latin hypercube sampling [64, 83] is to make sam-

pling point distribution close to the probability distribution function

of the random variable that we try to sample. In the one-dimensional
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Fig. 3.1 Five one-dimensional Latin hypercube samples for a single random variable x.

case where we attempt to generate M sampling points for a random

variable x, Latin hypercube sampling consists of two steps. First, the

cumulative distribution function cdfx(x) is evenly partitioned into M

regions. Second, a single sampling point is randomly selected in each

region. Figure 3.1 shows a simple example where five Latin hypercube

sampling points are created for the random variable x. In this exam-

ple, Latin hypercube sampling guarantees to select five sampling points

from five different regions and, therefore, it eliminates the possibility

that many sampling points come from the same small local region. Since

Latin hypercube sampling distributes the sampling points all over the

random space, it is more efficient than direct random sampling.

The efficacy of Latin hypercube sampling can be demonstrated by

the following simple example. Assume that x is a random variable with

standard Normal distribution (i.e., zero mean and unit variance) and

we want to estimate its mean value by (3.1) based on Monte Carlo

analysis. To compare Latin hypercube sampling with direct random

sampling, we estimate the mean value of x by both sampling schemes.

A number of experiments are conducted with different number of sam-

pling points (M = 10,100,1,000, and 10,000) such that we can study

the convergence rate of the error. In addition, given a fixed number of

sampling points (e.g., M = 10), 50 independent Monte Carlo analyses

are conducted to predict the probability distribution of the estimation

error.



364 Transistor-Level Statistical Methodologies

10
0

10
2

10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

# of Random Samples

E
s
ti
m

a
te

d
 M

e
a

n
 V

a
lu

e

10
0

10
2

10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

# of LHS Samples

(a) (b)

E
s
ti
m

a
te

d
 M

e
a

n
 V

a
lu

e

Fig. 3.2 Comparison of direct random sampling and Latin hypercube sampling. (a) Esti-
mated mean values from random samples. (b) Estimated mean values from Latin hypercube
samples.

Figure 3.2 shows the Monte Carlo analysis results and provides two

important observations. First, both sampling schemes yield smaller

error if a larger number of sampling points are utilized. Second, but

most importantly, Latin hypercube sampling consistently results in

smaller error (measured by the variance of the estimated mean value)

than direct random sampling in this example.

The aforementioned one-dimensional Latin hypercube sampling can

be easily extended to two-dimensional cases. Assume that we want to

generate M two-dimensional Latin hypercube samples for two inde-

pendent random variables x1 and x2. (Correlated Normal random vari-

ables can be decomposed to independent random variables by principal

component analysis.) We first create two independent one-dimensional

Latin hypercube sampling sets for x1 and x2, respectively. Each sam-

pling set consists of M samples. Next, we randomly combine the sam-

ples in these two sets to create M two-dimensional pairs. Figure 3.3

shows a simple example where five two-dimensional Latin hypercube

sampling points are created for the independent random variables x1

and x2. As shown in Figure 3.3, there is only a single grid filled with

one sampling point in each row (or column), and the sampling point

is randomly selected within that grid. As such, Latin hypercube sam-

pling distributes its samples all over the two-dimensional random space.

A high-dimensional Latin hypercube sampling can be similarly con-

structed [64, 83].
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Fig. 3.3 Five two-dimensional Latin hypercube samples for two independent random vari-
ables x1 and x2.

3.1.3 Importance Sampling

Importance sampling is another commonly-used approach to speed-up

Monte Carlo analysis [46, 92, 94]. The basic idea is to distort the orig-

inal probability density function pdfx(x) to reduce the variance of the

estimator. Mathematically, the expected value of a given performance

function f(x) is defined as

E(f) =

∫ +∞

−∞
f(x) · pdfx(x) · dx. (3.6)

Direct Monte Carlo analysis estimates E(f) by drawing random sam-

pling points from pdfx(x). Importance sampling, however, attempts to

find a distorted probability density function pdfy(y) such that choos-

ing random sampling points from pdfy(y) yields an estimation of E(f)

with smaller variance.

E(f) =

∫ +∞

−∞
f(y) ·

pdfy(y)

pdfy(y)
· pdfx(y) · dy

=

∫ +∞

−∞
f(y) · pdfx(y)

pdfy(y)
· pdfy(y) · dy. (3.7)

Equation (3.7) implies that if random sampling points are selected from

the distorted probability density function pdfy(y), the expected value

of f(y) · pdfx(y)/pdfy(y) is exactly equal to E(f). Therefore, E(f) can
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be estimated by the following unbiased estimator:

µf =
1

M
·

M
∑

i=1

f(yi) · pdfx(yi)

pdfy(yi)

[

yi ∼ pdfy(y)
]

, (3.8)

where yi is the ith random sampling point selected from the probability

density function pdfy(y), and M is the total number of random samples.

It can be proven that if the distorted probability density function

pdfy(y) is proportional to f(y) · pdfx(y), i.e.,

f(y) · pdfx(y)

pdfy(y)
= k ⇒ pdfy(y) =

1

k
· f(y) · pdfx(y), (3.9)

where k is a constant, the Monte Carlo analysis using importance sam-

pling has minimal error, i.e., the variance of the estimator µf in (3.8) is

minimized [94]. In this “ideal” case, no matter which value is randomly

selected for y, the function f(y) · pdfx(y)/pdfy(y) is always equal to

the constant k and, therefore, the variance of the estimator µf in (3.8)

is equal to 0.

The ideal case in (3.9), however, cannot be easily applied to practi-

cal applications. It can be extremely difficult to draw random samples

from a general probability density function pdfy(y) = f(y) · pdfx(y)/k,

especially if the random variable y is multi-dimensional [92, 94].

Even in the one-dimensional case, selecting random sampling points

from pdfy(y) requires to know its cumulative distribution function

[81, 92]:

cdfy(y) =

∫ y

−∞
pdfy(y) · dy =

1

k
·
∫ y

−∞
f(y) · pdfx(y) · dy (3.10)

implying that the integral in (3.6) must be known in advance and there

would hence be no reason to run Monte Carlo analysis at all!

Based on these discussions, a practical selection of the distorted

probability density function pdfy(y) must satisfy the following two

constraints:

• Easy to sample. Random samples must be created from

pdfy(y) easily.
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• Minimizing estimator variance. pdfy(y) must be close to

f(y) · pdfx(y)/k as much as possible so that the estimator

variance (i.e., the error) can be minimized.

Finding the optimal probability density function pdfy(y) for impor-

tance sampling is not trivial in many practical applications. It is often

application-dependent and must be constructed by experience, which

is one of the key limitations of the importance sampling technique. For

integrated circuits, one important application of importance sampling

is to estimate the rare failure events of memory circuits, as reported

in [46]. In such applications, the optimal probability density function

pdfy(y) is optimized such that the rare failure events will occur with a

much higher probability and, therefore, they can be easily captured by

Monte Carlo analysis.

3.1.4 Quasi Monte Carlo Analysis

An alternative strategy for better controlling Monte Carlo samples is

to use so-called low-discrepancy samples which are deterministically

chosen to “more uniformly” sample the statistical distribution [92].

The technique is called Quasi Monte Carlo (QMC) and is widely used

in many application domains. For example, it is a standard method

in the computational finance world for evaluating complex financial

instruments under various forms of statistical uncertainty. The tech-

nique is applicable to the world of scaled semiconductor problems as

well: speedups of 10–50× have been demonstrated in [105] compared

with a direct Monte Carlo simulation.

A number of deterministic sequences can be constructed for Quasi

Monte Carlo analysis such that the divergence (a measure of Monte

Carlo analysis error) decreases in the order of O[(logM)N−1/M ] [92],

where M is the number of random samples and N is the underlying

problem dimension (i.e., the number of random variables in the stochas-

tic system). Compared with the direct Monte Carlo analysis that has

a divergence rate of O[1/sqrt(M)], Quasi Monte Carlo analysis can

offer a substantial gain, when N is small and M is large. However, for

high-dimensional problems where N is large, the benefit of using Quasi

Monte Carlo analysis may be difficult to justify.
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3.2 Statistical Performance Modeling

As previously discussed, Monte Carlo analysis requires a huge number

of sampling points to achieve sufficient accuracy. In practice, repeat-

edly running transistor-level simulations for so many times is often

time-consuming or even infeasible for large-size circuits. For example,

simulating an industrial phase-locked loop (PLL) or analog-to-digital

converter (ADC) at one single sampling point may take more than one

month on a stand-alone machine!

To overcome this difficulty, response surface modeling (also referred

to as performance modeling) has been widely used to reduce the com-

putational cost. The key idea here is to approximate the performance

of interest (e.g., delay, power, gain, etc.) as a polynomial function of

the process parameters that are modeled as random variables (e.g.,

VTH, TOX, etc.). Such a response surface model establishes an analyti-

cal dependence between device-level variations and circuit-level perfor-

mance so that statistical analysis can be further applied to estimate

the performance variation efficiently.

3.2.1 Response Surface (Performance) Modeling

Given a fixed circuit design, the circuit performance f can be approx-

imated as a linear response surface model of process parameters

[69, 73]:

f(X) = BT X + C, (3.11)

where X = [x1,x2, . . . ,xN ]T represents the random variables to model

process variations, B ∈ RN and C ∈ R stand for the model coefficients,

and N is the total number of the random variables of concern.

The linear approximation in (3.11) is efficient and accurate when

process variations are sufficiently small. However, the recent advances

in IC technologies suggest a need to revisit this assumption. As IC

technologies are scaled to finer feature sizes, process variations become

relatively larger. As reported in [73], the gate length variation can reach

±35% at 90 nm technologies and beyond. It, in turn, implies the impor-

tance of applying high-order (e.g., quadratic) response surface mod-

els to achieve high approximation accuracy [69]. Note that applying
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quadratic response surface models is especially important for analog

circuits, since many analog performances can be strongly nonlinear

in the presence of large-scale manufacturing variations. A quadratic

response surface model has the form of [69]:

f(X) = XT AX + BT X + C, (3.12)

where C ∈ R is the constant term, B ∈ RN contains the linear coeffi-

cients, and A ∈ RN×N contains the quadratic coefficients.

The unknown model coefficients in (3.11) and (3.12) can be deter-

mined by solving the over-determined linear equations at a number of

sampling points [69]:

BT Xi + C = f̃i (i = 1,2, . . . ,S) (3.13)

XT
i AXi + BT Xi + C = f̃i (i = 1,2, . . . ,S), (3.14)

where Xi and f̃i are the value of X and the exact value of f for the

ith sampling point, respectively, and S is the total number of sampling

points.

Quadratic response surface model is much more accurate than linear

response surface model in many practical applications. Figure 3.4 shows

the circuit schematic of a low noise amplifier designed in a commercial

Fig. 3.4 Circuit schematic of a low noise amplifier designed in a commercial 0.25µm BiC-
MOS process.
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0.25µm BiCMOS process. For this low noise amplifier, the variations of

both MOS transistors and passive components (capacitors and induc-

tors) are modeled. The probability distributions and the correlation

information of these variations are provided in the process design kit.

After principal component analysis, eight principal factors are identi-

fied to capture all process variations. The performance of the low noise

amplifier is characterized by eight different performance metrics. We

approximate these performance metrics by both linear and quadratic

response surface models. Table 3.1 shows the approximation error for

both models. In this example, the quadratic modeling error is 7.5×
smaller than the linear modeling error on average. In addition, it should

be noted that the nonlinear terms in the quadratic models are expected

to become increasingly important, as process variations become larger

in scaled IC technologies.

Using quadratic response surface model, however, significantly

increases the modeling cost. It is straightforward to verify that the

number of unknown coefficients in (3.12) is O(N2), where N is the

total number of the random variables to model process variations. If

the total number of random variables reaches 100, a quadratic approx-

imation will result in a 100 × 100 quadratic coefficient matrix con-

taining 10,000 coefficients! The overall computational cost of quadratic

response surface modeling consists of two portions:

• Simulation cost. i.e., the cost for running a transistor-level

simulator to determine the performance value f̃i at every

sampling point Xi. The number of simulation samples should

be greater than the number of unknown coefficients in order

Table 3.1 Response surface modeling error for low noise amplifier.

Performance Linear (%) Quadratic (%)

F0 1.76 0.14
S11 6.40 1.32
S12 3.44 0.61
S21 2.94 0.34
S22 5.56 3.47
NF 2.38 0.23
IIP3 4.49 0.91
Power 3.79 0.70
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to uniquely solve the linear equations in (3.14). Therefore, at

least O(N2) sampling points are required to fit the quadratic

model in (3.12). In practical applications, the number of sam-

ples is generally selected to be significantly larger than the

unknown coefficient number to avoid over-fitting. The sim-

ulation cost is typically the dominant portion of the over-

all computational cost, if the transistor-level simulation is

expensive for a given circuit.
• Fitting cost. i.e., the cost for solving the over-determined lin-

ear equations in (3.14). For the quadratic model in (3.12), the

fitting cost is on the order of O(N6).

The high computational cost of quadratic response surface model-

ing becomes one of the most challenging problems recently, especially

because intra-die variations (e.g., device mismatches) play an increas-

ingly important role in nano-scale technologies. These intra-die varia-

tions must be modeled by many additional random variables, thereby

significantly increasing the number of unknown model coefficients. This

makes quadratic response surface modeling much more expensive or

even infeasible in many practical nano-scale problems.

There are several techniques available to reduce quadratic response

surface modeling cost. Projection pursuit is one of the interesting and

useful techniques in this domain. The original work on projection pur-

suit was proposed by mathematicians in the early of 1980’s [33]. The

idea was recently adapted and tuned by Li et al. [57] to create an

efficient projection-based extraction algorithm (PROBE) for quadratic

response surface modeling. We will discuss the PROBE algorithm in

detail in the next sub-section.

3.2.2 Projection-Based Performance Modeling

3.2.2.1 Mathematic Formulation

The key disadvantage of the traditional quadratic response surface

modeling is the need to compute all elements of the matrix A in

(3.12). This matrix is often sparse and rank-deficient in many prac-

tical problems. Therefore, instead of finding the full-rank matrix A,
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PROBE [57] approximates A by another low-rank matrix AL. Such

a low-rank approximation problem can be stated as follows: given

a matrix A, find another matrix AL with rank p < rank (A) such

that their difference ‖AL − A‖F is minimized. Here, ‖ • ‖F denotes

the Frobenius norm, which is the square root of the sum of the

squares of all matrix elements. Without loss of generality, we assume

that A is symmetric in this paper, since any asymmetric quadratic

form XT AX can be converted to an equivalent symmetric form

0.5 · XT (A + AT )X [38].

From matrix theory [38], for any symmetric matrix A ∈ RN×N , the

optimal rank-p approximation with the least Frobenius-norm error is:

AL =

p
∑

i=1

λiPiP
T
i , (3.15)

where λi is the ith dominant eigenvalue and Pi ∈ RN is the

ith dominant eigenvector. The eigenvectors in (3.15) define an

orthogonal projector P1P
T
1 + P2P

T
2 + · · · + PpP

T
p , and every column

in AL is the projection of every column in A onto the sub-

space span{P1,P2, . . . ,Pp}. PROBE uses this orthogonal projector for

quadratic response surface modeling, which is intuitively illustrated in

Figure 3.5.

The main advantage of the rank-p projection is that, for approx-

imating the matrix A ∈ RN×N in (3.12), only λi ∈ R and Pi ∈ RN

(i = 1,2, . . . ,p) should be determined, thus reducing the number of

problem unknowns to O(pN). In many practical applications, p is sig-

nificantly less than N and the number of unknown coefficients that

PROBE needs to solve is almost a linear function of N . Therefore,

Low-Rank ProjectionLow-Rank Projection

AA ALAL

Fig. 3.5 PROBE identifies the most critical directions where process variations significantly
impact a given circuit performance and then fits a quadratic response surface model along
these directions [57].
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compared with the problem size O(N2) of the traditional quadratic

modeling, PROBE is much more efficient and can be applied to large-

size problems.

3.2.2.2 Coefficient Fitting via Implicit Power Iteration

Since the matrix A in (3.12) is not known in advance, we cannot use

the traditional matrix computation algorithm to compute the domi-

nant eigenvalues λi and eigenvectors Pi that are required for low-rank

approximation. One approach for finding the optimal rank-p model is to

solve the following optimization problem for the unknown coefficients

λi and Pi (i = 1,2, . . . ,p) and B, C:

minimize ψ =
∑

i



XT
i





p
∑

j=1

λjPjP
T
j



Xi + BT Xi + C − f̃i





2

subject to ‖Pj‖2 = 1 (j = 1, . . . ,p),

(3.16)

where ‖•‖2 denotes the 2-norm of a vector.

Compared with (3.12), Equation (3.16) approximates the matrix A

by λ1P1P
T
1 + λ2P2P

T
2 + · · · + λpPpP

T
p . Therefore, we can expect that

minimizing the cost function Ψ in (3.16) will converge λi and Pi to

the dominant eigenvalues and eigenvectors of the original matrix A,

respectively. Unfortunately, Ψ in (3.16) is a 6th-order polynomial and

may not be convex. In addition, the constraint set in (3.16) is speci-

fied by a quadratic equation and is not convex either. Therefore, the

optimization in (3.16) is not a convex programming problem and there

is no efficient optimization algorithm that can guarantee finding the

global optimum for Ψ.

Instead of solving the non-convex optimization problem in (3.16),

PROBE utilizes an implicit power iteration method to efficiently

extract the unknown coefficients λi and Pi (i = 1,2, . . . ,p). The implicit

power iteration solves a sequence of over-determined linear equations

and exhibits robust convergence. In what follows, we first describe the

implicit power iteration algorithm for rank-one approximation, and

then extend it to rank-p approximation.
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A. Rank-One Implicit Power Iteration

Algorithm 3.1 rank-one implicit power iteration.

(1) Start from a set of sampling points {Xi, f̃i; i = 1,2, . . . ,S},

where S is the total number of sampling points.

(2) Randomly select an initial vector Q0 ∈ RN and set k = 1.

(3) Compute Qk−1 = Qk−1/‖Qk−1‖2.

(4) Solve the over-determined linear equations for Qk, Bk, and

Ck:

XT
i QkQ

T
k−1Xi + BT

k Xi + Ck = f̃i (i = 1,2, . . . ,S). (3.17)

(5) If the residue:

ψk(Qk,Bk,Ck) =
∑

i

(

XT
i QkQ

T
k−1Xi + BT

k Xi + Ck − f̃i

)2

(3.18)

is unchanged, i.e.,

|ψk (Qk,Bk,Ck) − ψk−1 (Qk−1,Bk−1,Ck−1) | < ε, (3.19)

where ε is a pre-defined error tolerance, then go to Step (6).

Otherwise, k = k + 1 and return Step (3).

(6) The rank-one response surface model is:

f1(X) = XT QkQ
T
k−1X + BT

k X + Ck. (3.20)

Algorithm 3.1 outlines the implicit power iteration algorithm for

rank-one approximation. This algorithm repeatedly solves a sequence of

over-determined linear equations until convergence is identified. Next,

we explain why the implicit power iteration yields the optimal rank-

one approximation AL = λ1P1P
T
1 . Note that Step (4) in Algorithm 3.1

approximates the matrix A by QkQ
T
k−1, where Qk−1 is determined in

the previous iteration step. Finding such an optimal approximation is

equivalent to solving the over-determined linear equations:

QkQ
T
k−1 = A. (3.21)
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The least-square-error solution for (3.12) is given by [38]:

Qk = AQk−1 ·
(

QT
k−1Qk−1

)−1
= AQk−1. (3.22)

In (3.22), Qk−1Q
T
k−1 = ||Qk−1||22 = 1, since Qk−1 is normalized in Step

(3) of Algorithm 3.1. Equation (3.22) reveals an interesting fact that

solving the over-determined linear equations in Step (4) “implicitly”

computes the matrix-vector product AQk−1, which is the basic opera-

tion required in the traditional power iteration for dominant eigenvector

computation [38].

Given an initial vector:

Q0 = α1P1 + α2P2 + · · · + αNPN , (3.23)

where Q0 is represented as the linear combination of all eigenvectors

of A, the kth iteration step yields:

Qk = AkQ0 = α1λ
k
1P1 + α2λ

k
2P2 + · · · + αNλk

NPN . (3.24)

In (3.24), we ignore the normalization Qk−1 = Qk−1/||Qk−1||2 which is

nothing else but a scaling factor. This scaling factor will not change the

direction of Qk. As long as α1 �= 0 in (3.23), i.e., P1 is not orthogonal to

the initial vector Q0, α1λ
k
1P1 (with |λ1| > |λ2| > · · ·) will become more

and more dominant over other terms. Qk will asymptotically approach

the direction of P1, as shown in Figure 3.6.

After the iteration in Algorithm 3.1 converges, we have Qk−1 =

Qk−1/||Qk−1||2 = P1 and Qk = AQk−1 = λ1P1. QkQ
T
k−1 is the opti-

mal rank-one approximation AL = λ1P1P
T
1 . Thus the aforementioned

implicit power iteration extracts the unknown coefficients λ1 and P1

P1

P2

P3

P1

P2

P3

P1

P2

P3

333222111 PPPQ
kkk

k3322110 PPPQ

3332221111 PPPQ = α λ + α λ + α λ

= α= α + α + α λ + α λ + α λ

Q0
Q1 Qk

Fig. 3.6 Convergence of the implicit power iteration in a three-dimensional space.
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with guaranteed convergence, but in an implicit way (i.e., without

knowing the original matrix A). This “implicit” property is the key dif-

ference between the implicit power iteration and the traditional explicit

power iteration in [38].

The above discussion demonstrates that the implicit power iteration

is provably convergent if A is symmetric. For an asymmetric A, Qk−1

and Qk should iteratively converge to the directions of the dominant

left and right singular vectors of A to achieve the optimal rank-one

approximation. However, the global convergence of the implicit power

iteration is difficult to prove in this case.

B. Rank-p Implicit Power Iteration

Algorithm 3.2 rank-p implicit power iteration.

(1) Start from a set of sampling points {Xi, f̃i; i = 1,2, . . . ,S},

where S is the total number of sampling points.

(2) For each k = {1,2, . . . ,p}
(3) Apply Algorithm 3.1 to compute the rank-one approximation

gk(X).

(4) Update the sampling points:

f̃i = f̃i − gk(Xi) (i = 1,2, . . . ,S). (3.25)

(5) End For.

(6) The rank-p response surface model is

fp(X) = g1(X) + g2(X) + · · · + gp(X). (3.26)

Algorithm 3.2 shows the implicit power iteration algorithm for rank-

p approximation. Assuming that the unknown function can be approx-

imated as the full-rank quadratic form in (3.12), Algorithm 3.2 first

extracts its rank-one approximation:

g1(X) = XT (λ1P1P
T
1 )X + BT X + C. (3.27)
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Then, the component of g1(X) is subtracted from the full-rank

quadratic function in Step (4) of Algorithm 3.2, yielding:

f(X) − g1(X) = XT

(

N
∑

i=2

λiPiP
T
i

)

X. (3.28)

Now λ2 and P2 become the dominant eigenvalue and eigenvector of

the quadratic function in (3.28), and they are extracted by the rank-

one implicit power iteration to generate g2(X). The rank-one implicit

power iteration and the subtraction are repeatedly applied for p times

until the rank-p approximation fp(X) is achieved.

Algorithm 3.2 assumes a given approximation rank p. In practi-

cal applications, the value of p can be iteratively determined based on

approximation error. For example, starting from a low-rank approxi-

mation, p should be iteratively increased if the modeling error remains

large.

3.2.2.3 PROBE vs. Traditional Techniques

There are several traditional techniques, such as principal component

analysis [98], variable screening [60], and projection pursuit [33], which

can be applied to reduce the computational cost of response surface

modeling. In this sub-section, we compare PROBE with these tradi-

tional techniques and highlight their difference.

A. PROBE vs. Principal Component Analysis

As discussed in Chapter 2, principal component analysis (PCA)

[98] is a statistical method that can reduce the number of random

variables required to approximate a given high-dimensional random

space. Given an N -dimensional multivariate Normal distribution X =

[x1,x2, . . . ,xN ]T and their covariance matrix R, PCA computes the

dominant eigenvalues and eigenvectors of R, and then constructs a set

of principal components Y = [y1,y2, . . . ,yK ]T , where K < N , to approx-

imate the original N -dimensional random space. After PCA, circuit

performances can be approximated as functions of the principal com-

ponents {yi; i = 1,2, . . . ,K} using response surface modeling. Since the
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Fig. 3.7 Combine PCA and PROBE to achieve minimal computational cost for quadratic
response surface modeling.

number of the principal components {yi; i = 1,2, . . . ,K} is less than

the number of the original variables {xi; i = 1,2, . . . ,N}, PCA reduces

the dimension size.

The result of PCA is uniquely determined by the covariance

matrix R of the random variables {xi; i = 1,2, . . . ,N}. It is inde-

pendent of a specific circuit performance f . In contrast, PROBE

reduces the problem dimension by carefully analyzing the depen-

dence between a specific performance f and the random process vari-

ations. PROBE will eliminate (or keep) one eigenvector Pi if and

only if f is strongly (or weakly) dependent on Pi. From this point

of view, PCA and PROBE rely on completely different mechanisms for

dimension reduction. In practice, both PCA and PROBE should be

applied sequentially to achieve the minimal modeling cost, as shown in

Figure 3.7.

B. PROBE vs. Variable Screening

Variable screening [60] is another traditional approach for reducing the

response surface modeling cost. Given a circuit performance f , variable

screening applies fractional factorial experimental design [66] and tries

to identify a subset (hopefully small) of the variables that have much

greater influence on f than the others. Compared with variable screen-

ing, PROBE also does a similar “screening,” but with an additional

coordinate rotation, as shown in Figure 3.8. The additional coordi-

nate rotation offers more flexibility to filter out unimportant variables,

thereby achieving better modeling accuracy and/or cheaper modeling

cost. From this point of view, PROBE can be viewed as a general-

ized variable screening which is an extension of the traditional variable

screening in [60].
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Fig. 3.8 Compared with variable screening, PROBE offers more flexibility to filter out
unimportant variables by an additional coordinate rotation.

C. PROBE vs. Projection Pursuit

Projection pursuit [33] attempts to approximate the unknown high-

dimensional nonlinear function by the sum of several smooth low-

dimensional functions. The authors in [33] utilize the one-dimensional

projection:

f(x) = g1(P
T
1 X) + g2(P

T
2 X) + · · · , (3.29)

where gi(•) is the pre-defined one-dimensional nonlinear function and

Pi ∈ RN defines the projection space. One of the main difficulties in the

traditional projection pursuit is to find the optimal projection vectors

Pi (i = 1,2, . . . ,p). The authors in [33] apply local optimization with

heuristics to search for the optimal Pi. Such an optimization can easily

get stuck at a local minimum. The PROBE algorithm is actually a

special case of the traditional projection pursuit, where all gi(•)’s are

quadratic functions. In this case, the theoretical solution of the optimal

projection vectors Pi (i = 1,2, . . . ,p) is known, i.e., they are determined

by the dominant eigenvalues and eigenvectors of the original quadratic

coefficient matrix A. These dominant eigenvalues and eigenvectors can

be extracted by the aforementioned implicit power iteration quickly

and robustly.

D. PROBE vs. Full-Rank Quadratic Modeling

The rank-p implicit power iteration in Algorithm 3.2 requires run-

ning the rank-one implicit power iteration for p times. Each rank-one

approximation needs to solve 2N + 1 unknown coefficients, for which
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the required number of samples is on the order of O(N) and solving

the over-determined linear equations in Step (4) of Algorithm 3.1 has

a complexity of O(N3). Therefore, a rank-p approximation requires

O(pN) simulation samples in total and the overall computational cost

for the rank-p implicit power iteration in Algorithm 3.2 is O(pN3).

In many practical applications, p is much less than N and, therefore,

PROBE is much more efficient than the traditional full-rank quadratic

modeling that requires O(N2) simulation samplings and has a fitting

cost of O(N6) for solving the over-determined linear equations.

Figure 3.9 compares the response surface modeling complexity

between PROBE and the traditional full-rank quadratic modeling. As

shown in Figure 3.9, if the total number of random process param-

eters reaches 200, a full-rank quadratic model contains more than

20,000 unknown coefficients while the rank-one PROBE approxima-

tion reduces the coefficient number to about 400, thereby achieving

significant speed-up in computational time.

To compare PROBE with other traditional techniques, a physical

implementation of the ISCAS’89 S27 benchmark circuit is created using

a commercial CMOS 90 nm process. Given a set of fixed gate sizes, the

longest path delay in the benchmark circuit (shown in Figure 3.10) is

a function of process variations. The probability distributions and the

correlation information of all process variations are obtained from the

L
o
g
 S

c
a
le

10

100

1000

10000

100000

20 40 60 80 100 120 140 160 180 200

Random Process Parameter Number

M
o

d
e

l 
C

o
e

ff
N

u
m

b
e

r

Traditional PROBE

Fig. 3.9 Rank-one PROBE approximation significantly reduces the number of model coef-
ficients compared with the traditional full-rank quadratic response surface modeling.
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Fig. 3.10 Schematic of the longest path in the ISCAS’89 S27 benchmark circuit.
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Fig. 3.11 Response surface modeling error for path delay.

process design kit. After principal component analysis, six principal

factors are identified to represent these variations.

Figure 3.11 shows the response surface modeling error when the

path delays of both rising and falling transitions are approximated

as the linear, rank-p quadratic (PROBE), and traditional full-rank

quadratic models. It is shown in Figure 3.11 that as p increase, the rank-

p modeling error asymptotically approaches the full-rank quadratic

modeling error. However, after p > 2, further increases in p do not have

a significant impact on reducing error. It, in turn, implies that a rank-

two model, instead of the full-rank quadratic model with rank six, is

sufficiently accurate in this example.

In summary, PROBE utilizes a new projection scheme to facili-

tate the trade-off between modeling accuracy and computational cost.

An implicit power iteration algorithm is presented to find the optimal

projection space and solve the unknown model coefficients. By using

the implicit power iteration, PROBE significantly reduces the model-

ing cost (both the required number of sampling points and the linear

equation size), thereby facilitating scaling to much larger problem sizes.
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The response surface models generated by PROBE can be incorporated

into a statistical analysis/optimization environment for accurate and

efficient yield analysis/optimization, which will be discussed in detail

in Sections 3.3 and 3.4.

3.2.3 Design of Experiments

One of the key problems for response surface modeling is to optimally

select the locations of sampling points such that a minimal number of

samples can be used to achieve good modeling quality. Such a sample

selection problem belongs to the broad research area called design of

experiments (DOE) [66]. An experiment is defined as a test or a series

of tests in which purposeful changes are made to the input variables of

a process or system so that we may observe and identify the reasons

for changes that may be observed in the output response. To fit the

response surface model f(X), we need to come up with the optimal

scheme to change X (i.e., the experiment) such that the changes of f

can be observed and used to accurately determine the unknown model

coefficients.

To further illustrate the importance of DOE, Figure 3.12 shows two

“bad” examples of sampling schemes. In Figure 3.12(a), no perturba-

tion is applied to x2 and therefore such a DOE cannot estimate the

dependence between the performance function f(x1, x2) and the vari-

able x2. On the other hand, the DOE in Figure 3.12(b) varies both

x1 and x2, and is sufficient for fitting a linear response surface model.

(a)

x2

x1

x2

x1x1

x2

x1

x2

(b)

Fig. 3.12 Two “bad” examples of design of experiments. (a) x2 is not varied and the impact
of x2 cannot be estimated for a linear model. (b) x1 and x2 are not varied simultaneously
and the cross-product term x1x2 cannot be estimated for a quadratic model.
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However, the DOE in Figure 3.12(b) does not vary x1 and x2 simulta-

neously and therefore it cannot estimate the cross-product term x1x2

for a quadratic response surface model.

Most DOE techniques for response surface modeling utilize one of

the following two sampling schemes:

• Deterministic sampling. Sampling points are deterministi-

cally selected based on the underlying model template (e.g.,

linear model, quadratic model, etc.). These sampling points

are optimized to minimize modeling error and, therefore, the

DOE quality can be well controlled. However, it is not triv-

ial to find an efficient deterministic sampling scheme for a

general, complicated model template (e.g., when applying

projection pursuit [33, 57]).
• Random sampling. Sampling points are randomly gener-

ated based on the probability distribution of random vari-

ables. For example, the Monte Carlo analysis discussed in

Section 3.1 is one of the possible approaches to create ran-

dom sampling points. The random sampling method is gen-

eral and easy to implement. It is useful especially when an

efficient deterministic sampling scheme is difficult to find for

a given model template. However, the statistical nature of

random sampling makes it difficult to achieve “guaranteed”

quality in practical applications.

3.2.4 Performance Modeling vs. Monte Carlo Analysis

Both response surface modeling and Monte Carlo analysis are widely

used for statistical circuit analysis. The relative efficiency of these two

methods is application-dependent. In general, if the number of ran-

dom process parameters is small, response surface modeling is often

more efficient than Monte Carlo analysis. In such cases, only a small

number of sampling points are required to fit the model. Otherwise,

if the number of random process parameters is large (e.g., when both

inter-die variations and device mismatches are simultaneously consid-

ered), Monte Carlo analysis is often preferable. Note that the accu-

racy of Monte Carlo analysis is independent of the underlying problem
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dimension, according to our discussion in Section 3.1.1. This property

implies that we do not have to increase the number of Monte Carlo

sampling points as problem dimension becomes increasingly large. For

this reason, Monte Carlo analysis can be quite attractive for large-

dimension problems.

3.3 Statistical Performance Analysis

The objective of statistical performance modeling is to estimate the

parametric yield, given the response surface models extracted in

Section 3.2. One straightforward approach for statistical performance

analysis is to run Monte Carlo analysis based on response surface

models. Such a model-based Monte Carlo analysis is fast, since it

does not require any additional transistor-level simulations. However,

an even faster statistical analysis engine is required for a number of

practical applications, e.g., when parametric yield estimation must

be repeatedly performed within the inner loop of an optimization

flow [24, 28, 51, 97]. For this reason, various more efficient statisti-

cal analysis techniques have been developed. In what follows, we will

first review the parametric yield estimation for a single performance

constraint and then extend our discussion to multiple performance

constraints.

Any single performance constraint can be expressed as the following

standard form:

f(X) ≤ 0, (3.30)

where f is the performance of interest, X = [x1,x2, . . . ,xN ]T represents

the random variables to model process variations, and N is the total

number of the random variables of concern. We assume that all ran-

dom variables in X are mutually independent and they satisfy the

standard Normal distribution N(0,1) (i.e., zero mean and unit stan-

dard deviation). Correlated Normal random variables can be decom-

posed to independent ones by PCA. The standard form in (3.30)

is ready to handle several extensions. For example, f(X) ≤ f0 and

f(X) ≥ f0 can be expressed as f(X) − f0 ≤ 0 and −f(X) + f0 ≤ 0,

respectively.
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Given the performance constraint in (3.30), the parametric yield is

defined as

Yield = P (f ≤ 0), (3.31)

where P (•) denotes the probability. If the function f(X) in (3.30) is

approximated as the linear response surface model in (3.11), the para-

metric yield estimation problem is trivial. In this case, the performance

f is Normal and its mean and variance can be, respectively, calcu-

lated by

µf = C (3.32)

σ2
f = ‖B‖2

2 , (3.33)

where ‖•‖2 denotes the 2-norm of a vector. Since a Normal distribution

is uniquely determined by its mean and variance, the parametric yield

can be easily estimated based on the cumulative distribution function

of the Normal distribution of f .

As shown in Table 3.1, the linear response surface model in (3.11)

may be inaccurate due to the large-scale process variations in nano-

scale technologies. For this reason, a quadratic response surface model

is often required in many practical applications to provide high model-

ing accuracy. Using quadratic response surface model, however, brings

about new challenges due to the nonlinear mapping between the process

variations X and the circuit performance f . The distribution of f is

no longer Normal, unlike the case of the linear model. In the next sub-

section, we describe an asymptotic probability extraction algorithm

(APEX [52, 54]) to efficiently estimate the random performance dis-

tribution (and therefore the parametric yield) for a given quadratic

response surface model.

3.3.1 Asymptotic Probability Extraction

Given the quadratic response surface model in (3.12), the objective of

APEX is to estimate the probability density function pdff (f) and the

cumulative distribution function cdff (f) for the performance f . APEX

applies moment matching to approximate the characteristic function

of f (i.e., the Fourier transform of the probability density function [81])
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Fig. 3.13 Overall flow of APEX.

by a rational function H. H is conceptually considered to be of the form

of the transfer function of a linear time-invariant (LTI) system, and the

pdff (f) and the cdff (f) are approximated by the impulse response and

the step response of the LTI system H, respectively. Figure 3.13 shows

the overall flow of APEX.

3.3.1.1 Mathematic Formulation

APEX attempts to find an Mth order LTI system H whose impulse

response h(t) and step response s(t) are the optimal approximations for

pdff (f) and cdff (f), respectively. The variable t in h(t) and s(t) corre-

sponds to the variable f in pdff (f) and cdff (f). The optimal approxi-

mation is determined by matching the first 2M moments between h(t)

and pdff (f) for an Mth order approximation. In this sub-section, we

first describe the mathematical formulation of the APEX algorithm.

Next, APEX is linked to probability theory and we explain why it is

efficient in approximating PDF/CDF functions. Finally, we show that

the moment-matching method utilized in APEX is asymptotically con-

vergent when applied to quadratic response surface models.

Define the time moments [15, 87] for a given circuit performance f

whose probability density function is pdff (f) as follows:

sk =
(−1)k

k!

∫ +∞

−∞
fk · pdff (f) · df. (3.34)

In (3.34), the definition of time moments is identical to the traditional

definition of moments in probability theory except for the scaling factor

(−1)k/k!.
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Similarly, the time moments can be defined for an LTI system H

[15, 87]. Given an Mth order LTI system whose transfer function and

impulse response are

H(s) =

M
∑

i=1

ai

s − bi
and h(t) =







M
∑

i=1
aie

bit (if t ≥ 0)

0 (if t < 0)

. (3.35)

The time moments of H are defined as [15, 87]:

sk =
(−1)k

k!

∫ +∞

−∞
tk · h(t) · dt = −

M
∑

i=1

ai

bk+1
i

. (3.36)

In (3.35), the poles {bi; i = 1,2, . . . ,M} and residues {ai; i = 1,

2, . . . ,M} are the 2M unknowns that need to be determined. Match-

ing the first 2M moments in (3.34) and (3.36) yields the following 2M

nonlinear equations:

−
(

a1

b1
+

a2

b2
+ · · · +

aM

bM

)

= s0

−
(

a1

b2
1

+
a2

b2
2

+ · · · +
aM

b2
M

)

= s1 (3.37)

...
...

−
(

a1

b2M
1

+
a2

b2M
2

+ · · · +
aM

b2M
M

)

= s2M−1.

Equation (3.37) can be solved using the algorithm proposed in [15, 87].

It first solves the poles {bi} and then the residues {ai}. In what follows,

we briefly describe this two-step algorithm for solving (3.37).

In order to solve the poles {bi} in (3.37), the authors in [15, 87] first

formulate the following linear equations:

−











s0 s1 · · · sM−1

s1 s2 · · · sM

...
...

...
...

sM−1 sM · · · s2M−2











·











c0

c1
...

cM−1











=











sM

sM+1
...

s2M−1











. (3.38)

After solving (3.38) for {ci; i = 0,1, . . . ,M − 1}, the poles {bi} in (3.37)

are equal to the reciprocals of the roots of the following characteristic
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polynomial:

c0 + c1b
−1 + c2b

−1 + · · · + cM−1b
−M+1 + b−M = 0. (3.39)

The detailed proof of (3.38) and (3.39) can be found in [15, 87].

After the poles {bi} are known, substitute {bi} into (3.37) and the

residues {ai} can be solved by using the first M moments:

−











b−1
1 b−1

2 · · · b−1
M

b−2
1 b−2

2 · · · b−2
M

...
...

...
...

b−M
1 b−M

2 · · · b−M
M











·











a1

a2
...

aM











=











s0

s1
...

sM−1











. (3.40)

The aforementioned algorithm assumes that the poles {bi} are distinct.

Otherwise, if repeated poles exist, the unknown poles and residues must

be solved using a more comprehensive algorithm described in [15, 87].

Once the poles {bi} and residues {ai} are determined, the proba-

bility density function pdff (f) is optimally approximated by h(t) in

(3.35), and the cumulative distribution function cdff (f) is optimally

approximated by the step response:

s(t) =

∫ t

0
h(τ)dτ =











M
∑

i=1

ai

bi
· (ebit − 1) (if t ≥ 0)

0 (if t < 0)

. (3.41)

The aforementioned moment-matching method was previously applied

to IC interconnect order reduction [15, 87] and is related to the Padé

approximation in linear control theory [12]. Next, we will explain

why such a moment-matching approach is efficient in approximating

PDF/CDF functions.

In probability theory, given a random variable f whose probability

density function is pdff (f), the characteristic function is defined as the

Fourier transform of pdff (f) [81]:

Φ(ω) =

∫ +∞

−∞
pdff (f) · ejωf · df =

∫ +∞

−∞
pdff (f) ·

+∞
∑

k=0

(jωf)k

k!
· df.

(3.42)
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Substituting (3.34) into (3.42) yields:

Φ(ω) =
+∞
∑

k=0

sk · (−jω)k. (3.43)

Equation (3.43) implies an important fact that the time moments

defined in (3.34) are related to the Taylor expansion of the charac-

teristic function at the expansion point ω = 0. Matching the first 2M

moments in (3.37) is equivalent to matching the first 2M Taylor expan-

sion coefficients between the original characteristic function Φ(ω) and

the approximated rational function H(s).

To explain why the moment-matching approach is efficient, we first

need to show two important properties that are described in [81]:

Theorem 3.1. A characteristic function has the maximal magnitude

at ω = 0, i.e., |Φ(ω)| ≤ Φ(0) = 1.

Theorem 3.2. A characteristic function Φ(ω) → 0 when ω → ∞.

Figure 3.14 shows the characteristic functions for several typical

random distributions. The above two properties imply an interesting
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Fig. 3.14 The characteristic functions of several typical distributions.
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fact: namely, given a random variable f , the magnitude of its character-

istic function decays as ω increases. Therefore, the optimally approx-

imated H(s) in (3.35) is a low-pass system. It is well-known that a

Taylor expansion is accurate around the expansion point. Since a low-

pass system is mainly determined by its behavior in the low-frequency

range (around ω = 0), it can be accurately approximated by matching

the first several Taylor coefficients at ω = 0, i.e., the moments. In addi-

tion, the rational function form utilized in APEX is an efficient form

to approximate the transfer function H(s) of a low-pass system. These

conclusions have been verified in other applications (e.g., IC intercon-

nect order reduction [15, 87]) and they provide the theoretical back-

ground to explain why APEX works well for PDF/CDF approximation.

We have intuitively explained why the moment-matching approach

is efficient in approximating PDF/CDF functions. However, there is a

theoretical question which might be raised: given a random variable,

can the PDF/CDF functions always be uniquely determined by its

moments? In general, the answer is no. It has been observed in math-

ematics that some probability distributions cannot be uniquely deter-

mined by their moments. One example described in [4] is the following

probability density function:

pdff (f) =







e−0.5·[ln(f)]2

√
2πf

· {1 + a · sin[2π · ln(f)]} (if f > 0)

0 (if f ≤ 0)

, (3.44)

where a ∈ [−1,1]. It can be verified that all moments of the probabil-

ity density function pdff (f) in (3.44) are independent of a, although

varying a changes pdff (f) significantly [4]. It, in turn, implies that the

probability density function in (3.44) cannot be uniquely determined

by its moments.

However, there are special cases for which the moment problem

is guaranteed to converge, i.e., the PDF/CDF functions are uniquely

determined by the moments. The following Carleman theorem states

one of those special cases and gives a sufficient condition for the con-

vergence of the moment problem.

Theorem 3.3 (Carleman [4]). A probability distribution on the

interval (−∞,+∞) can be uniquely determined by its moments
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{mk; k = 1,2, . . .} if:

+∞
∑

k=1

(m2k)
−1
2k = ∞. (3.45)

Based on the Carleman theorem, it can be proven that the moment-

matching approach utilized in APEX is asymptotically convergent

when applied to quadratic response surface models. Namely, given a

quadratic response surface model f that is a quadratic function of nor-

mally distributed random variables, the probability distribution of f

can be uniquely determined by its moments {mk; k = 1,2, . . . ,K} when

K approaches infinity, i.e., K → +∞. The asymptotic convergence of

APEX can be formally stated by the following theorem. The detailed

proof of Theorem 3.4 is given in [52].

Theorem 3.4. Given the quadratic response surface model f(X)

in (3.12) where all random variables in X are mutually independent

and satisfy the standard Normal distribution N(0,1), the probabil-

ity distribution of f can be uniquely determined by its moments

{mk; k = 1,2, . . .}.

APEX is derived from the classical moment problem [4] that has

been widely studied by mathematicians for over one hundred years,

focusing on the theoretical aspects of the problem, e.g., the existence

and uniqueness of the solution. Details of these theoretical results can

be found in [4] or other recent publications, e.g., [103]. APEX aims to

solve the moment problem efficiently, i.e., to improve the approximation

accuracy and reduce the computational cost for practical applications.

Next, we will discuss several important implementation algorithms in

detail. A complete discussion of all implementation issues can be found

in [52].

3.3.1.2 Binomial Moment Evaluation

A key operation required in APEX is the computation of the high

order time moments defined in (3.34) for a given random variable f .

Such a time moment evaluation is equivalent to computing the expected
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values of {fk; k = 0,1, . . . ,2M − 1}. Given the quadratic response sur-

face model in (3.12), fk can be represented as a high order polynomial

of X:

fk(x) =
∑

i

ci · xα1i
1 · xα2i

2 · · ·xαNi
N , (3.46)

where xi is the ith element in the vector X, ci is the coefficient of the

ith product term, and αij is the positive integer exponent. Since the

random variables in X are mutually independent, we have:

E(fk) =
∑

i

ci · E (xα1i
1 ) · E (xα2i

2 ) · · ·E
(

xαNi
N

)

. (3.47)

In addition, remember that all random variables in X satisfy the stan-

dard Normal distribution N(0,1), which yields [81]:

E(xk) =







1 (if k = 0)

0 (if k = 1,3,5, . . .)

1 · 3 · · ·(k − 1) (if k = 2,4,6, . . .)

. (3.48)

Substituting (3.48) into (3.47), the expected value of fk can be

determined.

The above computation scheme is called direct moment evalua-

tion. The key disadvantage of such a moment evaluation is that, as

k increases, the total number of the product terms in (3.47) will expo-

nentially increase, thereby quickly making the computation infeasible.

To overcome this difficulty, a novel binomial moment evaluation scheme

is developed in [52]. It recursively computes the high order moments

without explicitly constructing the high order polynomial fk in (3.47).

The binomial moment evaluation consists of two steps: quadratic model

diagonalization and moment evaluation.

A. Quadratic Model Diagonalization

The first step of binomial moment evaluation is to remove the cross

product terms in the quadratic response surface model (3.12), thereby

yielding a much simpler, but equivalent, quadratic model. According

to matrix theory [38], any symmetric matrix A ∈ RN×N can be diago-

nalized as:

A = U · Λ · UT , (3.49)
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where Λ = diag(σ1,σ2, . . . ,σN ) contains the eigenvalues of A and U =

[U1,U2, . . . ,UN ] is an orthogonal matrix (i.e., UT U = I) containing the

eigenvectors. Define the new random variables Y = [y1,y2, . . . ,yN ]T as

follows:

Y = UT · X. (3.50)

Substituting (3.50) into (3.12) yields:

f(Y ) = Y T · Λ · Y + QT · Y + C =

N
∑

i=1

(σi · y2
i + qi · yi) + C, (3.51)

where yi is the ith element in the vector Y and Q = [q1, q2, . . . , qN ]T =

UT B. Equation (3.51) implies that there is no cross product term in

the quadratic model after the diagonalization. In addition, the follow-

ing theorem guarantees that the random variables {yi; i = 1,2, . . . ,N}
defined in (3.50) are also independent and satisfy the standard Normal

distribution N(0,1). The detailed proof of Theorem 3.5 can be found

in [52].

Theorem 3.5. Given a set of independent random variables {xi; i =

1,2, . . . ,N} satisfying the standard Normal distribution N(0,1) and an

orthogonal matrix U , the random variables {yi; i = 1,2, . . . ,N} defined

in (3.50) are independent and satisfy the standard Normal distribution

N(0,1).

B. Moment Evaluation

Next, the simplified quadratic model (3.51) will be used for fast moment

evaluation. Based on (3.51), a set of new random variables can be

defined:

gi = σi · y2
i + qi · yi

hl =

l
∑

i=1

gi + C =

l
∑

i=1

(

σi · y2
i + qi · yi

)

+ C.
(3.52)

Comparing (3.52) with (3.51), it is easy to verify that when l = N ,

hN = f . Instead of computing the high order moments of f directly,
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the binomial moment evaluation iteratively computes the moments of

{hl; l = 1,2, . . . ,N}, as shown in Algorithm 3.3.

Algorithm 3.3 binomial moment evaluation.

(1) Start from h0 = C and compute E(hk
0) = Ck for each k =

{0,1, . . . ,2M − 1}. Set l = 1.

(2) For each k = {0,1, . . . ,2M − 1}
(3) Compute:

E(gk
l ) = E[(σl · y2

l + ql · yl)
k]

=
k
∑

i=0

(

k

i

)

· σi
lq

k−i
l · E(yk+i

l ) (3.53)

E(hk
l ) = E[(hl−1 + gl)

k]

=

k
∑

i=0

(

k

i

)

· E(hi
l−1) · E(gk−i

l ). (3.54)

(4) End For.

(5) If l = N , then go to Step (6). Otherwise, l = l + 1 and return

Step (2).

(6) For each k = {0,1, . . . ,2M − 1}, E(fk) = E(hk
N ).

Step (3) in Algorithm 3.3 is the key operation required by the bino-

mial moment evaluation. In Step (3), both (3.53) and (3.54) utilize

the binomial theorem to calculate the binomial series. Therefore, this

algorithm is referred to as binomial moment evaluation. In (3.53), the

expected value E(yk+i
l ) can be easily evaluated using the closed-form

expression (3.48), since yl satisfies the standard Normal distribution

N(0,1). Equation (3.54) utilizes the property that hl−1 and gl are

independent, because hl−1 is a function of {yi; i = 1,2, . . . , l − 1}, gl

is a function of yl, and all {yi; i = 1,2, . . . ,N} are mutually indepen-

dent (see Theorem 3.5). Therefore, E(hi
l−1 · gk−i

l ) = E(hi
l−1) · E(gk−i

l ),

where the values of E(hi
l−1) and E(gk−i

l ) are already computed in the

previous steps.
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The main advantage of the binomial moment evaluation is that,

unlike the direct moment evaluation in (3.47), it does not explicitly

construct the high order polynomial f k. Therefore, unlike the direct

moment evaluation where the total number of product terms expo-

nentially increases with k, both E(gk
l ) in (3.53) and E(hk

l ) in (3.54)

contain at most 2M product terms. Since k = {0,1, . . . ,2M − 1} and

l = {0,1, . . . ,N} for an Mth order APEX approximation with N inde-

pendent random variables, the total number of E(gk
l ) and E(hk

l ) that

need to be computed is O(MN). In addition, the matrix diagonalization

in (3.49) is only required once and has a complexity of O(N3). There-

fore, the computational complexity of the aforementioned algorithm

is O(M2N) + O(N3). In most circuit-level applications, N is small

(around 5 ∼ 100) after principal component analysis, and selecting

M = 7 ∼ 10 provides sufficient accuracy for moment matching. With

these typical values of M and N , the binomial moment evaluation is

extremely fast, as is demonstrated in [52, 54].

It should be noted that as long as the circuit performance f is

approximated as the quadratic model in (3.12) and the process vari-

ations are jointly Normal, the binomial moment evaluation yields the

exact high order moment values (except for numerical errors). There

is no further assumption or approximation made by the algorithm. For

non-Normal process variations, however, the binominal moment evalu-

ation algorithm cannot be easily applied.

In summary, the binomial moment evaluation utilizes statistical

independence theory to efficiently compute the high order moments

that are required by the moment matching of APEX. Compared with

the direct moment evaluation in (3.46)–(3.48) whose computational

complexity is O(NM ), the binomial moment evaluation reduces the

complexity to O(M2N) + O(N3).

3.3.1.3 Reverse Evaluation

In many practical applications, such as robust circuit optimization, the

best-case performance (e.g., the 1% point on CDF) and the worst-case

performance (e.g., the 99% point on CDF) are two important metrics

of interest. As discussed in Section 3.3.1.1, APEX matches the first
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f0 

Flip for Reverse Evaluation

Accurate for Estimating

the 99% Point 

Accurate for Estimating

the 1% Point 

pdff(-f) pdff(f) 

Fig. 3.15 Illustration of the reverse evaluation.

2M Taylor expansion coefficients between the original characteristic

function Φ(ω) and the approximated rational function H(s). Recall

that a Taylor expansion is most accurate around the expansion point

ω = 0. According to the final value theorem of Laplace transform, accu-

rately approximating Φ(ω) at ω = 0 provides an accurate pdff (f) at

f → ∞. It, in turn, implies that the moment-matching approach can

accurately estimate the 99% point of the random distribution, as shown

in Figure 3.15.

The above analysis motivates us to apply a reverse evaluation

scheme for accurately estimating the 1% point. As shown in Figure 3.15,

the reverse evaluation flips the original pdff (f) to pdff (−f). The 1%

point of the original pdff (f) now becomes the 99% point of the flipped

pdff (−f) which can be accurately evaluated by APEX.

3.3.1.4 A Digital Circuit Example

To compare APEX with other traditional techniques, a physical imple-

mentation of the ISCAS’89 S27 benchmark circuit is created using a

commercial CMOS 90 nm process. Given a set of fixed gate sizes, the

longest path delay in the benchmark circuit (shown in Figure 3.10)

is a function of process variations. The probability distributions and

the correlation information of process variations are obtained from the

process design kit. After PCA, six principal factors are identified to

model these variations. As shown in Figure 3.11, to approximate the

delay variation, the response surface modeling error is 5.92% for linear

model and 1.39% for quadratic model (4.5× difference). It is worth not-

ing that while the linear modeling error in this example is not extremely
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Table 3.2 Computational cost for moment evaluation.

Direct Binomial

Moment order # of product Computational Computational
terms time (Sec.) time (Sec.)

1 28 1.00 × 10−2 0.01
3 924 3.02 × 100 0.01
5 8008 2.33 × 102 0.01
6 18564 1.57 × 103 0.01
7 38760 8.43 × 103 0.01
8 74613 3.73 × 104 0.02

10 — — 0.02
15 — — 0.04
20 — — 0.07

large, as IC technologies are scaled to finer feature sizes, process varia-

tions will become relatively larger, thereby making the nonlinear terms

in the quadratic model even more important.

Table 3.2 compares the computational cost for the traditional direct

moment evaluation and the binomial moment evaluation. During the

direct moment evaluation, the number of product terms increases expo-

nentially, thereby making the computation task quickly infeasible. The

binomial moment evaluation, however, is extremely fast and achieves

more than 106× speedup over the direct moment evaluation in this

example.

Figure 3.16 shows the cumulative distribution functions for two dif-

ferent approximation orders. In Figure 3.16, the “exact” cumulative
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Fig. 3.16 The approximated cumulative distribution function of delay.
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distribution function is evaluated by a Monte Carlo simulation with

106 samples. Note that the CDF obtained from the low order approx-

imation (Order = 4) is not accurate and contains numerical oscilla-

tions. However, once the approximation order is increased to 8, these

oscillations are eliminated and the approximated CDF asymptotically

approaches the exact CDF. Similar behavior has been noted in moment

matching of interconnect circuits [15, 87].

Table 3.3 compares the estimation accuracy and speed for four dif-

ferent probability extraction approaches: linear regression, Legendre

approximation, Monte Carlo simulation with 104 samples, and APEX.

The linear regression approach approximates the performance f by a

best-fitted linear model with least-squared error, resulting in a Normal

probability distribution for f . The Legendre approximation is often

utilized in traditional mathematics. It expands the unknown probabil-

ity density function by the Legendre polynomials and determines the

expansion coefficients based on moment matching.

The delay values at several specific points of the cumulative distribu-

tion function are estimated by these probability extraction techniques.

The 1% point and the 99% point, for example, denote the best-case

delay, and the worst-case delay respectively. After the cumulative dis-

tribution function is obtained, the best-case delay, the worst-case delay

and all other specific points on CDF can be easily found using a binary

search algorithm. These delay values are compared with the Monte

Carlo simulation results with 106 samples. Their relative difference is

used as a measure of the estimation error for accuracy comparison, as

shown in Table 3.3. The computational cost in Table 3.3 is the total

Table 3.3 Estimation error (compared against Monte Carlo with 106 samples) and compu-
tational cost.

Linear Legendre MC (104 Samples) APEX

1% Point 1.43% 0.87% 0.13% 0.04%
10% Point 4.63% 0.02% 0.22% 0.01%
25% Point 5.76% 0.12% 0.04% 0.03%
50% Point 6.24% 0.04% 0.13% 0.02%
75% Point 5.77% 0.03% 0.26% 0.02%
90% Point 4.53% 0.15% 0.38% 0.03%
99% Point 0.18% 0.77% 0.86% 0.09%
Cost (Sec.) 0.04 0.16 1.56 0.18
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computational time for estimating the unknown probability density

function (PDF) and cumulative distribution function (CDF).

Note from Table 3.3 that the linear regression approach has the

largest error. APEX achieves a speedup of 8.7× over the Monte Carlo

simulation with 104 samples, while still providing better accuracy. In

this example, applying reverse evaluation on pdff (−f) reduces the 1%

point estimation error by 4×, from 0.20% to 0.04%. This observation

demonstrates the efficacy of the reverse evaluation method described

in 3.3.1.3.

In summary, we describe an asymptotic probability extraction

(APEX) method for estimating the non-Normal random distribu-

tion resulting from quadratic response surface modeling. Applying

APEX results in better accuracy than a Monte Carlo simula-

tion with 104 samples and achieves up to 10× more efficiency. In

Sections 3.3.3 and 3.3.4, we will further discuss how to utilize APEX

as a fundamental tool to solve various parametric yield estimation

problems.

3.3.2 Convolution-Based Probability Extraction

In addition to APEX, an alternative approach for probability extraction

is based on numerical convolution [125]. In this sub-section, we first

show the mathematic formulation of the convolution-based technique,

and then compare these two methods (i.e., APEX vs. convolution) in

Section 3.3.2.2.

3.3.2.1 Mathematic Formulation

Given the diagonalized quadratic model in (3.51) and the quadratic

functions {gi; i = 1,2, . . . ,N} defined in (3.52), the performance f can

be expressed as a linear function of {gi; i = 1,2, . . . ,N} and the constant

term C:

f(g1,g2, . . . ,gN ) =

N
∑

i=1

gi + C. (3.55)
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The quadratic functions {gi; i = 1,2, . . . ,N} in (3.52) can be re-written

as the form of

gi = ai · (yi + bi)
2 + ci, (3.56)

where

ai = σi bi =
qi

2σi
ci = − q2

i

4σi
. (3.57)

Since the random variable yi satisfies the standard Normal distribu-

tion N(0,1), the probability density function of gi can be analytically

calculated [125]:

pdfgi
(gi) =







0 (ai > 0, gi < ci)

exp

{

−
[√

(gi−ci)/ai−bi

]

2
/

2

}

+exp

{

−
[√

(gi−ci)/a+bi

]

2
/

2

}

2·
√

2π·ai·(gi−ci)
(ai > 0, gi ≥ ci)

(3.58)

pdfgi
(gi) =







exp

{

−
[√

(gi−ci)/ai−bi

]

2
/

2

}

+exp

{

−
[√

(gi−ci)/a+bi

]

2
/

2

}

2·
√

2π·ai·(gi−ci)
(ai > 0, gi ≤ ci)

0 (ai < 0, gi > ci)

(3.59)

In addition, {gi; i = 1,2, . . . ,N} are mutually independent, because

{yi; i = 1,2, . . . ,N} are mutually independent (see Theorem 3.5) and

gi is a function of yi. Therefore, the probability density function of f

is determined by

pdff (f) = pdfg1
(f − C) ⊗ pdfg2

(f − C) ⊗ ·· · ⊗ pdfgN
(f − C),

(3.60)

where ⊗ denotes the operator of convolution, i.e.,

f(t) ⊗ g(t) =

∫ +∞

−∞
f(t − τ) · g(τ) · dτ. (3.61)

Note that the probability density function in (3.60) is shifted by the

constant term C of the performance function (3.55). The convolutions

in (3.60) can be computed by multiple, one-dimensional numerical inte-

grations [125].
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3.3.2.2 APEX vs. Convolution

For a practical application, either APEX or the convolution-based

approach could be applied for probability extraction. There are two

general factors that one should consider when comparing these two

algorithms.

First, the convolution-based approach can be difficult to apply, if

the variances of {gi; i = 1,2, . . . ,N} in (3.56) are widely spread. In such

cases, some of the gi’s have narrow probability distributions, while the

others have wide probability distributions, thereby making the numeri-

cal convolution (3.60) difficult to compute. Second, APEX is most suit-

able for estimating the extreme values of a probability distribution, i.e.,

the best-case and worst-case performance values. The reverse evalua-

tion method discussed in Section 3.3.1.3 should be selectively applied,

depending on the distribution tail of interest. APEX, however, cannot

produce accurate results for both distribution tails simultaneously. For

this reason, the convolution-based approach is preferable, if one wants

to estimate the complete probability density function including both

tails.

3.3.3 Multiple Performance Constraints with Normal
Distributions

The aforementioned algorithms can only be applied to a single per-

formance metric, while the parametric yield value of most analog,

digital and mixed-signal circuits is defined by multiple performance

constraints. For example, a simple analog operational amplifier typ-

ically has more than ten performance metrics, including gain, band-

width, power, phase margin, gain margin, output swing, slew rate,

common-mode rejection ratio, common-mode input range, etc. For

most digital circuits, delay and power (both dynamic power and leak-

age power) are two most important performance metrics. Therefore,

the final parametric yield cannot be simply determined by a single per-

formance constraint; instead, it depends on multiple performance con-

straints. Similar to (3.30), all performance constraints can be expressed
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as the following standard form

fk(X) ≤ 0 (k = 1,2, . . . ,K), (3.62)

where fk is the kth performance of interest, X = [x1 x2, . . . ,xN ]T repre-

sents the random variables to model process variations, K is the total

number of performance constraints, and N is the total number of ran-

dom process variations.

Given the performance constraints in (3.62), the parametric yield is

determined by

Yield = P (f1 ≤ 0 & f2 ≤ 0 & · · · & fK ≤ 0), (3.63)

where P (•) denotes the probability. The probability in (3.63) depends

on all performance distributions as well as their correlations. The fol-

lowing simple example demonstrates why performance correlations play

an important role here.

Consider two performance metrics f1 and f2, and assume that both

of them satisfy the standard Normal distribution N(0,1) (i.e., zero

mean and unit variance). Substituting K = 2 into (3.63) yields:

Yield = P (f1 ≤ 0 & f2 ≤ 0). (3.64)

To demonstrate the importance of correlation, we consider two extreme

cases. First, if f1 and f2 are fully correlated, the parametric yield is

Yield = P (f1 ≤ 0) = P (f2 ≤ 0) = 0.5. (3.65)

The probability in (3.65) is equal to 0.5, because both f1 and f2 are

standard Normal distributions. On the other hand, if f1 and f2 are

mutually independent, we have:

Yield = P (f1 ≤ 0) · P (f2 ≤ 0) = 0.25. (3.66)

Comparing (3.65) and (3.66), we notice that different correlation val-

ues result in completely different parametric yield values in this exam-

ple. In practical applications, multiple performance metrics may be

neither fully correlated nor mutually independent, rendering a challeng-

ing parametric yield estimation problem. Next, we review several tech-

niques that address this yield estimation problem. In this sub-section,
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we assume that all performance functions are approximated as linear

response surface models and, therefore, all performance distributions

are Normal. More complicated cases where performance distributions

are non-Normal will be discussed in Section 3.3.4.

Given the linear response surface models for all performances of

interest:

fk(X) = BT
k X + Ck (k = 1,2, . . . ,K), (3.67)

where Bk ∈ RN and Ck ∈ R are the linear model coefficients for

the kth performance function, the parametric yield in (3.63) can be

expressed as:

Yield = P (BT
1 X + C1 ≤ 0 & BT

2 X + C2 ≤ 0

& · · · & BT
KX + CK ≤ 0). (3.68)

Define the feasible space as:

F =
{

X|BT
k X + Ck ≤ 0 (k = 1,2, . . . ,K)

}

. (3.69)

The feasible space in (3.69) is a polytope, since all performance models

are linear. The parametric yield in (3.68) is equal to the integral of the

probability density function pdfX(X) over the feasible space:

Yield =

∫

F

pdfX(X) · dX. (3.70)

The integral in (3.70) is N -dimensional. Accurately calculating it

by numerical integration can be extremely expensive, if N is large.

One practical approach is to compute the parametric yield in (3.70)

by Monte Carlo simulation. Details on Monte Carlo analysis can be

found in Section 3.1. Other than Monte Carlo analysis, an alternative

approach is to approximate the feasible space in (3.69) as an ellip-

soid (either the maximal inscribed ellipsoid shown in Figure 3.17(a)

or the minimal circumscribed ellipsoid shown in Figure 3.17(b)) and

then integrate the multi-dimensional probability density function over

the approximated ellipsoid. Such an ellipsoid approximation has been

widely used in both analog and digital applications [1, 6, 45, 99, 117].

Next, we will discuss the ellipsoid approximation technique in detail.
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x1

x2

x1

x2

(a) (b)

Fig. 3.17 Approximate the feasible space by an ellipsoid for parametric yield estimation.
(a) Maximal inscribed ellipsoid yields the lower bound of parametric yield. (b) Minimal
circumscribed ellipsoid yields the upper bound of parametric yield.

3.3.3.1 Maximal Inscribed Ellipsoid

An ellipsoid in the N -dimensional space can be defined as [13]:

Ω = {X = W · u + d|‖u‖2 ≤ 1} , (3.71)

where u ∈ RN and d ∈ RN are N -dimensional vectors and W ∈ RN×N

is an N -by-N symmetric, positive definite matrix. Substituting (3.71)

into (3.69) yields:

sup
‖u‖2≤1

(BT
k · W · u + BT

k · d + Ck) = ‖W · Bk‖2 + BT
k · d + Ck ≤ 0

(k = 1,2, . . . ,K), (3.72)

where sup(•) denotes the supremum (i.e., the least upper bound) of a

set. In addition, it can be shown that the volume of the ellipsoid in

(3.71) is proportional to det(W ) [13], where det(•) denotes the deter-

minant of a matrix. Therefore, finding the maximal inscribed ellipsoid

can be formulated as the following optimization problem:

maximize log[det(W )]

subject to ‖W · Bk‖2 + BT
k · d + Ck ≤ 0 (k = 1,2, . . . ,K).

(3.73)

The nonlinear optimization in (3.73) attempts to find the optimal

values of W and d such that the ellipsoid in (3.71) has the maximal

volume.
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Each nonlinear constraint in (3.73) consists of two parts: (1) the

matrix norm ||W · Bk||2 and (2) the linear function BT
k · d + Ck. Both

the matrix norm and the linear function are convex [13], and the non-

negative weighted sum of these two convex functions remains convex

[13]. For this reason, each nonlinear constraint in (3.73) is a sub-level

set of a convex function, which is a convex set. The final constraint set is

the intersection of all convex sub-level sets and, therefore, is convex. In

addition, by taking the log transformation of the determinant det(W ),

the cost function in (3.73) is concave [13]. Based on these observations,

the optimization in (3.73) is a convex programming problem, since it

maximizes a concave function over a convex constraint set. Several

robust and efficient algorithms for solving (3.73) can be found in [13].

As shown in Figure 3.17(a), the maximal inscribed ellipsoid does

not cover the entire feasible space. Therefore, the yield value estimated

from the maximal inscribed ellipsoid is a lower bound of the actual

parametric yield.

3.3.3.2 Minimal Circumscribed Ellipsoid

Another way to define an N -dimensional ellipsoid is in the form of [13]:

Ω =
{

X|‖WX + d‖2
2 ≤ 1

}

, (3.74)

where d ∈ RN is an N -dimensional vector and W ∈ RN×N is an

N -by-N symmetric, positive definite matrix. To guarantee that a poly-

tope is located inside an ellipsoid, it is necessary and sufficient to

force all vertexes of the polytope in the ellipsoid. In addition, it can

be shown that the volume of the ellipsoid in (3.74) is proportional to

det(W−1) [13]. Therefore, if the polytope in (3.69) has a set of vertexes

{Xi; i = 1,2, . . . ,S} where S is the total number of vertexes, finding

the minimal circumscribed ellipsoid can be formulated as the following

optimization problem:

minimize log[det(W−1)]

subject to ‖WXi + d‖2
2 ≤ 1 (i = 1,2, . . . ,S).

(3.75)

The nonlinear optimization in (3.75) attempts to find the optimal val-

ues of W and d such that the ellipsoid in (3.74) has the minimal volume.
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Each nonlinear constraint in (3.75) is a positive, semi-definite

quadratic function which is convex. The final constraint set is the inter-

section of all convex sub-level sets and, therefore, is convex. In addition,

by taking the log transformation of the determinant det(W–1), the cost

function in (3.75) is convex [13]. For these reasons, the optimization in

(3.75) is a convex programming problem and it can be solved robustly

and efficiently by various algorithms [13].

As shown in Figure 3.17(b), the feasible space does not cover the

entire minimal circumscribed ellipsoid. Therefore, the yield value esti-

mated from the minimal circumscribed ellipsoid is an upper bound of

the actual parametric yield.

3.3.3.3 Parametric Yield Estimation over Ellipsoid

Once the feasible space is approximated as an ellipsoid (either the max-

imal inscribed ellipsoid in Section 3.3.3.1 or the minimal circumscribed

ellipsoid in Section 3.3.3.2), the next important step is to integrate the

probability density function pdfX(X) over the approximated ellipsoid

for yield estimation:

Yield =

∫

Ω
pdfX(X) · dX. (3.76)

Again, directly computing the multi-dimensional integral in (3.76) is

not trivial. However, the integration problem in (3.76) can be converted

to a probability extraction problem that is easy to solve.

The ellipsoid representations in (3.71) and (3.74) can be, respec-

tively, converted to the form of:
{

X = W · u + d

‖u‖2 ≤ 1
⇒
{

u = W−1 · (X − d)

uT u ≤ 1

⇒ (X − d)T · (W−1)T W−1 · (X − d) ≤ 1

⇒ XT · (W−1)T W−1 · X − 2 · dT · (W−1)T W−1

·X + dT · (W−1)T W−1 · d ≤ 1 (3.77)

‖WX + d‖2
2 ≤ 1 ⇒ (WX + d)T · (WX + d) ≤ 1

⇒ XT · W T W · X + 2dT · W T W

·X + dT · W T W · d ≤ 1. (3.78)
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In other words, both ellipsoids can be represented by the following

standard form:

f(X) = XT AX + BT X + C ≤ 1. (3.79)

The function f(X) in (3.79) is quadratic. The parametric yield in

(3.76) is equal to the probability:

Yield = P (f ≤ 1) = cdff (f = 1). (3.80)

Given the quadratic function f(X) in (3.79), its cumulative distribution

function cdff (f) can be extracted using either APEX (Section 3.3.1) or

the convolution-based technique (Section 3.3.2). After that, the yield

value in (3.80) can be easily calculated.

In summary, given a set of performance constraints that are approx-

imated as linear response surface models, the aforementioned ellipsoid

technique approximates the feasible space (i.e., a polytope) by a max-

imal inscribed ellipsoid or a minimal circumscribe ellipsoid, as shown

in Figure 3.17. As such, the lower bound or the upper bound of the

parametric yield can be easily estimated.

3.3.4 Multiple Performance Constraints with Non-Normal
Distributions

If the performance functions are approximated as quadratic response

surface models, the parametric yield estimation problem becomes much

more difficult. Unlike the linear modeling case where the feasible space

is a convex polytope, the quadratic mapping between the perfor-

mance of interest and the random process parameters makes the feasible

space much more complicated. In general, when quadratic response sur-

face models are applied, the feasible space may be non-convex or even

discontinuous. Therefore, the ellipsoid approximation in Section 3.3.3

is no longer applicable.

In this sub-section, we describe a MAX(•) approximation technique

for efficient parametric yield estimation of multiple correlated non-

Normal performance distributions [55]. The key idea is to conceptually

map multiple performance constraints to a single auxiliary constraint

using MAX(•) operations. Given a number of performance constraints
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in (3.62), we define the additional auxiliary constraint as

faux(X) = MAX[f1(X),f2(X), . . . ,fK(X)]. (3.81)

It is straightforward to verify that the parametric yield in (3.63) can

be uniquely determined by the auxiliary constraint, i.e.,

Yield = P [faux(X) ≤ 0]. (3.82)

Even if all performance functions {fk(X); k = 1,2, . . . ,K} are

approximated as quadratic response surface models, the auxiliary con-

straint in (3.81) is not necessarily quadratic, due to the nonlinearity

of the MAX(•) operator. However, it is possible to approximate the

auxiliary constraint faux as a quadratic function of X. Such a MAX(•)

approximation problem was widely studied for statistical static timing

analysis [18, 19, 23, 113, 115, 124], and it has recently been tuned for

analog/RF applications in [55]. Various algorithms for MAX(•) approx-

imation are available and they will be discussed in detail in Chapter 4.

Once the auxiliary constraint in (3.81) is approximated as a

quadratic function, its cumulative distribution function can be easily

estimated using either APEX (Section 3.3.1) or the convolution-based

technique (Section 3.3.2) to calculate the parametric yield in (3.82).

Next, we will use the low noise amplifier in Figure 3.4 as an exam-

ple to demonstrate the efficacy of the aforementioned parametric yield

estimation algorithm. The performance of the low noise amplifier is

characterized by 8 specifications, as shown in Table 3.1. For testing

and comparison purpose, we randomly select 100 sets of different spec-

ification values and the parametric yield is estimated for each set of

these specifications. Figure 3.18 compares the yield estimation accuracy

for two different approaches: the traditional linear approximation and

the quadratic approximation. The parametric yield values estimated by

both techniques are compared against the Monte Carlo analysis results

with 104 random samples. Their absolute difference is used as a measure

of the estimation error for accuracy comparison.

As shown in Figure 3.18, the traditional linear approximation can-

not accurately capture the parametric yield of the low noise ampli-

fier and the maximal absolute yield estimation error reaches 11%. The

quadratic approximation achieves much better accuracy and it reduces
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Fig. 3.18 Absolute parametric yield estimation error for low noise amplifier.

the maximal error to 5%. On average, the quadratic approximation

is 3× more accurate than the traditional linear approximation in this

example.

3.4 Statistical Transistor-Level Optimization

The analysis techniques described in the previous sub-sections eventu-

ally facilitate statistical transistor-level optimization in the presence of

large-scale process variations. In this sub-section, we focus on the opti-

mization problems for analog, digital and mixed-signal circuits. The

techniques described in this sub-section mainly target for circuit-level

blocks, e.g., operational amplifier (analog), flip–flop (digital), sense

amplifier (memory), etc., although several of these algorithms have

been successfully applied to large-scale integrated systems (e.g., analog-

to-digital converters, phase-locked loop, etc.) that consist of a large

number of transistors.

The purpose of statistical optimization is to improve paramet-

ric yield. It takes a fixed circuit topology as input, statistically pre-

dicts random performance distributions, and optimizes the device sizes

to leave sufficient and necessary performance margins to accommo-

date large-scale process variations. In what follows, we first briefly

review several nominal and corner-based transistor-level optimization
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techniques and explain their limitations in Section 3.4.1. Next, we

extend our discussions to statistical transistor-level optimization in Sec-

tion 3.4.2 and show a two-step statistical transistor-level optimization

flow in Section 3.4.3.

3.4.1 Nominal and Corner-Based Transistor-Level
Optimization

Most algorithms for transistor-level optimization fall into one of

the following two categories: equation-based optimization [21, 31,

37, 41, 43, 44, 47, 62, 96, 114], and simulation-based optimization

[32, 39, 49, 50, 74, 85, 88, 107]. The equation-based approaches

utilize analytic performance models, where each circuit-level perfor-

mance (e.g. gain, bandwidth, etc.) is approximated as an analytical

function of design variables (e.g. transistor sizes, bias current, etc.).

These analytical models can be manually derived by hand analysis

[21, 31, 41, 43, 44, 47, 62, 96, 114], or automatically generated by

symbolic analysis [37]. The equation-based optimization is extremely

fast; however it only offers limited accuracy since generating analytic

equations for complicated performance metrics (e.g., nonlinear distor-

tion) is not trivial and requires various simplifications that ignore

many non-idealities. In contrast, the simulation-based methods run

numerical simulations to measure circuit performance. They are much

more accurate, but also much more expensive, than the equation-based

approaches. Note that achieving high accuracy for performance evalu-

ation is extremely important for statistical optimization. The process

variations in today’s IC technologies typically introduce 20% ∼ 30%

variations on circuit performance. If the performance evaluation error

is not sufficiently smaller than this value, the parametric yield cannot

be accurately predicted and optimized. A detailed review on transistor-

level optimization can be found in [36].

Nominal transistor-level optimization typically minimizes a cost

function (e.g., power) by pushing many other performance constraints

to their boundaries. Therefore, a nominally-optimized design can eas-

ily violate a number of performance specifications, if process variations

are considered, as shown in Figure 3.19. Most importantly, nominal
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Fig. 3.19 Nominal optimization pushes performance to specification boundary, corner-based
optimization often results in significant over-design, and statistical optimization leaves suf-
ficient and necessary performance margin to accommodate process variations.

optimization often results in unstable bias condition for analog circuits

and, therefore, makes the optimized circuits extremely sensitive to pro-

cess variations. This issue can be intuitively explained by the following

simple example.

Figure 3.20 shows the circuit schematic of a simple common-source

amplifier that consists of three devices: the NMOS transistor M , the

resistor R, and the capacitor C. Assume that we are interested in the

following optimization problem for this amplifier circuit:

minimize Power

subject to Gain ≥ 10.
(3.83)

R C

M

Fig. 3.20 Circuit schematic of a common-source amplifier.
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It is easy to verify that the performances Power and Gain can be

approximated by the first-order analytical equations [91]:

Power = VDD · IB

Gain =
2 · IB · R

VGS − VTH

(3.84)

where VDD denotes the power supply voltage, IB represents the bias

current, and VGS is the gate-to-source voltage of the NMOS transistor.

Substituting (3.84) into (3.83) yields:

minimize VDD · IB

subject to
2 · IB · R

VGS − VTH
≥ 10.

(3.85)

Studying (3.85), one would notice that the bias current IB must be

minimized to reduce power. Meanwhile, as IB is decreased, VGS − VTH

must be minimized to satisfy the gain requirement. The nominal opti-

mization, therefore, results in the bias condition:

VGS ≈ VTH. (3.86)

In other words, the NMOS transistor sits on the boundary between

“on” and “off.” In this case, a small increase in VTH due to process

variations can turn the transistor off and make the amplifier fail to

operate.

Based on these observations, nominal circuit optimization may fail

to set up a robust bias condition for analog circuits. Although the

bias condition is not explicitly defined as a performance specification,

it is extremely important to maintain the correct functionality of a

analog circuit and, therefore, is referred to as the implicit, topology-

given constraints in [32, 107]. The design space where all topology-

given constraints are satisfied is called the feasible region. It is a small

subset of the global analog design space, as shown in Figure 3.21. It

is observed that, in many practical applications, analog design space

is weakly nonlinear in feasible region [39, 107], while the global analog

design space is strongly nonlinear and contains many local minima.

To overcome the aforementioned limitation of nominal optimiza-

tion, corner-based optimization has often been utilized [21, 31, 32,

39, 41, 43, 44, 47, 49, 50, 62, 74, 85, 88, 96, 107, 114]. It optimizes
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Global Analog Design Space (Strongly Nonlinear)

Feasible Region

(Weakly Nonlinear)

Design Space 

Satisfying Spec

Fig. 3.21 Feasible region in analog design space.

the circuit at all process corners by combining the extreme values

of all process parameters. However, the corner-based approach suf-

fers from the problem that the total number of corners increases

exponentially with the number of independent process parameters.

For this reason, device mismatches cannot be efficiently handled by

the corner-based methodology. Furthermore, it is not guaranteed that

the worst-case performance will occur at one of these corners. As

discussed in Chapter 2, the realistic worst-case performance corner

is topology-dependent and performance-dependent. Simply combining

the extreme values of independent process parameters is pessimistic,

because it is unlikely for all process parameters to reach their worst-

case values simultaneously. Therefore, corner-based optimization often

results in significant over-design in practical applications, as shown in

Figure 3.19.

3.4.2 Statistical Transistor-Level Optimization

During the past two decades, many statistical techniques have been

proposed to address the large-scale process variation problem for inte-

grated circuit design. The objective of these statistical methodologies

is to accurately predict random performance distributions and then

optimize the device sizes to leave sufficient and necessary performance

margins to accommodate process variations. In other words, these sta-

tistical optimization methods attempt to improve parametric yield

while simultaneously reducing design pessimism (i.e., over-design), as

shown in Figure 3.19.
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Most statistical transistor-level optimization techniques can be

classified into four broad categories: (1) direct yield optimization

[29, 30, 97, 116], (2) worst-case optimization [24, 28, 51, 58], (3) design

centering [1, 6, 99, 117], and (4) infinite programming [67, 122].

The direct yield optimization methods [29, 30, 97, 116] search the

design space and estimate the parametric yield for each design point by

either numerical integration or Monte Carlo analysis. The design point

with maximal parametric yield is then selected as the final optimal

result. In many practical applications, estimating the exact parametric

yield is often expensive. It, in turn, motivates the development of many

other statistical optimization techniques that attempt to approximate

the actual parametric yield by various simplifications.

The worst-case optimization approaches [28, 24, 51, 58] optimize

the worst-case circuit performances, instead of nominal performances,

over all process variations. For example, the worst-case optimization

for a digital circuit block may have the form of:

minimize PowerWC

subject to DelayWC ≤ 100ps,
(3.87)

where PowerWC and DelayWC denote the worst-case power and delay,

respectively. These worst-case performance values are defined as the

tails of the corresponding probability density functions (PDF), e.g.,

the 99% point of the cumulative distribution function (CDF) for the

performance Delay in (3.87), as shown in Figure 3.22.

It should be noted that parametric yield cannot be uniquely deter-

mined by worst-case performance values. As shown in (3.63) and dis-

cussed in Section 3.3.3, parametric yield must be determined by all

performance distributions as well as their correlations. While the worst-

case optimization fully considers the random performance distributions,

it completely ignores the correlations between different performance

metrics. In general, given the performance constraints in (3.62) and

the parametric yield definition in (3.63), we have:

Yield = P (f1 ≤ 0 & f2 ≤ 0 · · · fK ≤ 0) ≤ P (fk ≤ 0)

(k = 1,2, . . . ,K). (3.88)
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Fig. 3.22 Definition of the worst-case delay.

Namely, the worst-case optimization can only guarantee a yield upper

bound and the actual parametric yield may be smaller.

The design centering approaches [1, 6, 99, 117] attempt to find

the optimal design that is furthest away from all constraint bound-

aries and is therefore least sensitive to process variations. In design

centering, the robustness of a design is assessed by the volume of

the approximated ellipsoid shown in Figure 3.17. The design yield-

ing maximal ellipsoid volume is selected as the final optimal result.

As discussed in Section 3.3.3, the approximated ellipsoid estimates

either the lower bound (for maximal inscribed ellipsoid) or the upper

bound (for minimal circumscribed ellipsoid) of the actual parameter

yield.

The infinite programming methods [67, 122] formulate the circuit

optimization problem as a nonlinear infinite programming where the

cost function and/or the constraints are defined over an infinite set

covering process variations. The first step for such an infinite program-

ming is to define an infinite set Ω to cover the random variation space

with a given confidence level ξ, i.e.,

P (X ∈ Ω) = ζ, (3.89)
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x1

x2

Fig. 3.23 x1 and x2 are independent and satisfy the standard Normal distribution N(0,1).
The values of x1 and x2 are most likely to fall in the two-dimensional ball.

where P (•) denotes the probability and X = [x1,x2, . . . ,xN ]T are the

random variables to model process variations. For the special case

where all random variables in X are mutually independent and sat-

isfy the standard Normal distribution N(0,1), the set Ω in (3.89) is an

N -dimensional ball and its radius is determined by the confidence level

ξ, as shown in Figure 3.23.

The infinite programming techniques attempt to minimize one cost

function while simultaneously satisfying all performance constraints

over the infinite set Ω. Taking the simple digital circuit application

in (3.87) as an example, the infinite programming can be formulated as

minimize Power

subject to sup
X∈Ω

(Delay) ≤ 100ps, (3.90)

where sup(•) denotes the supremum (i.e., the least upper bound) of

a set. Since the constraints of (3.90) are defined over an infinite set,

implying that the number of constraints is infinite, the optimization

in (3.90) is referred to as the infinite programming in mathematics.

Given the confidence level in (3.89) and the optimization formulation

in (3.90), it is easy to verify that ξ is the lower bound of the parametric

yield, if a feasible solution can be found for (3.90).
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3.4.3 A Two-Step Robust Design Flow

It is important to note that statistical transistor-level optimization for

analog circuits should not take a nominally-optimized design as the ini-

tial starting point. As discussed in Section 3.4.1, a nominally optimized

analog circuit does not have a stable bias condition and, therefore, the

design space is strongly nonlinear and contains many local minima

in the neighborhood. For this reason, starting from a nominally opti-

mized analog circuit, the statistical optimization may easily get stuck

at one of the local minima. In this sub-section, we will show a two-step

optimization flow to achieve robust transistor-level design for practical

applications.

The robust design flow described in this sub-section is facilitated

by a combination of equation-based optimization and simulation-based

optimization. The entire design flow consists of two steps. First, an ini-

tial design is created by the performance centering algorithm [59] based

on analytical design equations. The performance centering method is

a special design centering technique that can be applied to topology

selection at the earlier design stages. Simplified device and parasitic

models are utilized in this step to simplify design equations and speed

up nonlinear optimization. This first-step optimization provides a rapid

but coarse search over the global design space and finds a robust initial

design sitting in the feasible region.

Next, in the second step, taking the robust initial design as the

starting point, a robust analog/digital optimization algorithm (ROAD

[51, 58]) is applied with detailed device/parasitic/variation models to

perform a more fine-grained search and to optimize the worst-case cir-

cuit performance considering large-scale process variations. ROAD is a

special worst-case optimization tool that falls in the same category as

[24, 28].

3.4.3.1 Performance Centering

The objective of performance centering is to accomplish two important

tasks: (1) optimally compare and select circuit topologies for a given set

of design specifications; (2) quickly search the global design space and

create a robust initial design for further post-tuning. In other words,
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performance centering attempts to quickly search the global design

space and then create an initial design that can be used for detailed

implementation in the later design stages. For this purpose, equation-

based performance models are utilized in order to make the global

search problem tractable.

Many research works [21, 31, 41, 43, 44, 47, 62, 96], have demon-

strated that most circuit-level performance specifications can be cast

as posynomial functions. The performances of interest include both

explicit constraints (e.g., gain, delay, etc.) and implicit constraints

(related to bias conditions [39, 107]). Let Z = [z1,z2, . . . ,zM ]T be M

real and positive design variables (e.g., bias current, transistor sizes,

etc.). A function f is called posynomial if it has the form of

f(Z) =
∑

i

ciz
α1i
1 zα2i

2 · · ·zαNi
M , (3.91)

where ci ∈ R+ and αij ∈ R. Note that the coefficients ci must be non-

negative, but the exponents αij ’s can be real values. If all performance

metrics are approximated as posynomial functions, circuit sizing can

be formulated as a geometric programming problem:

minimize f0(Z)

subject to fk(Z) ≤ 1 (k = 1, . . . ,K)

zm > 0 (m = 1, . . . ,M),

(3.92)

where f0,f1, . . . ,fK are normalized circuit performance metrics and

they are approximated as posynomial functions. The standard formu-

lation in (3.92) is ready to handle several extensions. For example,

a performance specification f(Z) ≥ 1 can be written as 1/f(Z) ≤ 1,

if 1/f(Z) can be approximated as a posynomial function [42]. The

geometric programming problem in (3.92) attempts to find the opti-

mal value of Z that minimizes f0 while satisfying all other constraints

{fk(Z) ≤ 1; k = 1,2, . . . ,K} and {zm > 0; m = 1,2, . . . ,M}. The opti-

mization in (3.92) can be converted to a convex programming problem

and solved in an extremely efficient way [13].

It should be noted, however, the posynomial models in (3.91) and

(3.92) may be inaccurate since they are derived from simplified device

models and circuit equations. The modeling error must be properly
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Fig. 3.24 Illustration of performance centering with two performance specifications q1

and q2.

considered within the optimization flow. For this purpose, a perfor-

mance centering approach is developed in [59] for initial global sizing.

The performance centering approach is derived from the traditional

design centering methods [1, 6, 99, 117]. It attempts to center the design

within the performance space and maximize the inscribed ellipsoid con-

strained by all performance boundaries, as shown in Figure 3.24. Impor-

tantly, the performance centering approach simultaneously maximizes

the design margin for all performance constraints such that the result-

ing ellipsoid volume represents a quality measure for a given circuit

topology. For example, since the models are known to be imprecise, a

small ellipsoid volume indicates that the performance specifications will

probably not be achievable in silicon. This ellipsoid volume, therefore,

can be used as a criterion for topology selection at the earlier design

stages.

Without loss of generality, we normalize all posynomial performance

constraints:

fk(Z) ≤ 1 (k = 1, . . . ,K), (3.93)

where {fk(Z); k = 1,2, . . . ,K} are posynomials and K is the total num-

ber of performance constraints. It should be noted that the formulation

in (3.93) is substantially different from the form in (3.62). First, the

performance constraints in (3.93) are represented as functions of the

design variables Z (for circuit optimization), while those in (3.62) are
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functions of the random process variations X (for parametric yield

estimation). Second, Equation (3.93) contains both explicit constraints

(e.g., gain, delay, etc.) and implicit constraints (related to bias condi-

tions [39], [107]), in order to prevent the optimization from converging

to an unstable bias condition. In (3.62), however, the parametric yield

is determined by explicit constraints only.

Given (3.93), the performance centering problem can be formu-

lated as

maximize ε1 · ε2 · · ·εK

subject to εk = 1 − fk(Z) (k = 1,2, . . . ,K)

εk > 0 (k = 1,2, . . . ,K)

zm > 0 (m = 1,2, . . . ,M).

(3.94)

where {εk; k = 1,2, . . . ,K} are a set of variables that represent the

lengths of the ellipsoid axes (see Figure 3.24). The optimization in

(3.94) solves the optimal values of {εk; k = 1,2, . . . ,K} and {zm; m =

1,2, . . . ,M} by maximizing the ellipsoid volume ε1 · ε2 · · ·εK . Such an

optimization can also be generalized to use other cost functions to

measure the ellipsoid size, e.g. ε2
1 + ε2

2 + · · · + ε2
K .

The optimization problem in (3.94) does not match the standard

geometric programming form in (3.92), since it maximizes a posynomial

cost function with multiple posynomial equality constraints. However,

Equation (3.94) can be equivalently converted to:

minimize ε−1
1 · ε−1

2 · · ·ε−1
K

subject to fk(Z) + εk ≤ 1 (k = 1,2, . . . ,K)

εk > 0 (k = 1,2, . . . ,K)

zm > 0 (m = 1,2, . . . ,M).

(3.95)

Comparing (3.94) and (3.95), we note that maximizing the cost function

ε1 · ε2 · · ·εK in (3.94) is equivalent to minimizing the cost function ε−1
1 ·

ε−1
2 · · ·ε−1

K in (3.95). In addition, since maximizing ε1 · ε2 · · ·εK always

pushes all {εk; k = 1,2, . . . ,K} to their maximal values, the inequal-

ity constraints {fk(Z) + εk ≤ 1; k = 1,2, . . . ,K} in (3.95) will become

active, i.e. reach {qk(X) + εk = 1; k = 1,2, . . . ,K}, after the optimiza-

tion. According to these observations, we conclude that the optimiza-
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tion problems in (3.94) and (3.95) are equivalent. This conclusion can

be formally proven by using the Karush–Kuhn–Tucker optimality con-

dition in optimization theory [9].

Equation (3.95) is a geometric programming problem and, there-

fore, can be solved efficiently. Solving the optimization in (3.95) yields:

(1) the maximal ellipsoid volume in the performance space that can be

used as a criterion to compare different circuit topologies and (2) the

initial values for all design variables that can be used as the starting

point for further detailed sizing.

Shown in Figure 3.25 are the circuit schematics of two operational

amplifiers (Op Amp). As an example, our design objective is to select

the optimal circuit topology from Figure 3.25(a) and Figure 3.25(b) for

the performance specifications in Table 3.4. Both operational amplifiers

are implemented with a commercial BiCMOS 0.25µm process in this

example.

We construct the posynomial performance models for both oper-

ational amplifiers, and formulate the performance centering problem

as (3.95). The details of the design equations can be found in [42].

Given these posynomial equations, the performance centering problem

in (3.95) can be efficiently solved using geometric programming, tak-

ing 1 ∼ 2 seconds for this amplifier design example on a SUN – 1 GHz

server.

(a) (b)

Fig. 3.25 Circuit schematics of two operational amplifiers. (a) A simple two-stage opera-
tional amplifier. (b) A folded-cascode two-stage operational amplifier.
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Table 3.4 Design specifications for operational amplifier.

Performance Specification

VDD (V) = 2.5
Gain (dB) ≥ 100
UGF (MHz) ≥ 10
Phase Margin (degree) ≥ 60
Slew Rate (V/µs) ≥ 20
Swing (V) ≥ 0.5
Power (mW) ≤ 20

Figure 3.26 compares the operational amplifier topologies in terms

of the maximized ellipsoid volume in the performance space. As we

would expect, the two-stage folded-cascode topology is better than the

simple two-stage topology when the power supply voltage is sufficiently

high to provide the necessary voltage headroom. In this example, we

find that a sufficient voltage is 2.5 V, whereas, the folded-cascode topol-

ogy appears to be inferior to the simple two-stage topology once the

supply voltage is dropped to 2.0 V. Perhaps less obvious, however, we

find that for extremely high gain specification, the quality measure (i.e.

the ellipsoid volume) for the simple Op Amp once again falls below that

for the folded-cascode Op Amp, even at a 2.0 V supply. This indicates

that the folded-cascode configuration would provide a better topology

for detailed implementation even at VDD = 2.0 V if the gain requirement
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Fig. 3.26 Maximized ellipsoid volume in performance space when applying different gain
and VDD specifications for operational amplifier.
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is high enough. Given the performance specifications in Table 3.4, the

folded-cascode Op Amp topology in Figure 3.25(b) provides larger per-

formance margin (i.e., larger ellipsoid volume) and, therefore, repre-

sents our preferred topology for these performance specifications.

It is important to note that as IC technologies continue to scale,

many traditional analog circuit topologies will begin to break down

owing to reduced power supply voltages and/or device non-idealities

such as excessive leakage current. It is essential to understand the lim-

itation of each topology at the earlier design stages and select the best

topology for detailed circuit implementation in the later design stages.

3.4.3.2 Robust Analog/Digital Optimization (ROAD)

Once the circuit topology and the initial device sizing are determined,

detailed circuit optimization based on accurate transistor-level simu-

lation should be further applied to improve parametric yield and/or

circuit performance. The robust analog/digital design tool (ROAD

[51, 58]) uses a combination of response surface modeling, statistical

analysis, and nonlinear programming. Figure 3.27 outlines the ROAD

optimization flow which consists of three major steps.

• Run transistor-level simulation and fit the quadratic response

surface models {fk(Z,X); k = 1,2, . . . ,K} for all circuit per-

formances in the local design space, where fi stands for

Response Surface Modeling

fi (Z, X)

Worst-Case Analysis & Modeling

gi (Z)

Nonlinear Programming

ROAD

Optimization

Fig. 3.27 ROAD optimization flow.
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the ith circuit performance, Z = [z1,z2, . . . ,zM ]T contains the

design variables and X = [x1,x2, . . . ,xN ]T contains the ran-

dom process parameters.
• Based on the response surface models {fk(Z,X); k =

1,2, . . . ,K}, apply statistical analysis to extract the

probability distributions of all performance metrics. Fit the

worst-case performance models {gk(Z); k = 1,2, . . . ,K} as

functions of the design variables {zm; m = 1,2, . . . ,M}. The

worst-case performance gk can be defined as the 1% or 99%

point of the cumulative distribution function, for example.
• Using these pre-extracted worst-case performance models,

optimize the circuit by nonlinear programming.

The fitting and optimization procedure in Figure 3.27 is repeatedly

applied to successively narrowed local design spaces during ROAD iter-

ations, as shown in Figure 3.28. Since ROAD sets up all performance

constraints with process variations and the performance models become

increasingly accurate in the successively narrowed local design space, it

can converge to an accurate design with high parametric yield. It should

be noted, however, that since ROAD is a local optimization tool, the

initial starting point can have a significant impact on the quality of

the final optimized design. For example, if a bad initial design is used,

ROAD can even fail to converge.

Feasible Region

Optimal

Design

Local Design Space Narrowed Local Design Space 

Initial 

Point

Fig. 3.28 Successive ROAD iterations.
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Table 3.5 ROAD optimization result for operational amplifier.

Performance Specification Nominal Worst-case

Gain (dB) ≥ 100 102.7 100.0
UGF (MHz) ≥ 10 10.9 10.0
Phase margin (degree) ≥ 60 63.5 60.0
Slew rate (V/µs) ≥ 20 20.5 19.9
Swing (V) ≥ 0.5 1.00 1.00
Power (mW) ≤ 20 0.79 0.86

We apply ROAD to the operational amplifier example in

Figure 3.25(b), using the performance centering result in Section 3.4.3.1

as the initial starting point. Table 3.5 shows the nominal and worst-case

performance values after ROAD optimization. The worst-case perfor-

mance values are measured at the 1% or 99% points of the cumulative

distribution functions that are extracted from 1000 transistor-level

Monte Carlo simulations in Cadence SPECTRE. It is shown in

Table 3.5 that ROAD leaves sufficient margin for each performance

metric. These additional performance margins help the operational

amplifier to meet performance specifications under process variations.
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System-Level Statistical Methodologies

As we move from transistor level toward system level, one major

challenge for statistical analysis and optimization stems from the

underlying large problem size that has a twofold meaning. First, a full

integrated system typically contains millions of transistors and, hence,

the circuit size is huge. Second, to capture the intra-die variations of

the entire system, a large number of random variables must be uti-

lized. For example, if we attempt to model the per-transistor random

doping variation that is expected to be the dominant variation compo-

nent at 45 nm technologies and beyond [4], the total number of random

variables may reach 103 ∼ 106 for large-scale integrated systems. These

two issues make system-level analysis and optimization extremely dif-

ficult, especially if quadratic response surface models must be utilized

to capture non-Normal performance distributions. In such cases, if the

total number of random variables reaches 106, a quadratic approxima-

tion will result in a 106 × 106 quadratic coefficient matrix containing

1012 coefficients! The challenging problem is how to facilitate accurate

and affordable statistical analysis and optimization for such a large

problem size.

426
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Recently, a number of special techniques have been proposed to

address the system-level statistical analysis problem. These techniques

typically utilize a hierarchical flow to partition a large-size system into

multiple small pieces such that the statistical analysis and optimization

problem becomes tractable. In addition, advanced numerical algorithms

are proposed to efficiently manipulate the large number of random

variables that model both inter-die and intra-die variations. Depend-

ing on the application of interest, various algorithms are developed

to explore the trade-offs between analysis accuracy and computational

complexity.

In this chapter, we focus on the statistical methodologies for full-

chip digital integrated circuits. In particular, full-chip statistical timing

analysis and leakage analysis will be discussed in detail.

4.1 Statistical Timing Analysis

The purpose of timing analysis is to verify the timing constraints

(including both setup constraints and hold constraints) for a full-

chip digital circuit. Timing analysis can be either dynamic or static.

Dynamic timing analysis implies the simulation of a circuit from a

given start time to a given end time. The inputs to the circuit dur-

ing this period are fully specified. These input signals are called input

patterns or input vectors. The circuit response is then solved by either

SPICE or other fast simulators [25, 27]. Static timing analysis, on the

other hand, attempts to characterize a circuit for all time, independent

of its input signals [95]. It is often used to estimate the delay of an

interconnected set of combinational logic blocks between the flip–flops

of a digital circuit.

Timing analysis can also be classified into two broad categories:

path-based and block-based. Path-based timing analysis predicts the

maximal delay for a number of pre-selected logic paths. It can

be conducted with the consideration of random process variations

[5, 40, 45, 70, 78, 76]. The path-based technique is efficient and accurate

if a few critical paths can be easily identified. For example, it has been

widely used for the timing analysis of micro-processor circuits [5]. On

the other hand, block-based timing analysis propagates arrival times
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on a timing graph in a breadth-first order. It does not require pre-

selecting any critical paths and its computational complexity linearly

scales with circuit size. The block-based technique has been widely used

for the full-chip timing analysis of digital circuits where many equally

critical paths may exist after timing optimization.

In this chapter, we mainly focus on block-based static timing

analysis. We first introduce several important concepts for nominal

block-based static timing analysis in Section 4.1.1. Next, statisti-

cal block-based static timing analysis will be discussed in detail in

Section 4.1.2.

4.1.1 Nominal Block-Based Static Timing Analysis

Given a circuit netlist, block-based timing analysis translates the netlist

into a timing graph, i.e., a weighted directed graph G = (V,E) where

each node Vi ∈ V denotes a primary input, output or internal net, each

edge Ei = 〈Vm,Vn〉 ∈ E denotes a timing arc, and the weight D(Vm,Vn)

of Ei stands for the delay value from the node Vm to the node Vn. In

addition, a source/sink node is conceptually added before/after the

primary inputs/outputs so that the timing graph can be analyzed as

a single-input single-output network. Figure 4.1 shows a simple timing

graph example.

There are several key concepts in nominal block-based timing anal-

ysis. They are briefly summarized as follows. It is important to note

that the following terminologies are only defined for latest arrival time

and required time. However, our discussions can be extended to earliest

arrival time and required time easily.

• The arrival time (AT) at a node Vi is the latest time that the

signal becomes stable at Vi. It is determined by the longest

path from the source node to Vi.
• The required time (RT) at a node Vi is the latest time that

the signal is allowed to become stable at Vi. It is determined

by the longest path from Vi to the sink node.
• Slack is the difference between the required time and the

arrival time, i.e., RT − AT. Therefore, positive slack means

that the timing constraint is satisfied, while negative slack

means that the timing constraint is failed.
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Fig. 4.1 A simple timing graph example.

• Critical path is the longest path between the source node and

the sink node. In nominal timing analysis, all nodes along the

critical path have the same (smallest) slack.

The purpose of nominal static timing analysis is to compute the

arrival time, required time and slack at each node and then iden-

tify the critical path. Taking the arrival time as an example, static

timing analysis starts from the source node, propagates the arrival

times through each timing arc by a breadth-first traversal, and even-

tually reaches the sink node. Two atomic operations, i.e., SUM(•) and

MAX(•) as shown in Figure 4.2, are repeatedly applied during such a

traversal.

i ji j
D(i, j)

i

AT1

AT2

i

AT1

AT2

SUM(•) MAX(•)

AT(j) = AT(i) + D(i, j) AT(i) = MAX(AT1, AT2)

Fig. 4.2 Atomic operations for static timing analysis.
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After the nominal static timing analysis is complete, the resulting

critical path and slack values provide the information that is required

for timing optimization. Roughly speaking, the gates and intercon-

nects along the critical path (where the slacks are small) can be up-

sized to improve circuit speed, while those along the non-critical paths

(where the slacks are large) can be down-sized to save chip area or

power consumption. Of course, there are more subtle implications with

up/down-sizing gates that can be shown as counter-examples to this

over-simplification of the problem. For example, the increase in gate

capacitance with upsizing may create a larger delay increase on the

upstream logic stage, than the improvement in delay due to increas-

ing the drive strength of the logic stage that is resized. Such cases

are readily handled with accurate delay models and proper sensitivity

information.

4.1.2 Statistical Block-Based Timing Analysis

Unlike nominal timing analysis, the gate/interconnect delays in statis-

tical timing analysis are all modeled as random variables to account for

large-scale process variations. That means, the weight D(Vm,Vn) asso-

ciated with a timing arc is a random variable, instead of a determinis-

tic value. Therefore, the two atomic operations, SUM(•) and MAX(•),

must handle statistical distributions. Many numerical algorithms have

been proposed to perform statistical SUM(•) and MAX(•) operations.

Next, we briefly review these algorithms and highlight their advantages

and limitations. We will focus on the SUM(•) and MAX(•) of two ran-

dom variables, since multi-variable operations can be broken down into

multiple two-variable cases.

4.1.2.1 PDF/CDF Propagation

A random variable can be described by its probability density function

(PDF) and cumulative distribution function (CDF). The timing analy-

sis algorithms proposed in [3, 26] estimate the PDF’s and the CDF’s of

arrival times and directly propagate the random distributions through

SUM(•) and MAX(•). These algorithms can handle random variations

with arbitrary distributions (e.g., not limited to Normal distributions);
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however, all random distributions must be mutually independent such

that the SUM(•) and MAX(•) operations are easy to evaluate.

Given two independent random variables x and y, the corresponding

statistical SUM(•) and MAX(•) can be implemented using the follow-

ing equations [3, 26]:

pdfx+y(t) =

∫

pdfx(t − τ) · pdfy(τ) · dτ (4.1)

cdfMAX(x,y)(t) = cdfx(t) · cdfy(t), (4.2)

where pdf(•) and cdf(•) denote the probability density function and

the cumulative distribution function, respectively. If the random vari-

ables are correlated, however, their joint probability density function

cannot be simply represented as the product of all marginal probabil-

ity density functions. In this case, calculating the probability distri-

bution for SUM(•) and MAX(•) involves the numerical integration of

a multi-dimensional PDF/CDF for which the computational complex-

ity increases exponentially with the total number of random variables,

thereby quickly making the computation task infeasible.

In practice, arrival times become correlated because of path-sharing

(i.e., re-convergent fan-out) and/or process-sharing (i.e., correlated pro-

cess variations). Figure 4.3 illustrates two simple examples for cor-

related arrival times. In Figure 4.3(a), the total delay is equal to

D1

D2

D3

D1

D2

D3

(a)

A

B

C

A

B

C

(b)

Fig. 4.3 Arrival times become correlated due to two reasons. (a) Path-sharing makes arrival
time correlated. (b) Process sharing makes arrival time correlated.
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MAX(D1 + D2,D1 + D3), where D1 + D2 and D1 + D3 share the

same component D1 and, therefore, are correlated. On the other hand,

process-sharing can occur for both inter-die and intra-die variations.

Inter-die variations are shared by all logic gates on the same die, thereby

making gate delays correlated. Intra-die variations contain long-range

correlated components and their correlation typically decays over dis-

tance. Taking Figure 4.3(b) as an example, the delays of A and B have

a higher correlation than the delays of A and C.

4.1.2.2 Delay Model Propagation

To address the aforementioned correlation problem, several statistical

timing analysis techniques [18, 19, 113, 115, 124, 125] are recently devel-

oped where delay variations are approximated as the linear models:

x = BT
x · ε + Cx =

N
∑

i=1

Bxi · εi + Cx (4.3)

y = BT
y · ε + Cy =

N
∑

i=1

Byi · εi + Cy (4.4)

or the quadratic models:

x = εT · Ax · ε + BT
x · ε + Cx

=

N
∑

i=1

i
∑

j=1

Axij · εi · εj +

N
∑

i=1

Bxi · εi + Cx (4.5)

y = εT · Ay · ε + BT
y · ε + Cy

=

N
∑

i=1

i
∑

j=1

Ayij · εi · εj +

N
∑

i=1

Byi · εi + Cy, (4.6)

where Cx,Cy ∈ R are the constant terms, Bx,By ∈ RN contain the

linear coefficients, Ax,Ay ∈ RN×N contain the quadratic coefficients,

ε = [ε1,ε2, . . . ,εN ]T contains a set of random variables to model pro-

cess variations and N is the total number of these random variables.

For most practical applications, {εi; i = 1,2, . . . ,N} can be modeled

as independent standard Normal distributions. Note that correlated
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Normal random variables can be decomposed to uncorrelated random

variables by principal component analysis.

Given the delay models in (4.3)–(4.6), the basic operation in statis-

tical timing analysis is to evaluate SUM(x,y) or MAX(x,y) and approx-

imate the result as a new delay model of {εi; i = 1,2, . . . ,N}. In other

words, unlike the PDF/CDF propagation discussed in Section 4.1.2.1

where only independent probability distributions are considered, the

delay model propagation approximates all arrival times as functions

of {εi; i = 1,2, . . . ,N} such that the correlation information can be

preserved.

For the linear delay models in (4.3) and (4.4), the SUM(•) operation

can be easily handled by

x + y = (Bx + By)
T · ε + (Cx + Cy). (4.7)

A similar formulation can be derived for the quadratic delay models in

(4.5) and (4.6):

x + y = εT · (Ax + Ay) · ε + (Bx + By)
T · ε + (Cx + Cy). (4.8)

In (4.7) and (4.8), since the SUM(•) operator is linear, adding two linear

(or quadratic) models results in a new linear (or quadratic) model. The

MAX(•) operator, however, is nonlinear and is much more difficult

to approximate. In Sections 4.1.2.3 and 4.1.2.4, we will show various

algorithms to efficiently perform statistical MAX(•) operation.

4.1.2.3 First-Order (Linear) MAX(•) Approximation

To perform the statistical operation MAX(x,y), the authors of [18, 113]

propose to find an approximated linear model for z ≈ MAX(x,y) by

matching the first and second order moments. Assume that x and y are

approximated as the linear delay models (4.3) and (4.4), respectively.

If MAX(x,y) is approximated as a linear combination of x and y, z ≈
MAX(x,y) can be expressed as the following linear function:

z = BT
z · ε + Cz =

N
∑

i=1

Bzi · εi + Cz, (4.9)
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where Cz ∈ R is the constant term and Bz ∈ RN contains the linear

coefficients. It is easy to verify the following relations:

E(z) = Cz +

N
∑

i=1

Bzi · E(εi) = Cz (4.10)

E(z · εi) = E(Cz · εi) +

N
∑

j=1

Bzi · E(εi · εj) = Bzi , (4.11)

where E(•) denotes the expected value. The mean and covariance val-

ues in (4.10) and (4.11) can be calculated by using the formula derived

in [23]. Algorithm 4.1 summarizes the major steps for the aforemen-

tioned linear MAX(•) approximation.

Algorithm 4.1 linear MAX(•) approximation for two corre-

lated Normal random variables.

(1) Start from the linear delay models for x and y in (4.3) and

(4.4).

(2) Calculate the first and second order moments for x and y:

µx = Cx (4.12)

µy = Cy (4.13)

σx =

√

√

√

√

N
∑

i=1

B2
xi

(4.14)

σy =

√

√

√

√

N
∑

i=1

B2
yi

(4.15)

ρxy =
1

σx · σx
·

N
∑

i=1

Bxi · Byi . (4.16)

(3) Calculate the coefficients:

α =
√

σ2
x + σ2

y − 2 · ρxy · σx · σy (4.17)

β =
µx − µy

α
. (4.18)
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(4) Calculate the constant term Cz:

Cz = E(z) = µx · Φ(β) + µy · Φ(−β) + α · ϕ(β), (4.19)

where φ(•) and Φ(•) are the probability density function and

the cumulative distribution function of standard Normal dis-

tribution, respectively:

ϕ(x) =
1√
2π

· e
−x2

2 (4.20)

Φ(x) =

∫ x

−∞
ϕ(x) · dx. (4.21)

(5) For each i = {1,2, . . . ,N}
(6) Calculate the linear coefficient Bzi :

Bzi = E(z · εi) = Bxi · Φ(β) + Byi · Φ(−β). (4.22)

(7) End For.

(8) Substituting (4.19) and (4.22) into (4.9) yields the approxi-

mated linear model for z ≈ MAX(x,y).

In addition to the aforementioned technique based on moment

matching, another approach for MAX(•) approximation is based on

the tightness probability proposed in [115]:

MAX(x,y) ≈ z = P (x ≥ y) · x + P (y ≥ x) · y + Cz, (4.23)

where P (•) denotes the probability and the constant term Cz is deter-

mined by matching the mean value between MAX(x,y) and z. In (4.23),

P (x ≥ y) and P (y ≥ x) are referred to as the tightness probabilities

of x and y, respectively. Intuitively, the linear model in (4.23) is the

weighted sum of x and y. The weight for x (or y) is large if x (or y) is

likely to be greater than y (or x).

If the random variables x and y in (4.23) are Normal, it can be

proven that the tightness probability formulation in (4.23) and the

moment-matching formulation in (4.10), (4.11) are exactly equivalent.

The concept of tightness probability is related to the first-order Taylor

expansion [53]. To show this relation, the authors of [53] prove that the
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tightness probability is equal to the first-order statistical sensitivity:

P (x ≥ y) =
∂{E[MAX(x,y)]}

∂{E[x]} (4.24)

P (y ≥ x) =
∂{E[MAX(x,y)]}

∂{E[y]} . (4.25)

In other words, although the MAX(•) operator is not analytical (i.e.,

does not have continuous derivatives), it can be statistically approxi-

mated as the form of (4.23)–(4.25) that is similar to the traditional Tay-

lor expansion. Therefore, the linear approximation in (4.23) is referred

to as the first-order statistical Taylor expansion. In Section 4.1.2.4,

we will further show that the aforementioned statistical Taylor expan-

sion can be extended to second order to achieve better approximation

accuracy.

4.1.2.4 Second-Order (Quadratic) MAX(•) Approximation

Recently, various quadratic approximations have been proposed to han-

dle the MAX(•) operator [55, 124]. These techniques are more accurate,

but also more expensive, than a simple linear approximation. In prac-

tice, quadratic MAX(•) approximations should be selectively applied,

depending on the accuracy and complexity requirements of a specific

application.

Assume that MAX(x,y) is approximated as a quadratic model:

MAX(x,y) ≈ z = εT · Az · ε + BT
z · ε + Cz

=

N
∑

i=1

i
∑

j=1

Azij · εi · εj +

N
∑

i=1

Bzi · εi + Cz, (4.26)

where Cz ∈ R is the constant term, Bz ∈ RN contains the linear co-

efficients, and Az ∈ RN×N contains the quadratic coefficients. The

random variables {εi; i = 1,2, . . . ,N} are used to model process varia-

tions and they are independent standard Normal distributions. Given

the quadratic model in (4.26), it is easy to verify the following
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equations [124]:

E(z) =

N
∑

i=1

Azii + Cz (4.27)

E(z · εi) = Bzi (4.28)

E(z · εi · εj) = Azij (i �= j) (4.29)

E(z · ε2
i ) = 3 · Azii +

N
∑

j=1,j �=i

Azjj + Cz. (4.30)

If the moment values in (4.27)–(4.30) are available, the model coef-

ficients in (4.26) can be solved via a set of linear equations [124].

Such a quadratic MAX(•) approximation is referred to as the moment-

matching technique.

Another method for quadratic MAX(•) approximation is based on

the second-order statistical Taylor expansion proposed in [55]. It starts

from converting a two-variable MAX(•) operator to a single-variable

one:

MAX(x,y) = x + MAX(0, t), (4.31)

where

t = y − x. (4.32)

Next, a second-order statistical Taylor expansion will be utilized to

approximate the single-variable operator MAX(0, t).

Extending the first-order statistical Taylor expansion in (4.23)–

(4.25) to second order and expanding MAX(0, t) at the expansion point

E[t] yield:

MAX(0, t) = 0.5 · λ2 · {t − E[t]}2 + λ1 · {t − E[t]} + λ0, (4.33)

where the linear and quadratic coefficients λ1 and λ2 are determined

by the statistical derivatives:

λ1 =
d{E[MAX(0, t)]}

d{E[t]} (4.34)

λ2 =
d2{E[MAX(0, t)]}

d{E[t]}2
=

dλ1

d{E[t]} (4.35)
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and the constant term λ0 is determined by matching the mean value:

λ0 = E[MAX(0, t)] − 0.5 · λ2 · E[{t − E[t]}2]. (4.36)

Next, we show how to compute the coefficients λ0, λ1, and λ2 in (4.34)–

(4.36) efficiently.

As summarized in Section 4.1.2.3, the first-order derivative in (4.34)

is equal to the probability:

λ1 =
d{E[MAX(0, t)]}

d{E[t]} = P (t ≥ 0) = 1 − CDFt(0), (4.37)

where CDFt(•) stands for the cumulative distribution function of the

random variable t. If both x and y in (4.32) are approximated as

quadratic models of the random variables {εi; i = 1,2, . . . ,N}, t is

equal to y − x and, therefore, is also a quadratic function of {εi; i =

1,2, . . . ,N}:

t(ε) = εT · At · ε + BT
t · ε + Ct, (4.38)

where At,Bt, and Ct are the model coefficients. Given (4.38), the cumu-

lative distribution function of t can be extracted using the algorithms

discussed in Chapter 3.

Substituting (4.37) into (4.35) yields:

λ2 =
d[1 − CDFt(0)]

d{E[t]} . (4.39)

To calculate the derivative value in (4.39), we re-write t as:

t = µ + δ, (4.40)

where µ is the mean value of t and δ = t − µ is a random variable with

zero mean. Substituting (4.40) into (4.39) yields:

λ2 =
d [1 − CDFµ+δ(0)]

dµ
=

d [1 − CDFδ(−µ)]

dµ

= PDFδ(−µ) = PDFµ+δ(0) = PDFt(0), (4.41)

where PDFt(•) stands for the probability density function of the ran-

dom variable t. Since t is represented as the quadratic function in (4.38),
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MAX(0, t)

Fig. 4.4 The single variable function MAX(0, t).

PDFt can be extracted by the algorithms discussed in Chapter 3 to cal-

culate λ2 in (4.41).

Importantly, the quadratic coefficient λ2 in (4.41) has two interest-

ing properties:

• λ2 = PDFt(0) is non-negative. Intuitively, as shown in

Figure 4.4, the function MAX(0, t) is convex and, there-

fore, the quadratic model coefficient should be non-negative

[13].
• λ2 indicates the nonlinearity of MAX(0, t). Considering

the first two cases in Figure 4.5, MAX(0, t) can be accu-

rately approximated as linear models, i.e., MAX(0, t) ≈ 0

and MAX(0, t) ≈ t, respectively. This is consistent with the

fact that PDFt(0) ≈ 0 in both cases. In the third case of

MAX(0, t) is

almost linear

0 t

PDF(t)

0 t

PDF(t)

0 t

PDF(t)

MAX(0, t) is

strongly nonlinear

Case 1

Case 2

Case 3

Fig. 4.5 Three different cases for the MAX(0, t) approximation.
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Figure 4.5, however, MAX(0, t) is strongly nonlinear, corre-

sponding to a non-zero PDFt(0).

After λ1 and λ2 are extracted, computing the constant term λ0

in (4.36) requires further knowing E[MAX(0, t)] and E[{t − E[t]}2].

E[MAX(0, t)] can be calculated using the following one-dimensional

numerical integration:

E [MAX(0, t)] =

∫ +∞

0
τ · PDFt(τ) · dτ. (4.42)

Since t is a quadratic function of {εi; i = 1,2, . . . ,N} shown in (4.38),

its second-order central moment E[{t − E[t]}2] can be determined by

the following analytical equation [125]:

E
[

{t − [t]}2
]

= BT
t · Bt + 2 · TRACE(At · At), (4.43)

where TRACE(•) represents the trace of a matrix (the sum of all diago-

nal elements). Substituting (4.41)–(4.43) into (4.36) yields the constant

term λ0.

After the coefficients λ0, λ1, and λ2 are known, MAX(0, t) in (4.33)

can be approximated as a quadratic function of the random variables

{εi; i = 1,2, . . . ,N} by substituting (4.38) into (4.33) and ignoring all

high-order terms.

To demonstrate the efficacy of the second-order statistical Taylor

expansion, we consider a simple example to approximate MAX(x,y)

where x ∼ N(0,1/9) and y ∼ N(0,1) are independent and Normal.

Figure 4.6 shows the probability density functions of the random vari-

ables x and y. In this example, MAX(x,y) is strongly nonlinear, because

the probability density functions of x and y are significantly overlapped.

It, in turn, allows us to test the efficacy of the second-order statis-

tical Taylor expansion and compare it with a simple linear MAX(•)

approximation.

Three different approaches, namely, the linear approximation, the

second-order statistical Taylor expansion and the Monte Carlo analy-

sis with 104 random samples, are applied to estimate the probability

distribution of MAX(x,y). Figure 4.7 shows the probability density

functions estimated by these techniques. In this example, the distribu-

tion of MAX(x,y) is not symmetric due to the nonlinearity. The simple
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Fig. 4.6 The probability density functions of x and y.
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Fig. 4.7 The estimated probability density functions of MAX(x,y).

linear approximation cannot capture such a non-zero skewness and,

therefore, results in large approximation error, especially at both tails

of the probability density function. The quadratic MAX(•) approxima-

tion, however, accurately models the non-zero skewness by including

second-order terms.
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4.2 Statistical Timing Sensitivity Analysis

While we discussed many statistical timing analysis algorithms in the

previous sub-section, a new methodology for using timing analysis

results to guide timing optimization and explore the trade-off between

performance, yield and cost is required in the statistical domain. In

nominal timing analysis, critical path and slack are two important

concepts that have been widely utilized for timing optimization, but

the inclusion of large-scale process variations renders these concepts

obsolete.

First, the delay of each path is a random variable, instead of a deter-

ministic value, in statistical timing analysis. As such, every path can be

critical (i.e., have the maximal delay) with certain probability. Second,

the slacks at all nodes are random variables that are statistically cou-

pled. The overall timing performance is determined by the distributions

of all these slacks, as well as their correlations. It implies that individ-

ual slack at a single node is not meaningful and cannot be utilized

as a criterion to guide timing optimization. Therefore, the traditional

critical path and slack definitions are no longer valid, and new criteria

are required to accommodate the special properties of statistical timing

analysis/optimization.

In this sub-section, we describe a new concept of statistical tim-

ing sensitivity to guide timing optimization of logic circuits with

large-scale parameter variations. We define the statistical sensitivi-

ties for both paths and arcs. The path sensitivity provides a the-

oretical framework from which we can study and analyze timing

constraints under process variations. The arc sensitivity is an effi-

cient metric to assess the criticality of each arc in the timing graph,

which is useful for timing optimization. We prove that the path sen-

sitivity is exactly equal to the probability that a path is critical,

and the arc sensitivity is exactly equal to the probability that an

arc sits on the critical path. The path sensitivity and the arc sen-

sitivity discussed in this sub-section are theoretically equivalent to

the path criticality and the edge criticality proposed in [115, 120].

More details on path criticality and edge criticality can be found in

Section 4.3.
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4.2.1 Statistics of Slack and Critical Path

We first give a comprehensive study on slack and critical path in statis-

tical timing analysis. We will highlight the differences between nominal

and statistical timing analyses and explain the reasons why the tra-

ditional concepts of slack and critical path become ineffective in the

presence of process variations.

4.2.1.1 Slack

In nominal timing analysis, slack is utilized as a metric to measure

how tightly the timing constraint is satisfied. A negative slack means

that the timing constraint has not been met, while a (small) positive

slack means that the timing constraint has been (marginally) satisfied.

In statistical timing analysis, however, it is difficult to make such a

straightforward judgment, since all slacks are random variables instead

of deterministic values. For instance, Figure 4.8 shows two slack distri-

butions computed from statistical timing analysis. The node V1 presents

a larger probability that the slack is positive than the node V2. How-

ever, the worst-case (i.e., the smallest) slack at V1 is more negative than

that at V2. In this case, it is hard to conclude which slack distribution

is better using a simple criterion.

More importantly, the slacks in a timing graph are statistically cou-

pled and must be considered concurrently to determine the timing per-

formance. In nominal timing analysis, it is well-known that the timing

constraint is satisfied if and only if all slacks in the timing graph are

positive. In statistical timing analysis, this condition can be stated as

0 Slack

PDF

Slack V1

Slack V2

Fig. 4.8 Two slack distributions in statistical timing analysis.
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follows: the probability that the timing constraint is satisfied is equal

to the probability that all slacks are positive:

P (Satisfy Timing Constraint) = P [SlackV1 ≥ 0 & SlackV 2 ≥ 0 · · · ].
(4.44)

Studying (4.44), one would find that such a probability depends on

all slack distributions, as well as their correlations. Unlike the nomi-

nal timing analysis where slacks are deterministic without correlations,

knowing individual slack distributions in statistical timing analysis is

insufficient to assess the timing performance. The probability in (4.44)

cannot be accurately estimated if the slack correlations are ignored.

The above analysis implies an important fact that an individual slack

distribution at one node may not be meaningful in statistical timing

analysis.

However, it should be noted that there exist some “important”

nodes in a timing graph whose slacks have special meanings. Given

a timing graph, we define a node VIN as an important node if all paths

in the timing graph pass VIN. Based on this definition, the source node

and the sink node are two important nodes in any timing graph, since

all paths start from the source node and terminate at the sink node.

In some special timing graphs, it is possible to find other important

nodes. For example, the node e in Figure 4.1 is an important node by

this definition. The importance of the node is that, if VIN is an impor-

tant node, the probability in (4.44) can be uniquely determined by the

slack at VIN:

P (Satisfy Timing Constraint) = P [SlackVIN
≥ 0]. (4.45)

The physical meaning of (4.45) can be intuitively explained by the

concept of Monte Carlo analysis. When a timing graph is simulated by

Monte Carlo analysis, a delay sample (i.e., a set of deterministic delay

values for all timing arcs) is drawn from the random variable space for

each Monte Carlo run. The probability P (Satisfy Timing Constraint) is

equal to Num1 (the number of samples for which the timing constraint

is satisfied) divided by Num (the total number of Monte Carlo samples).

Similarly, the probability SlackVIN
≥ 0 is equal to Num2 (the number of

samples for which the slack at VIN is positive) divided by Num. In each
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Monte Carlo run, the timing constraint is failed if and only if there is

a path P whose delay is larger than the specification. In this case, the

slack at VIN must be negative since all paths pass the important node

VIN and, therefore, VIN must sit on the path P . The above analysis

implies that Num1 is equal to Num2, yielding Equation (4.45).

Equations (4.44) and (4.45) indicate another difference between

nominal and statistical timing analyses. In nominal timing analysis, the

slack at any node along the critical path uniquely determines the tim-

ing performance. In statistical timing analysis, however, only the slack

at an important node uniquely determines the timing performance.

Compared with the critical path nodes in nominal timing analysis,

important nodes belong to a much smaller subset, since they must be

included in all paths in a timing graph.

Following (4.45), it is sufficient to check the slacks only for impor-

tant nodes, e.g., the source node or the sink node. Therefore, using the

concept of important node simplifies the timing verification procedure.

This conclusion is also consistent with our intuition: the timing perfor-

mance is determined by the maximal delay from the source node to the

sink node. Therefore, the slacks at these two nodes are of most interest

for timing verification.

4.2.1.2 Critical Path

Similar to slack, there are key differences between nominal and sta-

tistical timing analyses on critical path. First, given a timing graph,

the maximal delay from the source node to the sink node can be

expressed as

D = MAX(DP1,DP2, . . .), (4.46)

where DPi is the delay of the ith path. In nominal timing analysis,

D = DPi if and only if the path Pi is critical. In statistical timing

analysis, however, every path can be critical with certain probability.

Although it is possible to define the most critical path as the path Pi

that has the largest probability to be critical, the maximal circuit delay

in (4.46) must be determined by all paths, instead of the most critical

path only.
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Second, the most critical path is difficult to identify in statistical

timing analysis. In nominal timing analysis, the critical path can be

identified using slack since all nodes along the critical path have the

same (smallest) slack. In statistical timing analysis, however, this prop-

erty is no longer valid and all slacks are random variables.

Finally, but most importantly, the critical path concept is not so

helpful for statistical timing optimization. In nominal case, the gates

and interconnects along the critical (or non-critical) path are repeat-

edly selected for up (or down) sizing. This strategy is becoming inef-

fective under process variations. One important reason is that many

paths may have similar probabilities to be critical and all these paths

must be selected for timing optimization. Even in nominal case, many

paths in a timing graph can be equally critical, which is so-called “slack

wall.” This multiple-critical-path problem is more pronounced in sta-

tistical timing analysis, since more paths can have overlapped delay

distributions due to large-scale process variations. In addition to this

multiple-critical-path problem, we will demonstrate in Section 4.2.2

that selecting the gates and interconnects along the most critical (or

least critical) path for up (or down) sizing may not be the best choice

under a statistical modeling assumption.

4.2.2 Concept of Statistical Timing Sensitivity

In this sub-section, we define the concept of statistical timing sensitiv-

ity. Two different sensitivities, i.e., path sensitivity and arc sensitivity,

are discussed. Path sensitivity provides a theoretical framework to

study and analyze timing constraints under process variations. Arc

sensitivity provides an efficient criterion to select the most critical

gates/interconnects for timing optimization.

4.2.2.1 Path Sensitivity

In nominal timing analysis, the critical path is of great interest since

it uniquely determines the maximal circuit delay. If the delay of the

critical path is increased (or decreased) by a small perturbation ε, the

maximal circuit delay is increased (or decreased) by ε correspondingly.

Therefore, given the maximal circuit delay D in (4.46), the dependence
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between D and the individual path delay DPi can be mathematically

represented as the path sensitivity:

SPath
Pi

=
∂D

∂DPi

=

{

1 (If Pi is critical)

0 (Otherwise)
. (4.47)

From the sensitivity point of view, a critical path is important since

it has non-zero sensitivity and all other non-critical paths have zero

sensitivity. The maximal circuit delay can be changed if and only if

the critical path delay is changed. This is the underlying reason why

critical path is important for timing optimization. It is the sensitivity

(instead of the critical path itself) that provides an important criterion

to guide timing optimization. A path is more (or less) important if it

has a larger (or smaller) path sensitivity.

In statistical timing analysis, all path delays are random variables.

Although directly computing sensitivity between two random variables

seems infeasible, the path sensitivity can be defined by their expected

values (i.e., moments). One simple definition for path sensitivity is to

use the first order moment, i.e.,

SPath
Pi

=
∂E(D)

∂E(DPi)
. (4.48)

The path sensitivity in (4.48) models the mean value dependence

between the maximal circuit delay D and the individual path delay

DPi. The path sensitivity in (4.48) has several important properties.

The detailed proofs of the following theorems can be found in [53].

Theorem 4.1. The path sensitivity in (4.48) satisfies:
∑

i

SPath
Pi

= 1. (4.49)

Theorem 4.2. Given the maximal circuit delay D = MAX

(DP1 ,DP2 , . . .) where DPi is the delay of the ith path, if the proba-

bility P [DPi = MAX(DPj , j �= i)] is equal to 0, then the path sensitivity

in (4.48) is equal to the probability that the path Pi is critical, i.e.,

SPath
Pi

= P (DPi ≥ DP1 & DPi ≥ DP2 & · · ·). (4.50)
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4.2.2.2 Arc Sensitivity

In nominal timing optimization, the gates and interconnects along the

critical path are important, since the maximal circuit delay is sensitive

to their delays. Following this reasoning, the importance of a given gate

or interconnect can be assessed by the following arc sensitivity:

SArc
Ai

=
∂D

∂DAi

=
∑

k

SPath
Pk

· ∂DPk

∂DAi

=

{

1 (Ai is on critical path)

0 (Otherwise)
,

(4.51)

where D is the maximal circuit delay given in (4.46), DAi denotes the

gate/interconnect delay associated with the ith arc, and DPk represents

the delay of the kth path. In (4.51), the path sensitivity SPath
Pk

is non-

zero (i.e., equal to 1) if and only if the kth path Pk is critical. In

addition, the derivative ∂DPk/∂DAi is non-zero (i.e., equal to 1) if and

only if the ith arc Ai sits on the kth path Pk, since the path delay DPk

is equal to the sum of all arc delays DAi ’s that belong to this path.

These observations yield the conclusion that the arc sensitivity SArc
Ai

is

non-zero if and only if Ai is on the critical path. The arc sensitivity

explains why the gates and interconnects along the critical path are

important for timing optimization. A gate/interconnect is more (or

less) important if it has a larger (or smaller) arc sensitivity.

The aforementioned sensitivity concept can be extended to statis-

tical timing analysis. In statistical case, we define the arc sensitivity

using the first order moment:

SArc
Ai

=
∂E(D)

∂E(DAi)
. (4.52)

The arc sensitivity in (4.52) has the following important property.

Theorem 4.3. Let DPi be the delay of the ith path. If the probabil-

ity P [DPi = MAX(DPj , j �= i)] = 0 for any {i = 1,2, . . .}, then the arc

sensitivity in (4.52) is equal to:

SArc
Ai

=
∑

Ai∈Pk

SPath
Pk

. (4.53)

The detailed proof of Theorem 4.3 can be found in [53]. Remem-

ber that SPath
Pk

is equal to the probability that the kth path Pk
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is critical (see Theorem 4.2). Therefore, the arc sensitivity defined

in (4.52) is exactly equal to the probability that the arc sits on the

critical path.

The arc sensitivity defined in (4.52) provides an effective criterion

to select the most important gates and interconnects for up/down siz-

ing. Roughly speaking, for statistical timing optimization, the gates

and interconnects with large arc sensitivities are critical to the maxi-

mal circuit delay and in general should be up-sized to improve circuit

speed, while the others with small arc sensitivities can be down-sized

to save chip area and power consumption. Next, using the concept of

arc sensitivity, we explain the reason why repeatedly selecting the gates

and interconnects along the most critical (or least critical) path for up

(or down) sizing can be ineffective in statistical case.

Consider a simple timing graph including three paths, as shown

in Figure 4.9. Assume that the path sensitivity SPath
P1

= SPath
P2

= 0.3

and SPath
P3

= 0.4. Therefore, P3 is the most critical path since it has

the largest path sensitivity and is most likely to have the maximal

delay. Using the traditional concept of critical path, the arc A2 should

be selected for up-sizing in order to reduce the circuit delay. How-

ever, according to Theorem 4.3, it is easy to verify that SArc
A1

=Path
P1

+

SPath
P2

= 0.6 and SArc
A2

= SPath
P3

= 0.4. The arc A1 has a more significant

impact on the maximal circuit delay and should be selected for up-

sizing, although it does not sit on the most critical path. In this exam-

ple, using the traditional concept of critical path selects the wrong arc,

bb

ff

c

dd

ga

P1

P2

P3

A1

A2
ee

Fig. 4.9 A simple timing graph to illustrate the application of arc sensitivity.
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since it does not consider the non-zero path sensitivities of other less

critical paths. These non-zero sensitivities make it possible that chang-

ing an arc delay can change the maximal circuit delay through multiple

paths. In Figure 4.9, the arc A1 can change the maximal circuit delay

through two paths P1 and P2, while the arc A2 can change the maximal

circuit delay only through one path P3. Therefore, the arc A1 eventu-

ally becomes more critical than A2, although neither P1 nor P2 is the

most critical path.

4.2.2.3 Summary of Statistical Timing Sensitivity

We have defined two statistical timing sensitivities (i.e., path sensitivity

and arc sensitivity) and shown the theoretical link between probability

and sensitivity. The aforementioned sensitivity-based framework has

three unique properties:

• Distribution-independent. The theoretical results for path

sensitivity and arc sensitivity do not rely on specific prob-

ability distributions for gate/interconnect delays and arrival

times.
• Correlation-aware. The aforementioned sensitivity-based

framework does not rely on any assumption of statistical

independence and it can handle correlated arrival times.

Theorems 4.1–4.3 are valid, even if the path/arc delays are

correlated.
• Computation-efficient. Sensitivity values can be efficiently

computed, as will be further discussed in Section 4.2.3.

4.2.3 Computation of Statistical Timing Sensitivity

In this sub-section, we describe the numerical algorithm for comput-

ing arc sensitivities. We first develop the sensitivity equations for two

atomic operations: SUM(•) and MAX(•). Next, we show how to prop-

agate sensitivity values throughout the timing graph, using a single

breadth-first graph traversal.

The sensitivity analysis should be conducted after the statistical

timing analysis is complete. Therefore, we assume that the timing anal-
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ysis results are already available before the sensitivity analysis begins.

We further assume that the gate/interconnect delays and the arrival

times can be approximated as Normal distributions.

4.2.3.1 Atomic Operations

A key function in statistical timing analysis is to propagate arrival

times throughout a timing graph. In order to do that, two atomic oper-

ations are required, i.e., SUM(•) and MAX(•), as shown in Figure 4.2.

Since multi-variable operations can be easily broken down into multiple

two-variable cases, the remainder of this sub-section focuses on the sen-

sitivity computation for SUM(•) and MAX(•) of two random variables,

i.e., z = x + y and z = MAX(x,y) where x, y, and z are approximated

as the linear delay models in (4.3), (4.4), and (4.9), respectively. The

random variables {εi; i = 1,2, . . . ,N} in these equations are used to

model process variations and they are independent standard Normal

distributions.

Given the operation z = x + y or z = MAX(x,y) where x, y, and z

are in the form of (4.3), (4.4), and (4.9), we define the sensitivity matrix

Qz←x as,

Qz←x =
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. (4.54)

The sensitivity matrix Qz←y can be similarly defined.

The sensitivity matrix in (4.54) provides the quantitative informa-

tion that how much the coefficients Cz or {Bzi ; i = 1,2, . . . ,N} will be

changed if there is a small perturbation on Cx or {Bxi ; i = 1,2, . . . ,N}.

Next, we derive the mathematical formulas of the sensitivity matrices

for both SUM(•) and MAX(•) operations.
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For the SUM(•) operation z = x + y, it is easy to verify that:

Cz = Cx + Cy (4.55)

Bzi = Bxi + Byi (i = 1,2, . . . ,N). (4.56)

Therefore, the sensitivity matrix Qz←x is an identity matrix.

For the MAX(•) operation z = MAX(x,y), it can be proven that

[53]:

∂Cz

∂Cx
= Φ(β) (4.57)

∂Cz

∂Bxi

=
∂Bzi

∂Cx
=

ϕ(β) · (Bxi − Byi)

α
(i = 1,2, . . . ,N) (4.58)

∂Bzi

∂Bxi

= Φ(β) − β · ϕ(β) · (Bxi − Byi)
2

α2
(i = 1,2, . . . ,N) (4.59)

∂Bzi

∂Bxj

= −
β · ϕ(β) · (Bxi − Byi) · (Bxj − Byj )

α2

(i, j = 1,2, . . . ,N ; i �= j), (4.60)

where φ(•) and Φ(•) are the probability density function and the cumu-

lative distribution function of standard Normal distribution defined in

(4.20), (4.21) respectively, and the coefficients α and β are defined in

(4.17), (4.18) respectively. Equations (4.57)–(4.60) can be derived by

directly following the mathematic formulations in [23]. The sensitiv-

ity matrix Qz←y can be similarly calculated, since both SUM(•) and

MAX(•) are symmetric.

4.2.3.2 Sensitivity Propagation

Once the atomic operations are available, they can be applied to prop-

agate the sensitivity matrices throughout the timing graph. Next, we

use the simple timing graph in Figure 4.1 as an example to illustrate

the key idea of sensitivity propagating. In this example, propagating

the sensitivity matrices can be achieved through the following steps.

(1) Start from the MAX(•) operation at the sink node, i.e.,

D = MAX[AT(f) + D(f, sink), AT(g) + D(g, sink)], where

D denotes the arrival time at the sink node (i.e., the max-

imal circuit delay), AT(i) represents the arrival time at the
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node i, and D(i, j) stands for the delay of the arc 〈i, j〉.
Compute the sensitivity matrices QD←[AT(f)+D(f,sink)] and

QD←[AT(g)+D(g,sink)] using (4.57)–(4.60).

(2) Propagate QD←[AT(f)+D(f,sink)] to the node f through the arc

〈f, sink〉. Based on the chain rule of the derivatives,

QD←AT(f) = QD←[AT(f)+D(f,sink)] · Q[AT(f)+D(f,sink)]←AT(f)

and

QD←D(f,sink) = QD←[AT(f)+D(f,sink)]

·Q[AT(f)+D(f,sink)]←D(f,sink)

Q[AT(f)+D(f,sink)]←AT(f) and Q[AT(f)+D(f,sink)]←D(f,sink) are

identity matrices due to the SUM(•) operation.

(3) Similarly propagate QD←[AT(g)+D(g,sink)] to the node g

through the arc 〈g, sink〉. Determine QD←AT(g) and

QD←D(g,sink).

(4) Propagate QD←AT(f) and QD←AT(g) to the node e, yield-

ing QD←D(e,f) = QD←AT(f), QD←D(e,g) = QD←AT(g) and

QD←AT(e) = QD←AT(f) + QD←AT(g). Note that the out-

degree of the node e is equal to two. Therefore, the sensitivity

matrices QD←AT(f) and QD←AT(g) should be added together

at the node e to compute QD←AT(e). Its physical meaning is

that a small perturbation on AT(e) can change the maximal

circuit delay D through two different paths {e → f → sink}
and {e → g → sink}.

(5) Continue propagating the sensitivity matrices until the

source node is reached.

In general, the sensitivity propagation involves a single breadth-first

graph traversal from the sink node to the source node with successive

matrix multiplications. The computational complexity of such a sensi-

tivity propagation is linear in circuit size. After the sensitivity propa-

gation, the sensitivity matrix QD←D(i,j) between the maximal circuit

delay D and each arc delay D(i, j) is determined. Based on these sen-

sitivity matrices, the arc sensitivity can be easily computed by a quick

post-processing. For example, the arc sensitivity defined in (4.52) is the

(1, 1)th element in QD←D(i,j) (see the sensitivity matrix definition in
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(4.54)), i.e.,

SArc
<i,j> = [1 0 · · · ] · QD←D(i,j) · [1 0 · · · ]T . (4.61)

4.3 Statistical Timing Criticality

The path sensitivity and the arc sensitivity discussed in Section 4.2 are

theoretically equivalent to the path criticality and the edge criticality

proposed in [115, 120]. In other words, the path criticality is equal to

the probability that a path is critical, and the edge criticality is equal to

the probability that an edge sits on the critical path. In this sub-section,

we describe the numerical algorithm proposed in [120] for computing

edge criticality. The computational complexity of this algorithm is also

linear in circuit size.

To efficiently compute the edge criticality, the authors of [120] define

the following terminologies:

• The edge slack of an edge is the maximum delay of all paths

going through the edge.
• The complement edge slack of an edge is the maximum delay

of all paths not going through the edge.

Note that these “slack” definitions are different from the traditional

slack definition in Section 4.1.1. It is easy to verify that the edge crit-

icality is the probability that the edge slack is greater than the com-

plement edge slack [120]. For a given edge e = 〈i, j〉, if both the edge

slack Se and the complement edge slack Sẽ are approximated as Normal

distributions, Se − Sẽ is also Normal and the corresponding edge criti-

cality can be calculated based on the cumulative distribution function

of Se − Sẽ.

In a timing graph, the set of paths going through an edge e = 〈i, j〉
forms an edge flow graph Ge that consists of three parts: the edge input

cone, the edge e itself, and the edge output cone. The edge slack Se of

the edge e is equal to

Se = DIncone + De + DOutcone, (4.62)

where DIncone is the delay of the edge input cone, De is the delay of the

edge e, and DOutcone is the delay of the edge output cone. Based on the
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definitions of arrival time and required time in Section 4.1.1, the edge

slack of e = 〈i, j〉 can be expressed as [120]:

Se = ATi + De − RTj , (4.63)

where ATi is the arrival time at the node i and RTj is the required

time at the node j. Therefore, after the statistical timing analysis is

complete, all edge slacks can be easily computed by a simple post-

processing.

The computation of the complement edge slack is more complicated

and requires to borrow the cutset concept from network theory. A cut-

set between the source and the sink is defined as a set of edges whose

removal from the graph disconnects the source and the sink. In particu-

lar, a cutset is referred to as the minimal separating cutset, if it satisfies

the condition that any two paths from the source to the sink have only

one common edge in the cutset. Using the algorithm in [120], a set of

minimal separating cutsets can be found to cover a given timing graph.

Given a minimal separating cutset Ce containing the edge e, let

Cẽ = Ce − {e} be a set of all the cutset edges except e. Then the set

of all paths going through the edges in Cẽ is identical to the set of

all paths not going through the edge e. For this reason, the statistical

maximum of all edge slacks of the edges in Cẽ is exactly equal to the

complement slack of the edge e.

A binary partition tree can be used to efficiently compute the com-

plement edge slacks of all edges in a minimal separating cutset [120].

The key idea is to re-use the intermediate complement slack values to

reduce the computational complexity. As shown in Figure 4.10, each

aa bb cc dd

Fig. 4.10 A binary partition tree for efficiently computing the complement edge slacks for
the edges a, b, c, and d.
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leaf node in the binary partition tree represents one edge of the cutset.

Each non-leaf node defines two sets of edges: the set of the node’s chil-

dren and the set of the edges that are not the node’s children. With each

node of the tree, we associate a node slack and a complement node slack.

The node slack is the maximum of all edge slacks of its child edges. The

complement node slack is the maximum of all edge slacks of the non-

child edges. For a leaf node, these two slacks are exactly the edge slack

and the complement edge slack. All node slacks and complement node

slacks in the binary partition tree can be calculated by a bottom-up

tree traversal followed by a top-down tree traversal [120], as shown in

Algorithm 4.2. The computational complexity of Algorithm 4.2 is linear

in tree size.

Algorithm 4.2 complement edge slack computation by a

binary partition tree.

(1) Construct a binary partition tree of the cutset edges.

(2) Assign edge slacks to the leaf nodes.

(3) Traverse the tree bottom-up. For each non-leaf node, com-

pute the node slack as the maximum of its children’s node

slacks.

(4) Set the complement node slack of the root node as negative

infinity.

(5) Traverse the tree top-down. For each node, compute the com-

plement node slack as the maximum of its parent’s comple-

ment node slack and its sibling node’s node slack.

4.4 Statistical Leakage Analysis

In addition to timing variation, leakage variation is another critical

issue at nano scale. The predicted leakage power is expected to reach

50% of the total chip power within the next few technology generations

[4]. Therefore, accurately modeling and analyzing leakage power has

been identified as one of the top priorities for today’s IC design.

The most important leakage components in nanoscale CMOS tech-

nologies include sub-threshold leakage and gate tunneling leakage [93].
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The sub-threshold leakage is due to the weak inversion when gate

voltage is below the threshold voltage. At the same time, the reduc-

tion of gate oxide thickness facilitates tunneling of electrons through

gate oxide, creating the gate leakage. Both of these leakage components

are significant for sub-100 nm technologies and must be considered for

leakage analysis.

Unlike many other performances (e.g., delay), leakage power varies

substantially with process variations, which increases the difficulty of

leakage estimation. Leakage variations can reach 20×, while delays

only vary about 30%. The large-scale leakage variations occur, because

leakage current exponentially depends on several process parameters

such as VTH and TOX [93]. For this reason, leakage variation is typically

analyzed in log domain. Most statistical leakage analysis techniques

[17, 56, 68, 89, 106] approximate the logarithm of the leakage current

log(ILeak) as a function of random process variations. The existing

statistical leakage analysis techniques can be classified into two

broad categories: log-Normal approximation (linear leakage modeling

for log(ILeak) [17, 68, 89, 106]) and non-log-Normal approximation

(quadratic leakage modeling for log(ILeak) [56]). In what follows,

we first describe the log-Normal approximation in Section 4.4.1 and

then the non-log-Normal approximation will be discussed in detail in

Section 4.4.2.

4.4.1 Log-Normal Approximation

A statistical leakage analysis flow typically contains two major

steps: (1) standard cell library characterization and (2) full-chip

leakage modeling. The objective of the standard cell library char-

acterization is to approximate the leakage current of each logic

cell by a response surface model. This modeling step is typically

based on transistor-level simulations (or measurement models if

available).

log(ICelli) = BT
Celli · ε + CCelli, (4.64)

where BCelli ∈ RN contains the linear model coefficients, CCelli ∈ R is

the constant term, ε = [ε1,ε2, . . . ,εN ]T contains a set of independent

standard Normal distributions to model process variations and N is
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the total number of these random variables. In (4.64), log(ICelli) is the

linear combination of multiple Normal distributions and, therefore, is

Normal. It follows that ICelli is log-Normal [81].

It is well-known that leakage current depends on input vector. The

cell leakage in (4.64) can be the leakage current for a fixed input state

or the average leakage current over all input states. For simplicity, we

will not distinguish these two cases in this paper.

Given the leakage models of all individual cells, the full-chip leakage

current is the sum of all cell leakage currents:

IChip = ICell1 + ICell2 + · · · + ICellM (4.65)

where M is the total number of logic cells in a chip. Equation (4.65)

implies that the full-chip leakage current is the sum of many log-Normal

distributions. Theoretically, the sum of multiple log-Normal distribu-

tions is not known to have a closed form. However, it can be approx-

imated as a log-Normal distribution by using the Wilkinson’s method

[17] to match the first two moments of IChip in (4.65):

E(IChip) =

M
∑

i=1

emCelli+0.5·σ2
Celli (4.66)

E
(

I2
Chip

)

=

M
∑

i=1

e2·mCelli+2·σ2
Celli + 2 ·

M−1
∑

i=1

M
∑

j=i+1

emCelli+mCellj

·e0.5·(σ2
Celli+σ2

Cellj+2·ρij ·σCelli·σCellj). (4.67)

If log(ICelli) and log(ICellj) are both approximated as the linear

response surface model in (4.64), the mean mCelli, the standard devi-

ation σCelli and the correlation coefficient ρij in (4.66) and (4.67), can

be calculated by

mCelli = CCelli (4.68)

σCelli = ‖BCelli‖2 (4.69)

ρij =
BT

Celli · BCellj

σCelli · σCellj
, (4.70)
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where ||•||2 denotes the 2-norm of a vector. Since we approximate IChip

as a log-Normal distribution, log(IChip) is Normal and its mean and

standard deviation are determined by [17]:

E [log(IChip)] = 2 · log [E(IChip)] − 0.5 · log
[

E(I2
Chip)

]

(4.71)

σ2 [log(IChip)] = log
[

E(I2
Chip)

]

− 2 · log [E(IChip)] . (4.72)

Substitute (4.66), (4.67) into (4.71), (4.72) yields the approximated

log-Normal distribution for the full-chip leakage current.

4.4.2 Non-Log-Normal Approximation

Given the increasingly larger variations in nanoscale technologies, the

aforementioned log-Normal approximation may result in inaccurate

results, as it relies on the linear cell-level leakage model in (4.64) and

only matches the first two moments for the chip-level leakage current

in (4.65)–(4.72). To achieve higher accuracy, a quadratic approxima-

tion can be used, which, however, significantly increases the compu-

tational cost. For example, the total number of random variables can

reach 103 ∼ 106 to model both inter-die and intra-die variations for

a practical industrial design. In this case, a quadratic approximation

will result in a 106 × 106 quadratic coefficient matrix containing 1012

coefficients!

The authors of [56] propose a projection-based algorithm to extract

the optimal low-rank quadratic model for full-chip statistical leak-

age analysis. The algorithm proposed in [56] is facilitated by explor-

ing the underlying sparse structure of the problem. Namely, any

intra-die variation only impacts the leakage power in a small local

region. Considering this sparse property, the statistical leakage anal-

ysis problem is formulated as a special form that can be efficiently

solved by the Arnoldi algorithm and the orthogonal iteration borrowed

from matrix computations. As such, an accurate low-rank quadratic

model can be extracted with linear computational complexity in

circuit size.

The statistical leakage analysis proposed in [56] starts from the stan-

dard cell library characterization where PROBE [57] is applied to fit
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the rank-K leakage model for each cell:

log(ICelli) =

K
∑

k=1

λCellik · (P T
Cellik · ε)2 + BT

Celli · ε + CCelli, (4.73)

where λCellik, CCelli ∈ R, and PCellik, BCelli ∈ RN are the model coeffi-

cients. In many practical applications, both PCellik and BCelli are large

but sparse, since many random variables in ε model the intra-die vari-

ations of the cells that are far away from the ith cell and they do not

impact the leakage ICelli.

To simplify the notation, we define the following symbols to repre-

sent all cell leakage models in a matrix form:

log(ICell) = [log(ICell1) log(ICell2) · · · log(ICellM )]T (4.74)

ΛCellk = [λCell1k λCell2k · · · λCellMk]
T (4.75)

PCellk = [PCell1k PCell2k · · · PCellMk] (4.76)

BCell = [BCell1 BCell2 · · · BCellM ] (4.77)

CCell = [CCell1 CCell2 · · · CCellM ]T . (4.78)

Comparing (4.74)–(4.78) with (4.73), it is easy to verify that:

log(ICell) =

K
∑

k=1

ΛCellk ⊗
(

P T
Cellk · ε

)

⊗
(

P T
Cellk · ε

)

+ BT
Cell · ε + CCell,

(4.79)

where ⊗ stands for the point-wise multiplication, i.e., [a1 a2 · · · ]T ⊗
[b1 b2 · · · ]T = [a1b1 a2b2 · · · ]T .

Using the cell leakage model in (4.79), we next describe the algo-

rithm to efficiently extract the low-rank quadratic model of the full-chip

leakage current. As shown in (4.65), the full-chip leakage current is the

sum of all cell leakage currents. Applying the log transform to both

sides of (4.65) yields:

log(IChip) = log[elog(ICell1) + elog(ICell2) + · · · + elog(ICellM )]. (4.80)

Substituting (4.79) into (4.80) and applying a second order Taylor

expansion, after some mathematical manipulations we obtain a

quadratic model in the form of:

log(IChip) = εT · AChip · ε + BT
Chip · ε + CChip, (4.81)
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where the model coefficients are given by:

CChip = log

(

1

α

)

(4.82)

BChip = α · BCell · Φ (4.83)

AChip = α ·
K
∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk

+
α

2
· BCell · diag(Φ) · BT

Cell

−α2

2
· BCell · ΦΦT · BT

Cell. (4.84)

In (4.82)–(4.84), diag([a1 a2 · · · ]T ) stands for the diagonal matrix with

the elements {a1,a2, . . .} and:

α =
1

eCCell1 + eCCell2 + · · · + eCCellM
(4.85)

Φ =
[

eCCell1 eCCell2 · · · eCCellM
]T

. (4.86)

The values of α and Φ in (4.85), (4.86) can be computed with linear

computational complexity. After α and Φ are known, the model coef-

ficients CChip and BChip can be evaluated from (4.82), (4.83). Because

the matrix BCell in (4.83) is sparse, computing the matrix-vector prod-

uct BCellΦ has linear computational complexity. Therefore, both CChip

in (4.82) and BChip in (4.83) can be extracted with linear complexity.

The major difficulty, however, stems from the non-sparse quadratic

coefficient matrix AChip in (4.84). This non-sparse feature can be under-

stood from the last term at the right-hand side of (4.84). The vec-

tor Φ is dense and, therefore, ΦΦT is a dense matrix. It follows that

BCellΦΦT BT
Cell is dense, although BCell is sparse. For this reason, it

would be extremely expensive to explicitly construct the quadratic coef-

ficient matrix AChip based on (4.84).

To overcome this problem, the authors of [56] propose an iterative

algorithm that consists of two steps: (1) Krylov subspace generation

and (2) orthogonal iteration. Instead of finding the full matrix AChip,

the proposed algorithm attempts to find an optimal low-rank approxi-

mation of AChip.
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According to matrix theory [38], the optimal rank-R approxima-

tion of AChip is determined by the dominant eigenvalues {λChip1,

λChip2, . . . ,λChipR} and eigenvectors {PChip1,PChip2, . . . ,PChipR}. The

subspace generated by all linear combinations of these dominant

eigenvectors is called the dominant invariant subspace [38] and is

denoted as:

span{PChip1,PChip2, . . . ,PChipR}. (4.87)

It is well-known that the dominant invariant subspace in (4.87) can be

approximated by the following Krylov subspace [38]:

span
{

Q0,AChip · Q0,A
2
Chip · Q0, . . . ,A

R−1
Chip · Q0

}

, (4.88)

where Q0 ∈ RN is a non-zero vector that is not orthogonal to any dom-

inant eigenvectors. We first show the algorithm to extract the Krylov

subspace which gives a good approximation of the dominant invariant

subspace. The extracted Krylov subspace is then used as a starting

point for an orthogonal iteration such that the orthogonal iteration

could converge to the dominant invariant subspace quickly.

The Arnoldi algorithm from matrix computations [38] is adapted to

generate the Krylov subspace. The Arnoldi algorithm has been applied

to various large-scale numerical problems and its numerical stability

has been well-demonstrated for many applications, most notably, IC

interconnect model order reduction [15]. Algorithm 4.3 summarizes a

simplified implementation of the Arnoldi algorithm.

Algorithm 4.3 simplified Arnoldi algorithm.

(1) Randomly select an initial vector Q0 ∈ RN .

(2) Q1 = Q0/||Q0||F .

(3) For each r = {2,3, . . . ,R}
(4) Compute Qr as:

Qr = AChip · Qr−1

= α ·
K
∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk · Qr−1
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+
α

2
· BCell · diag(Φ) · BT

Cell · Qr−1

− α2

2
· BCell · ΦΦT · BT

Cell · Qr−1 (4.89)

(5) Orthogonalize Qr to all Qi (i = 1,2, . . . , r − 1).

(6) Qr = Qr/||Qr||F .

(7) End For.

(8) Construct the Krylov subspace:

Q = [QR · · · Q2 Q1] . (4.90)

Step (4) in Algorithm 4.3 is the key step of the Arnoldi algorithm. It

computes the matrix-vector product Qr = AChipQr−1. Since the matrix

AChip is large and dense, Equation (4.89) does not construct the matrix

AChip explicitly. Instead, it computes AChipQr−1 implicitly, i.e., mul-

tiplying all terms in (4.84) by Qr−1 separately and then adding them

together. It is easy to verify that AChip in (4.84) is the sum of the

products of many sparse or low-rank matrices. Therefore, the implicit

matrix-vector product in (4.89) can be computed with linear compu-

tational complexity. Taking the last term in (4.89) as an example,

there are four steps to compute BCellΦΦT BT
CellQr−1, including: (1)

S1 = BT
CellQr−1 (sparse matrix multiplied by a vector); (2) S2 = ΦT S1

(dot product of two vectors); (3) S3 = ΦS2 (vector multiplied by a

scalar); and (4) S4 = BCellS3 (sparse matrix multiplied by a vector).

All these four steps have linear computational complexity.

The Krylov subspace computed from Algorithm 4.3 is not exactly

equal to the dominant invariant subspace. Starting from the matrix Q

in (4.90), the next step is to apply an orthogonal iteration [38] which

exactly converges to the dominant invariant subspace. Theoretically,

the orthogonal iteration can start from any matrix. However, since

the Krylov subspace Q gives a good approximation of the dominant

invariant subspace, using Q as the starting point helps the orthogonal

iteration to reach convergence quickly.

Algorithm 4.4 shows a simplified implementation of the orthogonal

iteration algorithm. In (4.91), Q(i−1) ∈ RN×R is a matrix containing

only a few columns, because R is typically small (e.g., around 10) in
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most applications. Therefore, similar to (4.89), Z(i) in (4.91) can be

computed with linear complexity. For the same reason, the QR fac-

torization in Step (5) of Algorithm 4.4 also has linear computational

complexity, since Z(i) ∈ RN×R contains only a few columns.

Algorithm 4.4 simplified orthogonal iteration algorithm.

(1) Start from the matrix Q ∈ RN×R in (4.90).

(2) Q(1) = Q, where the superscript stands for the iteration

index.

(3) For each i = {2,3, . . .}
(4) Compute Zi as:

Z(i) = AChip · Q(i−1)

= α ·
K
∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk · Q(i−1)

+
α

2
· BCell · diag(Φ) · BT

Cell · Q(i−1) ·

− α2

2
· BCell · ΦΦT · BT

Cell · Q(i−1) (4.91)

(5) Q(i)U (i) = Z(i) (QR factorization).

(6) End For.

(7) Construct the matrices:

QChip = Q(i) (4.92)

UChip = U (i). (4.93)

The orthogonal iteration in Algorithm 4.4 is provably convergent if

the columns in the initial matrix Q are not orthogonal to the dominant

invariant subspace [38]. After the orthogonal iteration converges, the

optimal rank-R approximation of AChip is determined by the matrices

QChip and UChip in (4.92) and (4.93) [38]:

ÃChip = QChip · UChip · QT
Chip. (4.94)
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Combining (4.94) with (4.81) yields:

log(IChip) = εT ·
(

QChip · UChip · QT
Chip

)

· ε + BT
Chipε + CChip, (4.95)

where CChip and BChip are given in (4.82) and (4.83).

Algorithms 4.3 and 4.4 assume a given approximation rank R. In

practice, the value of R can be iteratively determined based on the

approximation error. For example, starting from a low-rank approxi-

mation, R should be iteratively increased if the modeling error remains

large. In most cases, selecting R in the range of 5 ∼ 15 provides suf-

ficient accuracy. The aforementioned algorithm only involves simple

vector operations and sparse matrix-vector multiplications; therefore,

its computational complexity is linear in circuit size.

The quadratic function in (4.95) is N -dimensional, where N is

typically large. It is not easy to estimate the leakage distribution

directly from (4.95). Algorithm 4.5 describes a quadratic model com-

paction algorithm that converts the high-dimensional model to a low-

dimensional one, while keeping the leakage distribution unchanged. It

can be proven that the quadratic models in (4.95) and (4.97) are equiv-

alent and the random variables {δi; i = 1,2, . . . ,R + 1} defined in (4.96)

are independent standard Normal distributions [56].

Algorithm 4.5 quadratic model compaction algorithm.

(1) Start from the quadratic model in (4.95).

(2) QComp · [UCompBComp] = [QChipBChip] (QR factorization).

(3) Define a set of new random variables:

δ = QT
Comp · ε. (4.96)

(4) Construct the low-dimensional quadratic model:

log(IChip) = δT ·
(

UCompUChipU
T
Comp

)

· δ + BT
Comp · δ + CChip.

(4.97)

The quadratic function in (4.97) has a dimension of R + 1 which

is much smaller than N . Based on (4.97), the PDF/CDF of log(IChip)

can be efficiently extracted using the algorithms described in Chapter 3.
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Fig. 4.11 Statistical leakage distribution for C432.

After that, the PDF/CDF of IChip can be easily computed by a simple

nonlinear transform [81].

To demonstrate the efficacy of the non-log-Normal approximation,

C432 (one of the ISCAS’85 benchmark circuits) is synthesized using

a commercial 90 nm CMOS process. Figure 4.11 shows the leakage

distributions extracted by three different approaches: the log-Normal

approximation, the rank-10 quadratic approximation and the Monte

Carlo analysis with 104 samples. As shown in Figure 4.11, the log-
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Fig. 4.12 Eigenvalue distribution for C432.
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Normal approximation yields large errors, especially at both tails of

the PDF which are often the points of great concern. In this example,

the log-Normal approximation yields 14.93% error for worst-case leak-

age estimation, where the worst-case leakage is measured at the 99%

point on the corresponding cumulative distribution function. The rank-

10 quadratic approximation reduces the estimation error to 4.18%.

For testing and comparison, the full-rank quadratic leakage model

is extracted for this example. Figure 4.12 shows the magnitude of the

eigenvalues of the quadratic coefficient matrix. Note that there are only

a few dominant eigenvalues. Figure 4.12 explains the reason why the

low-rank quadratic approximation is efficient in this example.



5

Robust Design of Future ICs

Most existing robust IC design methodologies attempt to accurately

predict performance distributions and then leave sufficient perfor-

mance margins to accommodate process variations. As variations

become more significant in the future, the continuously increasing

performance margin can make it quickly infeasible to achieve high-

performance IC design. For this reason, a paradigm shift in today’s IC

design methodologies is required to facilitate high yield, high perfor-

mance electronic products that are based on less reliable nano-scale

devices.

Toward this goal, the idea of adaptive post-silicon tuning has been

proposed and successfully applied to various applications [16, 22, 63, 90,

112]. Instead of over-designing a fixed circuit to cover all process vari-

ations, adaptive post-silicon tuning dynamically configures and tunes

the design based on the additional information that becomes available

after manufacturing is complete, as shown in Figure 5.1.

For digital circuit applications, adaptive supply voltage and adap-

tive body bias are two widely-used techniques to reduce delay and

leakage variations [22, 63, 112]. For analog circuit applications, device

mismatch is one of the major design challenges and dynamic element
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Fig. 5.1 Adaptive post-silicon tuning is one of the promising solutions to facilitate the future
scaling of IC technologies.

matching has been applied to reduce random mismatches for analog

devices (not only for transistors but also for resistors, capacitors, etc.)

[16, 90].

The concept of tunable design poses a number of new challenges and

opportunities. Extensive researches are required to solve the following

problems.

• Tunable circuit architecture. Circuit configurability can be

achieved in various ways, including: (1) continuous config-

uration on circuit parameters (e.g., power supply voltage,

bias current, etc.); and (2) discrete configuration to change

circuit topology and/or device size using switches (e.g.,

metal interconnects during manufacturing, CMOS switches

post manufacturing, etc.). Advanced materials and devices

such as phase-change switch and FinFET could possibly

be applied to improve circuit performance. Exploring vari-

ous tunable circuit architectures and analyzing their perfor-

mance trade-offs would be an interesting research topic in the

future.
• Analysis and design of tunable circuit. Traditional IC anal-

ysis and design methodologies were primarily developed for

deterministic (i.e., fixed) circuit architectures. These tech-
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niques, therefore, are ill-equipped to handle tunable circuits,

due to their dynamic and configurable nature. To address

this problem, a new CAD infrastructure is required to sta-

tistically analyze and optimize tunable circuits for adaptive

post-silicon tuning.
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