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We show that there are strong relationships between approaches to 
optmization and learning based on statistical physics or mixtures of 
experts. In particular, the EM algorithm can be interpreted as converg- 
ing either to a local maximum of the mixtures model or to a saddle 
point solution to the statistical physics system. An advantage of the 
statistical physics approach is that it naturally gives rise to a heuristic 
continuation method, deterministic annealing, for finding good solu- 
tions. 

In recent years there has been considerable interest in formulating op- 
timization problems in terms of statistical physics. This has led to the 
development of powerful optimization algorithms, such as deterministic 
annealing. 

At the same time good results have been attained by formulating 
learning theory in terms of mixtures of distributions (Jacobs et al. 1991) 
and using the EM algorithm (Jordan and Jacobs 1993). 

The aim of this note is to show that there are close connections be- 
tween the mixture of distributions and the statistical physics approaches. 
The EM algorithm can be, and has been, used in conjunction with deter- 
ministic annealing. This equivalence has previously been mentioned for 
some specific cases (Yuille et al. 1991; Stolorz 1991; Utans 1993) but, to 
our knowledge, its generality does not seem to be widely appreciated. 
We will demonstrate these equivalences by examining the elastic net al- 
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gorithm for the Traveling Salesman Problem (TSP). Then we will discuss 
the generalization to other problems. 

The elastic net (Durbin and Willshaw 1987) attempts to fit an elastic 
net, consisting of cities {y, : j’ = 1, .  . . . N} joined together by elastic 
strings, to a set of cities {x, : / I  = 1.. . . , M }  where N 2 M. The intuition 
is that the elastic forces will cause the net to find the shortest possible 
tour. This corresponds to minimizing an energy function: 

where the net is circular so that YN+I = y1. 
Here 11 is a parameter that characterizes the inverse scale. The idea is 

to minimize E,a[{y,}; /?I at large scale, small /I, and then track the solution 
as [ j  increases. 

It was shown (Durbin et al.  1989) that this could be interpreted in 
a Bayesian framework. We can write the Gibbs distribution P(Y I X) = 
(1/Z) exp{-dE[Y]} (where Z is a normalization constant) and express this 
in terms of Bayes‘ formula as 

We interpret P(Y) = (1/Z1) n, e-/’ylY~-J’l+l/2 as the prior (conditional) 
probability for the tour (Z1 is a normalization constant). The distribution 

corresponds to the product of a mixture of gaussian distribution (Z2 is a 
normalization constant). More specifically, each data point x,, is assumed 
to be produced by a mixture of gaussians centered on the points {y,}. 
Thus the elastic net corresponds to a mixture model of data generation 
combined with a prior model. 

It was then shown (Simic 1990; Yuille 1990) that the elastic net could be 
derived from a statistical physics system as a saddle point approximation. 
The derivation in Yuille (1990) started from an energy 

where the {V,‘,} are binary (0,l) variables which obey the constraint 

The partition function of the corresponding Gibbs distribution can be 
written as Z = Cv,f[dy]e-flEIVJ1. The sum over the V variables can be 
done explicitly (Yuille 1990) while imposing the constraints, to yield Z = 
J[dy]e-DEeff[Y;fl1, where E,.f[y;P] is given by equation 1. By an identical cal- 
culation we can compute the marginal distribution PM(Y) = Cv P(V, y), 

c, v ,  = 1. vp. 
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where P(y) is a Gibbs distribution with energy &[y; /?I, corresponding 
to the mixture distribution (equation 3). 

Thus extremizing E,ff[y; /-l] corresponds to performing a saddle point 
approximation’ to the partition function and hence to finding the mean 
field approximation to the system (Amit 1989). It can also be considered 
to be maximizing PM(y). This equivalence between finding the saddle 
point approximation and maximizing PM is the key reason why the sta- 
tistical physics and mixture approaches correspond. 

It is important to emphasize that there are many possible algorithms 
for attempting to minimize &[y; a]. The original algorithm (Durbin and 
Willshaw 1987) was a discretized version of steepest descent: 

To obtain the algorithm used in Durbin and Willshaw (1987) approximate 
dy/dt by [y(t + 1) - y(t)]/K, where K is a constant, and set y = y(f) in the 
right-hand side of equation 5 .  

However, the EM algorithm has also been successfully applied to 
find the saddle point solutions (Durbin, private communication) with 
results reported in Peterson (1990). An EM algorithm assumes there 
are two types of parameters, in this case the V and the y. An E-step 
estimates the V with the y fixed. An M-step maximizes to find the y 
with the V fixed. The E-step and the M-step alternate until convergence. 
(Observe that the M-step finds a single value for y while the E-step finds 
an expectation over a distribution of values for V. The EM algorithm 
finds a probability distribution for the V but, because they are binary 
variables, this is equivalent to finding their mean values.) For the TSP 
the ETstep is 

and - the the M-step corresponds to maximizing P(V, y)  with V given by 
V. This is equivalent to solving the linear equations for y: 

These can be solved by a variety of algorithms including the dynamic 
system: 

Yl+l - 

‘This corresponds to approximating the integral for Z by the maximum of the inte- 
grand. The more peaked the integrand, as /l k rn, the better the approximation. 
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Observe that the previous steepest descent algorithm can be written, 
using equation 5, as 

dy, = -2 1 V{'/(Y/ - 
d t  II 

X I I )  - 

Thus the only difference between EM (equations 6, 8) and steepest 
descent (equation 5) is that for EM the V and y are estimated in turn, 
while for steepest descent they are estimated together. Both algorithms 
will converge to a local mimimum of E,ff[{y/} : d]. It appears that, at fixed 
temperature, EM converges faster than steepest descent (Durbin, private 
communication) probably because, for this specific energy function, the 
E-step can be computed directly (see equation 6), and the M-step corre- 
sponds to solving linear equations (see equation 7). But the quality of 
the results on the TSP (Peterson 1990) decreased badly as the annealing 
schedule was increased, demonstrating that EM was effective only when 
used in conjunction with annealing. 

In summary, we can regard the elastic net as two types of system: 
(1) a mixture of distributions that can be solved, at fixed (j, by an EM 
algorithm, or (2) a statistical physics system whose mean fields can be 
estimated by a variety of algorithms including steepest descent and EM. 
In both cases deterministic annealing requires that the solutions are found 
at low /3 and then tracked as /j increases. This continuation method is 
a heuristic technique for finding the global minimum of the effective 
energy. By contrast the EM algorithm applied at fixed /j is guaranteed to 
find only a local minimum. 

The basic ideas here are straightforward to generalize. A problem 
posed in terms of a mixture of distributions can be reformulated as a sta- 
tistical physics problem and vice versa. An EM algorithm can be applied 
and can be thought of as either a way to obtain a maximum a poste- 
riori estimate of the mixture distribution or as a solution to the saddle 
point equations, the mean field equations, for the statistical physics sys- 
tem. In addition there is a simple relationship between a steepest descent 
algorithm to estimate the mean fields and the EM algorithm. 

Thus the EM algorithm should not be thought of as a rival to deter- 
ministic annealing. It is simply one way to solve the mean field equations. 
The key idea of deterministic annealing, which takes it beyond EM, is 
the continuation strategy of finding the solution at small / j  and tracking 
it as /j increases. 

We now briefly discuss how these results can be extended to other 
problems such as learning/adaptive experts (Jacobs et nl. 1991). For a 
general mixtures model one assumes that the data {x!,} are generated by 
a mixture of distributions: 
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where the set {al} consists of nonnegative numbers such that Cia, = 1; 
and the set {(Y,} characterizes the (continuous) parameters of the distri- 
butions {P,}. For example, we might let PI be a gaussian with parameters 

In practice, we are interested in determining the parameters {irI} from 
I t ,  = ( p .  a). 

the data. This can be done by applying Bayes' theorem to obtain 

where Pp(rr) is the prior probability of the parameters and P ( x )  is a 
normalization constant. The {o,} can be chosen by an estimator for 
this distribution, for example, the maximum u posteriori estimator {(r:} = 

argmaq,,,) P ( { ( k l }  I {x,,)). 
The nature of x will depend on the problem being modeled: (1) for su- 

pervised learning it is an input-output training pair, (2) for unsupervised 
learning it is an input, (3) it is the data for an optimization problem, for 
example, see our discussion of the TSP, and (4) for a signal processing or 
vision problem it is some processed version of the input signal or image. 
Observe that the V are interpreted differently for these cases. 

To formulate this as a mixtures problem, or in terms of statistical 
physics, we introduce binary decision variables {V,,,}, as for the TSP, 
with 1, V,,, = 1. V 11. This gives rise to P(V. IP I x) = eci'E(V,rr)/Z where 

As before we can define an EM algorithm for V and I t .  The E-step 
gives 

This will converge to a local maximum of P(n 1 x) or equivalently to 
a solution of the saddle point equations of the statistical physics system. 
Deterministic annealing will give a heuristic continuation method for 
solving these equations which, in general, will be preferable to using EM 
at fixed 1). 

While completing this work we learnt of an interesting result by Neal 
and Hinton (1993; see also Hathaway 1986), which states that both the E- 
and the M-steps of the EM algorithm can be interpreted as minimizing 
an effective energy, or equivalently as maximizing the associated Gibbs 

*These can be considered as hyperpriors for the models. 
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distribution. To understand this result from our perspective, observe 
that we can use saddle point techniques (see, for example, Simic 1990) to 
obtain an effective energy for the TSP energy without eliminating the V 
variables. This gives 

where the {Q,,} are Lagrange multipliers and {V,, ,}  correspond to the 
.expected value of the { VIL,} .  Minimizing E,ff(V. y] with respect to either 
V or y (keeping the other fixed) will yield the E- and the M-steps. (Ob- 
serve that minimizing E,ff[V,y] with respect to V ,  solving for V(y), and 
substutiting back gives the effective energy Eefi[y] of equation 1.) 
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