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Abstract: Statistical power analysis can be used to increase the efficiency of research efforts and to clarify 
research results. Power analysis is most valuable in the design or planning phases of research efforts. Such 
prospective (a priori) power analyses can be used to guide research design and to estimate the number of 
samples necessary to achieve a high probability of detecting biologically significant effects. Retrospective (a 
posteriori) power analysis has been advocated as a method to increase information about hypothesis tests 
that were not rejected. However, estimating power for tests of null hypotheses that were not rejected with 
the effect size observed in the study is incorrect; these power estimates will always be 50.50 when bias 
adjusted and have no relation to true power. Therefore, retrospective power estimates based on the observed 
effect size for hypothesis tests that were not rejected are misleading; retrospective power estimates are only 
meaningful when based on effect sizes other than the observed effect size, such as those effect sizes hypoth-
esized to be biologcally significant. Retrospective power analysis can be used effectively to estimate the num-
ber of samples or effect size that would have been necessary for a completed study to have rejected a spe-
cific null hypothesis. Simply presenting confidence intervals can provide addtional information about null 
hypotheses that were not rejected, including information about the size of the true effect and whether or not 
there is adequate evidence to "accept" a null hypothesis as true. We suggest that (1)statistical power analy-
ses be routinely incorporated into research planning efforts to increase their efficiency, (2) confidence inter-
vals be used in lieu of retrospective power analyses for null hypotheses that were not rejected to assess the 
likely size of the true effect, (3) minimum biologically significant effect sizes be used for all power analyses, 
and (4) if retrospective power estimates are to be reported, then the a-level, effect sizes, and sample sizes 
used in calculations must also be reported. 
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Although the theoretical basis of statistical 
power was developed decades ago (Tang 1938), 
power analysis has only recently gained promi-
nence in  applied ecological research. Statistical 
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power analysis has been advocated and some-
times used to improve research designs and to 
facilitate interpretation of statistical results in 
the applied sciences (Gerrodette 1987, Peter-
man and Bradford 1987, Peterman 1990, Solow 
and Steele 1990, Taylor and Gerrodette 1993, 
Searcy-Bernal 1994, Beier and Cunningham 
1996. Hatfield e t  al. 1996). Failure to  consider 
statistical power when a null hypothesis is not 
rejected can lead to inappropriate management 
recommendations (Hayes 1987). 
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Table 1. Possible outcomes of statistical hypothesis tests. 
Probabilitiesassociated with each decision are given in paren-
theses. 

Decision and result 

Do not re'ect 
Reality null hypotiesis Reject null hypothesis 

Null hypothesis 
is true Correct (1 - a) Type I error (a) 

Null hypothesis 
is false Type I1 error (P) Correct (1 - P) 

Recently, many journals, including The Jour-
nal of Wildlqe Management, have recom-
mended or required that statistical power be re-
ported routinely. However, statistical power 
analysis remains unfamiliar to many researchers 
and sometimes has been misapplied. Our objec-
tive is to clarify the role of power analysis in ap-
lied research by describing appropriate uses of 

power analysis, identifying other statistical tools 
that may be more convenient and appropriate 
than power analysis, illustrating how statistical 
power can be used to plan and increase the 
efficiency of research designs, and suggesting 
guidelines for reporting the results of retrospec-
tive power analyses. 

We appreciate the advice by K. P. Burnham 
who increased the scope and quality of the 
manuscript. S. DeStefano provided comments 
on an earlier version. 

BACKGROUND 
In the framework of the hypothetico-

deductive method (Popper 1962, Romesburg 
1981), research hypotheses can never be 
proven; rather, they can only be disproved (re-
jected) with the tools of statistical inference. 
Each time a decision is made about whether to 
reject a null hypothesis in favor of an alterna-
tive, however, there are at least 2 types of er-
rors that can be made (Table 1).First, a null 
hypothesis that is actually true might be re-
jected (a Type I error). The rate at which Type 
I errors will be accepted (a)is typically set by 
the researcher. In the framework of hypothesis 
testing, a null hypothesis is considered false and 
is rejected in favor of an alternative when P 5 
a .  In these instances, results are generally re-
ported as "significant." Second, a null hypoth-
esis that is actually false might not be rejected 
(a Type I1 error; Table 1). The probability of a 
Type I1 error is denoted as P. Statistical power 
is equal to 1 - P and is defined as the prob-

0.00, 
0.0 0.2 0.4 0.6 0.8 1.0 

Effect size 

Fig. 1. The relation between power and effect size for 
2-sided, 2-sample t-tests, cx = 0.10, and n = n, + n,. Increas-
ing sample size for a given effect size and a-level increases 
statistical power, as does increasing effect size for a given 
sample size and a-level. Increasing a-level for a given effect 
size and sample size also increases power (not illustrated). 

ability of correctly rejecting a null hypothesis 
that is false (Sokal and Rohlf 1981:166). 

Power, sample size, a,and effect size are the 
4 interrelated components on which statistical 
hypothesis testing is based (Cohen 1988, The 
Wildl. Soc. 1995~) .Each of these components 
is a function of all the others. Statistical power, 
therefore, is a function of sample size, a, and 
effect size. Increasing sample size, a, or effect 
size always increases power (Cohen 1988; Fig. 
1).Effect size is the component of power least 
familiar to many researchers, but effect size 
must be specified explicitly to calculate power. 

Effect size is sometimes misunderstood be-
cause its common usage and statistical meaning 
are often confused. Therefore, we dstinguish 
"effect" from "effect size" and illustrate the dif-
ference in our usage of these terms by compar-
ing the means of some variable between 2 in-
dependent populations (Fig. 2 ) .  We define ef-
fect as the absolute difference between popu-
lations in the parameter of interest, or similarly, 
as the change in the parameter due to applica-
tion of a treatment: Ik - kcIIn Figure 2, ef-
fect = 5.5 (k= 3.5 and kc = 9.0) for both 
sets of data. To determine power for a given ef-
fect, variance (u2)must be incorporated sepa-
rately into power calculations. We define effect 
size as the absolute difference between popula-
tions in the parameter of interest (i.e.,effect) 
scaled by the within-population standard devia-
tion (a),l k - p,Ci/u. Therefore, effect size is 
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Fig. 2. Frequency distributions for 2 hypothetical populations 
illustrating the differences between effect and effect size. Ef-
fect (pT- pCI)is identical for both sets of distributions; effect 
size (p, - ~ C l / ~ )is smaller for the lower set of distributions. 

effect (3.5 - 9.0 = 5.5) scaled by standard de-
viation (if o = 2.0, effect size = 5.5/2.0 = 2.75). 
In Figure 2, effect size differs for the 2 sets of 
data. Establishing a useful effect size when 
there are >2 groups being compared or for 
other types of analyses (e.g., regression, cat-
egorical models) is considered elsewhere (Co-
hen 1988, Richardson 1996). 

Conceptually, effect can be considered as the 
degree to which a phenomenon of interest is 
present, or as the degree to which application 
of a particular treatment causes a change in a 
parameter. In applied ecological research, effect 
should be considered as the minimum response 
that will be considered biologically significant. 
For example, to determine if application of an 
agricultural pesticide reduces a resident popu-
lation of small mammals by at least 20%, then 
the relative effect of interest is 20%. With all 
else equal, power to detect large effects is al-
ways greater than power to detect small effects. 

Power analysis can be used to improve 
research design (prospective or a priori) and to 
provide information about results from com-
pleted research efforts (retrospective or a pos-
teriori). Prospective power analysis can help re-
searchers design research efforts that have a 
high probability of detecting biologically signifi-
cant effects (i.e., high power). Retrospective 
power analysis can provide some information 
about statistical tests in which the null hypoth-

esis was not rejected. Although we illustrate 
power analysis using parametric statistical 
methods that focus on evaluating treatment ef-
fects (changes in parameters due to a treat-
ment) under the requisite assumptions (sample 
independence, homogeneity of variance, nor-
mally distributed errors), the issues we discuss 
are relevant to all statistical approaches. 

A note on 'accepting" null hypotheses.-Hy-
pothesis testing is based on rejecting null hy-
potheses with a predetermined degree of con-
fidence. When a null hypothesis is not rejected, 
it is not then appropriate to conclude the null 
hypothesis to be true (i.e.,"accept" the null hy-
pothesis). In practice, however, there are cir-
cumstances when it is necessary to decide if a 
null hypothesis can be considered true. These 
practical concerns are often why researchers 
perform retrospective power analyses, and why 
journal editors request they be reported. We 
stress, however, that experiments are not de-
signed to prove null hypotheses true; therefore, 
accepting a null hypothesis as true can never be 
performed with the same scientific rigor as re-
jecting a null hypothesis as false. Hence, when 
we suggest it reasonable to accept a null hypoth-
esis as true, we imply only that the available evi-
dence suggests that, given an established confi-
dence level, the size of the effect observed was 
too small to be considered of management or 
biological significance. This point is important 
because an effect of any size is detectable-no 
matter how small-if sample sizes are large 
enough (Johnson 1995). 

PROSPECTIVE POWER ANALYSIS 

Power Analysis in Research Planning 
When a research effort is being planned, 

power analysis should be used to determine the 
sample sizes necessary to achieve acceptably 
high power, or to determine the probability that 
an effect size of interest will be detected with a 
certain sample size (Peterman 1990). Deter-
mining power prospectively requires that 
sample size, a, and a biologically meaningful ef-
fect size be established. Power then can be 
computed with a range of values for each of 
these parameters and for different experimen-
tal designs, yielding a series of power curves 
that indicate the influence each of these param-
eters has on the statistical power of the planned 
research effort. 

To use power analysis, a study must be de-
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signed to detect a particular effect (or effect 
size). This effect is often the minimurn value 
considered to be of biological or management 
significance. Typically, researchers prefer to rel-
egate determination of significance to the re-
sults of statistical hypothesis tests-if a statisti-
cal test results in a significant P-value, the re-
sult is then considered "significant." This ap-
proach is unacceptable, however, because 
statistical significance and biological signifi-
cance are not synonymous (Tacha et al. 1982, 
Yoccoz 1991). Biologically trivial differences 
may be statistically significant if sample sizes are 
large and power is high, and biologically impor-
tant differences may not be statistically signifi-
cant if power is low (Johnson 1995). 

The expected sample variance (u') or coeffi-
cient of variation (u/p)necessary for prospec-
tive power analyses often can be estimated from 
pre~iousstudies. Estimates of these quantities 
often can be obtained from prior research that 
was similar to the planned study but was per-
formed in other geographic regions or with 
other, related taxa. Alternatively, estimates can 
be obtained from a pilot study. If no previously 
collected data are available, then a range of 
probable values can be used, and power cun7es 
generated for the likely range of values. 

An eman~pleofpro.spectiue potccr analysis to 
determine .sample size.-\Ve considered con-
ducting a study to investigate responses of bird 
populations to snags created in managed forests 
in Oregon. Abundance of ca~iv-nestingbirds 
\vould he estimated with auditory and ~ i sua l  
counts at fixed circular plots both before and af-
ter snags were created. 

\Ye determined statistical power resulting 
from potential changes in population sizes for 
the 3 most abundant species that nest in snags 
in this area, ha in  woodpeckers (Picoides cillo-
su ,s ) ,  brown creepers (Certhia fan~iliar-is), 
chestnut-backed chickadees (Parus i'ufescens), 
and red-breasted nuthatches (Sitta canadensis). 
For each species we estimated power to detect 
50, 100, 1.30,and 200% increases in abundance, 
using :3-9 replicates of control and treatment 
stands-the range of replicates that was logisti-
cally and economically feasible. \f7e determined 
power for a repeated-measures analysis of'vari-
ance, and for this example, set a = 0.05. For 
variance estimates, we used those reported by 
I-Iagar (1992), m~hocollected data in sirnilar 
habitat using sinlilar techniques in a nearby geo-
graphic area. 

Haiw woodwcker. a = 0.05 

3 
Chestnut-backedchickadee,a= 0 05 

0 0  I ,  

3 4 5 6 7 8 9 

No, replicates 

Fig. 3. Results of a prospective power analysis to detect in-
creases in abundance of 50, 100, 150, and 200% for 2 bird 
species in Oregon, based on a repeated-measures design, 
2-sided, with 3-9 replicates, and a = 0.05. 

Our analyses yielded power curves that were 
generally sirnilar for all species, which indicated 
that power to detect 50% population increases 
was lo\v (<0.45) for any number of replicates 
considered (Fig.3 ) .Power to detect a 100% in-
crease \vas acceptable for chestnut-backed 
chickadees with 8 or 9 replicates (>go%), mar-
ginal for brown creepers (-=0.80),but lo~vf i~ r  
the other species (<O.'iO). Not until effects 
reached 130 or 200% did power become ac-
ceptable (>0.80) for all species, and then only 
with the highest number of replicates consid-
ered feasible. In scenarios such as these, low 
power does not guarantee that statisticall>-sig-
nificant results would not be obtained (or \ice 
versa),only that the probability of detecting sta-
tisticalll- significant effects will be low. Further. 
it is possible that variance estimates ot~tainecl 
fro111 the actual study might differ from those 
used in calculations, resulting in a difference 
between true and estimated power. Neverthe-
less, these analyses indicate a low probability of 
obtaining conclusive results within the range of 
feasible sample sizes. 

Research Design and Power 
Many of the choices made when an experi-

ment or sune! is being planned influence the 
power of the research effort. These choices in-
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clude the range of treatment levels selected, the 
number and type of experimental units chosen, 
and how treatments are assigned to experimen-
tal units (design; Kuehl 1994).A principal ob-
jective in research design should be to maximize 
efficiency by decreasing experimental error and 
increasing precision of parameter estimates. 
Any technique that reduces error will increase 
statistical power-design is a most important 
mechanism by which to accomplish this objec-
tive. 

Even if the maximum number of replicates 
that can be used is constrained by cost or logis-
tics, the range of treatment levels &ctated by 
study objectives (applying a wider range of 
treatments could increase the effect and 
thereby increase power), and the techniques for 
measuring response variables established, statis-
tical power for a given research effort can of-
ten be increased by (1)establishing homoge-
neous blocks of experimental units, (2) measur-
ing concomitant information, and (3) selecting 
an efficient experimental design-the manner 
in which treatments are assigned to experimen-
tal units. These and other techniques for de-
creasing experimental error variance, increasing 
precision, and therefore increasing statistical 
power are discussed in texts on research design 
(Kuehl 1994). 

An example will illustrate the gains in power 
when an efficient experimental design and ap-
propriate statistical model for analysis are used. 
The effect of recreation on breedng bald eagles 
(Haliaeetus leucocephalus) was investigated by 
measuring brooding behavior of eagles with 
people camped at &stances of 500 and 100 m 
from nests (Steidl 1995). Assuming these data 
were collected with a completely randomized 
design, the null hypothesis of no difference in 
the percent day that eagles spent brooding with 
people camped at these 2 distances could not 
be rejected at any reasonable a-level with a 
%tailed t-test for independent samples (t = 

0.54, 52 df, P = 0.59, observed effect = 4.5%, 
SE = 4.1). However, power to detect a 20% ef-
fect with this design and a = 0.10 was low 
(0.20),indicating that the results were inconclu-
sive. Eagle nesting behavior changes rapidly as 
nestlings mature (Steidl1995),and a completely 
randomized design did not account for this 
known source of variability. Instead, a crossover 
design was used (Jones and Kenward 1989), 
where both treatment and control were applied 
in succession to the same experimental unit 

(nest).This design eliminated variability due to 
nestling age between nests. The null hypothesis 
of no difference in behavior between &stances 
was rejected with this approach (t = 2.19, 26 
df, P = 0.038), indicating that eagle behavior 
changed when people camped near nests. 

This example illustrates how choice of re-
search design can increase precision and there-
fore statistical power: the pooled standard de-
viation for the completely randomized design 
(29.8) was nearly 3 times as high as the stan-
dard deviation for the paired design (10.7),even 
though sample size for the crossover design was 
half that of the completely randomized design. 
Further, this example also illustrates the impor-
tance of using a statistical model that is consis-
tent with the research design. Here, the power 
gained by using an appropriate statistical model 
for analysis changed the study's conclusion. 

RETROSPECTIVE POWER ANALYSIS 
When a null hypothesis is not rejected, it has 

become an increasingly common practice to in-
quire about the power of the statistical test. This 
additional information is sought to help &stin-
guish between failing to reject a null hypothesis 
that was actually true (i.e., no real effect 
existed), and incorrectly failing to reject a null 
hypothesis that was actually false (a Type 11 er-
ror was made). If a null hypothesis was not re-
jected, but the estimated power of the test was 
high (for the min. biologically significant effect), 
we might infer that there was no biologically 
significant effect and contend the null hypoth-
esis to be true. If estimated power was low, 
however, we would consider the test to be 
inconclusive. Unfortunately, power has often 
been estimated incorrectly for null hypotheses 
not rejected (Hayes and Steidl 1997). 

Power estimated with the data used to test 
the null hypothesis and the observed effect size 
is meaningless. These retrospective analyses 
yield no information beyond that provided by 
the original hypothesis test because both power 
estimated in this way and the P-value of the sta-
tistical test are determined by sample size, a, 
and the observed effect size. Consequently, 
power incorrectly estimated this way and the 
P-value for the test are completely confounded: 
a hypothesis test that yields a high P-value will 
always have low estimated power and vice versa 
(Fig. 4). However, there is no relation between 
the observed P-value for a hypothesis test that 
was not rejected and true power. Further, the 
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Fig. 4. Relation between estimated power and P-value for 
F-testswith different degreesof freedom, incorrectlycalculated 
with observed effects, and a = 0.10. There is no relation be-
tween the P-value for a hypothesis test that was not rejected 
and true power. 

estimated power of any hypothesis test not re-
jected, properly calculated but based on the ob-
served effect size, will never exceed 0.5 (K. P. 
Burnham, Colo. Coop. Fish. Wildl. Res. Unit, 
pers. comm.).Hence, retrospective estimates of 
power calculated with the observed effect size 
provide no information about null hypotheses 
that are not rejected. 

Retrospective power analyses, however, can 
be useful in other circumstances. For statistical 
tests that do not reject the null hypothesis, ret-
rospective power estimates are meaningful if 
calculated with effect sizes other than the ob-
served effect size (i.e., under a different alter-
native hypothesis). Let us assume, for example, 
that for a particular study a treatment will be 
considered biologically significant if its applica-
tion yields an effect size of 225. Data are col-
lected and the null hypothesis of zero effect is 
tested and is not rejected. With the data col-
lected, power could be estimated correctly for 
an effect size of 25 (not the effect size observed 
with the data). This result will correctly answer 
the question "What was the estimated power of 
this study to detect an effect size of 25?" We 
note, however, that true power (an unknown pa-
rameter) always remains unknown and is only 
estimated with the data available. 

Retrospective power analyses can be used to 
estimate the effect size or sample size that 
would have been necessary for a study to 
achieve a particular level of power. For ex-
ample, with data already collected, the effect or 
sample sizes that would have been necessary to 
achieve 80% power can be estimated. The ef-
fect size necessary to achieve acceptable power 
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has been called the detectable effect size (Ro-
tenberry and Wiens 1985).After an experiment 
has been completed, all the components neces-
sary for calculating the necessary effect or 
sample size have been amassed and determin-
ing their values is relatively simple (Cohen 
1988). Note, however, that if variance could 
have been estimated, and sample size and 
a-level set, then the above retrospective power 
analyses could (and probably should) have been 
done before any data were actually collected. 
These are the only retrospective power analy-
ses that we find meaningful. 

Results of retrospective power analyses must 
be interpreted carefully because they answer 
only specific questions relating to hypothetical 
scenarios. For example, determining a detect-
able effect size does not answer the question, 
"How large an effect might have actually 
occurred in a study?", and low power to detect 
a biologically significant effect does not indicate 
whether or not such an effect actually exists. 

Reporting Retrospective Power Analyses 
Retrospective power, when estimated for ef-

fect sizes other than the observed effect size, 
can provide information about the potential for 
Type I1 errors to be made under a range of al-
ternative hypotheses. However, because power 
depends on sample size, effect size, and a-level 
used in calculations, reporting these values is 
essential for others to evaluate power estimates 
and to allow power to be compared among dif-
ferent studies of the same phenomenon. When 
reporting retrospective power estimates, we 
recommend that researchers report the speci-
fied effect size (or effect and variance), a-level, 
and sample size used in power calculations. Us-
ing the above example for bald eagles, we would 
report the results of the hypothesis test, power, 
and parameter values used to calculate power 
( t  = 0.54, 52 df, P = 0.59; power = 0.20 for a 
20% change in behavior at a = 0.10). Note that 
variance (or C\r, SD, SE, etc.) estimates, which 
are necessary for computing power, should be 
reported with summary data analyses. 

Confidence Intervals In Lieu of 
Retrospective Power 

When power is estimated retrospectively, re-
searchers must recognize that these estimates of 
true power (again, an unknown parameter) are 
based only on a single sample, and must be in-
terpreted as such. Confidence intervals, how-



276 STATISTICAI,POWERANALYSISSteidl et al. J. Wildl. Manage. 61(2).1997 

simplest to consider, the null hypothesis of in-
terest is usually whether or not the observed ef-

M~n~mum(+Idetedoble effect w~th95% power IP = o 051 fect was large enough to be considered biologi-
cally significant (i.e.,affected the system of in-
terest to a degree that merits concern). By ex-
panding null hypotheses beyond the strict 
statistical sense of zero effect to include all ef-
fects that are not biologically significant, it is 
then possible to evaluate if there is arnple evi-
dence to consider the null hypothesis to be true 

-1 (i.e.,to state that the treatment had no biologi-
M nmLm -I delectaole efled w,th 95% power la = 0 051d c,ill!. sip,nit>cantc1f'fcc.t1. In ycnc.r,tl. u co~~ticlt.~lcc 

7-7 7-,@"/"7,7--7-. intrn.ad h r  t11eo\)sc.n.t.tl effect l)ro\idcs t11(.in-
' ' 4 ti,rm~itionnrc,c-ssnn.to ,issc3ss \\.I~ctl~el-a null I ) \ . -

Fig. 5. Range of effect sizes included within the 95% confi-
dence interval for an observed effect size is narrower than the 
lower limits of effect sizes that are detectable with 95% power 
(represented by the filled area beyond the dashed lines). In 
this example, effect size, confidence interval, and power are 
for a 2-sided t-test. 

ever, provide a simple, more informative, and 
preferred alternative to retrospective power 
analyses. In some fields of research, confidence 
intervals have been employed as an alternative 
to significance testing (Greenland 1988, Good-
man and Berlin 1994). Similarly, Graybill and 
Iyer (1994:35) suggest never using hypothesis 
tests when confidence intervals are available, 
because confidence intervals are more informa-
tive; hypothesis tests, when used alone, can be 
misleading. Confidence intervals are useful in 
lieu of retrospective power analyses because the 
same factors that reduce power, including low 
sample size, high sample variability, and high a, 
also increase the width of confidence intervals. 
Further, confidence intervals provide informa-
tion about the true size of an effect rather than 
simply whether or not an effect differed from 
zero the only information provided by hypoth-
esis tests (The Wildl. Soc. 1995b). The range 
denoted by a 100(1 - a ) %  confidence interval 
is narrower than the range between different ef-
fect sizes necessary to achieve l O O ( 1  - a)% 
power (Fig. 5).Therefore, even though a par-
ticular study might have lacked the power nec-
essary to detect a specified effect size, the data 
from that study might indicate that there was 
low probability that the effect size specified ac-
tually existed. Hence, questions about the likely 
size of true effects can be answered with confi-
dence intervals, not retrospective power analy-
ses. 

Although a null hypothesis of "zero effect" is 

pothesis can be accepted reliably (The ~ i l d l .  
Soc. 1995~) .Using confidence intervals to 
evaluate the null hypothesis that "the treatment 
has no biologically significant effect on the pa-
rameter of interest" is one approach used in 
tests of bioequivalence (Metzler 1974,Westlake 
1976). Bioequivalence tests, originally devel-
oped in pharmacology and gaining increased 
use in ecological research (Dixon and Garrett 
1994, Erickson and McDonald 1995),have also 
been developed formally for t-tests (Hauck and 
Anderson 1984) and 2 X 2 contingency tables 
(Dunnett and Gent 1977). 

When a null hypothesis is not rejected at 
some a, the 100(1 - a)% confidence interval 
for the observed effect always includes values 
indicating zero effect (e.g.,O for comparisons of 
means, 1for odds ratios), but also denotes the 
entire range of hypothesized effects that could 
not be rejected given the available data. There-
fore, you can conclude, with 1 - a confidence, 
that the true effect lies within the range speci-
fied by the confidence interval. If the minimum 
biologically significant effect lies outside the 
100(1 - a ) %  confidence interval for the ob-
served effect, then it is reasonable to conclude 
the null hypothesis to be true at the specified 
a-level (Fig. 6). This approach is equivalent to 
rejecting the null hypothesis that a biologically 
significant effect occurred. If a portion of the 
confidence interval for the observed effect in-
cludes values considered biologically significant, 
then the null hypothesis should not be accepted 
as true and the results should be considered in-
conclusive. The wider the confidence interval, 
the more likely it is to include biologically sig-
nificant effects, rendering the test inconclusive 
(Fig. 6). In summary, a null hypothesis of no 
biologically significant effect should be consid-
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Fig. 6. Hypothetical observed effects (circles) and their as-
sociated 100(1 - a)% confidence intervals. The solid line rep-
resents zero effect and dashed lines represent minimum bio-
logically significant effects. In case A, the confidence interval 
for the estimated effect excludes zero effect and includes only 
biologically significant effects, so the study is both statistically 
and biologically significant. In case B, the confidence interval 
excludes zero effect, so the study is statistically significant; 
however, the confidence interval also includes values below 
those thought to be biologically significant, so the study is in-
conclusive biologically. In case C, the confidence interval in-
cludes zero effect and biologically significant effects, so the 
study is both statistically and biologically inconclusive. In case 
D, the confidence interval includes zero effect but excludes all 
effects considered biologically significant, so the "practical" null 
hypothesis of no biologically significant effect can be accepted 
with 100(1 - a)% confidence. 

ered true only when all biologically significant 
effects lie outside the confidence interval for 
the observed effect (Fig. 6).  

\Ve illustrate this use of confidence intervals 
with the above example of bald eagles and a 
completely randornized design, with a = 0.10. 
\Ye mill consider a biologically significant effect 
as one where the percent day spent brooding 
changed by 20% behveen treatment and con-
trol distances (control .i: = 32.6%, therefore a 
20% change = 26.6%). The observed effect 
was 4.5% (SE = 4.11, and the 90% confidence 
intenal for the observed effect (-3.64-
12.60%) includes the value for a 20% effect 
16.6%). The confidence interval for the ob-
sened effect includes values indicating a bio-
logically significant effect; therefore, the null 
hyothesis should not be accepted as true and 
the results should be considered inconclusive. 
However, if instead the 90% confidence inter-
\,a1 for the obsened effect was 2.98-5.98%, 
the statistical null hypothesis of zero effect 
would be rejected, but because this confidence 
in t end  did not include the value indicating a 
biologically significant effect (6.6%),you could 
conclude the null hy~othesisof no biologically 
significant effect to be true with 90% confi-
dence. 

METHODS TO DETERMINE POWER 
For many common statistical procedures and 

experimental designs, tables of power values 
have been published for a range of effect sizes 
and a-levels (Tiku 1967, 1972; Beyer 1982, 
Kraemer and Thiemann 1987, Cohen 1988). 
Further, dozens of software packages that per-
form power analyses have been developed re-
cently, many of which provide power estimates 
for a broader range of statistical procedures 
than are available in published tables (e.g., Bo-
renstein and Cohen 1988, Hintz 1996).We have 
found these packages to be a useful means of 
incorporating power into research planning and 
analysis. However, power tables or current soft-
ware are not readily available for several statis-
tical procedures and circumstances. In these in-
stances, efforts required to calculate power 
range from relatively simple to challenging. 
Most comprehensive statistical software pack-
ages (e.g., SAS, SPSS, S + )  include a range of 
functions for many common statistical distribu-
tions that can be used to calculate power. Fur-
ther, Monte Carlo procedures can be used to 
generate power estimates (Peterman 1990),es-
pecially for nonparametric statistical methods. 
In instances where retrospective power cannot 
be readily determined, and a prospective power 
analysis was not done, we recommend that con-
fidence intervals be used to increase the infor-
mation about hypothesis tests that are not re-
jected. 

Published tables and software packages func-
tion as if the values input for effect and vari-
ance are hypothetical parameters rather than 
estimates (i.e., pT - pc rather than .i:, - f,, 
a" rather than s'). Effect, variance, and sample 
size are then combined into a noncentrality pa-
rameter, A, which is a measure of the overall 
treatment effects in a study, whose form de-
pends on the research design used. When esti-
mates of these parameters are obtained from 
data in retrospective power calculations, h is es-
timated with the original test statistic (e.g., 
F-ratio). This can result in biased estimates of 
A which tend to overestimate true power. 

CONSEQUENCES OF TYPE I AND 
TYPE ll ERRORS 

By setting a at some predetermined level, 
such as the canonical a = 0.05, scientists are 
making a de facto choice as to the relative im-
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portance of Type I and Type I1 errors, because 
p increases as a is reduced. Decreasing a can 
increase p to an unacceptably high level and 
consequently reduce power to an unacceptably 
low level. In many circumstances, such as when 
the costs of environmental effects could be 
great, the potential risks and consequences as-
sociated with making a Type I1 error may out-
weigh those associated with Type I errors (Toft 
and Shea 1983, Hayes 1987, Peterman 1990). 

The burden of proof is typically on research-
ers to "prove" a phenomenon exists by reject-
ing the null hypothesis that the phenomenon 
does not exist. This approach implies a willing-
ness to accept the consequences of Type I1 er-
rors over those of Type I errors. In some situa-
tions this approach may be appropriate. How-
ever, when there are considerable risks associ-
ated with management actions based on the 
results of hypothesis tests that are not rejected, 
the consequences of Type I1 errors can exceed 
those of Type I errors (Peterman 1990).For ex-
ample, in the Pacific Northwest, there is a ques-
tion as to the amount of timber that can be har-
vested without adverse effects on songbird 
populations. A relevant null hypothesis might 
be that a particular level of timber harvest has 
no effect on the density of songbird populations. 
In this and similar instances, the null hypoth-
esis might be stated as one of no effect. If an 
experiment with low statistical power is per-
formed to test this hypothesis, the probability 
of rejecting the null hypothesis will be low, 
whether or not the true effect was biologically 
significant. If songbird populations were ad-
versely affected by a certain level of timber har-
vest, but forests continued to be managed as if 
songbirds were not affected because of deci-
sions based on low-power tests, then this Type 
11 error could lead to population declines. 

Management actions resulting from hypoth-
esis tests that were not rejected have an under-
lying, often unrecognized, assumption about the 
relative costs of Type I and Type I1 errors that 
is independent of their true costs (Toft and Shea 
1983, Cohen 1988, Peterman 1990).In particu-
lar, when p 2 a,scientists implicitly assume 
that costs of Type I errors exceed those of Type 
11 errors when their recommendations assume 
that a null hypothesis that is not rejected is true 
(Toft and Shea 1983). One approach suggests 
considering Type I1 errors as paramount when 
a decision would result in the loss of unique 
habitats or species (Shrader-Frechette and Mc-

Coy 1993). Other approaches have been sug-
gested by which Type I and I1 errors can be bal-
anced based on their relative costs (Osenberg 
et al. 1994). 

In general, the framework of hypothesis test-
ing has been largely overused by scientists (Sals-
burg 1985, Yoccoz 1991), especially in the con-
text of environmental decision making. Hypoth-
esis tests only assess "statistical significance"; 
"practical importance" may be better evaluated 
by the use of confidence intervals (Graybill and 
Iyer 1994:xiii). Reliance on hypothesis testing 
should be decreased in favor of more informa-
tive methods that better evaluate available in-
formation, includng Bayesian methods (Ellison 
1996). In circumstances similar to those out-
lined above for timber and songbirds, the rel-
evant issue is not whether timber harvest affects 
songbirds (obviously, there will be an effect on 
resident songbirds if all timber is cut); rather, 
the issue is to understand the magnitude of the 
effect caused by a particular level of harvest. 
Hypothesis testing should not be the only tool 
used for decision-making issues, especially 
where the risk associated with a decision is con-
siderable. In these instances, knowledge of the 
potential risks and available evidence for each 
possible decision should guide the decision-
making progress. 
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