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Determining a priori power for univariate repeated measures (RM)ANOVA designs with two or more
within-subjects factors that have different correlational patterns between the factors is currently dif­

ficult due to the unavailability of accurate methods to estimate the error variances used in power cal­
culations. The main objective of this study was to determine the effect of the correlation between the
levels in one RM factor on the power of the other RM factor. Monte Carlo simulation procedures were
used to estimate power for the A,B, and ABtests of a 2 x 3, a 2 x 6, a 2 x 9, a 3 x 3, a 3 x 6, and a 3 x 9
design under varying experimental conditions of effect size (small, medium, and large), average cor­
relation (.4 and .8), alpha (.01 and .05), and sample size (n =5, 10 ,15,20, 25, and 30). Results indicated
that the greater the magnitude of the differences between the average correlation among the levels of
Factor A and the average correlation in the AB matrix, the lower the power for Factor B (and vice
versa). Equations for estimating the error variance of each test ofthe two-way model were constructed
by examining power and mean square error trends across different correlation matrices. Support for
the accuracy of these formulae is given, thus allowing for direct analytic power calculations in future
studies.

Determining a study's power a priori is an important

part in the planning and formulation of experimental re­

search. It allows researchers the opportunity to evaluate

whether their experimental design has a sufficient prob­

ability of showing a statistically significant effect, thus

warranting the time, money, and effort necessary to con­

duct the research. In light of its benefits in experimental

planning, many analytical methods and computer pro­

grams have become available for determining the power

ofa number of statistical tests (e.g., Borenstein & Cohen,

1988; Bradley, 1988; Cohen, 1988; Erdfelder, Faul, &

Buchner, 1996; Friedman, 1982; Gorman, Primavera, &

Allison, 1995; Kraemer & Thiemann, 1987; Lipsey, 1990).

There are some statistical tests, however, for which power

analysis procedures have been less extensively described.

This is particularly the case for complex repeated measures

analysis of variance (RM ANOVA) designs. Many of the

programs noted above do not include options for com­

puting power for the Ftest in an RM ANOVA, and those

that do, do so only for designs with a single RM factor (or

for two or more RM factors under very restrictive condi­

tions of equal correlational patterns for all factors).

In an RM ANOVA the power of the Ftest of the RM

factor (and all its interactions) is a function of the mag­

nitude of the correlations between the levels of the RM

factor. These correlation coefficients can range from

near-zero to near-one, depending on the nature of the
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study and the reliability of the dependent variable. Con­

sequently, the power ofthe test can vary considerably from

study to study, even with constant sample sizes, magni­

tude of effect, and within-cell variances. Within a single

study, if there are two RM factors, it could be possible that

the power to detect a difference of say d units could be

high for one RM factor and very low for the other RM fac­

tor. Obviously, researchers would like to be able to esti­

mate, a priori, the power for each main effect and inter­

action in any RM design. Unfortunately, this is not

currently possible, and most textbooks and journal arti­

cles do not even acknowledge the difficulty with respect

to this aspect of power and sample size determination.

For example, a recent and very comprehensive paper

(Levin, 1997) on power in ANOVA designs includes

split-plot, RM, and ANCOVA designs, but never with

more than one RM factor. Given that designs with two or

more factors are quite common, especially in studies on

learning, the absence of appropriate methods to compute

power in these situations is a serious deficiency in a re­

searcher's tool chest of statistical methods.

Although a considerable amount of research has been

conducted on power analysis of RM ANOVA, much of

this work has focused on comparing power values be­

tween univariate and multivariate RM tests under varying

conditions of nonsphericity (Davidson, 1972; Grima &

Weinberg, 1987; Mendoza, Toothaker, & Nicewander,

1974). More importantly, most power and/or sample size

methods described have been restricted to those designs

involving a single within-subjects variable, particularly

the one-way RM designs (Davidson, 1972; Marcucci,

1986; Robey & Barcikowski, 1984; Vonesh & Schork,

1986) and two-way mixed or "group by trials" models

347 Copyright 2000 Psychonomic Society, Inc.



348 POTVIN AND SCHUTZ

(Bradley & Russell, 1998; Marcucci, 1986; Muller &

Barton, 1989; Muller, LaVange, Ramey, & Ramey, 1992;

Mulvenon & Betz, 1993; Rochon, 1991). It is acknowl­

edged that some methodologists are aware of the need to

compute power in designs with two or more RM factors

and that they have included such design options in their

computer programs. For example, Bradley's (1988) very

useful program DATASIM can now "accommodate de­

signs having any mixture of up to three independent

and/or correlated-groups factors" (Bradley, Russell, &
Reeve, 1996). However, researchers can make use ofsuch

options to compute an a priori power only for designs

with a single RM factor, or, for two or more RM factors,

they must be willing to assume that the magnitudes of

the correlations between factor levels are the same for

each factor. To use programs such as DATASIM to com­

pute power requires the computation ofthe expected error

variance for each ofthe RM effects-but analytical meth­

ods to compute these error variances exist only for single­

factor RM designs (unless one is willing to assume that

the error variances are the same for each RM factor-a

most tenuous assumption).

To determine power for a univariate RM ANOVA, a

noncentrality parameter must be computed on the basis

of the experimental conditions of the design. The non­

centrality parameter, A,a function ofeffect size and sam­

ple size, is a measure representing the factor by which

the F ratio departs from the central F distribution when

a difference between treatment means actually exists

(Winer, Brown, & Michels, 1991). Although three other

statistics are also used as noncentrality or effect size

measures-s-S? (Davidson, 1972; Robey & Barcikowski,

1984), cf> (Pearson & Hartley, 1951; Tang, 1938; Winer

et al., 1991), andj(Cohen, 1988; Kirk, 1995)-all are

closely related to A, and like A, essentially represent the

magnitude of difference between population means in

relation to the population error variance of the dependent

variable involved. For within-subjects RM ANOVA de­

signs with q levels on the one and only RM factor (which

we label a "trials" effect here), the noncentrality param­

eters can be computed as follows:

(a) for the trials effect in a one-way RM design, j = 1, ... ,

q;

(I)

(b) for the group main effect in a two-way (Ap X Bq )

mixed design, i = 1, ... ,p;

nqI.(,ui - ,u)2
AA=? (2)

(J';

(c) for the trials main effect in a two-way (Ap X Bq )

mixed design, j = 1, ... , q;

npI.(,u)-,u)2
. As = 2 and (3)

(J'e

(d) for the groups X trials interaction in a two-way

(A
p

X B
q

) mixed design, i = 1, ... ,p, j = 1, ... ,q;

nI.I. (,ui) - ,ui - ,u) +u )2
AAS = (4)

(J'2
e

where ,ui) is the cell mean, u, and ,u) are the marginal

means for the levels of the randomized group (RG) and

RM factors, respectively, ,u is the grand mean, n is the

sample size per group, p and q are the number of levels

ofthe RG and RM factors, respectively, and (J'~ represents

the error variance for the specific effect (Bradley, 1988;

Winer et al., 1991).

As shown in Equations 1-4, the numerator ofAfor each

test can be computed simply by inputting p, q, the de­

sired n, and an estimate ofthe means. Approximating the

denominator of A, the error variance for these tests, is

often much more complex. The error variance (MSerror )

is a function of (J'2, the common within-cell variance

(i.e., the estimated average variance among scores of the

dependent variable within a group), and 15, the estimated

average of the q (q - I) / 2 correlation coefficients among

repeated trials (Winer et al., 1991). For one-way RM tests,

and the trials main effect and interaction test ofthe two-way

mixed model, the expected error variance is as follows:

E(MSerror ) = (J'~ = (J'2(1 - 15). (5)

For the group main effect test ofthe same design, the re­

lationship between (J'2 and 15 is somewhat different and

involves a third variable, q, the number of trials of the

RM factor. In this case, the error term is expressed as

E(MSerror ) = (J'~ = (J'2 [I + (q - 1) 15]. (6)

Once Ahas been determined (or any ofits equivalents),

power can then be estimated for a specific RM ANOVA

test by referring to appropriate power tables I (Kirk, 1995;

Pearson & Hartley, 1951; Rotton & Schonemann, 1978;

Tang, 1938) or inputting Avalues directly into software

programs that include algorithms for computing the cu­

mulative distribution function of the noncentral F distri­

bution (e.g., DATASIM; Bradley, 1988). For designs with

one RM factor, an alternative method offered by some

computer power programs (e.g., PASS; NCSS, 1991) is

to input the conditions of the experimental design (p, q,

n, means, (J'2, 15, etc.) directly and have the computer cal­

culate values of Aand power automatically.

When two or more RM factors are present in a design,

however, a problem exists in determining A, and, more

specifically, in computing its denominator term or error

variance. In the case of the two-way RM ANOVA, three

average correlation values are possible, one for each in­

dependent matrix of the design (within-factor A, within­

factor B, and the AB submatrices), and it is not clear how

these values affect the error variance and thus the power

ofa particular test. We expected that, similar to what hap­

pens to the power of the group factor in the two-factor

mixed model design (see Equation 6), the greater the

magnitude of the correlations among the levels of Fac-



(7)

tor A, the larger the error variance for Factor B (and thus

the lower the power). Pilot work conducted by the re­
searchers of this study suggested that the relationship be­

tween error variance and correlations for designs with

two RM factors is more complicated than that expressed
in the power formulae of designs with just one correla­
tion matrix. That is, the average correlation coefficient

of a given matrix in a multiple RM design does not ade­

quately account for the change that occurs in the error

variance ofits respective test. It appears that few attempts
have been made to resolve this issue computationally.

Although Winer et aI. (1991) and Dodd and Schultz (1973)
have provided a post hoc procedure for determining
power for these designs using omega-squared, (1)2, a mea­

sure of the magnitude of the experimental effect, such a

method is not very practical for a priori power analysis

since it requires the researcher to know ahead oftime the
mean square error of the test involved.

As a result of the problems that exist in computing an
appropriate error term, a priori power estimation for RM

designs with multiple within-subjects variables remains
difficult or unavailable. Currently, investigators whose ex­

perimental designs involve two or more RM factors are
faced with either collecting values ofresidual error from
previous research, an often difficult and impractical al­
ternative, or avoiding the power issue altogether. Since

such designs are often encountered in the health and be­
havioral sciences, it is important that the power of these

statistical tests under varying conditions be determined

and their values be made available.
Since analytical solutions to this problem do not ap­

pear to exist, Monte Carlo (MC) procedures can be used

to provide approximations of error variances and power
for specific RM designs under varying conditions. In the

past, MC simulation has proven useful for approximating
power in the two-way mixed model (Grima & Weinberg,
1987; Mendoza et aI., 1974; Muller & Barton, 1989), but

this method has not been extended to those designs in­
volving two or more RM factors. Thus the purposes ofthis
study were to conduct MC simulations of ANOVA for

the two-factor repeated measures design to (1) determine
the effect of the magnitude of the correlations among the
levels of one RM factor on the magnitude ofthe error vari­

ance, and therefore on the power, of the other RM factor;
(2) generate a series ofuser-friendly power tables for RM
ANOVAdesigns with two within-subjects variables under

a variety of sample size, effect size, and correlation ma­

trix conditions; and (3) attempt to develop equations to
compute approximations of the error variance (and thus
?) for tests ofthe two-way RM design by examining mean
square error (MSerror ) values from simulation results
under different correlation matrices and identifying the

relationships involved. If we were successful with re­

spect to the third purpose, it would be unnecessary to
present the findings ofthe second. The availability of'ac­
curate estimations of the error variance for each of the
three effects in the two-way RM ANOVA would permit
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direct calculation of power values from the noncentral F

distribution, and thus tables ofapproximate power values
would not be necessary.

METHOD

Selecting RM Designs

and Experimental Conditions
Empirical data collected from studies and dissertations from a

variety ofdisciplines and involving RM ANOYA tests were used to

establish an ecologically valid range of design conditions (i.e., ef­

fect sizes, average correlation values, and sample sizes) for which

power would be generated in this study. On the basis of these data,

a total of three different effect sizes-.2 (small), .5 (medium), and

.8 (Iarge}-two average correlation values, .4 and .8, and six dif­

ferent sample sizes-5, 10, 15,20,25, and 3O-were chosen. In ad­

dition, several RM levels of the two-way (A X B) ANaYA design

were selected on the basis of their frequent occurrence in the field.

For the A factor, this included two and three trials, and for the B fac­

tor, three, six, and nine trials. Two levels of alpha were chosen (.01

and .05) to provide a range of power values over different Type I

error rates for the A, B, and AB tests. Thus, the total number ofex­

perimental conditions for which power was estimated in this study

was 2,592.

It must be noted that the "effect size" used here differs from the

effect size f, defined by Cohen (1988). First, Cohen did not suggest

an effect size for the two-factor repeated measures design, and sec­

ond, since a purpose ofthis study was to provide easy-to-use power

tables for the practitioner, we wished to utilize an effect size that

would be easy to calculate. Consequently, the effect size for each

main effect is calculated as

d' = 11m"" -Ilmin
C1 '

where Ilm.x and Ilmin are the expected largest and smallest marginal

means within a factor and C1 is the expected average within-cell

standard deviation. This is similar to Cohen's d used in a t test, and

referred to as "the range ofthe standardized means" by Cohen in the

ANaYA context. For the interaction, we used

• 1(111 -1l2)max - (Ill -1l2)min I
d = ,(8)

C1

where (Ill - 1l2)m.x represents the maximum difference between

cell means within a level of A over all levels ofB, and <Ill - 112 )min

is the minimum difference of this same effect? This results in a d'

for the interaction, which is on a slightly different scale than the d'

for the main effect. For example, in a 2 X 2 RG design, our

"medium" effect size of d" = .5 for the main effects approximately

equates tof= .25 (which is Cohen's value for a medium effect size),

but our d" = .5 for the interaction equates to anfof approximately

.18. This is not an issue in using the power tables, but one cannot

directly compare the power for a main effect and an interaction, al­

though both have an effect size of .5. We feel our d' procedures are

justified because oftheir ease ofcalculation-and the power values

are read directly from these d' estimates. Subsequent power calcu­

lations are computed under the expectation that the k means of a

factor are equally spaced along the minimum-to-maximum contin­

uum. If all means are clustered at either end of the continuum, our

power calculations will slightly underestimate the true power, and

if all except the two extreme means are clustered at the median, our

values will slightly overestimate the true power.

Power Determination

A MC simulation program developed by Eom (1993) and modi­

fied by the researchers ofthis study was used to determine power es-
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Figure 1. Representation of a correlation matrix for a 3 (A) X 3 (B) RM

ANOVA: General form and numeric example. PA and PD represent the average
correlation among the A and B (pooled) trials, respectively, and PAD represents
the average correlation among the AB coefficients having dissimilar levels.

timates. This program, written in FORTRAN 77, utilized a number

of the subroutines of the International Mathematical and Statistical

Library (IMSL, 199I). All computations were done in double preci­

sion. For each design condition, a population variance-covariance

matrix and a mean vector were used as input to generate a popula­

tion (N = 120,000) ofcontinuous data from a k-variate normal dis­

tribution using the IMSL subroutine DRNMVN. Random samples

of data were repeatedly drawn and subjected to the appropriate RM

ANOVAtest (using the IMSL subroutine ANOVA).Actual values of

power were computed by totaling the number of F tests found sig­

nificant for a given a and dividing the result by the overall number

oftests performed for the simulation. Valuesof means inputted ranged

from 8.8 to 10.4,and within-cell variances equaled 1.0 across the dif­

ferent levels of RM. These values were selected to provide the spe­

cific ESs (d*) desired.

For each design, four different variance-covariance matrices

(equivalent to correlation matrices, since all variances were I) were

constructed to represent different levels of dependencies between

the levels within each factor. With two RM factors, the variance­

covariance matrix consists of three submatrices, one representing

the correlations among the levels of Factor A, one representing the

correlations among the levels of Factor B, and one consisting of the

correlation coefficients representing the relationships between the

levels across the factors (the "interaction" matrix). Figure I provides

both a generic matrix of this type for a 3 X 3 design and one of the

specific variance-covariance matrices used in this study. The aver­

age ofall the PAcorrelations, PA, is the value corresponding to Pin

Equation 5, which is known to be positively related to the power of

the A main effect. Similarly, PB' the average ofall the PBS, is related

to the B main effect. The PAB values are involved, in some way, in

the error variances for the interaction effect. The nature of this re­

lation, and ofhow PA affects the estimate of (JB2, and PB affects the

estimate of (JA2, are investigated as the secondary purpose of this

study.

In all cases, RM designs were analyzed using a univariate rather

than multivariate approach since anecdotally the former is by far

the more common one utilized by health and behavioral researchers,

despite its more restrictive assumptions. Although the multivariate

test is considered a better choice when the assumption of sphericity

is violated (Rouanet & Lepine, 1970; Schutz & Gessaroli, 1987),

the univariate model offers a valid and at times better approach (Men­

doza et al., 1974; Muller & Barton, 1989) when it is not. Thus we

restricted our power estimates to data meeting the conditions oflocal

sphericity-that is, e = 1.0 for each of the three error variance­

covariance matrices. Although equal correlations are not a neces­

sary condition for sphericity, for ease ofgenerating the matrices we

used constant values for the correlations within a factor (see Fig­

ure I for such an example).

To ensure reasonable accuracy ofpower estimates, the number of

tests (replications) performed per simulation by the Me program



was set at 3,000, resulting in a standard error ofproportion for true

power values of .50 and .99 of.009 and .002, respectively. With 95%

confidence, therefore, the accuracy of power values derived from

the MC simulations of this study was expected to be about ±.018

for tests with moderate power (.50) and ± .004 for those exhibiting

power at the extremes (.99 or .0I).

Accuracy and Reliability of Power Estimates

Several measures were undertaken to verify the accuracy and re­

liability of the MC program at approximating power. First, in order

to ensure that the MC routines were computing correctly, ANaYA

test results generated from this program were compared with those

computed from a well-known statistical analysis package (BMDP,

1988). This was done by extracting test data generated by the sim­

ulation program and then subjecting them to the appropriate statisti­

cal procedure(s) using BMDP. For all conditions examined, ANaYA

statistics (mean sum of square values, F ratios) for the two-factor

RM design were identical across the two programs.

A second method for assessing the accuracy of the MC program

involved comparing power values from the simulation program for

a one-way RM design with direct analytic calculations of power.

This was done by calculating Aand using the associated probabil­

ity from the noncentral F distribution (using DATASIM, Bradley,

1988). A total of 162 conditions were involved in which absolute

differences in power between MC and DATASIM were determined

for designs with 3, 6, and 9 RM. According to Muller and Barton

(1989), absolute differences equal to or below .04 (4.0%) are suffi­

cient for power purposes. Of the 162 differences, none were above

this value and only 4 were above .025 (2.5%). It was not possible to

provide an exact test for the two-way RM design because of the un­

availability of the formula to compute A; however, Bradley (per­

sonal communication, 1998) used DATASIM to run two-way sim­

ulations for the 3 x 3 design, d" = 5, with all four correlation

structures. Of96 power values calculated, the largest difference be­

tween his results and ours was .027, and that was the only difference

greater than .02. It was therefore concluded that both programs pro­

duced similar power estimates.

Finally, the reliability ofthe MC programs was assessed by repli­

cating simulation runs under identical experimental conditions. Sim­

ulations were repeated for several conditions ofthe two-way RM de­

sign in which only the random number generator seed was changed.

The largest range among power values from repeated simulations of

a given condition was .025. On the basis ofthis and results from other

procedures performed, the MC program was considered reliable and

capable of providing accurate estimates of true power.

RESULTS AND DISCUSSION

Power Tables

Table I provides an example of the type ofdata (power

estimates) generated for each of the six designs. The table

gives the power of a specific test (A and B main effects,

AB interaction) in the 3 X 6 RM ANOVA for the differ­

ent levels of alpha (a), effect size (ES), average correla­

tion (5), and sample size (n). In addition, each column

within a given ES and a represents power values for one

of the four correlation matrices examined under the two­

way RM design (e.g., the 484 matrix where Pfor the A, B,

and AB effects equals .4, .8, and .4, respectively). Power

can be determined by selecting the test and level of sig­

nificance and crossing the column matching the estimated

ES and correlation matrix with the desired sample size. As

an example, power for the A main effect test ofa 3 X 6 RM

ANOVA (Table 1) having an ES (d') of.2, a p among the
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levels of Factors A and B of.8 (i.e., the 888 matrix), and

n = 20 would be .65 at a = .01 and .87 at a = .05.

As noted in the introduction to this paper, one of the

purposes of this study was to develop tables of approxi­

mate power estimates for a number of specific conditions

and designs in order to assist researchers in determining

power and/or sample size in planning their studies. How­

ever, we also noted that should we be fortunate enough

to ascertain the equations for the error terms for each re­

peated measures factor, it would not be necessary to pre­

sent a selection of design-specific power tables. With

such equations one could analytically compute a non­

centrality parameter (e.g. , A.) and then derive an exact es­

timate of power with a program such as DATASIM. As

we show below, we have developed equations that pro­

vide very accurate estimates of the error variances, and

thus the presentation of a set of power tables for a spe­

cific set of conditions of a, p,n, d", p, and q is not nec­

essary. We have presented one power table, for the 3 X 6

RM design, in order to examine the results germane to

the first purpose ofthis study, that is, the effects ofthe cor­

relational structure ofone factor on the power of the other

factor. The values given in Table I are the analytic values

(computed using Equations 9,10, and 11) rather than the

simulated values, because the former are more exact. The

simulated power estimates exhibited virtually no bias

and a high degree of accuracy. For example, of the 432

calculated power values presented in Table I, the mean

difference between the simulated and calculated values

was -0.002, and the largest difference was 0.024.

The Effect of p on Power

Ofspecial interest are the power trends observed across

the different correlation matrices within a given test and

design. As expected, the larger the correlation among the

levels of a factor, the greater the power of the F test for

the main effect of that factor. The extent of this effect is

considerable; for example, in a 3 X 6 design, with d* =

0.20, n = 15, and a= .05, doubling the correlation in the

A factor (from .4 to .8; i.e., the 444 and 844 matrices),

results in an increase in power from 0.28 to 0.72 for the

A main effect (Table I). The magnitude of the effect is

similar for the B factor, even though it has twice as many

levels of the RM factor as does A. With a small effect size

(a = .05 and n = 30), the power is .29 for the 444 matrix

and increases to .78 with the 484 matrix.

The more important finding with respect to the effect

of p on power relates to the effect of the correlations as­

sociated with one factor on the power of the test of the

main effect of the other factor. Specifically, if the corre­

lations among the levels ofB are larger than those within

the AB matrix (i.e., PB - PAB > 0.0), there is a reduc­
tion in the power for the test of the A effect (and the test

on B is similarly affected by the A correlations). For ex­

ample, in regard to the A main effect in Table I, with the
conditions d* = 0.20, a = .05 and n = 30, it can be seen

that for PA = .4, the power is .55 when PB and PAB are
also low (.4), but the power for A drops markedly to .16
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Table 1

Power of the A, B, and AB Effects for A 3(A) x 6(B) ANOVA

With Repeated Measures on Both Factors

ES

Small (.20) Medium (.50) Large (.80)

15 for A: .4 .4 .8 .8 .4 .4 .8 .8 .4 .4 .8 .8

15 for B: .4 .8 .4 .8 .4 .8 .4 .8 .4 .8 .4 .8

15 for AB: .4 .4 .4 .8 .4 .4 .4 .8 .4 .4 .4 .8

a n Main Effect of Factor A (3 Levels)

.01 5 .03 .01 .07 .07 .17 .03 .62 .62 .53 .09 .98 .98

10 .06 .02 .24 .24 .59 .09 .99 .99 .98 .31 1.00 1.00

15 .11 .03 .45 .45 .87 .18 1.00 1.00 1.00 .57 1.00 1.00

20 .17 .03 .65 .65 .97 .27 1.00 1.00 1.00 .77 1.00 1.00

25 .23 .04 .79 .79 .99 .37 1.00 1.00 1.00 .89 1.00 1.00

30 .30 .05 .89 .89 1.00 .47 1.00 1.00 1.00 .96 1.00 1.00

.05 5 .11 .06 .23 .23 .43 .13 .90 .90 .85 .27 1.00 1.00

10 .19 .08 .50 .50 .84 .26 1.00 1.00 1.00 .60 1.00 1.00

15 .28 .10 .72 .72 .97 .39 1.00 1.00 1.00 .82 1.00 1.00

20 .38 .12 .87 .87 .99 .52 1.00 1.00 1.00 .93 1.00 1.00

25 .47 .14 .94 .94 1.00 .64 1.00 1.00 1.00 .98 1.00 1.00

30 .55 .16 .98 .98 1.00 .73 1.00 1.00 1.00 .99 1.00 1.00

Main Effect of Factor B (6 Levels)

.01 5 .02 .04 .01 .04 .08 .39 .03 .39 .31 .92 .10 .92

10 .03 .10 .02 .10 .29 .91 .09 .91 .83 1.00 .33 1.00

15 .05 .20 .02 .20 .53 1.00 .17 1.00 .98 1.00 .59 1.00

20 .07 .31 .03 .31 .74 1.00 .26 1.00 1.00 1.00 .80 1.00

25 .09 .43 .04 .43 .88 1.00 .37 1.00 1.00 1.00 .92 1.00

30 .12 .54 .04 .54 .95 1.00 .47 1.00 1.00 1.00 .97 1.00

.05 5 .08 .13 .06 .13 .25 .68 .12 .68 .60 .99 .27 .99

10 .11 .27 .07 .27 .54 .98 .24 .98 .96 1.00 .59 1.00

15 .15 .41 .09 .41 .78 1.00 .37 1.00 1.00 1.00 .82 1.00

20 .20 .55 .11 .55 .91 1.00 .50 1.00 1.00 1.00 .94 1.00

25 .24 .68 .12 .68 .97 1.00 .62 1.00 1.00 1.00 .98 1.00

30 .29 .78 .14 .78 .99 1.00 .72 1.00 1.00 1.00 1.00 1.00

A X B Interaction

.01 5 .01 .01 .01 .01 .02 .03 .03 .03 .03 .09 .09 .09

10 .01 .02 .02 .02 .02 .07 .07 .07 .06 .30 .30 .30

15 .01 .02 .02 .02 .03 .14 .14 .14 .11 .56 .56 .56

20 .01 .02 .02 .02 .05 .22 .22 .22 .18 .77 .77 .77

25 .02 .03 .03 .03 .06 .32 .32 .32 .25 .90 .90 .90

30 .02 .03 .03 .03 .08 .42 .42 .42 .34 .96 .96 .96

.05 5 .05 .06 .06 .06 .07 .11 .11 .11 .10 .24 .24 .24

10 .06 .07 .07 .07 .09 .21 .21 .21 .18 .55 .55 .55

15 .06 .08 .08 .08 .12 .33 .33 .33 .28 .79 .79 .79

20 .06 .09 .09 .09 .15 .45 .45 .45 .38 .92 .92 .92

25 .07 .11 .11 .11 .19 .57 .57 .57 .48 .97 .97 .97

30 .07 .12 .12 .12 .23 .67 .67 .67 .58 .99 .99 .99

15, average of A, B, or AB correlation coefficients in a given matrix; ES, effect size (d'); n = sample size.

when Ps is high (.8) and PAS is low (.4). At first glance tion among the levels of Factor B has no effect on the
this suggests that it is the largePSthat causes the power re- power of the A main effect when the Ps and PAS values
duction, but this is not so. In regard to the next two columns are equal. On the other hand, when Ps 2: PAS (the situ-
of Table 1 (d* = 0.20, a = .05, n = 30), with PA = .8, it ation in the 484 matrix), this causes a considerable de-

can be seen that the power is .98 for Ps = PAS = .4, and crease in the power of the A effect. A similar pattern of
this does not change with an increase in Ps (Ps = PAS = results occurs with the test of the B main effect (middle
.8). This is because the (Ps - PAS) difference is constant panel of Figure 2). These results parallel the relationship
for these two conditions. This relationship held true for between the magnitude of the correlation of the RM fac-
all correlation conditions simulated, and is clearly shown tor and the power of the groups effect (the nonrepeated
in the analytic expressions presented later in this paper. measures factor) in a mixed model design where the

Figure 2 (top panel) depicts this common power trend MSerror for the groups effect is increased by a factor of I

for different n ofthe A main effect ofa 3 X 6 design with + (q - 1)15 (see Equation 6). Apparently, the same type

small ES and a = .05. It shows that the average correla- of effect occurs in the two-way RM ANOVA; the exact
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Figure 2. Comparison of power across different correlation matrices for tests of a 3
x 6 RM ANOVAdesign, based on small effect size and a= .05. (The first, second, and
third numbers of a matrix represent average correlation values of the A, B, and AB
effects, respectively).

nature of this relationship is shown later in Equations 9

and 10.
A different power trend emerges for the tests of the

AB interaction relative to those of the main effect tests.
Referring to the Table I again, we see that matrices in

which at least one factor (A, B, or both) has a p = .8 re­
sult in the highest power for the AB test. As illustrated
in the bottom panel of Figure 2, three of the four matrices
(888,844, and 484) produce equal power for the AB test

while the 444 matrix exhibits inferior power values for all
n. These results suggest that power for the interaction test
in the two-way RM model remains the same among dif­

ferent correlation structures as long as all matrices in­
volved have at least one RM factor with a pamong its tri­
als equal in magnitude to the highest overall pobserved
among the AB matrices (in this case, .8). This appears to

be true at least for all conditions where PAB equals the
lower Pamong the two factors.
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Table 2

Mean Statistics Generated From Monte Carlo Simulation

for Different Conditions ofthe Two-Way RM ANOVA*

Correlation Matrix

3 x 3 3 x 6 3 x 9

Statistic Test 444 484 844 888 444 484 844 888 444 484 844 888

MSeffect A 2.47 3.30 2.09 2.09 4.34 6.34 3.93 3.92 6.12 9.45 5.79 5.82

B 2.48 2.07 3.35 2.10 1.65 1.25 2.43 1.25 1.49 1.08 2.24 1.07

AB 0.76 0.35 0.36 0.36 0.69 0.28 0.29 0.29 0.68 0.27 0.27 0.28

MS err or A 0.60 1.40 0.20 0.20 0.61 2.60 0.20 0.20 0.60 3.81 0.20 0.20

B 0.60 0.20 1.39 0.20 0.59 0.20 1.39 0.20 0.60 0.20 1.39 0.20

AB 0.60 0.20 0.20 0.20 0.60 0.20 0.20 0.20 0.60 0.20 0.20 0.20

FRatio A 4.61 2.68 11.83 11.62 8.09 2.76 21.96 22.30 11.49 2.81 32.40 32.74

B 4.65 11.64 2.72 11.90 2.92 6.52 1.83 6.47 2.56 5.54 1.65 5.52

AB 1.34 1.87 1.94 1.91 1.17 1.45 1.47 1.47 1.15 1.39 1.39 1.40

Power A 0.53 0.26 0.95 0.96 0.83 0.27 1.00 1.00 0.96 0.28 1.00 1.00

B 0.52 0.96 0.24 0.96 0.54 0.98 0.24 0.98 0.61 0.99 0.27 0.99

AB 0.10 0.22 0.24 0.23 0.09 0.20 0.20 0.21 0.11 0.23 0.24 0.24

*Based on medium effect size, n = 10 and a = .05.

The Effect of p on the Mean Square Terms
Examination of the relative magnitudes of the numera­

tor and denominator of the F ratios helps to explain these

findings. Table 2 gives the average MSerrop mean square

effect (MSeffect), F, and power values for different de­
signs and tests generated from the MC simulation under

medium effect size (n = 10 and a= .05). Since a change

in the magnitude and structure ofa correlation matrix af­

fects only (;2error' differences in power across different
correlation matrices should correspond to alterations in

MSerror when all other conditions are held constant. That

is, matrices producing the greatest power for a test should

have the lowest MS error values among structures involved

and vice versa. As Table 2 shows, this is the case among

all three tests (A, B, and AB) of the two-way design. As

an example, conditions for the A test ofa 3 X 3 design in­

volving an 844 or 888 matrix produce the lowest MSerror
(.20) and highest F (11.83 and 11.62, respectively) and

power values (.95 and .96), while those having a484 ma­

trix produce the largest MSerror (1.40) and concomitantly

the lowest F (2.68) and lowest power (.26). Meanwhile,

tests with a 444 matrix result in values in between those

of the other matrices; MSerror = .60, F = 4.61, and

power = .53. The B test shows similar results, with the ex­

ception that the rank orders of the 844 and 484 matrices

are reversed. These findings indicate that the MSerror for

a given main effect (e.g, Factor A) test is dependent not

only on {JA' but also on both PB and {JAB' and that the in-

Table 3

Mean Square Errors and F Values: A Comparison of Monte Carlo (MC) Results and Analytical Calculations (ACs)

ANOVA p Effect MSerror FRatio

Test Design Matrix Size Cd*) (J2 MC AC Diff. %Diff. MC AC Diff. % Diff.

A 2x3 464 .8 4.0 3.9855 4.0000 -0.0145 -0.36 8.8945 8.8074 0.0871 1.0

2x6 463 .2 4.0 8.3794 8.4000 -0.0206 -0.25 1.4559 1.5340 -0.0781 -5.4

3x3 843 .5 1.0 0.4018 0.4000 0.0018 0.45 15.5002 15.6004 -0.1002 -0.6

3x3 922 .8 81.0 8.0821 8.1000 -0.0179 -0.22 2.8454 2.8770 -0.0316 -1.1

3x4 422 .8 4.0 4.7840 4.8000 -0.0160 -0.33 8.2193 8.1778 0.0415 0.5

Absolute Mean: 0.0142 0.32 Absolute Mean: 0.0677 1.7

B 2x3 464 .8 4.0 1.6103 1.6000 0.0103 0.64 7.0454 7.2500 -0.2046 -2.9

2x6 463 .2 4.0 1.9986 2.0000 -0.0014 -0.07 1.1880 1.1843 0.0037 0.3

3 x 3 843 .5 1.0 1.6064 1.6000 0.0064 0.40 4.7439 4.6769 0.0670 1.4

3 x 3 922 .8 81.0 178.0750 178.2000 -0.1250 -0.07 1.1217 1.1194 0.0023 0.2

3x4 422 .8 4.0 4.0196 4.0000 0.0196 0.49 7.7456 7.8044 -0.0588 -0.8

Absolute Mean: 0.0325 0.33 Absolute Mean: 0.0673 1.1

AB 2x3 464 .8 4.0 1.5928 1.6000 -0.0072 -0.45 2.6763 2.5893 0.0870 3.3

2x6 463 .2 4.0 1.2036 1.2000 0.0036 0.30 1.0982 1.0850 0.0132 1.2

3 x 3 843 .5 1.0 0.1002 0.1000 0.0002 0.20 5.7846 5.7873 -0.0027 -0.0

3 x 3 922 .8 81.0 8.0898 8.1000 -0.0102 -0.13 1.1613 1.1683 -0.0070 -0.6

3x4 422 .8 4.0 1.6023 1.6000 0.0023 0.14 2.6929 2.7188 -0.0259 -1.0

Absolute Mean: 0.0047 0.24 Absolute Mean: 0.0272 1.2

Note-For simulation results, F ofa given test was determined by taking the average of3,OOOvalues generated. Analytic values were obtained

by computing Aand then converting to F as follows: E(F) = [df2/(df2 - 2)][1 + A/dfl] (see Winer et al., 1991). All Fvalues based on n = 30.
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fluence of PB becomes evident only when its value be­

comes greater than PAB' Although the MSeffect also
changes across correlation matrices (Table 2), it is not

responsible for the differences in power observed since,

according to the expected mean squares model for a two­

factor RM ANaYA, the MSeffect is a component of the
treatment effect and error term, and therefore a change in

MSerror will be reflected in MSeffect as well.
For the interaction (AB) test, the equal power and F

values among those matrices with at least one factor hav­

ing 15 = .8 (484, 844, and 888) are due to equal MSerror

values. In this case, when the 15 of either the A or B

pooled matrix is equal to .8, the error variance remains

the same as when the 15 of the overall AB matrix is equal

to .8. Only when the 15 among trials of both factors de­

creases (444 matrix) do we see an increase in the error

term, resulting in a decrease in F and power. Unlike main

effect tests, the number of repeated measures does not

affect the MSerr"r' Thus, the error variance of AB tests is
affected solely by the magnitude of the 15 of the pooled

matrix (A or B) having the highest average correlation

among its trials, at least when the lower 15 of the pooled

matrices equals PAB' Evidently, the overall 15 of the AB
matrix does not seem to be a determining factor.

Approximations of Equations to Estimate MSe
The results of this simulation study provided useful

information for identifying the analytical expressions of

error variance, and thus It, for tests of the two-way RM

ANaYA. By examining the effects of different 15 values

and number of trials on residual variances and using a

logical iterative process, we developed approximations

that account for the relationship among these param­

eters. We started with the assumption that the error vari­

ance for a main effect would decrease as a function of

the magnitude of the average correlation for that effect

and increase as a function of the average correlation for

the other effect (as in the mixed model design). That is,

the error variance for the A main effect would include

some form of the terms 0'2(1 - PA) and a 2(q - I) PB'
where q is the number oflevels of the B main effect. The

task was to determine the exact nature ofthese terms and

to incorporate the PAB term into the equation. The fol­
lowing expressions for the mean square errors were sub­

sequently constructed:

a ~ = 0'2(1 - PA) + a 2(q - 1)(pB - pAB)

for the main effect test of A,

a~ = 0'2(1 - PB) + a 2(p - 1)(pA - pAB)

for the main effect test of B, (10)

a~ = 0'2(1 - PmaX> - a 2(p min - pAB)

for the AB interaction, (II)

where p and q are the number oflevels of the A and B fac­

tors, respectively; pA and PB are the averages of the off­

diagonal correlation coefficients of the A and B matrices,

respectively; pAB is the average of the correlation coeffi-
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cients of all AB pairs of the overall (AB) matrix with dis­

similar levels; Pmax and Pmin are the highest and lowest av­
erage correlation values in the two matrices; and 0'2 is the

within-cell variance of the dependent variable involved.

As can be seen, all three equations are composed of

two components. The first part of each equation [e.g.,

a 2(l - 15A)] is similar to the error variance formula

for the trials and interaction tests of the two-factor mixed

design (see Equation 5) and reflects how a~ is altered

as pA' PB' or Pmax increases or decreases. The second
component in the main effect approximations [e.g.,

a 2(q - I)(PB - pAB)] resembles that of Equation 6 for

the group test ofthe mixed model. Here, an increase in ei­

ther the number ofpooled trials or 15 of the pooled matrix

will increase a~ when all other variables are held constant.

Also evident in Equations 9, 10, and II is how the second

component cancels out when pAB equals pA' PB' or Pmin'

resulting in an effect on a~ that is due entirely to the main

effects or maximum average correlation. Furthermore,

note that ifpA = PB = pAB = 15, then all three equations
reduce to a~ = 0'2(1 - p), the error term for designs with

only one RM factor. Finally, ifpA and pAB are set to zero,
as they would be if A was an independent groups factor,

Equation 9 reduces to Equation 6 and Equations 10 and

II reduce to Equation 5, where Equations 5 and 6 give the

expected error terms for a mixed model design.

These approximations of a ~ for the two-factor RM

ANOYA were subsequently validated under other design

conditions with different correlation matrices and RM lev­

els. The correlation matrices used in this validation em­

ployed values that were very different (e.g., pA = .9, PB =
.2, pAB = .2) from those used in the simulations (.4 and .8

for all matrices) that generated the power values used to

"derive" Equations 9-11. Table 3 provides a comparison of

MSerror and F values generated from Me simulations and

those derived using Equations 9-11. These derivations

were performed by first calculating a ~ using Equations 9,

10, and II; then computing It using Equations 2, 3, and 4;

and then using standard formulae for converting It to F. For

all conditions examined, MSerror values computed using the

approximations were identical to those generated through

simulation to two significant figures, while absolute dif­

ferences ofF between the two methods never surpassed a

value of .21. Hence, these equations provide a reasonably

accurate means of approximating the residual variance of

tests in the two-way RM design. When Equations 9-11 are

substituted for the respective denominator terms ofEqua­

tions 2-4, It values can be computed directly for univari­

ate ANOYA designs with two within-subjects variables

when estimates of the population means, 0'2, and 15 values

are available. Given this calculated value for It, power can

then be calculated from the noncentral F distribution, and

it is a relativelyeasy step forprogrammers to include the two­

way RM ANaYA in their computer programs.

Summary and Conclusions
In light of the absence of a method for approximating

a priori power for univariate ANOYA tests with two

within-subjects variables, power estimates for the two-
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way RM design were developed using MC simulation.

Power values were generated for each test (A, B, AB) of
a 2 X 3, 2 X 6, 2 X 9, 3 X 3, 3 X 6, and 3 X 9 design

under a variety ofexperimental conditions including dif­

ferent effect sizes (small, medium, and large), different

average correlation values (.4 and .8), different levels of

significance (.01 and .05), and different sample sizes (5,

10 ,15, 20, 25, and 30). It was shown that the magnitude

of the difference ("PB - PAB) is strongly related (in­

versely) to the power of the F test on Factor A (and simi­

larly, PA - PAB affects the power of Factor B). In addition,

formulae to compute approximations oferror variances for

the A, B, and AB tests of the two-way RM ANOVA were

developed by evaluating power and MSerror trends across

different correlation structures. Evidence given for the ac­

curacy of these approximations supports their use in com­

puting A, thus providing the first analytical method for es­

timating the power of these designs without requiring

previous knowledge of the mean square error variance of

a given test. As a result ofthis work, researchers may now

determine the power for their design by computing Adi­

rectly and then referring to conventional power tables or

computer programs. It is hoped that the approximations

oferror variance presented here can be incorporated into

the algorithms ofexisting or future computer power pro­

grams, thus providing an efficient means of estimating

power for these RM ANOVA designs.

REFERENCES

BMDP [Computer software] (1988). Los Angeles: University of Cali­

fornia Press.

BORENSTEIN, M., & COHEN, J. (1988). Statistical Power Analysis: A

Computer Program [Computer program]. Hillsdale, NJ: Erlbaum.

BRADLEY, D. R (1988). DATASIM[Computerprogram]. Lewiston, ME:

Desktop Press.

BRADLEY, D. R., & RUSSELL, R L. (1998). Some cautions regarding sta­

tistical power in split-plot designs. Behavior Research Methods, In­

struments, & Computers, 30, 462-477.

BRADLEY, D. R., RUSSELL, R. L., & REEVE, C. P. (1996). Statistical

power in complex experimental designs. Behavior Research Meth­

ods, Instruments, & Computers, 28, 319-326.

COHEN, J. (1988). Statistical power analysis for the behavioral sciences

(3rd ed.). Hillsdale, NJ: Erlbaum.

DAVIDSON, M. L. (1972). Univariate versus multivariate tests in

repeated-measures experiments. Psychological Bulletin, 77, 446-452.

DODD, D. H., & SCHULTZ, R. E, JR. (1973). Computational procedures

for estimating magnitude of effect for some analysis of variance de­

signs. Psychological Bulletin, 79, 391-395.

EOM, H. J. (1993). The interaction effects ofdata categorization and

noncircularity ofthe sampling distribution ofgeneralizability coeffi­

cients in analysis of variance models. Unpublished doctoral disser­

tation, University of British Columbia.

ERDFELDER, E., FAUL, E, & BUCHNER, A. (1996). GPOWER: A general

power analysis program. Behavior Research Methods, Instruments,

& Computers, 28, I-II.

FRIEDMAN, H. (1982). Simplified determinations of statistical power,

magnitude of effect, and research sample sizes. Educational & Psy­

chological Measurement, 42, 521-526.

GORMAN, B. S., PRIMAVERA, L. H., & ALLISON, D. B. (1995). POWPAL:

A program for estimating effect sizes, statistical power, and sample

sizes. Educational & Psychological Measurement, 55, 773-776.

GRIMA, A. M., & WEINBERG, S. (1987). An analysis ofrepeated mea­

sures data: An exploration ofalternatives (MANOVA). Unpublished

doctoral dissertation, New York University.

INTERNATIONAL MATHEMATICAL AND STATISTICAL LIBRARIES (1991).

(10th ed.). Houston, TX: Visual Numbers Inc.

KIRK, R E. (1995). Experimental design: Procedures for the behavioral

sciences. Pacific Grove, CA: Brooks/Cole.

KRAEMER, H. C., & THIEMANN, S. (1987). How many subjects? Beverly

Hills, CA: Sage.

LEVIN, J. R. (1997). Overcoming feelings of powerlessness in "aging"

researchers: A primer on statistical power in analysis of variance de­

signs. Psychology & Aging, 12, 84-106.

LIPSEY, M. W (1990). Design sensitivity. Newbury Park, CA: Sage.

MARCUCCI, M. (1986). A comparison of the power of some tests for re­

peated measurements. Journal ofStatistical Computation & Simula­

tion, 26, 37-53.

MENDOZA, 1. L., TOOTHAKER, L. E., & NICEWANDER, W A. (1974). A

Monte Carlo comparison of the univariate and multivariate methods

for the groups by trials repeated-measures design. Multivariate Be­

havioral Research, 9,165-177.

MULLER, K. E., & BARTON, C. N. (1989). Approximate power for

repeated-measures ANOVA lacking sphericity. Journal ofthe Amer­

ican Statistical Association, 84, 549-555.

MULLER, K. E., LAVANGE, L. M., RAMEY, S. L., & RAMEY, C. (1992).

Power calculations for general linear multivariate models including

repeated measures applications. Journal ofthe American Statistical

Association, 87, 1209-1224.

MULVENON, S. W., & BETZ,M. A. (1993). Analyticformulae for power

analysis in repeated measures designs. Unpublished doctoral disser­

tation, Arizona State University.

NUMBER CRUNCHER STATISTICAL SYSTEM. (1991). PASS (Power Analy­

sis and Sample Size), Version 1.0. Kaysville, UT: Jerry L. Hintze.

PEARSON, E. S., & HARTLEY, H. O. (1951). Charts ofthe power function

of the analysis of variance tests, derived from the noncentral F­

distribution. Biometrika, 38, 112-130.

ROBEY, R R, & BARCIKOWSKI, R. S. (1984). Calculating the statistical

power of the univariate and the multivariate repeated measures analy­

ses of variance for the single group case under various conditions.

Educational & Psychological Measurement, 44,137-143.

ROCHON, J. (1991). Sample size calculations for two-group repeated­

measures experiments. Biometrics, 47,1383-1398.

ROTTON, J., & SCHONEMANN, P. H. (1978). Power tables for analysis of

variance. Educational & Psychological Measurement, 38, 213-229.

ROUANET, H., & LEPINE, D. (1970). Comparison between treatments in

a repeated-measurement design: ANOVA and multivariate methods.

British Journal of Mathematical & Statistical Psychology, 23, 17­

163.

SCHUTZ, R. W, & GESSAROLI, M. E. (1987). The analysis ofrepeated

measures designs involving multiple dependent variables. Research

Quarterly for Exercise & Sport, 58, 132-149.

TANG, P. C. (1938). The power function of the analysis of variance tests

with tables and illustrations of their use. Statistical Research Mem­

oirs, 2,126-149.

VONESH, E. E, & SCHORK, M. A. (1986). Sample sizes in the multivari­

ate analysis of repeated measurements. Biometrics, 42, 601-6\ O.

WINER, B. J., BROWN, D. R., & MICHELS, K. M. (1991). Statistical prin­

ciples in experimental design (3rd ed.). New York: McGraw-Hill.

NOTES

I. Some of these tables require A to be converted to if! or fin order to

determine power.

2. For two-way RM designs having three or more levels on both fac­

tors, d* was calculated as in Equation 8, but since many values for the

numerator term of this function are possible (e.g., one for differences

between the A I and A2 cell means, another for differences between A I

and A3, another for the differences between A2 and A3, etc.), only the

numerator yielding the largest absolute difference was used to compute

effect size.
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