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Abstract

Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations
between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in
common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly
associated variants that have individual and/or interactive effects, while controlling false positives at the desired level.
Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive
search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack
of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for
power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the
formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical
framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS
practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically
evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model,
our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the
statistical power of each strategy. An example is provided for the application of our approach to empirical research. The
statistical approach used in our derivations is general and can be employed to address the model selection problems in
other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which
can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/.
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Introduction

In genome-wide association studies (GWAS), hundreds of

thousands of markers are genotyped to identify genetic variations

associated with complex phenotypes of interest. The detection of

truly associated markers can be framed as a model selection

problem: a group of statistical models are considered to assess how

well eachmodel predicts the phenotype, and the selected models are

expected to include all or some of the truly associated genetic

markers and few, if any, markers not associated with the phenotype.

In the literature, three model-selecting procedures have been

advocated: marginal search, exhaustive search, and forward search.

Marginal search analyzes markers individually and is the simplest

and computationally least expensive among these three search

methods. Under certain assumptions, such as no interactions among

covariates (or markers in the GWAS context), Fan and Lv [1]

proved that the truly associated covariates will be among those

having the highest marginal correlations. However, Fan and Lv

acknowledged that marginal search may suffer when an important

covariate is jointly associated as a group but marginally unassociated

as individuals with the response (phenotype). In GWAS, the

phenotypes are likely associated with multiple genes, their gene-

gene interactions (i.e. epistases), and gene-environment interactions.

Therefore, marginal search may not be optimal for the analysis of

GWAS data.

In contrast to marginal search, exhaustive search and forward

search simultaneously consider multiple markers in the model.

Exhaustive search examines all possible models within a given

model dimension, and forward search identifies markers in a

stepwise fashion. As they consider interactions, they may gain

statistical power compared to marginal search [2–5]. In practice,

exhaustive search bears a much larger computational burden

because the number of models that need to be explored is an

exponential function of the number of markers jointly considered.

For example, if 500,000 markers are genotyped, an exhaustive

search of all marker pairs would study around 1011 candidate

models. This requires significant computational resources, espe-

cially when permutations are needed to establish overall

significance levels, e.g. for the purpose of appropriately accounting

for dependencies among markers. Because of this computational

burden, it is difficult or even impossible to assess the power of

exhaustive search through simulation studies.

Based on limited simulations and real data analysis, conflicting

results exist in the literature on the relative merit of exhaustive

search and forward search. Because exhaustive search considers

many more models, it may increase the probability that the truly

PLoS Genetics | www.plosgenetics.org 1 July 2009 | Volume 5 | Issue 7 | e1000582



associated markers do not rise to the top as more models involving

unrelated markers may outperform the true models simply due to

chance. Forward search explores a smaller model space, allowing a

less stringent threshold for significance. However, forward search

may miss the markers that have a strong interaction effect but weak

marginal effect. Through limited simulation studies, Marchini and

colleagues [4,5] concluded that exhaustive search is more powerful

in finding truly associated markers in the presence of epistasis. On

the contrary, based on the analysis of a real data set for yeast, Storey

and colleagues [2,3] recommended sequential forward search. They

reported that exhaustive search suffers from lower power because a

substantial increase in the number of models. By analytically

demonstrating the conditions under which exhaustive search is

better than forward search, and the reverse, our research

systematically explains these contradictory results.

It is clear that the optimal model selection strategy depends on the

underlying genetic model, which is unknown to researchers. In the

most extreme case, if the underlying genetic model has no marginal

association, an exhaustive search is the only way to find influential

genes. On the other hand, for a model with purely additive genetic

effects, marginal or forward search will be the most effective. For the

cases between these two extremes, the optimal model selection

strategy should achieve a delicate balance between computational

efficiency, statistical power, and a low false positive rate. Without the

knowledge of underlying models, it is necessary to evaluate the

different methods by thoroughly comparing them across a large

genetic model space, in which both computationally intensive

simulations and limited real data analysis are difficult to fully explore.

In this article, we derive the analytical results for statistical

power of marginal search, exhaustive search, and forward search.

These formulas can significantly reduce the computational burden

in power estimation. To implement the formulas, we developed an

R package markerSearchPower. We demonstrate through simulations

that our results are accurate. Through our results, we can

systematically assess different SNP search methods across a large

model space and efficiently identify the optimal one. Our

derivation approaches are general and can be applied to the

model selection procedures in other random predictor settings.

The rest of this article is organized as follows: in the Results

section, we present the model set-up, the validation of our

analytical results through simulations, and the comparisons among

three model selection strategies; in the Discussion section, we

summarize the power comparison results and discuss our

methodological contributions; and in the Methods section, we

outline the derivations of asymptotic distributions and power

calculations. The Text S1 available online gives statistical details of

proofs and derivations, extended power comparisons, and relevant

formulas for the estimates of distribution parameters.

Results

Model Setup
A genetic model relates phenotype to genotypes, and this

relationship can be rather complex. In general, statistical power

depends on the effects of risk alleles, allele frequencies in the

population, epistasis, as well as environmental risk factors and their

interactions with genetic factors. We focus on a model commonly

used in the literature, which offers valuable insights into the

relative performance of model selection methods.

Assume that genotype data are available from p independent

single nucleotide polymorphisms (SNPs). Our results can be

generalized to other types of markers. We use Xi1, …, Xip, i=1, …,

n, to denote the genotypes for the ith sampled individual, for SNPs

1, …, p, respectively. Let the alleles at the jth SNP be Mj and mj

with frequencies pj and qj=12pj, respectively. Under the

assumption of Hardy-Weinberg equilibrium and additive allelic

effects, we use the following coding for this SNP:

Xij~

1 Genotype~MjMj , with probability p2j

0 Genotype~Mjmj , with probability 2pjqj

1 Genotype~mjmj , with probability q2j

8

>

<

>

:

: ð1Þ

We focus on the scenario that two of these SNPs, indexed by 1

and 2, are truly associated with a quantitative outcome Y through

the following genetic model

Yi~b0zb1Xi1zb2Xi2zb3Xi1Xi2zei, ð2Þ

where ei,N(0, s2) is independent of the genotypes. The interaction

term represents the epistatic effect, and its coefficient b3 measures

the direction and magnitude of this effect.

Based on the observed data, we fit the following models using

Ordinary Least Squares (OLS) involving one or two SNPs:

ŶYi(j)~b̂b0(j)zb̂b1(j)Xij , ð3Þ

ŶYi(jk)~b̂b0(jk)zb̂b1(jk)Xijzb̂b2(jk)Xikzb̂b3(jk)XijXik: ð4Þ

The subscripts in the above models index the SNP(s) included in

these models. Based on models (3) and (4), three model selection

methods seek candidate markers according to the corresponding

test statistics. In marginal search, we fit simple linear model (3) and

compare the T-statistics [6] Tj for j=1, …, p. A model, and thus its

involved SNP, is selected if the corresponding T-statistic is among

the largest from all tests. In two-dimensional exhaustive search, we

fit regression model (4) for all SNP pairs and compare the F-

statistics [6] Fjk for all j,k where j, kM{1, …, p}. The models with

Author Summary

Almost all published genome-wide association studies are
based on single-marker analysis. Intuitively, joint consid-
eration of multiple markers should be more informative
when multiple genes and their interactions are involved in
disease etiology. For example, an exhaustive search among
models involving multiple markers and their interactions
can identify certain gene–gene interactions that will be
missed by single-marker analysis. However, an exhaustive
search is difficult, or even impossible, to perform because
of the computational requirements. Moreover, searching
more models does not necessarily increase statistical
power, because there may be an increased chance of
finding false positive results when more models are
explored. For power comparisons of different model
selection methods, the published studies have relied on
limited simulations due to the highly computationally
intensive nature of such simulation studies. To enable
researchers to compare different model search strategies
without resorting to extensive simulations, we develop a
novel analytical approach to evaluating the statistical
power of these methods. Our results offer insights into
how different parameters in a genetic model affect the
statistical power of a given model selection strategy. We
developed an R package to implement our results. This
package can be used by researchers to compare and select
an effective approach to detecting SNPs.

Model Selection Power for GWAS
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the highest values of the F-statistics are selected. In forward search,

we first conduct a marginal model selection through model (3) and

select the jth SNP if |Tj| is the largest. With Xj, we then add

another SNP Xk (k?j) for different SNPs, and choose models in

format (4) which generate the highest F-statistics.

Two criteria are adopted to decide if the chosen models are

correct. On one hand, we could be rather stringent and call a

model correct only if it matches the true underlying genetic model.

This is consistent with the concept of ‘‘joint significance’’ in Storey

et al. [2]. On the other hand, we could be more generous and call

a model correct if it contains at least one of the truly associated

markers. This is consistent with the null hypothesis used in some

published simulation studies [4,5]. Accordingly, we consider two

definitions of power for a model selection procedure:

(A) the probability of identifying exactly the true model (in

marginal search, it is the probability of detecting both true

SNPs);

(B) the probability of detecting at least one of the true SNPs.

Under power definition (A), the null model is any model other

than the true genetic model; under power definition (B), the null

model is any model containing neither true SNP.

Comparison between Analytical and Simulation Results
We evaluated the accuracy of the asymptotic results derived in

the Methods section by comparing the analytical results with those

from simulations. To estimate power through simulation studies,

we generated 1,000 data sets with n subjects and p candidate SNPs

assuming Hardy-Weinberg equilibrium, as indicated in (1). The

quantitative trait values were generated through true model (2)

involving two true SNPs. We then used marginal search,

exhaustive search, and forward search to identify SNPs associated

with the trait. Under power definition (A), the target model(s) were

the true model (or models with one true SNP in marginal search),

and the other models were considered null models. Under power

definition (B), the target models were those containing at least one

true SNP, and the rest were considered null models. The empirical

power estimated from these simulations was the proportion of that

datasets that we were able to successfully find the target model(s)

through model selection procedures, under the control of a pre-

specified number (R) of falsely discovered null models. Such

control offers a fair comparison of power among the three model

selection methods and is numerically equal to the detection

probability (DP) control [7], which is the probability of including a

‘‘correct model’’ when selecting R (or R+1 in marginal search

under power definition (A)) of the most significant models.

In the first set-up for model (2), we considered n=100 subjects,

p=300 SNPs, genetic effects b1= b2=0.1, b3=2.4, allele frequen-

cy of each SNP qj=0.3, j=1, …, p, and variance s2=3. Table 1

summarizes the calculated power and the simulated power under

definitions (A) and (B). The second set-up is the same as the first

except b3=1.4. For this set-up, Table 2 shows the results under

definitions (A) and (B). The two values of b3 represent large and

small interaction terms with which the simulation generated a

broad spectrum of power values. In both set-ups, the analytical

power is very close to the empirical power based on simulations.

We chose these two set-ups in which the power was reasonably

large to approximate most practical settings. The chosen value of p

is much smaller than that in GWAS (in the 100,000’s) for the

feasibility of simulation. As discussed in the Methods section, the

asymptotic results are derived by assuming a large p. Therefore, we

expect better approximations if p has a value similar to those in a

real GWAS.

Power Comparisons of Model Selection Methods
The simulation results shown in Table 1 and Table 2

demonstrate that our analytical results provide good approxima-

tions to the true power, which is the basis for comparing the

performance of these model search methods in a practical GWAS.

We now consider a more realistic setting with a sample size of

1000 individuals (n) and a total of 300,000 SNPs (p). We assumed a

genetic model of form (2) with s2=3 and varied the values of

b1= b2 as well as that of b3 from 21 to 1 by a step size of 0.1. To

simplify the discussion, we assumed all SNPs had the same allele

frequency of qj=0.3, j=1, …, p. Note that this setting can be

changed without affecting the qualitative nature of the comparison

results.

Figure 1 gives the 3D plots of statistical power over the genetic

model space for different model selection methods (in columns)

Table 1. The probability of detecting the exact true model (or both true SNPs in marginal search) under power definition A, and
the probability of detecting at least one of the true SNPs under power definition B, with the false discovery number R varying.
b1= b2= 0.1, b3= 2.4.

Category Strategy Source R=1 R=5 R=10 R=15 R=20 R=30

Definition A Marginal search simulation 0.268 0.556 0.683 0.754 0.790 0.851

calculation 0.279 0.552 0.673 0.738 0.781 0.836

Exhaustive search simulation 0.987 0.998 1.000 1.000 1.000 1.000

calculation 0.978 0.995 0.998 0.998 0.998 1.000

Forward search simulation 0.780 0.788 0.789 0.789 0.789 0.789

calculation 0.795 0.800 0.800 0.800 0.801 0.801

Definition B Marginal search simulation 0.790 0.950 0.980 0.985 0.993 0.995

calculation 0.806 0.958 0.982 0.990 0.993 0.997

Exhaustive search simulation 0.993 0.999 1.000 1.000 1.000 1.000

calculation 0.985 0.999 0.999 1.000 1.000 1.000

Forward search simulation 0.843 0.910 0.944 0.961 0.974 0.986

calculation 0.828 0.906 0.938 0.952 0.966 0.983

doi:10.1371/journal.pgen.1000582.t001

Model Selection Power for GWAS
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Table 2. The probability of detecting the exact true model (or both true SNPs in marginal search) under power definition A, and
the probability of detecting at least one of the true SNPs under power definition B, with the false discovery number R varying.
b1= b2= 0.1, b3= 1.4.

Category Strategy Source R=1 R=5 R=10 R=15 R=20 R=30

Definition A Marginal search simulation 0.055 0.180 0.291 0.359 0.425 0.512

calculation 0.053 0.179 0.289 0.355 0.424 0.515

Exhaustive search simulation 0.394 0.586 0.667 0.706 0.715 0.753

calculation 0.399 0.567 0.638 0.681 0.707 0.728

Forward search simulation 0.242 0.308 0.331 0.340 0.343 0.348

calculation 0.238 0.308 0.331 0.342 0.349 0.354

Definition B Marginal search simulation 0.394 0.695 0.802 0.869 0.899 0.935

calculation 0.406 0.698 0.807 0.862 0.894 0.932

Exhaustive search simulation 0.533 0.757 0.823 0.850 0.880 0.910

calculation 0.569 0.738 0.809 0.848 0.874 0.906

Forward search simulation 0.422 0.561 0.654 0.731 0.769 0.841

calculation 0.433 0.554 0.647 0.711 0.758 0.821

doi:10.1371/journal.pgen.1000582.t002

Figure 1. 3D plots of statistical power over genetic model space. The results of power for the three model selection methods: marginal
search in the left column, exhaustive search in the middle column and forward search in the right column. Two definitions of power (A) for detecting
the true model or both true SNPs in marginal search in row 1, and (B) for detecting either true SNP in row 2 are considered. We consider genetic
models with the main effects b1= b2 varying from 21 to 1 and the epistatic effect b3 varying from 21 to 1. The allele frequency qj=0.3, j= 1, …, p,
and the false discovery number R is set to be 10.
doi:10.1371/journal.pgen.1000582.g001

Model Selection Power for GWAS
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under two power definitions (A) and (B) (in rows), when controlling

the number of false discoveries to be R= 10. These figures

illustrate that marginal search and forward search cannot detect

the marginal association of the influential SNP 1 or 2 in a certain

region of the model space, while exhaustive search can. This

portion of the model space is represented by the region where the

power of marginal search and that of forward search are very close

to 0, no matter how large the genetic effect is. According to

formulas (8) and (16) in the Methods section, the marginally non-

detectable region for SNP 1, where b1+b3(p22q2) = 0, depends on

the additive genetic effect b1, epistatic effect b3, and the allele

frequency p2 of SNP 2. The non-detectable region for SNP 2 is

analogous by symmetry. In exhaustive search, such region does

not exist, as indicated by formula (12). So, exhaustive search can

better identify the signals when they are counterbalanced.

In order to better visualize the difference of model selection

methods, we show the power differences between different

methods. The left, middle, and right columns of Figure 2 and

Figure 3 present the power difference between marginal search

and exhaustive search, between marginal search and forward

search, and between forward search and exhaustive search,

respectively. For a specific comparison, the red areas represent

negative values, indicating the former method has lower power,

and the green areas represent positive values, indicating the former

method has higher power. The dashed contours in these plots

represent the heritability of the genetic model, i.e., the proportion

of the total variation due to genetic effects, which is defined as

H2
~

genetic variance

total variance
:

Under our model set-up,

genetic variance~2b21p1q1z2b22p2q2z4b1b3 p2{q2ð Þp1q1
z4b2b3 p1{q1ð Þp2q2

z p21zq21
� �

p22zq22
� �

{ p1{q1ð Þ2( p2{ q2)
2

h i

b23,

total variance~genetic variancezs2:

In each plot, there are two areas in which the difference of power

is close to 0. First, in the central area where the signal is weak

(small H
2), all model selection procedures have low power and

tend to fail to pick up the true SNPs. Second, in the edge areas

where the signals are strong, all model selection procedures have

similarly good power. The light colored areas represent these two

special situations in which there is little difference in power among

model selection methods.

To compare marginal search and exhaustive search, the left

columns of Figure 2 and Figure 3 exhibit the power difference under

power definitions (A) and (B), respectively. Exhaustive search has

significant advantage in the red areas where the interaction effect b3
is large or b1+b3(p22q2) is small. Such advantage is more

Figure 2. Comparisons among model selection power for detecting the true model or both true SNPs in marginal search over
genetic model space. The power differences between marginal search and exhaustive search in the left column, between marginal search and
forward search in the middle column, and between forward search and exhaustive search in the right column. Green areas indicate positive values of
difference, and red areas indicate negative values of difference. We consider genetic models with the main effects b1= b2 varying from 21 to 1 and
the epistatic effect b3 varying from 21 to 1. The allele frequency qj=0.3, j=1, …, p, and the false discovery number R is set to be 1 in row 1 and 10 in
row 2.
doi:10.1371/journal.pgen.1000582.g002

Model Selection Power for GWAS
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pronounced under power definition (A) than under power definition

(B). Marginal search performs better in the green areas where b3 is

small and b1 and b2 are both moderate. There are two reasons for

the better performance of marginal search. First, with a small

interaction term b3 in these green areas, marginal search well detects

the signals when the two-marker genetic effects are projected onto a

marginal space through the simple regression of form (3). At the

same time, with moderate b1 and b2, the power for these two

methods is not close to 0 or 1, so that they are distinguishable.

Second, marginal search considers fewer models so that the desired

models are more likely to be found from the models with the best fit.

Under different power definitions, the performance of forward

search relative to that of marginal search can change. Capable of

including interaction terms, forward search has an advantage over

marginal search in finding the full correct model under power

definition (A), as shown by the red areas in the middle column of

Figure 2. Based on the analytical formulas in the Methods section,

there is a positive correlation between the test statistics in the first

and second steps of forward search. Therefore, if one of the

associated SNPs can be picked up in the first step, the contribution

of the epistatic term makes forward search more powerful to

identify the second correct SNP. Under power definition (B), the

middle column of Figure 3 shows that marginal search always has

similar or slightly better power than forward search, because

forward search is less likely than marginal search to pick up a true

SNP if an incorrect SNP is chosen first. The power of forward

search will not improve greatly even if the number of false

discoveries R increases.

As shown in the right column of Figure 2, exhaustive search

under power definition (A) always has a similar or higher power to

detect the true model when compared to forward search. Although

forward search can also detect the interaction terms through joint

analysis, its ability to capture the interaction terms is restricted,

especially when marginal effect is small in the deep red areas of

b1+b3(p22q2)<0. Under power definition (B), forward search is

more powerful than exhaustive search when R, the number of

controlled false discoveries, is small, but is less powerful when R is

large. With small R (e.g. R=1), forward search benefits from

considering fewer models and is better than exhaustive search in

the green areas of Figure 3. This benefit is reduced for larger R

and will eventually be dominated by the advantage of exhaustive

search. Since the first step of forward search is essentially a

marginal search, the advantage of exhaustive search over marginal

search also applies to forward search. This is reflected in the right

columns of Figure 2 and Figure 3, where the red areas are similar

to those in the left columns.

As reflected by the change of red/green areas between the first

and the second rows in both Figure 2 and Figure 3, if we raise the

number of allowed false discoveries R, the power of marginal

search will increase the most, followed by the power of exhaustive

search, and then the power of forward search. With the same

increase in R, marginal search includes a much higher proportion

of the models with true SNPs than exhaustive search. For forward

search, the increase of power is smaller because it is more difficult

to identify a correct SNP in the second step when an incorrect

SNP is more likely to be selected in the first step.

Figure 3. Comparisons among model selection power for detecting either true SNP over genetic model space. The power differences
between marginal search and exhaustive search in the left column, between marginal search and forward search in the middle column, and between
forward search and exhaustive search in the right column. Green areas indicate positive values of difference, and red areas indicate negative values of
difference. We consider genetic models with the main effects b1= b2 varying from 21 to 1 and the epistatic effect b3 varying from 21 to 1. The allele
frequency qj= 0.3, j=1, …, p, and the false discovery number R is set to be 1 in row 1 and 10 in row 2.
doi:10.1371/journal.pgen.1000582.g003
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We also explored additional model set-ups in Text S1 Section 3

with n=100, p=1000, R=1, 5, and 10, qj=0.3 and 0.5, j=1, …,

p, and s2=3. The values of the genetic effects b1= b2 and b3 varied

from 22 to 2 by a step size of 0.2. When qj=0.5, the graphs are

symmetric about b1= b2=0 and b3=0. In general, the patterns are

similar to those shown in Figure 2 and Figure 3.

An Example of Power Comparisons Motivated from Real
GWAS
In the following we provide an example to show how to apply

our approach to calculating and comparing the power of model

selection methods in empirical analysis. Because there are no

consistently replicated interaction effects from real studies, we

constructed hypothetical interaction models based on real data so

that the marginal associations between traits and markers were

matched, while allowing the interaction term to vary. Specifically,

we calculated power based on a set of genetic models derived from

a genome-wide association study of adult height by Weedon et al.

[8]. Based on the reported 20 loci that putatively influence adult

height, we set up a two-marker genetic model composed of SNPs

rs11107116 and rs10906982, each of which showed moderate

marginal effect. According to the Supplementary Table 4 in the

original publication, the estimated marginal effects of rs11107116

and rs10906982 are respectively 0.045s.d. and 0.046s.d. with a

sample standard deviation (s.d.) of height of 6.82 cm. Assuming

different levels of interaction between the two SNPs (quantified by

b3), we estimated the parameters b1, b2, and s2 using model (2) so

that the marginal effects matched the observed values. The

Methods section gives the details of how these parameters were

estimated. We used the set-up of Weedon’s study: sample size

n=16,482, number of candidate SNPs p=402,951, and the

frequencies of the height-increasing allele for rs11107116 and

rs10906982 p1=0.77 and p2=0.48, respectively.

Figure 4 shows the comparisons among the power of the three

model selection methods over different values of b3. For the

detection of both SNPs, graphs A (R=1) and C (R=20) indicate

that if the magnitude of epistasis b3 is large, exhaustive search (red

dashed curve) has significant advantage over forward search (green

dotted curve), which is better than marginal search (black solid

curve). If b3 is small, marginal search has higher power than the

other two. For the detection of at least one of the two SNPs, graphs

B (R=1) and D (R=20) indicate that marginal search is similar or

better than forward search; both methods are not affected by the

variation of b3. The relative performance of exhaustive search

strongly depends on the magnitude of epistasis. Comparing graphs

B (R=1) and D (R=20), it is clear that marginal search is superior

over a larger region when a larger false discovery number R is

tolerated.

With R=20, graphs C and D indicate that exhaustive search is

better than marginal search to find both or at least one of the SNPs

when the magnitude of b3.0.3 or 0.6, respectively. We studied the

statistical significance of the interaction terms with the simulated

data (1,000 runs) when b3 equals these two cutoffs. When b3=0.3,

11.4% of the simulations had the Bonferroni p-values (adjusted by

the number of all possible pairs of the 20 found loci) that exceeded

the significant threshold at 0.05. Therefore, a small epistatic effect,

rarely showing significance from the observed data, can still make

an exhaustive search more powerful than a marginal search under

power definition (A). Under power definition (B), when b3=0.6,

87.3% of the Bonferroni adjusted p-values were significant. That

is, to make exhaustive search more powerful than marginal search

for finding either SNP, a true epistatic effect needs to be large

enough to often identify a statistically significant interaction.

This example demonstrates that the value of the interaction

term and the number of false discoveries affect the relative

performance of model selection methods, which can be one of the

reasons for the conflicting results about the power of model

selection methods in the existing literature [2,4]. Therefore, the

suspected values of parameters such as epistatic effects can affect

the researchers’ choice of model selection methods.

Discussion

In this article, we have derived rigorous analytical results for the

statistical power of three common model selection methods, and

applied these results to compare the methods’ performance for

GWAS data. These results not only make the computationally

expensive simulations unnecessary, but also systematically reveal

how different genetic model parameters affect the power.

The comparison results among the three model selection

methods illustrate the trade-off between searching the full model

space and a reduced space. In one extreme, exhaustive search

explores the full 2-dimensional space covering all possible epistatic

effects, but it may reduce the probability that the true model(s)

ranks among the top models because many more models are

considered. In the other extreme, marginal search casts the true 2-

dimensional model onto a 1-dimensional space without consider-

ing epistasis at all. However, we have a better chance to find more

true positives when the marginal association is retained in the 1-

dimenisonal space, because fewer models are examined and the

false positive control appears comparatively liberal. Between these

two extremes, forward search first considers marginal projection,

and then partially searches the 2-dimensional space via residual

projection given the chosen predictor in the first step. Thus,

forward search has the partial benefit of joint analysis which

considers epistatic effects conditionally. The stringency of its false

positive control exists between those of exhaustive search and of

marginal search.

The relative performance of these model selection methods also

depends on the definition of power. Based on definition (A),

exhaustive search performs the best in finding the true underlying

genetic model in most of the model space considered. Under

power definition (B), marginal search is a good choice: it is not

much worse than exhaustive search for a large proportion of the

model space, and it is always better than the classic forward search

through which only one SNP is picked up in the first step. For

most geneticists, finding at least one of the truly associated SNPs

under power definition (B) is a primary concern, especially in the

first stage of GWAS. Because we do not have prior information

about the true genetic model in the beginning, marginal search,

which is easy to compute, is a good start in the first stage of GWAS

to find one or some of the main genetic effects. In the later stage(s),

if the promising SNP candidates are limited, exhaustive search can

be applied with less demanding computation, especially when

epistasis among loci is of interest. Our conclusions based on the

analytical studies justify this multi-stage strategy in GWAS.

Difference between Our Methods and Traditional Power
Calculation and Simulations
Our power calculation for model selection strategies is different

from a traditional power calculation for multiple regression models

[9]. The traditional approach is to calculate the probability of

accepting a specific multiple-regression model and rejecting the

null hypothesis that the response and the covariates have no

association, when controlling the type I error rate. This power

calculation focuses on models instead of model selection methods,

as it does not address any procedure of model selection. In
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contrast, our analytical approach is to calculate the probability

that a model selection method can pick up the models that contain

the true covariates (true SNPs in GWAS).

Our analytical approach leads to new insights into model

selection methods than simulations and limited real data analysis.

Furthermore, our approach addresses a critical limitation of prior

studies [4,5] that do not distinguish the models with all correct

predictors from those with only a subset of the correct predictors.

In those studies, the null distribution assumes the test statistic is

from a model without any of the true predictors, and the

alternative distribution assumes the statistic is from any model

containing at least one true predictor (or, when considering the

power for finding both true loci, the models with either true locus

are ignored from the null distribution). This is a common problem

of traditional multiple testing for model selection method, as

pointed out by Storey et al. [2], who stated that ‘‘there is no

statistically rigorous method to test for joint linkage, which exists

only if both loci have nonzero terms in the full model.’’ To address

this issue, all involved models (including true, partially true, and

wrong models) are considered and ranked by how well they fit the

observed data. Our power calculation distinguishes the case that

model selection procedures find the true model based on power

definition (A) from the case that the procedures find a partially true

model based on definition (B). We have derived the null and

alternative distributions for each case, and thus provide the basis

for model performance comparisons.

To compare the power of model selection methods, our approach

explicitly considers the correlation structures among the test statistics

for the null and alternative hypotheses, which achieves more accurate

assessment of model selection methods than Bonferroni-corrected type

I error control that is commonly used in the literature [4,5].

Bonferroni-based control is usually a conservative control when the

test statistics are dependent on each other. As illustrated by both

simulations (results not shown) and the theoretical derivations in the

Methods section, the considered models and their test statistics usually

exhibit complex correlation structures. Therefore Bonferroni-based

Figure 4. Plots of model selection power with given observed marginal effects. Power comparisons of three model selection procedures
over a sequence of epistatic effect b3: marginal search by black solid curve, exhaustive search by red dashed curve, and forward search by green
dotted curve. We assume the true SNPs to be rs11107116 and rs10906982, which influence adult height with their marginal effects set to be the same
as those observed in Weedon et al. 2008. Graphs A with R= 1 and C with R=20 indicate the power of finding both SNPs; graphs B with R= 1 and D
with R= 20 indicate the power of finding at least one of the two SNPs.
doi:10.1371/journal.pgen.1000582.g004

Model Selection Power for GWAS

PLoS Genetics | www.plosgenetics.org 8 July 2009 | Volume 5 | Issue 7 | e1000582



control is not optimal as it only considers the number of models

evaluated (that is, the number of hypothesis tests) and ignores

correlation structures generated by different search strategies. The

adequacy of our approach has been demonstrated through a good

agreement between the analytical and the simulation results shown in

Table 1 and Table 2. Furthermore, our study of correlation structures

improves the understanding of the mechanism of different search

strategies discovering genetic signals. For example, in forward search,

the failure of the first stage is likely to cause the failure of the second

stage even if there is a large epistatic effect, because the test statistics for

the true predictors are positively correlated between the two stages.

Control Related to Type I Error Rate and False Discovery
Proportion
To obtain the significance threshold, we control the number of

false discoveries at R depending on how the power is defined. This

control is practically meaningful and equals to the detection

probability (DP) control [7] as discussed in the Results section.

Furthermore, controlling the number of false discoveries is related

to controlling the type I error rate. Since the type I error rate is

defined as the probability of rejecting a hypothesis given it is a true

null, with the definition of null models corresponding to the power

definition (A) or (B), the estimation of component-wise type I error

rate could be considered as

âa~
R

total # of null models
:

The model selection problem is also a large-scale simultaneous

hypothesis testing problem. A widely applied significance control

criterion in this scenario is the false discovery rate (FDR) [10]. The

false discovery number control in our study is also related to the

control of the false discovery proportion (FDP), which is an

estimate of FDR. Under power definition (A)

FDP~
R

Rzi|power(R)
,

where power(R) denotes the power calculated based on the number

of selected null models R, and i indicates the number of correct

models: i=2 for marginal search, and i=1 for exhaustive search

and forward search.

On the Derivation of Asymptotic Distributions
Through the simulations in the Results section, our derivation of

asymptotic distributions is shown to be accurate for moderately small

genetic effects when the sample size n=100. Since the asymptotic

derivation assumes large sample size, the power calculation results

should provide accurate approximations for reasonably smaller

genetic effects in GWAS which have a much larger number of

observations in general. The asymptotic derivation has several

benefits. First, we can derive the results for the models with random

predictors. Because genotypes are randomly observed in genetic

studies, it is necessary to consider such models. Traditional methods

for deriving the non-central F distributions for the test statistics are

based on fixed predictors [7,11,12]. As functions of predictor

variables, these non-central parameters are not statistically consistent

when genotypes are random. Although one may integrate the power

over all possible configurations of markers [13], it is very

cumbersome unless n is small. Our method, based on asymptotic

theorems, provides a satisfactory solution for models with random

predictors. Our novel approach presented here can be applied to

derive the distributions of such models’ test statistics. Second, the

derived asymptotic multivariate normal distributions for theoretical

null and alternative hypotheses allow us to incorporate complex

correlations among the test statistics into power calculation based on

population parameters. For a given GWAS data set, the correlations

presented in the data may also be addressed by empirical estimation

of the null hypothesis [14,15]. Third, the ideas behind the asymptotic

derivation can be applied to study the distributions for hypothesis

testing and power calculation in general as long as the statistics have

certain functions of random variables.

On Simplifying Assumptions
We have assumed that the markers are independent in this

paper. There may be linkage disequilibrium (LD) among SNPs.

However, LD in general is weak among tagging SNPs [16–18].

Furthermore, simulations based on real GWAS data (results not

shown) indicate that even in the presence of LD, our analytical

results are quite accurate when more false positives are acceptable,

i.e. a large R value. In addition, the analytical power approxima-

tions are more accurate for power definition (B) than for definition

(A). In general, when the dependency among true SNPs and the

ensemble of unrelated SNPs is weak or moderate, our power

calculation provides acceptable approximations.

In reality, the underlying true model could be more complicated

than model (2) with more related SNPs and interactions. Our

analytical results of power calculation can be extended through the

approaches similar to the one we developed here. Although the

genetic models studied are simple, our results provide insights into

the relative performance of different model selection procedures.

Methods

Asymptotic Distribution Results
To calculate the power of model selection procedures shown in

the Results section, we first derive general results on the

asymptotic distributions. Let Zi= (Zi1, …, Zis), i=1, …, n, be n

independent and identically distributed (iid) random vectors of

dimension s. Assume the mean vector is h=E(Zi) = (h1, …, hs) with

hj=E(Zij) and the variance-covariance matrix is S=Cov(Zi) with

(S)jk=Cov(Zij, Zik), j, k=1, …, s. Let �ZZ~(�ZZ1,:::,�ZZs), where

�ZZj~
1

n

Xn

i~1
Zij . Considering a real valued function h(�ZZ) of �ZZ,

if +h(h)~
Lh(h)

Lh1
,:::,

Lh(h)

Lhs

� �’

=0, we have

ffiffiffi

n
p

½h(�ZZ){h(h)� {L?N(0,t2), ð5Þ

where t2~½+h(h)�’S½+h(h)� and {
L
? denotes the convergence in

law [19].

We extend the above result in two ways to suit our needs of

deriving the distribution of test statistics that are examined in

model selection procedures (the proofs are given in Text S1

Section 1.1). First, we consider two real valued functions h1(�ZZ)

and h2(�ZZ) of the same sample mean �ZZ. If +h1(h)=0 and

+h2(h)=0, we have the convergence in probability that:

Cov
ffiffiffiffiffiffiffi

nh1
p

(�ZZ),
ffiffiffiffiffiffiffi

nh2
p

(�ZZ)
� �

{
P
?½+h1(h)�’S½+h2(h)�: ð6Þ

Secondly, if +h(h)~0, the asymptotic distribution of nh(�ZZ) is:

n½h(�ZZ){h(h) {
L
?cx2d , ð7Þ
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where if A:D2h(h)S, with D2h(h)~ L
2

Lh2
h(h) being the Hessian

matrix of h(h), we have

1) c=1/2, d= rank[A], if A is idempotent;

2) c<trace(A2)/2trace(A), d<trace(A)2/trace(A2), if A is not idempo-

tent.

Power Calculations
With the results above, we derive the relevant distributions of T-

and F-statistics associated with three types of regression models,

which will be used for calculating the power of model selection

methods. Specifically, F12 is the F statistics for the correct model in

which both SNPs are true. Ti and Fij, i=1, 2, j=3, …, p, are test

statistics for ‘‘half’’ correct models in which only one SNP is truly

associated. Tj and Flk, 3#l,k#p, are the statistics for incorrect

models in which neither SNP in the models is associated with the

phenotype. Complex correlations exist among the models even

with the assumption of independence among SNPs. The

correlations come from two sources. First, since the quantitative

trait is associated with both SNPs 1 and 2, the fitted regression

models containing either of these SNPs have correlated test

statistics. Second, models sharing a common SNP (no matter it is

true or wrong) also have correlated test statistics. To allow

correlations, we therefore explore the marginal and the joint

distributions of various test statistics for different models, and then

derive how likely a ‘‘half’’ correct model would stand out from

incorrect models, as well as how likely a correct model would

outperform ‘‘half’’ correct models or incorrect models.

Marginal Search
Statistics and asymptotic distributions. To calculate the

power of marginal search, we need to obtain the distributions of

the involved test statistics. We first derive the T-statistic for the two

true SNPs in the marginal model. In the simple regression model

involving the first true SNP (SNP 1), i.e. ŶYi(1)~b̂b0(1)zb̂b1(1)Xi1, the

corresponding T-statistic has the following asymptotic distribution

(see Text S1 Section 2.1 for proof):

T1{

ffiffiffiffiffiffiffi

nh1
p

(h) {
L
?N(0,t21),

where

h1(h)~

ffiffiffiffiffiffiffiffiffiffiffiffi

2p1q1
p

(b1zb3(p2{q2))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2q2(b
2
2z

q

2b2b3(p1{q1)zb23(p
2
1zq21))zs2

, ð8Þ

and the formula of t21 (a constant of n) is given in Text S1 Section

4.1. For the marginal model of the second SNP (SNP 2), the

asymptotic distribution of T2 is gotten by symmetry between

indices 1 and 2.

Based on the asymptotic mean of T1 derived above, we can

quantify the influence of genetic parameters of SNP 2 and epistasis

on the power of marginal search to pick up SNP 1. As for some

genetically interesting observations, when there is no epistatic

effect (i.e. b3=0), we have h1(h)~
b1
ffiffiffiffiffiffiffi

2p1q
p

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2q2b
2
2
zs2

p , which means the

magnitude of marginal association of X1 and thus the power of

marginal search to find X1 are decreasing functions of the main

effect of X2, the minor allele frequency (MAF) of X2, and the

random error variance s2, with the decreasing rate specifically

given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2q2b
2
2zs2

q

. When epistasis exists (i.e. b3?0) but

b1=0, h1(h) reflects the marginally projected signal of epistasis,

which is still a decreasing function of the MAF of X2. The

influence of b2 depends on the allele frequencies p1 and q1. On the

other hand, if b1?0, it is possible that b1+b3(p22q2) = 0 when the

main effect b1 and interaction effects b3 have opposite directions

(assuming q2 is the MAF). With such epistatic pattern, marginal

detection surely fails to detect the true genetic variants no matter

how strong the true genetic effects are.

Now we derive the joint distribution of T1 and T2. Since Y is a

function of both X1 and X2 in the underlying true model (2), T1

and T2 are correlated even when X1 and X2 are independent and

do not interact, i.e. b3=0. The correlation between T1 and T2 can

be substantial in certain genetic models. The asymptotic joint

distribution of (T1, T2)9 is

(T1,T2)’{mT1,T2
{
L
?MVN(0,tT1,T2

), ð9Þ

where mT1,T2
~

ffiffiffi

n
p

(h1(h),h2(h))’, tT1,T2
~

t21 t1,2
t1,2 t22

� �

, t2i ~Var(Ti),

i=1, 2, and t1,2=Cov(T1, T2). The covariance t1,2 is gotten based

on the result in (6), and its formula (as a constant of n) is given in Text

S1 Section 4.1.

Let Tj, j=3, …, p, be the T-statistic from model (3) for a wrong

SNP j, according to the asymptotic result in (5),

Tj {
L
?N(0,1), ð10Þ

which holds regardless of the allele frequencies and the underlying

true genetic model. The proof for T3 as an example is provided in

Text S1 Section 2.2. It can be shown that Tj is also independent of

T1 and T2 according to the result in (6). Under the assumption of

fixed design matrix, Tj has a T distribution with n22 degrees of

freedom based on a traditional linear model analysis [6,12]. This

null distribution is still asymptotically valid for random predictors

since the T distribution converges to the standard normal as nR‘.

Power of marginal search procedure. Based on the above

results for the distributions of T-statistics, we first calculate the

power of marginal search under power definition (A). If the

marginal search is allowed to contain R wrong SNPs, i.e. the

number of false discoveries is controlled by R, the power of

identifying both true SNPs is just the probability that both |T1|

and |T2| are greater than the Rth largest value in the set {Tj,

j$3}:

P( T1j j ^ T2j j§ Tj j(r))~
ðð

P( Tj j(r)ƒ t1j j ^ t2j j)g(t1,t2)dt1dt2

where T1j j ^ T2j j~min T1j j, T2j jf g, r= p222R+1, |T|(r) is the

rth smallest (or the Rth largest) order statistics of |Tj|, j=3, …, p,

and g(t1, t2) is the joint probability density function (PDF) of (T1,

T2)9 given in (9). Let W(?) be the cumulative distribution function

(CDF) of N(0, 1), then

P Tj j(r)ƒ t1j j ^ t2j j
� �

~(1{2W({ t1j j ^ t2j j))r

X

p{2{r

l~0

rzl{1

l

 !

(2W({ t1j j ^ t2j j))l :

To get the power of marginal search under definition (B) that

either SNP 1 or SNP 2 is selected, we calculate the probability that
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either |T1| or |T2| is larger than the random cutoff point:

P(|T1|~|T2|$|T|(r)), where |T1|~|T2|=max{|T1|, |T2|}.

Exhaustive Search
Statistics and asymptotic distributions. The distributions

of the relevant test statistics are derived first for calculating the

power of exhaustive search. We first get the joint distribution of

the test statistics involving true SNPs 1 and 2: T1, T2, and F12.

Define T12:
ffiffiffiffiffiffiffi

F12

p
. Based on the asymptotic distribution result in

(5) (see Text S1 Section 2.3 for details of derivation), we have

(T12,T1,T2)’{mT12,T1,T2
{
L
?MNV 0,tT12,T1,T2

ð Þ, ð11Þ

where mT12,T1,T2
~

ffiffiffi

n
p

(h12(h),h1(h),h2(h))’ and tT12,T1,T2
~

t212 t12,1 t12,2
t12,1 t21 t1,2
t12,2 t1,2 t22

0

@

1

A.

The formula of h1(h) is given in (8), and

h12(h)~
2

3s2
(b21p1q1zb23p1q1(p

2
2zq22)z2b1b3p1q1(p2{q2)

 

zp2q2(b2zb3(p1{q1))
2

!1=2

:

ð12Þ

The formulas of t212~Var(T12) and t12,i=Cov(T12, Ti), i=1, 2, are

independent of n and are given in Text S1 Section 4.1.

We then derive the F-statistics for the incorrect models in form

(4) to fit Y with Xj and Xk, 3#j,k#p. Following the result in (7), Fjk
has a common marginal asymptotic distribution:

Fjk {
L
?

1

3
x23: ð13Þ

With F34 as an example, the detailed proof is given in Text S1

Section 2.4.

Based on the traditional power calculation for regression

models, the null model is the incorrect model with neither SNP

associated with the phenotype. When the design matrix is fixed,

the null distribution of Fjk is an F distribution with degrees of

freedom (3, n24) [12]. Result (13) indicates the F distribution for

null is also valid when the genotypes are treated as random

variables, because F(3, n24) converges to
1

3
x23 when n is large.

In order to calculate the power of model selection methods, we

need to address the correlation structures among involved statistics.

The statistics are correlated when two epistatic models in form (4)

share a common SNP. Also, F-statistics involving X1 and those

involving X2 are correlated because the true underlying model

includes both SNPs. Consequently, the elements in the set {F12, Fij,

i=1, 2, j=3,…,p} are all correlated with each other. To capture the

important dependency, we decompose F-statistics as follows:

Fij?
1

3
Fiz

2

3
h2i (h)z1
� �

Fj ij , ð14Þ

when i=1, h1(h) is given by equation (8). The detailed proof for

decomposing F13 as an example is shown in Text S1 Section 1.2.

Through this decomposition, the correlation between Fij and Fik, can

be explained by Fi while we treat Fj|i and Fk|i to be independent.

Furthermore, with the result (14) we can use the joint distribution (11)

to capture the correlation between F12 and Fij.

Based on the asymptotic distribution in (7), we have

Fj ij %
(d)

cx2d , ð15Þ

where i=1, 2, j=3, …, p, c= v/2e, and d=2e2/v, with E(Fj|i)Re

and Var(Fj|i)Rv. Text S1 Section 2.5 shows the detailed proof for

F3|1. The formulas of e and v are given in Text S1 Section 4.2.

Based on our numerical studies (results not shown), c is close to 1/2

and d is close to 2 in a large proportion of the parameter space of

{qi, qj, b, s
2} (e.g. when allele frequencies qi and qj do not converge

to 0 or 1, genetic effect b= (b1, b2, b3)9 and random error variance

s2 are not too large). When c=1/2 and d=2, cx2d is asymptotically

equivalent to an F distribution with degrees of freedom 2 and n24.

F(2, n24) is the distribution of Fj|i when X is fixed [6,12]. Our

results demonstrate that for the random design matrix, the

weighted chi-square distribution (15) is more appropriate.

Power of exhaustive search procedure. With the

distribution of test statistics derived above, we first calculate the

probability of exhaustive search to identify the exact true model.

Under power definition (A), the test statistic F12 for the exact true

model corresponds to the ‘‘alternative’’ distribution, whereas the

F-statistics for all other models such as totally incorrect models and

‘‘half’’ correct models are combined together to generate a mixed

‘‘null’’ distribution. Let S1;{Fij, i=1, 2, j=3,…,p}, S2;{Fjk,

3#j,k#p}, and FS,[R] denote the Rth largest variable in a set S.

When controlling the false discovery number by R, the probability

of detecting the exact true model (2) is

P F12§FS1|S2, R½ �
� �

~

ððð

P t212§FS1
’
|S2, R½ �

� �

g(t12,t1,t1)d(t12,t1,t1),

where g(t12,t1,t2) is the PDF of (11), S’1~f t2
i

3
z

2 1zh2
i
(h)ð ÞFj ij
3

,i~1,2;

j~3,:::,pg from the decomposition (14), and

P t212§FS’1|S2 , R½ �
� �

~

X

R{1

r~0

X

fr1,r2 ,rg[Sr

P1P2P3,

in which

Sr~ r1,r2,r3f g :
X

ri~r, 0ƒr1, r2ƒp{2, 0ƒr3ƒN
n o

,

P1

p{2

r1

� �

1{G11

3t212{t21
2(1zh21(h))

� �� 	r1

G11

3t212{t21
2(1zh21(h))

� �p{2{r1

,

P2

p{2

r2

� �

1{G12

3t212{t22
2(1zh22(h))

� �� 	r2

G12

3t212{t22
2(1zh22(h))

� �p{2{r2

,

P3

N

r3

� �

1{G2 t212
� �
 �r3

G2 t212
� �N{r3

,

N~
p{2

2

� �

is the number of variables in S2, G1i(N) is the CDF of

distribution (15) for i=1, 2, and G2(N) is the CDF of distribution (13).

The test statistics within the sets S*;{Fj|1, Fj|2, j=3,…,p} and
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S2;{Fjk, 3#j,k#p} are treated as asymptotically independent as

pR‘ (see Text S1 Section 1.3 for details).

According to the power definition (B), the probability of

exhaustive search to detect at least one of the associated SNPs is

P max F12f g|S1ð Þ§FS2, R½ �
� �

~1{

ððð

Pt12,t1,t2g(t12,t1,t2)d(t12,t1,t2),

where

Pt12 ,t1 ,t2~P max t212
� 


|S’1
� �

vFS2 , R½ �
� �

~

ð

P max t212
� 


|S’1
� �

vc
� �

g2(N{Rz1)(c)dc

~

ð

?

t2
12

G11

3c{t21
2(1zh21(h))

� �

G12

3c{t22
2(1zh22(h))

� �� 	p{2

g2(N{Rz1)(c)dc,

g2(N2R+1)(N) is the PDF of the (N2R+1)th order statistics distribution

with the following density function:

g2(N{Rz1)(c)~
N!

(N{R)!(R{1)!
G2(c)

N{R 1{G2(c)½ �R{1
g2(c),

G2(N) and g2(N) are the CDF and PDF of the distribution of (13)

respectively.

If R is neither too small nor too large, i.e. R/NRc, 0,c,1, as

NR‘, we can use quantiles to replace the order statistics in order

to simplify the calculation [20], i.e., FS2, R½ �?G{1
2

N{Rz0:5
N

� �

:Q.

So for a given (t12,t1,t2), we can approximately replace the

integrand Pt12,t1,t2 with

I
t2
12
ƒQf g(t12) G11

3Q{t21
2 1zh21(h)
� �

 !

G12

3Q{t22
2 1zh22(h)
� �

 !" #p{2

,

where IA(x) denotes the indicator function of set A. Simulations

(results not shown) illustrate that the approximation of integrand is

reasonably accurate for the integration.

Forward Search
Statistics and asymptotic distributions. For forward

search, first we derive the distributions of test statistics, which

will be used to calculate the corresponding statistical power. Here

we need to handle the comparison between two models: the model

with SNPs 1 and j, j=3, …, p, taking form (4), and the model with

SNP j taking form (3). Let F1|j be the F statistic measuring the

significance of the extra terms in the bigger model over the smaller

model [6]. Define T1 jj :
ffiffiffiffi

F
p

1 jj . When b1+b3(p22q2)?0, following

the asymptotic result in (5), we can derive

T1 jj {mT1 jj {
L
?N 0:t2i jj

� �

,

mT1 jj ~
np1q1(b1zb3(p2{q2))

2

2p2q2 b2zb3p1ð Þ2{2b2b3q1zb23q
2
1

� �

zs2

0

@

1

A

1=2

,

ð16Þ

and the formula for t2T1 jj
with j=3 as an example is provided in

Text S1 Section 4.3. Both mT1 jj and t2T1 jj
do not depend on the

allele frequency pj. When b1+b3(p22q2) = 0, T2
1 jj

has a 1
2
x22

distribution by (7). Similarly we can get the asymptotic

distribution of T2 jj :
ffiffiffiffiffiffiffiffi

F2 jj
q

when comparing the model having

SNPs 2 and j in form (4) with the model having SNP j in form (3).

The covariance Cov(T1|j,T2|j) can also be calculated. As an

example the formula of Cov(T1|3,T2|3) is given in Text S1 Section

4.3.

Moreover, the statistics (T1,T2,T1|j,T2|j)9 involving true SNPs

have a multivariate normal distribution:

T1,T2,T1 jj ,T2 jj
� �’

{mT1,T2,T1 jj ,T2 jj
{
L
?MNV (0,tT1,T2 ,T1 jj ,T2 jj ): ð17Þ

When j=3, the details of the calculation and the formulas for

mT1 ,T2 ,T1 jj ,T2 jj
and tT1,T2,T1 jj ,T2 jj are given in Text S1 Sections 2.6

and 4.6.

Through result (6), we have proved that Tj and F1|j are

asymptotically independent (refer to Text S1 Section 2.6 for

details), i.e.

Cov(Tj ,T1 jj )?0,j~3,:::,p: ð18Þ

When comparing the model having two incorrect SNPs j and k

(3#j,k#p) in form (4) with the model having SNP j in form (3),

the corresponding F-statistic Fk|j has the asymptotic distribution

Fk jj {
L
?

1

2
x22: ð19Þ

Based on the result in (7), Text S1 Section 2.7 shows the proof for

(19) with j=3 and k=4 as an example. This distribution is

consistent with F(2, n24) which can be derived with the fixed

design matrix and is routinely used for Fk|j in the traditional model

comparison [6,12].

Power of forward search procedure. In the forward search

procedure, we first apply marginal search to find the most

significant SNP among models (3). Based on the selected SNP, we

then fit models (4) in the second step to find the SNPs that have

strong joint effects, while controlling for R false discoveries. Under

power definition (A) for finding the exact true model, we need to

calculate the probability of forward search to choose SNP 1 or 2 in

the first step, and then pick up the true model in the second step.

Define i*;argmaxi=1,2{|Ti|}, Si�: Fi�3,:::,Fi�p

� 


, as pR‘, we

can write the power as

P Ti�j jw Tj j(p{2)\F12§FS
i� , R½ �

� �

~

ððð

P ti�j jw Tj j(p{2)\t212§FS’i� R½ �
� �

g(t12,t1,t2)d(t12,t1,t2)

?

ððð

P ti�j jw Tj j(p{2)

� �

P t212§FS’i� R½ �
� �

g(t12,t1,t2)d(t12,t1,t2)

where g(t12,t1,t2) is the PDF of (T12,T1,T2)9 given in (11),

Tj j(p{2)~maxj§3 Tj

�

�

�

�

� 


, S’i�~
1
3
t2i�z

2
3
1zh2i� (h)
� �

Fj i�j , j~3,:::p
� 


by F-statistic decomposition (14), and

P ti�j jw Tj j(p{2)

� �

~ 1{2W({( t1j j _ t2j j))ð Þp{2
,

P t212§FS’i� , R½ �
� �

~G1i� (u)
r
X

p{2{r

l{0

rzl{1

l

� �

1{G1i� (u)½ �l ,

where u~
3t2

12
{t2

i�
2(1zh2

i� (h))
, hi� (h) is given in (8) for i*=1, r= p222R+1,

and G1i� (:) is the CDF of the distribution for Fj i�j j given in (15). i* is

Model Selection Power for GWAS

PLoS Genetics | www.plosgenetics.org 12 July 2009 | Volume 5 | Issue 7 | e1000582



fixed for an observed value (t1,t2)9 of random vector (T1,T2)9, so it is

easy to implement the power calculation with Monte Carlo

integration.

Note that Tj j(p{2) and FS’i� , R½ � are asymptotically independent.

This is because corr Tj

�

�

�

�,Fj i�j
� �

v1 for each j$3, so with pR‘,

P j�=k� : Tj�
�

�

�

�~ Tj j(p{2),Fk� i�j ~FS’i� , R½ �
� �

?1. But when j*?k*,

Tj�
�

�

�

� and Fk� i�j are always independent.

When R and p are large, we can simplify the formula of

P t212§FS’i� , R½ �
� �

by approximating the Rth largest variable in set

F jji� , j~3, . . . ,p
� 


with G{1
1i� 1{ R{0:5

p{2

� �

, where G{1
1i� is the

quantile function of F jji� . So we can approximately replace

P t212§FS’i� , R½ �
� �

with I
uwG{1

1i� 1{R{0:5
p{2ð Þf g(u) for calculating the

integration.

Under power definition (B), the power of forward model

selection method is the sum of PA: the probability to detect SNP 1

or 2 in the 1st step, and PB: the probability that step 1 fails but step

2 picks up at least one correct SNP, while controlling for R

incorrect models as false positives. Specifically,

PA~P T1j j _ T2j jð Þw Tj j(p{2)

� �

~

ðð

(1{2W({ t1j j _ t2j j)))p{2g(t1,t2)dt1dt2,

where g(t1,t2) is the PDF of joint distribution of (T1,T2)9 given in (9).

Defining j�:argmaxk§3 Tkj jf g and Sj�: Fk jj � ,k§3,k=j�
n o

,

we have

PB~P Tj�
�

�

�

�w T1j j _ T2j jð Þ
� 


\ F1 j�j _ F2 j�j
� �

§FSj� , R½ �
n o� �

:

For each k$3, Fi|k and Tk are independent, so Fi jj � and Tj� are

independent. Given the results in (16) and (19), the distribution of

Fi jj � does not depend on j*. Hence, Fi jj � has the same distribution

as Fi|j, j=3,…,p. We then have

PB~

þ

Pt1t2Pt1 jj t2 jj g(t1,t2,t1 jj ,t2 jj ) d(t1,t2,t1 jj ,t2 jj ),

where g(t1,t2,t1|j,t2|j) is the PDF of (T1,T2,T1|j,T2|j)9 given in (17),

Pt1t2~P Tj j(p{2)w t1j j _ t2j jð Þ~1{(1{2W({ t1j j _ t2j j))
� �p{2

,

Pt1 jj t2 jj ~P t21 jj _ t22 jj

� �

§FSj , R½ �
� �

~G t21 jj _ t22 jj

� �r X
p{3{r

l~0

rzl{1

l

 !

1{G t21 jj _ t22 jj

� �� �h il

,

in which r= p232R+1, and G(N) is the CDF of Fk|j, 3#j,k#p,

given in (19). We can approximate FSj , R½ � through the quantile

function G{1 1{ R{0:5
p{3

� �

to simplify the calculation of integra-

tion.

Calculating Post-Hoc Power with a Given Marginal Model
To demonstrate how to evaluate the power of model selection

methods in the empirical analysis, we have applied our approach

in a real study example. In this example, the simple regression

model on X1, ŶYi(1)~b̂b0(1)zb̂b1(1)Xi1, is an estimate of marginal

model

E(Yi Xi1)j ~b0zb2EXi2z(b1zb3EXi2)Xi1,

based on the full model (2). So the estimator of main effect is

b̂b1~b̂b1(1){b3EXi2~b̂b1(1){b3(p2{q2). Similarly b̂b1~b̂b1(1){

b3(p1{q1), where b̂b1(2) is given in the simple regression model

on X2. To estimate the variance of random error, note that

s2~Var(Yi){Var(b0zb1Xi1zb2Xi2zb3Xi1Xi2):

Therefore,

ŝs2~sd(Y )2{2b21p1q1{2b22p2q2{4b1b3(p2{q2)p1q1

{4b2b3(p1{q1)p2q2{ p21zq21
� �

p22zq22
� �

{ p1{q1ð Þ2
h i

b23

With an assumed value of b3 and the corresponding estimators b̂b1,

b̂b2, and ŝs2, we can apply the above calculation to obtain the power

of model selection strategies.

Supporting Information

Text S1 Supplementary Note for proofs and arguments,

distributions of test statistics, extended comparisons of power for

model selection methods, and formulas for distribution parameters

of test statistics.

Found at: doi:10.1371/journal.pgen.1000582.s001 (0.91 MB PDF)
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