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Abstract— At system level, the on-chip temperature depends both on
power density and the thermal coupling with the neighboring regions.
The problem of finding the right set of input power profile(s) for accurate
temperature estimation has not been studied. Considering only average or
peak power density may lead either to underestimation or overestimation
of the thermal crisis, respectively. To provide more realistic temperature
estimation, we propose to incorporate multiple power profiles. Using
the proposed statistical methods to determine the closeness between the
power profiles, we apply a clustering algorithm to identify few input
power profiles. We incorporate them in a thermal-aware floorplanner
and empirical results show that using the single input power profile
(average or peak) leads to 37% degradation in critical wire delay and
20% degradation in wire length, compared to using the multiple input
power profiles.

I. INTRODUCTION

Thermal-aware system level design flow requires modeling tools
for estimation of temperature per unit area on a given power density
profile [1]. Accurate thermal modeling techniques are computation-
ally intensive. Hence, there is a large body of research work to
provide efficient, yet accurate, thermal simulation in design flow. The
temperature of each module is not only dependent on its own heat
generation rate (i.e. its power density) but also dependent on heat
coupling with neighboring modules. The physical layout of blocks
(floorplan) plays a significant role on thermal behavior of the chip.
Hence, many existing work on thermal estimation and analysis is on
a given layout or toward generating a thermal-aware layout (Thermal-
aware Floorplanning) [2]–[4]

However, all recently developed thermal-aware tools deploy tem-
perature estimation techniques only on a single power profile repre-
senting power profiles of all inputs and all applications (e.g. using
average or peak power profile). Different applications lead to different
dynamic power profiles of the blocks. Most of the existing work use
either average power or peak power per block of the applications
for simulating temperature, without analyzing the impact of this
assumption. Also, it is not practical to consider individual power
profiles of each application in thermal estimation of a layout. The
problem of finding the right set of input power profile(s) for accurate
temperature estimation has not been studied. In this work, we present
a study of why, how, and which power profiles should be used during
the temperature estimation. Interestingly, only a recent work [5]
shows that the power profile does not have major effect on the leakage
power as long as the total power remains same. However, they do not
consider the effect of power profile on temperature variation across
different applications, especially the peak temperature of the blocks.
Average power density 1 or peak power density cannot capture the
relative power density variation among the blocks and hence, fails to
provide realistic estimation of temperature.

This paper focuses on cluster analysis techniques to find a small
set of power profiles for realistic thermal estimation of a given layout.
We introduce a notion of leader power profile which represents the

1In this paper, we use power profile and power density interchangeably.

power profile of a subset of applications. Our contribution in this
paper is as follows:

• We show that the single power profile like peak or average is
not suitable for layout thermal estimation, and that few power
leaders could adequately capture behavior of all applications

• We propose statistical distance metric to define closeness in
power profiles for similar thermal behavior

• We develop a clustering algorithm to generate leader power
profiles based on the statistical closeness metrics

• We show the integration of multiple power leaders in thermal
and leakage aware floorplanner. By incorporating our proposed
multiple leader profiles in our floorplanner, the floorplanner
estimates the temperature of the blocks which are neither
too pessimistic (unlike peak power profile), nor too optimistic
(unlike average power profile). As a result, the floorplanner is
leveraged for better optimization on wirelength and critical path
delay.

Our work provides a new perspective to the temperature estimation
approaches. We believe that this work will motivate the future
design tools to consider multiple input power profiles for realistic
temperature estimation.

II. EFFECT OF CHANGE IN POWER ON TEMPERATURE

A commonly used thermal model (k∇2T +P = 0) for steady state
heat flow is given in [6]. In the equation, k is the thermal conductivity,
T is the temperature, and P is the power density of heat sources. The
thermal equation can be rewritten [4] in the matrix form as follows:

R.
−→
P =

−→
T (1)

where R is the thermal resistance matrix (Rij is the thermal
resistance between block i and block j),

−→
P is the power profile vector

(
−→
P i is the power dissipation of block i), and

−→
T is the temperature

profile vector (Ti is the temperature of block i).
Using this model, we show that the error or change in the power

of blocks affects the temperature of the blocks linearly. Consider a
change in power of blocks Δ

−→
P , where ΔPi represents change in

power of block i. The change in the power of the blocks will result
in the new temperature

−→
T ′, given by

−→
T ′ = R.(

−→
P + Δ

−→
P ) which

is equal to R.
−→
P + R.Δ

−→
P . Hence, the change in the temperature

of the blocks Δ
−→
T is given by Δ

−→
T = R.Δ

−→
P . Thus the change in

the temperature is linearly dependent on the amount of change in the
power.

Lemma 1: The change in temperature due to the change in power
(Δ

−→
P ) that is not dependent on temperature, is a linear function of

Δ
−→
P .

Dynamic power consumption of the microarchitectural blocks is
not dependent on the temperature. Hence, any increase/decrease in
dynamic power leads to linear increase/decrease in the temperature
of the blocks. However, in nanoscale technology, static power,
which is temperature-dependent, cannot be neglected and can have
a significant impact on temperature of the chip especially at higher
temperature.
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Leakage power is an exponential function of temperature (PL(
−→
T )).

The initial temperature is computed as: R.(
−→
P +

−→
PL(

−→
T0)).

−→
T0 is the

steady state temperature before Δ
−→
P occurs. Since, leakage power

depends on the temperature, the value of leakage power changes at
the new temperature. This positive loop of temperature computation
and leakage power update continues until the design reaches steady
state temperature (or otherwise it goes to thermal runaway). Assume
after k iterations, the steady state temperature,

−→
Tk is reached, which

can be formulated as:

−→
Tk = R.(

−→
P + Δ

−→
P +

−→
PL(Tk)) (2)

Theorem 1: The Δ
−→
P change in the dynamic power leads

to linear increase in the steady state temperature as well as
additional non-linear increase in temperature due to the presence of
temperature-variant leakage power.

III. POWER PROFILES IN TEMPERATURE ESTIMATION

In order to fairly estimate the temperature of functional blocks
and perform a complete thermal simulation of a general purpose or
an application specific processor, designers use a set of benchmark
applications to run on the processor. These benchmark applications
usually cover all the possible scenarios of the usage of each functional
blocks - from heavy usage of certain functional blocks to the medium
usage of all the functional blocks. Designers provide either single
application, or or average/peak power numbers of all the benchmark
applications to the temperature estimators in design tools. However,
actual power numbers of some applications could be very different
from the average or peak power numbers.

A leader power profile that represents power values of multiple
applications running on a chip will have some errors in the power
values compared to the actual values of the applications. For an
application m, the leader profile will have Δ

−→
P m error, such that−→

P l =
−→
P m + Δ

−→
P m, where

−→
P l is the leader power profile. This

will lead to an error in the temperature of the leader profile which is
given by Δ

−→
T m = R.Δ

−→
P m. Hence, representing all power profiles

with single leader power value per module leads to inaccuracy in
temperature estimation. In the next subsections, we discuss the impact
of Δ

−→
P imposed by widely used average power and peak power

profiles.

A. Average Power Leader

In average power, the power values of each block are averaged
over all the benchmark applications. The average, however, levels
any extreme variation in the power of blocks that may occur in some
applications. Since those applications could run on the processor,
they will have higher temperature than estimated. In the experimental
section, we show the errors generated by average power profile.

B. Peak Power Leader

In the peak power profile, the maximum power density of each
block over all the benchmark applications is assigned as the power
density of the block. The peak power considers the worst-case
scenario of the power dissipation of each block. Since it considers
the highest power dissipation of all the blocks, it finds the highest
temperature of each block over all the applications. Normally, this
is useful as most of the design tools are interested in knowing the
worst case temperature. However, the estimated temperature of the
whole chip could be significantly higher than achieved in any single
application.

Since, neither of the two single power leaders - average and peak
- can accurately predict temperatures, we need a new metric to define
how close leader power profiles are to the actual power values of the
applications.

IV. POWER-PROFILE CORRELATION

Before we find a leader of two or more applications, we must
first identify subset of the applications that can be represented by a
single leader. Each application has a different power profile, which
means that the power consumed by each block on the chip is
different for different applications. If the power vectors of two or
more applications show similar behavior (same highs and same lows),
they will have similar thermal behavior with any given layout. Two
applications are said to be close to each other if they have similar
thermal behavior on any given floorplan.

The notation of the power numbers of two applications in this
paper is X =< X1, X2, · · · , Xk > and Y =< Y1, Y2, · · · , Yk >
for the k blocks on the chip. In cluster analysis techniques [7],
several distance metrics are provided to measure distance/similarity
among a set of data. In this work, we give a closeness metric to
mathematically quantify similarity between the power profiles of any
two applications. Our closeness metric is intuitively suited to our case
keeping in mind the relationship between power and temperature.

A. Correlation Metric

The correlation metric calculates the statistical correlation of two
applications over different blocks. The random variables are the
power numbers of the blocks in the two applications, X and Y .
The power of block i in first application is Xi. Let the first moment
(average) of the random variable X be X and Y be Y . First, we
evaluate covariance of the two applications which is defined as
cov(X, Y ) = E[(X − X)(Y − Y )] where E is the expected value
of the product.

cov(X, Y ) =
1

k
×

kX

i=0

[(Xi − X) ∗ (Yi − Y )] (3)

The covariance of the two random variables will calculate how
similarly the power of two applications vary with each other from
their respective means. Covariance will be high if the two appplica-
tions have similar highs and similar lows in their power profile, and
covariance will be low if the two applications have opposite highs
and lows. The covariance of any two applications could be any real
number. We use normalized form of the covariance, which is called
as correlation, defined as:

ρXY =
cov(X, Y )

σX ∗ σY
(4)

The correlation metric has some important properties. The correlation
of any two applications is bounded, and −1 ≤ ρ ≤ 1. Further, when
Y = αX + c, then ρXY is equal to 1, where α is any positive real
number and c is any real constant. That is, when Y is a linear function
of X , then the two variables have the highest correlation. Hence,
correlation is a strong metric to define closeness of two applications.
We now define a distance function dρ between any two applications
X and Y using equation 5.

dρ(X, Y ) = 1 − ρXY (5)

The distance dρ is a positive real number where 0 ≤ dρ ≤ 2. Also,
dρ(X, Y ) = dρ(Y, X) for all X and Y .

V. POWER PROFILE CLUSTERING

In order to find the leaders of a set of benchmark applications, we
should cluster applications that are close to each other in a few sets.
We propose the following objective for our problem.

PROBLEM STATEMENT: Given a positive integer k, find a cluster-
ing of n applications such that there are k clusters and the maximum
distance, dmax, between any two nodes of a cluster is minimized.

Each such cluster can then be represented using a leader during
floorplanning. The high value of k will lead to low value of the
maximum distance dmax, and hence, lead to clusters with highly
correlated applications. If k = n, then all nodes are in separate
clusters, representing a solution with the most accurate representation
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(dmax = 0). This clustering problem is an NP Hard problem. [7]
provides a good discussion of various clustering techniques. In this
work, we propose a hierarchical bottom-up clustering algorithm. The
pseudo code of the clustering algorithm is shown in Algorithm 1.
Before clustering, we remove redundant applications from the given
set of applications. The next subsection discusses this important
aspect of the clustering of power profiles.

Algorithm 1 K-Clustering Algorithm for minimizing dmax

1: function K-CLUSTERING (k)
2: Remove all redundant applications.
3: Sort all the edges in the increasing order.
4: Start from the least weighted edge.
5: repeat
6: Pick the next minimum weight edge, e
7: c1 = cluster containing one node of e
8: c2 = cluster containing the other node of e
9: /* Let wt: E → �, the weight of edge, e */

10: /* Let interedge: C × C → E∗,
11: set of edges between two given clusters */
12: if wt(e′) ≤ wt(e), ∀ e′ ∈ interedge(c1, c2) then
13: merge c1 and c2
14: end if
15: until the number of clusters > k
16: return wt(e)
17: end function

A. K-Clustering Algorithm

After removal of redundant applications, we form a complete graph
of all the remaining applications. Each benchmark application is
created as a node and put inside a cluster. The distance between
any pair of nodes is precomputed and is taken as the weight of an
edge between the two nodes.

Algorithm 1 creates clusters in a bottom-up manner by starting
from very small size clusters (one node each) and merging the clusters
until the desired number of clusters is reached. The algorithm first
sorts each edge by distance. Since we want to minimize the maximum
distance between the nodes of a cluster, we start by merging the
clusters with very low weight edges. Therefore, we first pick the
lowest weight edge. While merging any two clusters, we ensure that
no edge inside the new cluster has weight higher than the current
weight. This guarantees that the last edge picked by the algorithm is
the highest weight edge inside any cluster. If we cannot merge the
clusters with the current edge, we move to the next edge in the sorted
list. The next edge will have more chance to merge two clusters than
the previous edge because its weight is higher than the previous edge.
Since the graph is a complete graph, the algorithm will eventually
terminate before all the edges are visited. Only in the case of k = 1,
the algorithm terminates at the last edge.

Theorem 2: The time complexity of the K-clustering algorithm is
O(nlogn + m2) where m is the number of edges.

We choose the distance function defined in Section IV to compute
the various clusters. After clustering, we create a leader for each
cluster. The leader of a cluster is calculated as the peak (maximum)
power values of all the applications inside the cluster.

VI. THERMAL AWARE FLOORPLANNING FOR MULTIPLE

APPLICATIONS

We develop a thermal aware floorplanner that uses multiple power
profiles for accurate temperature estimation. Our thermal aware
floorplanner is developed from HotFloorplan [3] tool which is an
open source thermal aware floorplanner widely used in the research
for microarchitectural design. It is a simulated annealing based
floorplanner which reduces the linear combination of area, wirelength
and peak temperature of the device. It takes a single power profile
for temperature estimation. The moves of the simulated annealing
engine are the soft blocks moves (changing the shape of blocks) and
the swapping moves (swapping positions of blocks). Our floorplanner
has the following additions to HotFloorplan:

1) It takes multiple leader power profiles as input, calculates
temperature of each profile, and finds the peak temperature
over all profiles, during simulated annealing iterations. Thus,
our floorplanner can find more accurate temperatures during
simulated annealing. The clustering algorithm described in
Section V is used to reduce the number of leaders. After the
applications are clustered, a representative power profile from
each cluster can be used by the floorplanner to simulate the
steady state temperatures.

2) It handles leakage power and the positive thermal feedback
loop of the leakage power to compute steady state temperatures
during simulated annealing iterations. The thermal feedback
loop is stopped when the change in temperature becomes very
small. In order to avoid complex floating point leakage power
calculations and reduce runtime of the floorplannner, we store
the leakage power values of each block at each temperature in
a look-up table. The table is computed offline.

3) It considers thermal runaway temperature of the chip. In [8], a
thermal runaway condition is described based on the positive
feedback loop of the leakage power and temperature. If the
package’s heat removal ability is not adequate, it can lead to
thermal runaway and catastrophic heat failures. The lowest
temperature that meets criteria of infinite feedback loop is
called runaway temperature. Our floorplanner takes thermal
runaway or thermal threshold temperature as an input and
rejects any floorplan in which this temperature is reached during
simulated annealing iterations.

4) It includes wire delay in the cost function.

VII. EXPERIMENTS

A. Experimental Setup

Figure 1 illustrates an overview of the proposed design flow. The
process of temperature estimation for each leader profile is shown in
the right side of Figure 1. We evaluated our floorplanner on Alpha
21264 processor. To target the processor, the SimpleScalar’s out of
order instruction simulator and Wattch are extended, breaking down
the RUU and functional units of the sim-outorder into functional
blocks on the Alpha processor. We also augmented the sim-outorder
to obtain the power profiles of the blocks with an interval of 10k
instructions. The sim-outorder and the power model are configured
similar to Hotspot in [9]. The configurations of power model are
0.70nm, Vdd = 1.0V and a clock speed of 3 GHz. To obtain
the dynamic power profiles of the blocks, we ran 17 integer and
19 floating-point applications from the SPEC CPU2000 benchmark
suit. Each benchmark is run with one reference input or one test
input for 500 Million instructions which follow architecture and
thermal warmup of 300 Million instructions like [3]. We find that
21 benchmarks from the reference set and 16 benchmarks from the
test set generate the power trace in this interval.

We use HotLeakage [10] to compute the leakage power of blocks.
HotLeakage is configured with the same configuration file as the
SimpleScalar. The ambient temperature is 333.15K and the thermal
threshold temperature is chosen to be 366K. Though the current
thermal runaway temperature at 70nm is higher than 366◦K, we
choose this temperature as a threshold in order to simulate thermal
runaway and extreme thermal bottlenecks within the range of the
power values in the generated power profiles in this setup. In
general, the thermal runaway temperature is expected to decrease
with increasing clock frequency to lower levels. All the experiments
are performed on Linux machines with Dual Intel Xeon 2.0 GHz
processors and 1GB RAM each.

B. Comparison with Peak and Average Power Leaders

All the current thermal-aware floorplanners consider only a single
leader power profile found by computing the average power values [2]
[4] (referred to as average-leader floorplanner) or peak power values

1B-6

69



Initial temperature and and random initial 
floorplan

Create new floorplan with a random move

Estimate temperatures of the blocks for leader 
power profiles and calculate the peak 

temperature of the floorplan

Calculate the cost of new floorplan
cost = f(Area , Tpeak, Wlength, Wdelay)

If the cost is better, accept new floorplan

Maximum steps?

Temperature estimation 
(HotSpot)

36 SPEC2000 benchmarks

Power simulation
(Wattch)

Calculate a 
average power 

profile

Calculate a 
average power 

profile

Cluster power profiles 
(Correlation and 

Variance )

Steady temperature

Look up leakage power 
of the blocks

Leakage power Leakage 
power table 

for the blocks

Leakage power 
calculation 

(HotLeakage)

Temperature estimation for 
leader profilesOutput floorplan

Leader power profiles for the blocks

Power traces for the blocks 
over benchmarks

New floorplan

Output temperatures for the blocks

Areas of the blocks

Fig. 1. Thermal/Leakage/Power-Profile Aware Floorplanning Design flow

of all benchmark applications (referred to as peak-leader flooplanner).
We compare these with n-leader floorplan in which all applications
represent themselves as the leaders (n-leader floorplanner). Table I
shows the results of the three floorplans generated using the peak
power, average power and n-leader power profiles. It shows the
critical path wire delay, wire length, and the peak temperature of
the floorplan. The peak temperature of the floorplan is computed by
finding the steady state temperatures of all the applications on the
floorplan using HotSpot.

Floorplan Maximum Wire Peak temperature
Type Wire Delay length (in Kelvin)

k = n 1.658 0.040 363.5
Peak 2.276 0.048 363.9

Average 2.130 0.045 366

TABLE I
COMPARISON BETWEEN THE THREE FLOORPLANS GENERATED BY THREE

METHODS OF GENERATING LEADER POWER PROFILES.

In Table I, the n-leader floorplan is significantly better both in
wirelength and in wire delay. It has 37% better wire delay and 20%
better wirelength compared to the peak-leader floorplan. The area
and maximum temperature of the two floorplans are the same. Since
the peak-leader floorplan overestimates the temperature significantly,
it reaches the thermal threshold in most of the simulated annealing
iterations even though none of the applications may actually reach
this threshold. Thus, many floorplans are rejected by the floorplanner.
Since the n-leader floorplanner has the actual temperatures of the
blocks in all applications, it does not reject those floorplans. Thus
using n leaders significantly improve the quality of the floorplan. This
is, however, an exhaustive solution and leads to high runtime. The
runtime of n-leader floorplanner is 2.2 times the runtime of average-
leader or peak-leader floorplanner. The results in Table I show that
the average-leader floorplan crosses the thermal threshold. The
floorplanner misses the hotspots occurring on the floating point units
in most of the cases during simulated annealing. Hence, average-
leader power profile as mostly used in thermal-aware floorplanning
does not consider the worst possible cases of the temperatures.

C. Results on Distance Metric Based Clustering

In k-leader floorplanning refers to our proposed thermal-aware
floorplanner with k leader prower profiles (Section VI). Table II
shows the result of k-leader floorplanning using correlation metric
for clustering. Speedup refers to the improvement in runtime over
n-leader floorplanning. Number of clusters in the tables refers to the
number of leader power profiles. In general, if the number of clusters
(k) decreases, the quality of the floorplan (wirelength and wire delay)
decreases. For example, in Table II, the wire delay of the floorplan
when k = 15, is 1.656, whereas it is 1.804 for the floorplan when

k = 2. As the number of clusters decreases, error inside each cluster
also increases and causes higher temperature error. Also, the results
from clustering methods are in general better than the average-leader
and peak-leader floorplanners as shown in Table I. We can find the
overall good solutions at the low cluster counts of 2 and 3 with a
speedup of around 3 times compared to the runtime of the exhaustive
search (k = n leaders).

No. of Maximum Wire Speedup Peak temperature
Clusters (k) Wire Delay Length (in Kelvin)

15 1.656 0.038 1.61 361.7
6 1.761 0.046 2.28 363.9
3 1.83 0.038 2.9 363.7
2 1.804 0.043 2.9 362.8

TABLE II
k-LEADER FLOORPLANNER USING CORRELATION DISTANCE METRIC dρ .

VIII. CONCLUSION

Thermal-aware system design tools estimate the temperature of the
chip using just a single power profile (average or peak). However,
these single power profiles fail to identify or over-estimate the
hotspots of the chip. We therefore need suitable leader power profiles
which can be used to predict the steady state temperature of all the
applications. In this paper, we propose a cluster analysis technique
to group the correlated power profiles in order to provide the tools
with more realistic temperature values in an efficient manner. The
experimental results show that using only a single power profile could
increase wire delays of floorplan by 37%.
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