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Abstract

Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide
association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance
thus obtaining improved prediction accuracy. We provide guidelines on how to obtain parsimonious models with low
mean squared error and include easy to follow walk-through examples for each step in R.
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Main text

Statistical prediction methods have recently become

popular in epigenome-wide association studies (EWAS),

especially for predicting epigenetic age [1–4]. Variable

selection and prediction from datasets of ultra-high

dimensions, such as those typically encountered in EWAS,

can however be challenging due to comparatively low

sample sizes (n << p, few samples n compared to many

predictors p). The elastic net [5] from the “glmnet” package

[6] is a generalization of several n << p shrinkage-type

regression methods and includes established methods such

as Lasso [7] and Ridge regression [8] as special cases. The

least angle regression algorithm is used to estimate the

parameters for all elastic net methods [5, 9].

Trade-off between bias and variance

The mean squared error (MSE) is the average of the squared

difference between the observations and the estimated

values from the fitted model. The MSE can be decomposed

into a sum of the bias and the variance, and when selecting

an estimation method, there is a trade-off between these

two components. The Stein theorem states that as long as

the dimension of the model with parameters to be estimated

simultaneously is larger than or equal to 3, biased estimators

may be preferable to unbiased estimators due to lower MSE

[10]. Shrinkage-based methods estimate coefficients in a

biased manner and have roots that can be traced back

to the James-Stein estimator [10, 11]. These methods

aim at improving prediction accuracy by shrinking the

estimated parameters or setting them to zero, which

decreases the variance.

Elastic net

The elastic net is an example of a shrinkage method which

contains both Lasso and Ridge regression as special cases.

An attractive property of the elastic net is its ability to

handle n << p problems [5]. The elastic net allows tuning

of the penalty term
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through the parameter α. The parameter α controls the

type of shrinkage, with important consequences for the

properties of the estimation method. The penalty parameter

λ controls the amount of shrinkage. The glmnet package

thus offers many different types of regression methods that

can be chosen both for variable selection and feature pre-

diction in n << p settings, depending on the problem and

data at hand. Lasso (α = 1 in the equation above, default

option in the glmnet package [6]) has an ℓ1 penalty on the

parameters and performs both parameter shrinking and

variable selection. The other end, α = 0, gives Ridge regres-

sion with a ℓ2 penalty on the parameters, which does not

have the variable selection property. It can be seen from the

above elastic net equation that setting the α parameter
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anywhere between the values 0 < α < 1 gives a penalty term

dominated by the end point the α parameter is closest to.

Lasso performs automatic variable selection and is most

likely the preferred method when few sites (CpGs) are

expected to be selected for prediction compared to the total

number of sites in the data [6]. This is typically the norm in

EWAS data with ultra-high dimensions. On the other hand,

if a large fraction of CpGs are expected to be associated

with a given outcome, Ridge regression (α = 0) should most

likely be favored as no variable selection is performed

[6, 12]. Setting α = 0.5 may be a preferred option when

the fraction of CpG sites are assumed to be somewhere

in between what is expected for the Lasso and the Ridge

regression methods [6]. Another important drawback with

Lasso is that it selects at most n predictors. Hence, for a

dataset with a small sample size n, the number of CpGs

selected for prediction with Lasso will never be greater than

the number of samples. While no variable selection is per-

formed using α = 0 (Ridge regression), a small number ε >

0 can be added to α, effectuating the ℓ1 penalty term used

for variable selection [5]. Ridge regression and Lasso regres-

sion differ in how they handle correlated variables. While

Ridge regression shrinks correlated variables toward each

other, Lasso typically selects one. Therefore, Ridge regres-

sion tends to perform better than Lasso when the predic-

tors are highly correlated [13]. Due to the unpredictable

manner in which Lasso handles correlated predictors, a

small number ε can be subtracted from α so that more

correlated predictors are included in the model [6].

Furthermore, setting α to a value slightly below 1 allows the

model to include more predictor variables than samples.

Choosing the tuning parameters λ and α

The tuning parameters λ and α can be chosen by k-fold

cross validation [6]. In glmnet, the default value for k is

10. Consider first the problem of finding the optimal λ

from a grid of values, for a fixed α. The data are first

split randomly into k equally sized blocks (folds). For

each value of λ and for each block, the model is fitted to

the data in the remaining k − 1 blocks. The fitted model

is then used to estimate the prediction error in the block

that was left out. The same procedure is repeated for all

k blocks, resulting in an estimate of the prediction error

for each λ. The penalty parameter λ can be chosen, for

instance, as the minimizer of the prediction error (i.e.,

MSE). For a more parsimonious model, the “one stand-

ard error rule” [14] can be applied, in which the selected

model is the one with the largest λ within one standard

error of the minimum prediction error. Although “the

one standard error rule” can produce a model with fewer

predictors, it usually results in increased MSE and more

biased parameter estimates. Cross validation can also be

used to select α, or the elastic net method, from a grid of

values, through a nested cross validation procedure. The

combination of α and λ minimizing the prediction error

can then be chosen. We have included a walk-through

guide in R on how to estimate both α and λ with the elastic

net, as well as carrying out predictions, in Additional file 1.

It may be difficult to obtain a clear understanding of the

limitations and possibilities offered by shrinkage methods

for prediction of n << p models due to the many implicit

assumptions hidden in such methods [15]. Bias increases

with the penalty parameter λ, as can be seen from the

equation above. Given equal MSE, it is often desirable to

choose the most parsimonious model (Occam’s rule) [5],

as parsimonious models are often more interpretable.

There could of course be reasons not to choose the most

parsimonious model (e.g., Lasso’s handling of correlated

predictors [6]) but then this should be justified. Neverthe-

less, the only way to properly validate the final selected

predictor model is to assess its performance on an inde-

pendent test set. We give an example in Additional file 1

of how variable selection can be performed on data from

the Illumina Human Methylation 450k platform where

the aim is to train a simple model for age prediction. The

number of folds used for training and prediction can be

adjusted according to the number of samples in the data-

set. It should be noted that cross validation is performed

by random selection of the k-folds. If the obtained results

are to be duplicated at a later stage, it is recommended

that a seed is specified. It is also possible to fix the penalty

parameter λ. The smaller the penalty parameter λ is, the

closer the elastic net coefficient estimate is to the least

squares estimate, as the influence of the penalty term in

the elastic net equation above will diminish. It is, however,

impossible to carry out least squares estimation when the

number of explanatory variables in the model exceeds the

number of samples [7].

Standard errors

Statistical testing is not directly possible using the elastic

net, as no standard errors for the estimated parameters (i.e.,

slope coefficients) are computed directly. There is some

discussion concerning the most appropriate methods to

estimate variances and perform hypothesis testing for Lasso

[16], but there seems to be no general agreement as of yet,

not least due to Lasso’s unpredictable variable selection

[17, 18]. For instance, bootstrapping is one method that

can be applied for performing statistical inference on

the estimated coefficients [19], but may be very time

consuming on large datasets, depending on both the

number of samples as well as the number of predictors.

Interpretation of the final model

In terms of selection, it is not given which explanatory

variables are prioritized in n << p type datasets as this

may be strongly dependent on properties of the dataset,
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in particular the correlations between the predictors.

Moreover, it is not clear whether the selected predictors

are the ones with the strongest association with the

outcome [5]. Due to the penalty term described above

(see the elastic net equation), the explanatory variables

selected are influenced by every other variable selected.

Biasing coefficient estimates by changing the penalty

parameter λ or training elastic net models with datasets

having specific properties may therefore lead to unpre-

dicted results [20] and the selected variables could have

no true relation with the outcome but be correlated with

other predictor variables. Hence, as the elastic net does

not have “oracle properties” [21, 22], it is not guaranteed

that the selected set of variables is correct or truly

related to the outcome [20]. In EWAS studies, this may

be problematic as the chosen regression model may

indirectly select CpGs associated with irrelevant genes or

regions. The adaptive Lasso attempts to remedy the short-

coming of unpredictable variable selection by providing

oracle-like features [21]. However, the adaptive Lasso also

has problems with collinearity [13]. An alternative method

is the adaptive elastic net, which handles collinearity like

the elastic net and has the oracle property like adaptive

Lasso [23].

Additional file

Additional file 1: Walk-through for glmnet predictions. (R 1 kb)
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