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Abstract This work focuses on the evolution of structure

and stress for an experimental system of 2D photoelastic

particles that is subjected to multiple cycles of pure shear.

Throughout this process, we determine the contact network

and the contact forces using particle tracking and photoelastic

techniques. These data yield the fabric and stress tensors and

the distributions of contact forces in the normal and tangential

directions. We then find that there is, to a reasonable approx-

imation, a functional relation between the system pressure,

P , and the mean contact number, Z . This relationship applies

to the shear stress τ , except for the strains in the immediate

vicinity of the contact network reversal. By contrast, quan-

tities such as P, τ and Z are strongly hysteretic functions

of the strain, ε. We find that the distributions of normal and

tangential forces, when expressed in terms of the appropri-

ate means, are essentially independent of strain. We close by

analyzing a subset of shear data in terms of strong and weak

force networks.

Keywords Cyclic shear · Jamming · Photoelastic

materials · Force chain

1 Introduction

The nature of jamming in granular and other disordered sys-

tems of particles has been the subject of intense scrutiny at
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least since the time of the proposed jamming diagram of

Liu and Nagle [1]. In this work, Liu and Nagle considered a

state space with axes corresponding to temperature, inverse

density and shear stress. In the context of this space, they

proposed the existence of a region near the origin where a

diverse array of systems would be jammed, i.e. mechani-

cally stable. Since then, there have been numerous studies

that have probed the nature of jamming, particularly near

point-J. At this point, under zero shear stress and temperature,

one would expect that particulate systems would transition

from unjammed to jammed as their density is increased. One

of the appealing aspects of this picture is that it would pro-

vide a unified approach for describing such seemingly diverse

materials as glasses, colloids, foams, and granular materials.

A complete review of jamming is beyond the scope of this

paper, but we note several important milestones. O’Hern et

al. [2] carried out extensive particle scale simulations for

frictionless particles that mapped out the behavior of such

systems near point-J. Blumenfeld et al. [3] have considered

the behavior of force transmission very near the jamming

point. Torquato et al. [4] have considered more precise char-

acterizations of jamming. Henkes et al. [5] have developed

mean field models that predict stress behavior near jamming,

based on novel ensemble approaches in which stress rather

than energy is the basis for the ensemble. The idea of stress

ensembles dates to Edwards et al. [6] and it has been used to

compute useful properties such as contact force distributions,

by Snoeijer et al. [7] and Tighe et al. [8] Song et al. [9] have

considered the role played by friction near jamming. A more

detailed review of jamming have been given by Chakraborty

and Behringer [10] and by van Hecke [11].

Much effort has been focused on the isotropic case for

which the shear stress, τ , is zero. However, the case for which

|τ | > 0 has not been addressed. In addition, with the excep-

tion of the work by Song et al. noted above, relatively little is
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Fig. 1 Sequence of

photoelastic images showing the

evolution of the force chains as

the system is sheared in the

forward (images (a) and (b)),

then the reverse direction (image

(c) and (d)). These four images

are chosen at different steps

from the 1st shear cycle, with

ε = 0.033, 0.267, 0.267, and

0.033, respectively. The axial

strain ε is defined below. In

images (b) and (c), the sidewall

of the biax has moved into view,

creating dark bands at the

bottom of the images

known about the difference between frictional and friction-

less particles. A key goal of this work is to address the lack

of knowledge concerning the effects of shear for a system of

physical grains, hence, one that is inherently frictional.

In this work, we describe experiments that probe the

microscopic properties of sheared granular materials, with

an eye towards understanding the statistical properties and

small-scale phenomena which strongly influence larger scale

behavior. The application of shear leads to the evolution of a

strong force network, as shown in Fig. 1, sometimes referred

to as force chains. These mesoscopic structures are filamen-

tary networks that carry forces at or above the mean, and that

extend, in the case of shear, over distances of a few to perhaps

many tens of grains. During shear, the force network evolves,

with force chains strengthening, and then ultimately failing.

The present studies explore the structural evolution of sys-

tem during shear by means of fabric, stress and related ten-

sors. Associated with the evolution of the fabric and stress

tensors are a number of complex phenomena, including shear

bands, particle rotation, failure and buckling of the force

chains, among other effects. We have recently shown the

importance of rotation for the failure of force chains, partic-

ularly in shear bands [12]. In general, all quantities measured

here show fluctuations, and, of course sensitivity to the direc-

tion of the shear (forward and reverse). In particular, when

the shear direction is switched, the system undergoes struc-

tural reconstruction, causing changes in the average contact

number, the mean orientation of the contacts, and the stress

tensor.

We focus on a path corresponding to pure shear strain,

starting from a packing fraction where there is no observable

stress. As we strain the system, the detected stresses and

mean contact number Z increase, and the system reaches a

jammed state for Z ’s above Z ≃ 3. As we further deform the

system, including reversal of the strain, Z tends to remain

at or above 3 for much of the time. Throughout multiple

shear cycles, the packing fraction φ remains at a fixed value,

φ = 0.795 ± 0.003, that is below the observed jamming

value for isotropic compression [13]. When the shear strain

is reversed, the original force network largely vanishes, and

a new strong network forms. This process is strongly hyster-

etic in the strain, but we find that the stresses can be charac-

terized rather well in terms of the system-averaged contact

number, Z .

In the remainder of this work, we first describe basic fea-

tures of the experimental techniques. We then present results

from cyclic pure shear experiments, in which we explore the

structural and stress changes within each shear cycle and in

particular during shear reversals. We then analyze the force

network in terms of strong and weak components.

2 Experimental techniques

The experiments described here use a ‘biaxial’ apparatus, as

depicted in the upper parts of Fig. 2. This device allows us

to deform a rectangular sample of particles into any other

desired rectangular shape, hence apply pure shear (compres-

sion in one direction, but equal dilation in the other), uniax-

ial compression, isotropic compression, etc. Here, we focus

uniquely on shear deformations, which maintain a fixed area

for the system.
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Fig. 2 Top-left: Sketch of top

view of the experimental

apparatus, a 2D ‘biax’,

consisting of pairs of facing

boundaries that can be moved

precisely under computer

control so as to produce desired

strains. Particles rest on a

smooth slippery sheet of

Plexiglas and are confined

laterally by the walls of the biax.

Strains are applied

quasi-statically, in small discrete

steps. Top-right: Side view of

apparatus. Imaging is carried

out by a camera mounted above

the biax, and for each step, we

obtain three images: one with

crossed polarizers (bottom left),

one without polarizers (bottom

center), and one without

polarizers but with UV

illumination (bottom right)

The studies are carried out effectively in 2D by using disks

which are made of photoelastic material. When under stress,

and when viewed between crossed polarizers, photoelastic

materials exhibit a series of light and dark bands, as in the

bottom left image of Fig. 2. These bands encode the detailed

stress within each particle, and these stresses are in turn,

determined by the forces at contacts on each particle. In the

past, this technique has been used in several different studies

[14–16]. What makes our current approach unique is that,

for large collections of particles, we solve the inverse prob-

lem which starts from the photoelastic image and yields as

output, the inter-particle contact forces. More details have

been given elsewhere [17,18]. The particles are also typi-

cally marked with a small bar, which allows us to track the

rotation and displacement of individual particles. In our cur-

rent tracking approach, the bars are drawn on with fluores-

cent ink, which is invisible under ordinary light but glows

strongly under UV light. In this way, it is possible to have

both photoelastic images for force/stress measurement and

separate images for tracking rotation and displacement of a

given set of particles, without mutual interference. In earlier

versions of this approach [19–23], we used solid black bars

drawn on the particles. In this case, we imaged separate sets

of particles for determining forces and for tracking motion.

The initial boundaries of the system form a square filled

with 1,568 bidisperse photoelastic disks at a packing fraction

φ = 0.795 ± 0.003. A bidisperse mixture is used explicitly

to avoid crystallization, i.e. long-range spatial order of the

packing. There are roughly 80% smaller particles having a

diameter of ≈ 0.74 cm, and 20% larger particles having a

diameter of ≈ 0.86 cm.

We determined the packing fractions by a multi-step pro-

cess. The first step involved determining the mass of a given

sample, and then dividing by the area density (mass/area)

of the bulk material from which the disks were made. This

provided the area occupied by the disks. We then divided

this area by the area available within the biax in order to

obtain φ. We determined the area density by two indepen-

dent determinations of the mass density of the bulk material,

and a measurement of the disk thickness. We estimate that

the resulting φ’s are accurate to ±0.003.

The initial state is prepared as close to isotropic as possi-

ble and is stress-free. The system is then subjected to shear

by compression along the y-direction and expansion along

the x-direction, as in Fig. 2 (top-left), keeping the system

area constant. Since the area is fixed, the deformation can

be simply defined using the strain ε along the x-axis with

ε = (x−x0)/x0. Here, x0 is the initial size of the square. Once

a maximum deformation εmax is reached, shear is reversed

by compression along the x-axis and expansion along the

y-axis. After this first shear reversal, the shear continues

until the system domain returns to a square, and then fur-

ther deforms in the negative strain direction. Once ε reaches

a minimum εmin < 0, a second shear reversal is applied,
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Table 1 A list of εmax and εmin for different shear cycles

Shear cycle εmax εmin

1 0.2867 −0.15

2 0.29 −0.15

3 0.2333 −0.15

4 0.2 −0.15

5 0.1833 −0.1667

6 0.15 N/A

N/A No negative strain is reached

eventually returning the system domain to a square with

ε = 0. This completes one shear cycle. The second shear

cycle continues from the final state of the first shear cycle and

the same procedure is applied for a total of six shear cycles.

Note that the actual values of εmax and εmin are different for

each shear cycle and the possible extreme values for these

are determined by the spatial limit of the apparatus. A list of

εmin and εmax is given in Table 1. The whole shear process is

carried out in small incremental quasi-static steps. From one

step to the next, ε increases or decreases by a small amount

δε = ±3.3 × 10−3, depending on the shear direction. After

each step, the motion is paused and images are acquired. The

three images in the bottom row Fig. 2 show close-ups of the

three different image types. The left-most of these is taken

with polarizers in place, the middle is without polarizers and

with ordinary light, and the right-most is without polarizers

and with UV light.

Before we turn to detailed results we note an experimen-

tal issue of importance. During the parts of the cycle where

the overall stresses in the system are low, the photoelastic

response at some contacts falls below our limit of resolu-

tion. Because, as discussed below, the experiments indicate

a distribution of normal contact forces of the form

P(Fn) = 〈Fn〉−1 f (Fn/〈Fn〉), (1)

where f is to a reasonable approximation, the same func-

tion for all mean forces, we can estimate the number of the

missed contacts reasonably well. Non-zero contact forces

below our experimental resolution also affect our measure-

ments of stress and, in particular, P . However, the effect on

stress components is much lower, since the contact forces

appear linearly in the appropriate sums.

We expect that we miss a fraction

Fc∫

0

P(Fn)d Fn/

∞∫

0

P(Fn)d Fn (2)

of contacts, where Fc is a small known cut-off force, roughly

the weight of a particle, below which we cannot detect the

photoelastic response. This means that the measured Z ’s are

lower than their true values by

∞∫

Fc

P(Fn)d Fn/

∞∫

0

P(Fn)d Fn . (3)

We also underestimate the pressure by a factor of

∞∫

Fc

Fn P(Fn)d Fn/

∞∫

0

Fn P(Fn)d Fn . (4)

In this last expression, we assume that all particles have the

same radius, which is a reasonably good assumption. In this

regard, the correction can be as much as 15% in Z very near

jamming, but then becomes negligible for Z a bit above 3.0.

The correction to P is much smaller, only 1–2% close to the

jamming transition. In order to simplify the correction, we

assume that the force distribution is an exponential. This is

roughly right, and produces a reasonable correction, given

the statistical variability of the data. Except as noted, the

results of P and Z presented in this paper have been cor-

rected accordingly. We use the same correction factor for

shear stresses, τ , although in this case, the correction is not

as rigorous.

3 Experimental results

We are concerned with the evolution of the force and contact

networks. Both are typically strongly anisotropic, and the

direction of the anisotropy switches quickly when the direc-

tion of strain is reversed. The force anisotropy is evident in

Fig. 1, which shows representative photoelastic images dur-

ing different phases of a single cycle. The structural changes

of the contact network during cyclic shear are also strongly

anisotropic. These can be captured by the fabric tensor, Ri j ,

defined as

Ri j =
1

N

N∑
k=1

ck∑
c=1

nc
iknc

jk . (5)

Here, the summation and N include only non-rattler disks,

and as illustrated in Fig. 3, ck is the number of contacts on

disk k, and nc
lk is the lth component of the unit branch vec-

tor pointing from the center of the disk k to a contact c. We

consider a rattler disk to have less than two detectable con-

tacts. The average contact number Z is simply the trace of the

fabric tensor Ri j . The principal eigendirection of Ri j is also

a useful measure of the prevailing orientation of the force

network.

Figures 4 and 5 show how Z changes in each shear cycle

as a function of step number Ns for all cycles, and as a

function of strain ε for one cycle. In Fig. 4, the individual

shear cycles are distinguished using different colors. We will

maintain this color scheme throughout to identify the various
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Contact c

Fig. 3 Sketch illustrating the notation for calculating the fabric, force-

moment and stress tensors

cycles. Arrows in Fig. 4 indicate the shear reversals. Z fluc-

tuates between a minimum value of around 2.5 and a maxi-

mum value of around 3.5. The first shear cycle, the red curve,

begins with a nearly stress-free and isotropic state. The force

chains build up steadily. As a consequence, Z increases as

more force chains develop. Z barely exceeds 3 before the

first shear reversal. Immediately after the reversal, Z drops.

The relatively rapid decrease of Z after a switch of the shear

direction is common to all shear reversals because the force

network/force chains switch direction during this transition.

With continued strain after a reversal, Z again increases as a

new strong network, orthogonal to its predecessor, emerges.

Note that Z = 3 corresponds to jamming for infinitely fric-

tional particles in two dimensions. We note, however, that for

the same particles used in the present experiments, isotropic

jamming occured [13] for Z ≃ 3. Fig. 4 shows that the sys-

tem remains mostly in a jammed state after the first cycle, but

that it may leave a jammed state briefly after shear reversal.

As we show below, shear bands form in response to the shear.

Hence, these states are not spatially homogeneous. However,

it is the presence of a mechanically rigid but dilated region

in the shear bands that helps to allow for jammed states at

φ’s lower than the isotropic value. We also emphasize that Z

is strongly hysteretic when viewed with respect to strain. To

demonstrate this point, we show one shear cycle, the second,

as a function of strain in Fig. 5.

At various steps, the fraction, ρ, of detectable non-rattler

particles also fluctuates, as displayed in Fig. 6. This ratio

changes from 0.2 up to 0.90. Both Figs. 4 and 6 show sim-

ilar trends, although ρ is noisier at the step where shear is

reversed.

We characterize the mean anisotropy of the contact net-

work in terms of ϑ , the system-averaged value of the angle

between the eigenvector of the maximum eigenvalue of R and

the x axis. Here, we restrict 0 < ϑ ≤ 180◦. Figure 7 shows

that ϑ switches quickly, shortly after each strain reversal.

That is, after a very small strain, ϑ aligns with the compres-

sive direction. In order to see how quickly the angle changes

after a shear reversal, we have plotted ϑ on a much finer

0 200 400 600 800 1000 1200 1400
2

2.5

3

3.5

4

step

Z

Fig. 4 Evolution of the average contact number Z versus step number

Ns . Each shear cycle is colored differently. Arrows indicate the steps

where the shear direction is switched

−0.2 −0.1 0 0.1 0.2 0.3
2.6

2.8

3

3.2

3.4

3.6

ε

Z

Fig. 5 Mean contact number Z versus strain ε for the second cycle

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

step

ρ

Fig. 6 Evolution of the ratio, ρ, versus step number, Ns . ρ is defined

as the number of non-rattler particles over the total number of particles

scale. The results are presented in Fig. 8, where the graphs are

organized from top to bottom, as a function of step number,

Ns . The typical number of steps required for the readjust-

ment of the orientation is roughly �Ns ≃ 10. However, we

note that there is often a lag between the strain reversal, and

the switch in ϑ , which may occur in only a few strain steps.
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100

150

200

step

ϑ

Fig. 7 Fabric orientation angle ϑ versus step number, Ns . ϑ is defined

as the absolute angle between the eigenvector of the maximum eigen-

value of the fabric tensor R and the x axis. This angle measures the

dominant contact orientation

The stress tensor σi j and the force moment tensor, σ̂i j pro-

vide additional measures of anisotropy, in this case for the

forces. We define a local force moment tensor as

σ̂i j =

ck∑
c = 1

f c
ikr c

jk . (6)

The globally averaged stress tensor is then

σi j =
1

A

N∑
k=1

σ̂i j . (7)

Here, A is the system area; N , ck, i, r c
jk and j have the same

meaning as in the expression of Ri j (e.g. Fig. 3). f c
ik is the

i th component of the contact force on particle k at contact c.

The two eigenvalues of the stress tensor are σ1 and σ2, where

σ1 ≤ σ2 by definition. The pressure is then P = 1
2
(σ1 + σ2)

and the shear stress is τ = 1
2
(σ2 − σ1).

Figures 9 and 10 show the evolution of the pressure and

the shear stress versus step number, Ns , and Figs. 14 and 15

show P and τ over the second cycle vs. strain. Both P and

τ vary significantly with strain, but unlike ϑ , both quantities

evolve steadily, modulo some significant fluctuations, up to

the maximum of a given cycle. The fluctuations evident in the

stress evolution are due to failure events, which are associated

with a continual collapse of old and formation of new force

chains. To show the scale of the fluctuations more clearly, we

present in Fig. 11, the changes δP and δτ in P and τ , respec-

tively, between successive steps. The curves exhibit random

spikes in the positive and negative directions. It is perhaps

worth emphasizing that the fluctuations, even for these sys-

tem-averaged stress differences, can be large relative to the

locally averaged step sizes, which cannot be distinguished

from zero on these plots. Figure 12 shows the probability

distribution functions (PDF’s) of δP and δτ , after normaliz-

ing by their respective standard deviations. The two PDF’s for

δpn and δτn are virtually indistinguishable, and decay expo-

nentially for positive and negative values, with a somewhat

more rapid decay for positive values. Sharp drops of P and τ

occur at steps where the shear is reversed. Each drop is asso-

ciated with the release of stored mechanical energy. Interest-

ing issues include the nature of the energy dissipated, and

the relation to the evolution of the force network [12,24,25].

For instance, recently, we have found that buckling of force

Fig. 8 Fabric orientation angle

ϑ versus step number Ns on a

fine scale near shear reversals.

Arrows in each graph indicate

the beginning of the shear

reversals. The readjustment of ϑ

after a shear reversal takes about

10–20 steps

90 100 110
50

100

150

200

215 220 225 230

350 360 370
50

100

150

200

480 485 490 495

600 610 620
50

100

150

200

ϑ

710 720 730

825 830 835 840 845
50

100

150

200

940 945 950 955

1040 1045 1050 1055
50

100

150

200

1145 1150 1155 1160

step

1240 1250 1260
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Fig. 9 Pressure P versus step number Ns
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Fig. 10 Shear stress τ versus step number Ns
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δ
τ(

N
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)

Fig. 11 δP (top) and δτ (bottom) versus step number Ns . δP and δτ

are respective differences between two neighboring steps of P and τ as

given in Figs. 9 and 10

chains [12] is an important mechanism leading to the loss

of energy in shear. We will address these questions in future

work.

To further examine the fluctuations of P and τ , we ana-

lyzed their power spectra from the curves in Figs. 9 and 10.

Here, we use step number, Ns as a time-like variable, and

(Ns/1,000)−1 as a frequency-like variable. The spectra ver-

sus frequency variable, shown in Fig. 13 are similar for P
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δp
n
 & δτ

n

P
(δ

p
n
 &

 δ
τ n

)

Fig. 12 PDFs of δpn (circles), and δτn (squares). δpn and δτn are made

dimensionless through normalization by their corresponding standard

deviations
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Fig. 13 Power spectra, on log-log scales, for δpn , (inset) and δτn com-

puted from the data given in Figs. 9 and 10 versus frequency corre-

sponding to inverse step number, where a frequency of 1.0 corresponds

to a 1/1,000 steps. The solid line is a guide to the eye, and corresponds

to a power law with an exponent of −2

and τ , and are typically broad-band. They suggest a power

law decay with an exponent close to −2 for both P and τ .

Similar behavior for the high-frequency part of the spectrum

has been reported in previous experiments on continuously

sheared 3D granular systems [26].

It is clear from Figs. 5, 14 and 15 that the stresses and Z are

hysteretic in the strain, i.e., that the strain does not provide a

unique characterization of a state. It is then interesting to ask

whether there is some other quantity that better characterizes

the nature of a given state, and in particular whether there is a

relation among Z and P and τ . For jamming of spherical (cir-

cular in 2D) particles under isotropic stress conditions, the

key control parameter is the density (or packing fraction).

Then, both Z and P are functions of φ, and consequently,

P is a function of Z . Here, however, the packing fraction is

constant. Yet, starting from an unjammed state, we arrive at
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Fig. 14 Pressure, P versus strain, ε, for the second cycle, showing

strong hysteresis
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ε
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Fig. 15 Shear stress τ versus strain, ε for the second cycle

a state which is jammed when we apply sufficient shear. In

order to address what might control jamming in this case, we

note that Figs. 5, 14 and 15 show similar shapes. Drawing

on the isotropic stress case, we ask whether a relation exists

between Z and the stresses.

Indeed, Figs. 16 and 17 show that data for P versus Z

fall on a nearly common curve. The first of these figures

gives data that has not been corrected for weak contacts.

Note that the correction is important, i.e. ∼ 15%, for data

where Z
<
∼ 3.0, but not important for larger Z . The effect

on the pressure is much weaker than on Z . In a similar fash-

ion, data for τ versus Z falls on a nearly common curve.

For τ versus Z , the relative scatter is higher. However, there

is a systematic part of the τ versus Z data that fall below

the weight of the curve. These data correspond to relatively

small ranges of strain following a reversal. As ϑ switches

direction, the system passes through a more nearly isotropic

state. In addition, τ versus Z data from the first cycle start

from an isotropic state for which τ = 0. For the first part

of that cycle, the system retains some memory of its initial

state. If the data from the first cycle and immediately after

2 2.5 3 3.5 4
0

5

10

15

20

25

Z

P
(N

/m
)

Fig. 16 Pressure, P , versus average contact number, Z , without cor-

rections for very weak contacts. Different colors correspond to data from

different shear cycles. Data points from the first shear cycle, shown in

red, deviate slightly from other shear cycles
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0
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20

25

Z

P
(N

/m
)

Fig. 17 Pressure, P , versus average contact number, Z . Same data as

the previous figure, but with a correction applied for weak contacts.

Different colors correspond to data from different shear cycles

reversals are removed, the results for τ versus Z yield a col-

lapse that is comparable to that for P versus Z , as seen in

Figs. 18 and 19. Although P and Z do collapse, the spread of

the data points around the curve is still quite big. This spread

reflects statistical fluctuations, which as shown above, can be

large even for the system-averaged P and τ . An interesting

observation is that except for the switching regimes, in the

mean, the ratio τ/P = constant . In this case, the relation

follows because τ and P are separately (essentially) linear

functions of Z and both vanish at the common value Z ≃ 3

where the system first jams.

Additional statistical measures are include the distribu-

tion of contact forces, including the normal force distribution

given in Fig. 20 and the tangential force distribution given

in Fig. 21. In these figures, we have organized the data by

cycle number, and we have combined data for different steps

within a cycle. Here, we normalized the data for Fn or Ft

for each step by the the mean normal force 〈Fn〉 at that step.
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Fig. 18 Shear stress, τ versus average contact number, Z
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Fig. 19 Shear stress, τ versus average contact number, Z after removal

of data points from the first shear cycle and data points where the strong

network direction, as measured by ϑ , is switching directions, as in Fig. 8
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Fig. 20 Data for the distribution of normal forces, Fn , expressed as

Fn/〈Fn〉 of all six shear cycles. We show data from all strain steps col-

lectively for each cycle. Here, data for Fn/〈Fn〉 are normalized by 〈Fn〉

for the given step

To justify that this is legitimate, we plot the distributions of

Fn/〈Fn〉 and Ft/〈Fn〉 for different strain steps within the first

shear cycle in Figs. 22 and 23. Several neighboring steps, ten

for most data points and three to five for data near a reversal,
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Fig. 21 Data for the distribution of normalized tangential forces,

Ft/〈Fn〉 of all six shear cycles. As for the distribution of normal forces,

the statistics are combined for all steps within each cycle, where the

normalization, 〈Fn〉 is made for each step

are combined for each data point on the plots. The details

are summarized in Table 2. Some strain steps may have a

longer tail than others but their general shapes are more or

less similar, and in particular, there is no systematic differ-

ence between distributions for different steps. As always, the

tails show bigger scatter due to limited statistics.

The distributions of normal forces show a common form

consisting of a nearly exponential fall-off at large Fn/〈Fn〉

and a peak at low Fn/〈Fn〉. At the extreme tails, the distri-

butions differ somewhat, but this is to be expected because

the statistics are limited there. P(Ft/〈Fn〉) also shows an

exponential decay, except that the tangential force distribu-

tion, as a function of P(Ft/〈Fn〉), decays faster than that

for the normal forces. However, this is simply due to the

choice of normalization. That is, if the tangential forces

were normalized by 〈Ft 〉, then the rate of exponential fall-off

would be comparable to that for the normal force distribu-

tions. For small Fn/〈Fn〉 and Ft/〈Fn〉, both distributions fall

below exponentials. Although some of the fall-off is due to

the experimental lower limit of force detection, we believe

that this is a relatively minor effect. Specifically, the shape

of the distribution is not particularly sensitive to the mean

force.

4 Connection to shear localization and force chain

evolution

We next explore possible connections between the hysteresis

observed in these experiments and the two defining aspects of

material behavior under shear: shear banding and stick-slip

(e.g. [24,27]). Note that we use the term ‘stick-slip’ to sig-

nify fluctuations in the macroscopic stress, in particular, that

of the stress ratio, τ/P . Specifically, stick and slip events are

periods where the stress ratio increases and decreases, respec-

tively, with increasing strain. A slip event is most often due
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Fig. 22 Data for the distribution of normal forces, Fn , expressed as

Fn/〈Fn〉 in the first shear cycle. a distribution P(Fn/〈Fn〉) for forward

shear, ε > 0. b P(Fn/〈Fn〉) for reverse shear when ε ≥ 0. c P(Fn/〈Fn〉)

for reverse shear when ε < 0. d P(Fn/〈Fn〉) for forward shear when

ε ≤ 0. To improve statistics, each data point on the graph includes a

set of Fn/〈Fn〉 from 10 neighboring steps in most cases. A summary of

each data point and its corresponding steps and strains can be found in

Table 2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(F

t/〈
 F

n
〉 )

data1

data2

data3

data4

data5

data6

data7

data8

data9

data1

data2

data3

data4

data5

data6

data7

data8

data9

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

F
t
/〈 F

n
〉

P
(F

t/〈
 F

n
〉)

data1

data2

data3

data4

0 0.5 1 1.5 2 2.5 3 3.5

F
t
/〈 F

n
〉

data1

data2

data3

data4

data5

a

c

b

d

Fig. 23 Data for the distribution of tangential forces, Ft , expressed as

Ft/〈Fn〉 in the first shear cycle. a distribution P(Ft/〈Fn〉) of the forward

shear when the strain ε > 0. b P(Ft/〈Fn〉) of the inverse shear when

ε ≥ 0. c P(Ft/〈Fn〉) of the inverse shear when ε < 0. d P(Ft/〈Fn〉) of

the forward shear when ε ≤ 0. To improve statistics, each data point on

the graph includes a set of Ft/〈Fn〉 from ∼10 neighboring steps. See

details in Table 2
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Table 2 Summary of step numbers and strains for each group labeled

datai in Figs. 22 and 23

Panel Datai Steps ε

a 1 2–11 0.0067 ∼ 0.0367

2 12–21 0.04 ∼ 0.07

3 22–31 0.0733 ∼ 0.1033

4 32–41 0.1067 ∼ 0.1367

5 42–51 0.14 ∼ 0.17

6 52–63 0.1733 ∼ 0.21

7 64–73 0.2133 ∼ 0.2433

8 74–83 0.2467 ∼ 0.2767

9 84–86 0.28 ∼ 0.2867

b 9 88–97 0.28 ∼ 0.25

8 98–107 0.2467 ∼ 0.2167

7 108–117 0.2133 ∼ 0.1833

6 118–127 0.18 ∼ 0.15

5 128–137 0.1467 ∼ 0.1167

4 138–147 0.1133 ∼ 0.0833

3 148–157 0.08 ∼ 0.05

2 158–167 0.0467 ∼ 0.0167

1 168–177 0.0133 ∼ −0.0167

c 1 178–187 −0.02 ∼ −0.05

2 188–197 −0.0533 ∼ −0.0833

3 198–207 −0.0867 ∼ −0.1167

4 208–217 −0.12 ∼ −0.15

d 5 218–227 −0.1467 ∼ −0.1167

4 228–237 −0.1133 ∼ −0.0833

3 238–247 −0.08 ∼ −0.05

2 248–257 −0.0467 ∼ −0.0167

1 258–302 −0.0133 ∼ 0

to the collapse of force chains by buckling. In general, it is

accompanied by the release of stored energy, accumulated in

force chains during the preceding stick event.

We confine our attention to the different time steps for the

initial forward shear. These data are from a different run with

a slightly higher density, φ = 0.82 ± 0.01. There is no sub-

stantive difference between these data and those described

earlier, except that here, we carried out only forward strain.

As shown earlier, the force network evolution in the for-

ward and reverse shear cycles exhibit fairly universal statis-

tics. Deformation of the sample through the different loading

cycles occurs in the presence of intermittent strain localiza-

tion, i.e. marked by a single dominant shear band inclined

along either the forward or the backward diagonal, and strong

fluctuations are evident in the macroscopic shear stress and

pressure. Shear banding and macroscopic stress fluctuations

are related, being both governed by force chain/force net-

work evolution. Hence the objective here is to demonstrate

the interconnections between force chain collapse via buck-

ling, shear banding and fluctuations in the macroscopic stress.

To proceed, we employ two algorithms. The first identi-

fies force chain particles via a so-called particle load vec-

tor. For each particle, the local force moment tensor, σ̂i j ,

as defined earlier, is computed. The largest eigenvalue of

this tensor and its associated eigenvector are then used to

define, respectively, the magnitude and direction of the parti-

cle load vector. The direction of force transmission is dictated

by the direction of the particle load vector. Groups of parti-

cles whose particle load vectors line up within a predefined

narrow angular range, and whose particle load magnitude

is above the global average value, constitute a force chain.

This procedure has been incorporated into an algorithm that

Fig. 24 Displacement fields

showing shear bands in forward

and reverse shear. These four

fields correspond to the small

particle displacement right after

applying small deformations to

the four images shown in Fig. 1.

The red lines drawn in (b) (d)

are a guide to the eye, indicating

the regions of shear localization.

Note that in parts (c) and (d) one

or more side walls occupies part

of the image. The strains of each

image are a ε = 0.033,

b ε = 0.267, c ε = 0.267, and

d ε = 0.033

a

c d

b
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Fig. 25 Force chains in the shear band regime. This image is a slice of

the main diagonal regime, indicated using a white rectangle, of image

(b) in Fig. 1. Here the image is rotated to make the original diagonal

line horizontal

takes contact force data as the known input, and provides the

force chain particles, and hence the force chain particle net-

work, as the output. Complete details of this procedure and

its associated algorithm are provided elsewhere [28,29].

The second algorithm was developed for the purposes of

identifying parts of the force chain particle network that have

undergone buckling, i.e. buckled force chain “BFC” seg-

ments [24]. A strain interval of interest, [εA, εB] is chosen:

for example, that which spans a drop in stress ratio or a fail-

ure/ “unjamming event”, or a single time step in a DEM

simulation. A set of three filters is then applied: (a) eliminate

all particles not in force chains at εA; (b) out of those remain-

ing, eliminate those which have not decreased in potential

energy; (c) out of those remaining, identify and isolate all 3-

particle segments which have buckled. To determine if a seg-

ment has buckled, we consider the angle between the branch

vectors from the central particle to the two outer particles.

The decrease in this angle over the interval in question is

defined as being twice the buckling angle, θb. Then, a buck-

ling segment is simply one where θb > 0. The set of parti-

cles remaining after all three filters have been applied is the

set referred to hereafter as BFCs. Later, we consider pop-

ulations of BFCs in distinct subsets, where each subset is

distinguished by a predefined nonzero buckling threshold θ∗
b

that member BFCs must satisfy over the given strain inter-

val. Complete details of this entire procedure and associated

algorithm are provided elsewhere [24].

The specimen deforms in the presence of a shear band,

as shown in Fig. 24. The shear band is backward inclined in

the forward shear and forward inclined in the reverse shear.

As the material is sheared in a given direction, two triangu-

lar blocks slide over the shear band in opposing directions,

effectively leading to simple shear across the shear band [30].

Although the material is dilated in the shear band, the force

chains pass right through these bands, without substantial

changes, due to force balance (Fig. 25). During ‘stick events’,

regimes of strain where the force network is stable, the pri-

mary force chains provide the major resistance to motion in

the compressive direction. Weak secondary force chains still

exist in the dilation direction and serve to ‘prop up’ the pri-

mary force chains. Primary force chains, laterally confined

by weak network neighbors, are subject to axial compression

and often fail via buckling. Secondary force chains, being in

Fig. 26 Evolution with axial strain, ε22 = ε, of the population of force

chain particles, N FC

the dilation direction, tend to fail by extension. A detailed

analysis of the co-evolution of these two classes of force

chains under cyclic shear is the subject of ongoing research.

As mentioned earlier (see discussion around Figs. 9 and

10), there is evidence of local failure events in the force net-

work throughout the loading, both in the forward and reverse

shear. These failure events are due to the continual collapse

of old and formation of new force chains. The failures are

concentrated mainly in the shear band where the mode of

deformation of the material is essentially one of simple shear

[30]. To unravel the mechanisms behind the hysteresis in the

normal and shear components of stress, we examine the con-

tribution to these stresses from force chains versus weak net-

work particles. Recall that we confine our attention to the

forward shear starting from an isotropic state. In Fig. 26, we

show the strain evolution of the population of force chain

particles. As expected, there is an initial increase in the pop-

ulation as load is increased, followed by a near constant value

for large strains. Note here, that the threshold value for the

particle load vector (i.e. the global average) of each particle

classified as a force chain is increasing with strain, hence

the force chains are not only increasing in population but are

also becoming stronger (i.e. bearing an increasing compres-

sive load).

In light of Figs. 24b, d, the relative rotations between

force chains are particularly relevant here. Discrete element

simulations and photoelastic disk experiments of Oda and

co-workers [31–34], by Veje et al. [20], and by Utter et al.

[21] have shown that particle rotations concentrate in the

shear band. More recent studies confirm this, but addition-

ally found that rotational motions dominate during slip events

inside the shear band [12,24,25]. These slip events are gov-

erned by the failure of force chains by buckling. The location

and deformation periods during which relatively large parti-

cle rotations occur do indeed coincide with the location and

incidences of force chain buckling: see Figs. 27 and 28. Rota-

tion is a key mechanism in force chain buckling as is evident

in Fig. 29 which shows that the greatest relative rotations
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Fig. 27 Spatial distribution of force chain particles undergoing buck-

ling (red) across the strain interval ε22 = ε = 0.060 to 0.077, together

with their confining neighbors (blue). A buckling threshold of θ∗
b = 2◦

is used. Data shown here correspond to the central portion of the sample

in the early stages of shear band development. We note that the width

of the shear band narrows for higher strains

Fig. 28 Evolution with axial strain, ε22 = ε, of population of buck-

led force chain segments, N B FC , for various buckling thresholds, θ∗
b .

Green, blue and red lines correspond to θ∗
b = 1◦, 2◦ and 3◦, respectively.

Also shown is stress ratio (black). sin θ = (σ2 − σ1)/(σ2 + σ1) = τ/P

are sustained at contacts between particles in buckling force

chains.

In summary, the data presented above demonstrate the

build-up of force chains in response to shear, their failure

via buckling, the key role that particle rotations play in buck-

ling, and the confinement of force chain buckling to the shear

band. These results corroborate earlier findings by Oda and

co-workers [31–34] and lend support to constitutive models

which are based on Cosserat (Micropolar) theory, since these

account for relative rotations via the curvature and couple

stress. Indeed, key mechanisms such as force chain buck-

ling can be accounted for in these formulations explicitly:

see, for example [25,35]. Predictions of this Cosserat model

concerning shear band properties, e.g. thickness as well as

the emerging contact and contact force anisotropies inside

the band, are consistent with this and earlier experimental

observations. We note also that recent studies on the local-

ised buckling of force chains demonstrate that the thickness

of the shear band may be governed by the critical buckling

Fig. 29 Evolution with axial strain, ε22 = ε, of the relative rotation

at contacts per step, θ , for various types of contacts. Black, green, blue

and red correspond to FC (force chain) to FC, FC to WN (weak net-

work), WN to WN and BFC (buckling force chain) to BFC contacts,

respectively. The unit of θ is radians

load and its corresponding mode, with the relative rotation

at particle contacts playing a key role [36].

5 Conclusions

In this work, we have explored the evolution of force and

contact networks for cyclic shear of a dense granular mate-

rial. Starting from an initially unjammed low-density state,

jamming occurs for sufficiently large shear. This is, in fact,

associated with the phenomena of Reynolds dilatancy. In par-

ticular, during the first shear cycle, the system reaches Z = 3

around step 70 corresponding to a shear strain of ε = 23.3%.

During much of each cycle, the system is above a jamming

threshold for which the mean contact number is Z ≃ 3.

Although the stress components, Z , etc. are strongly hyster-

etic in strain, we empirically find that P is strongly correlated

with the mean contact number when the system is jammed.

The same is true for τ versus Z except immediately after

a strain reversal, when τ can become small. Again, exclud-

ing regions immediately following reversals, the mean values

for P(Z) and τ(Z) approach zero linearly, within our reso-

lution, as Z → 3 from above. In this case, the ratio τ/P is,

on average, constant.

We have applied a correction to the data to account for con-

tacts which are below the experimental detection threshold.

This correction was most important for very low stress states.

For Z , the correction could reach ∼15%, although it was also

applied to the pressure and the shear stress, τ . The correction

was implemented by assuming that the force distributions

have (close to) universal exponential forms. A more accurate

correction technique will be implemented in future work, but

the present approximation is reasonable, given the statistical

scatter of the data. We note that the jammed states are gen-

erally inhomogeneous in the density/packing fraction, since

these are characterized by shear bands where the material is

locally dilated and where much of the motion occurs.
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We then analyzed the evolving force network in the for-

ward shear using algorithms that distinguish contributions

to macroscopic stress of particles from the strong and weak

contact force network. Interconnections between force chain

collapse via buckling, shear banding and fluctuations in the

macroscopic stress are uncovered. Relatively large rotations

develop during the buckling of force chains. These buckling

events, which are present throughout the loading history, are

primarily confined to the shear band and dominate during slip

events or periods where stress ratio decreases with increasing

strain. This behavior strongly suggests that continuum mod-

els of dense granular media must account for relative particle

rotations and, in particular, force chain buckling—mecha-

nisms that call for the framework of Cosserat or micropolar

theory. A detailed analysis of such internal failure events and

their connection to the structural evolution of the force and

contact networks in cyclic shear loading is the subject of an

ongoing investigation.
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