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The statistical properties of sample estimation and bootstrap estimation of phy- 

logenetic variability from a sample of nucleotide sequences are studied by using 

model trees of three taxa with an outgroup and by assuming a constant rate of 

nucleotide substitution. The maximum-parsimony method of tree reconstruction 

is used. An analytic formula is derived for estimating the sequence length that is 

required if P, the probability of obtaining the true tree from the sampled sequences, 

is to be equal to or higher than a given value. Bootstrap estimation is formulated 

as a two-step sampling procedure: ( 1) sampling of sequences from the evolutionary 

process and (2) resampling of the original sequence sample. The probability that 

a bootstrap resampling of an original sequence sample will support the true tree is 

found to depend on the model tree, the sequence length, and the probability that 

a randomly chosen nucleotide site is an informative site. When a trifurcating tree 

is used as the model tree, the probability that one of the three bifurcating trees will 

appear in ~95% of the bootstrap replicates is <5%, even if the number of bootstrap 

replicates is only 50; therefore, the probability of accepting an erroneous tree as 

the true tree is 4% if that tree appears in ~9.5% of the bootstrap replicates and if 

more than 50 bootstrap replications are conducted. However, if a particular bifur- 

cating tree is observed in, say, ~75% of the bootstrap replicates, then it cannot be 

claimed to be better than the trifurcating tree even if 2 1,000 bootstrap replications 

are conducted. When a bifurcating tree is used as the model tree, the bootstrap 

approach tends to overestimate P when the sequences are very short, but it tends 

to underestimate that probability when the sequences are long. Moreover, simulation 

results show that, if a tree is accepted as the true tree only if it has appeared in 

295% of the bootstrap replicates, then the probability of failing to accept any bi- 

furcating tree can be as large as 58% even when P = 95%, i.e., even when 95% of 

the samples from the evolutionary process will support the true tree. Thus, if the 

rate-constancy assumption holds, bootstrapping is a conservative approach for es- 

timating the reliability of an inferred phylogeny for four taxa. 

Introduction 

The rapid accumulation of DNA sequence data has stimulated much activity in 

the reconstruction of phylogenetic relationships among organisms. It has also stimulated 

much interest in the development of methods for tree reconstruction and for evaluating 

the statistical confidence of an inferred phylogeny. Presently, among the statistical 
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1120 Zharkikh and Li 

methods for evaluating the reliability of inferred phylogenies [see the reviews by Fel- 

senstein ( 1988) and Li and Gouy ( 1991)], the bootstrap method (Felsenstein 1985) 

is the simplest and the most frequently used method when the number of taxa under 

study is more than four. However, the statistical properties of this approach in the 

context of phylogenetic reconstruction have not been well studied, though its theoretical 

foundation in terms of general statistics has been examined thoroughly (Effron 1982 ) . 

The present paper explores properties of bootstrap estimates based on the maximum- 

parsimony method of tree reconstruction. Recently, Hillis and Bull (accepted) have 

also studied this problem. 

For simplicity we consider the case of three taxa with one outgroup and assume 

a constant rate for the evolution of nucleotide sequences. This simple case can be 

treated analytically, making it easier to clarify some of the conceptual aspects of boot- 

strap estimation. Moreover, it allows a close examination of the statistical properties 

of the distribution of informative sites in a sample of sequences, a study that was 

initiated by Saitou and Nei ( 1986)) and our analytic results turn out to be very useful 

for investigating the statistical properties of bootstrap estimation. The simple case also 

makes it easier to study, theoretically, both bootstrap estimation of the confidence 

level of an inferred phylogeny and the dependence of the confidence level on both the 

amount of data under study and the number of bootstrap replications. Our ultimate 

aims are to know whether the bootstrap approach tends to overestimate or underes- 

timate the confidence level of an inferred phylogeny and the probability of accepting 

an erroneous tree as the true tree. 

Approaches and Results 

To help readers%nderstand the analysis to be given below, we explain here the 

approaches to be used. We also summarize the main results so that a reader can 

understand the essence of the present paper without going through the mathematical 

analysis. 

We use a simple model tree in which there are three taxa with one outgroup. 

The three possible rooted bifurcating trees (I, II, and III) are shown in Figure 1 a-c. 

We assume that the first tree (tree I) is the true tree and that the branching dates for 

the outgroup, species 3, and species 2 are, respectively, T,, TZ, and T3 before the 

present. The trifurcating tree (fig. Id) is the best representation of the species phylogeny 

when we cannot make a decision about the branching order. We use either tree I or 

the trifurcating tree as the model tree in our analysis. 

a b C d 

1 2 3 4 1 3 2 42 3 1 4 1 2 3 4 

Tree I Tree II Tree III Tree 0 

FIG. 1 .-Three possible bifurcating trees (a-c) and the trifurcating tree (d), for three species with one 

outgroup. Tree I is assumed to be the true tree in the bifurcating models. 
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Statistical Properties of Bootstrap Estimation 1 I2 1 

First, for a given model tree we study the evolution of a nucleotide sequence 

along each branch of the tree and the probability of having a particular configuration 

pattern of the nucleotides at the tips of the tree. Under the maximum-parsimony 

method, which is the tree-reconstruction method to be used in the present study, a 

configuration pattern is said to be informative if it is useful for distinguishing among 

the three possible bifurcating trees. An informative site is said to support tree i 

(i = I, ZZ, or ZZZ) if the number of nucleotide substitutions required to explain the 

observed configuration at that site is smaller under tree i than under either of the two 

other possible bifurcating trees. We derive a formula for the probability (pi) that a 

randomly chosen site will support tree i. The probabilities pI, pII, and pIII are the basic 

quantities in subsequent analysis. 

Next, we study the statistical properties of the distribution of the three types of 

informative sites in a sample of sequences of length N. We then derive an analytic 

formula for estimating the sequence length that is required if the probability of obtaining 

the true tree from the sampled sequences is to be equal to or higher than a given value, 

e.g., 95%. The analytic results obtained in this section are useful for studying the 

bootstrap technique. 

Third, we use either tree I or the trifurcating tree in figure 1 as the model tree 

and study the bootstrap estimation of PI, which is the probability of obtaining tree I 

from a random sample of sequences of length N. The bootstrap estimation is formulated 

as a two-step sampling procedure: (i) A random sample of sequences is taken from 

the evolutionary process. (ii) The sites of the sequences in the original sample are 

resampled with replacement (i.e., bootstrapped), and a tree is reconstructed from the 

resampled data. The second step is repeated Nb times, and the proportion of the 

bootstrap replicates that support tree I is taken as an estimate of PI. Symbolically, the 

two-step procedure can be represented as 

(PI. P;’  PIII)-*(PT, Pf> P,*ll)+(P:*?  PTj’> Pl:I*) 

PI PT 
** 

PI 

where pI, pII. and pIII are the underlying probabilities of informative sites supporting 

tree I, tree II, and tree III, respectively; p;, pz, and pTII are the corresponding pro- 

portions of informative sites in a random sample of sequences from the evolutionary 

process and are considered as the underlying probabilities of informative sites for 

bootstrap resampling; and p: *, pz*, and ~7,; are the proportions of informative sites 

in a sample bootstrapped from the original sample. The probabilities pi (i = Z, ZZ, ZZZ) 

determine the underlying probability PI that a random sample of sequences from the 

evolutionary process will support tree I. In the same manner, the proportions p: 

determine the probability P: that a bootstrap resampling of an original sample will 

support tree I. The proportions p’ * determine the most parsimonious tree in a boot- 

strap replicate, and P: * denotes the proportion of the bootstrap replicates in which 

tree I is chosen. Since PT can be regarded as a random variable, PT* is actually a 

compound random variable (Johnson and Kotz 1969, p. 183). This formulation clearly 

shows that the variance of a bootstrap estimate consists of two components: the first 

one arises from sampling of sequence data from the evolutionary process, and the 

second arises from bootstrap resampling. The second component can be reduced to 

0 by increasing Nb to infinity, but the first component is independent of bootstrap 
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1122 Zharkikh and Li 

resampling and can be reduced only by increasing the sequence length N. In order to 

understand the statistical properties of bootstrap estimation of P,, we study the dis- 

tribution of Pr by using, as the model tree, either tree I or the trifurcating tree in 

figure 1. 

Fourth, since in practice we do not know a priori which tree is the true tree, we 

assume that the tree inferred from the sequence sample is the true tree. Denote this 

tree by X. In analogy with the preceding situation, let P; be the probability that a 

bootstrap resampling of the original sample will support tree X and let P;* be the 

proportion of bootstrap replicates that support tree X. Note that, since the tree inferred 

can vary from sample to sample, X can be tree I, tree II, or tree III. For this reason, 

P: 2 P: and P;* 2 P:*. As in the case of PT, we study the distribution of P; by 

using, as the model tree, tree I or the trifurcating tree. 

Finally, and most important, we study whether P *x* can be taken as the confidence 

level that tree X is the true tree. We show that, if P:* 2 95%, then the probability 

that tree X is an erroneous tree is <5%, even if Nb is as small as 50. In general, if 

P;* L 80% and Nb r 100, then considerable (280%) confidence can be given to tree 

Xas the true tree. However, if P;* I 75%, then little confidence can be given to tree 

X, because it cannot be claimed to be better than the trifurcating tree. Further, we 

show that, if PI -  ~78%, then P$* tends to overestimate PI but that, if PI > 78%, 

then P;* actually tends to underestimate PI. Indeed, when PI = 95.2%, the expected 

value of P*x* is only 86.8% and the probability that P;* 2 95% is only 42.0%. Even 
when PI = 99.6%, so that almost every sample from the evolutionary process will 

support tree I, the probability that P;* 2 95% is still only 76.3%, though the expected 

value of P*x* increases to 95.9%. Thus, the sequence length required for P;* 2 95% 

is usually several times longer than that required for PI 2 95%. 

The above conclusions are obtained under the assumption of rate constancy. 

Under unequal rates of evolution among lineages, the maximum-parsimony method 

can be positively misleading (Felsenstein 1978 ) , and so some of the above conclusions 

may not hold (Hillis and Bull, accepted; Zharkikh and Li, accepted). 

Evolution of Nucleotides and Informative Sites 

In this section we describe the model of nucleotide substitution and the method 

of phylogenetic reconstruction to be used in this study. We use Kimura’s ( 1980) two- 

parameter model of nucleotide substitution, in which the rate of transition and the 

rate of each type of transversion are a and B substitutions per site per year, respectively; 

transitions are changes between either A and G or T and C, while all other types of 

changes are transversions. Under this model, the total rate of substitution per site is 

~1 = a+2B, because at each site there are one type of transition and two types of 

transversion. 

Let us replace the parameters IX and p in this model by their ratio r = a/B and 

by the total rate of substitution per site u = a + 2B. Then, a = p r/( r + 2) and p 

= p/( r + 2). For each time interval t, we can define the probabilities that the nucleotides 

at the two ends of this interval are X and Y, respectively (Li 1986): 

prob(x+y; & p, r) = L/4 + l/4e-4ffi/(r+2) - 1/2e-2f’(‘+i)/(‘+2) , (1) 
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Statistical Properties of Bootstrap Estimation 1123 

I if X+ Y is a transition; 

Pr& (X+Y; t , p, Y) = */4 - 1h~-4’p’(‘+2) , (2) 

I if X-, Y is a specific type of transversion; and 

prob(x= Y,. & p, r) = l/4 + 1/4e-4f~L/(‘+2) + 1/2e-2fwi)/(‘+2) . (3) 

Note that we can replace both parameter t and parameter p in these equations 

by the expected number of substitutions per site (Mi) for branch i in figure 2: 

Mi = tij.ti (i = 1,. . . ,5). (4) 

So, the above probabilities can be redefined as functions of only two parameters, M 

and I: Prob(X+Y; M, r). 

Under the assumption of rate constancy, pi = p for all i, and all time spans in 

figure 2 and the corresponding expected numbers of substitutions will be defined as 

follows: 

t, = t2 = T3, M, = M2 = pT3 ; 

t3 = T2, M3 = U2 ; 

(5) 

t4 = 2T, - T2, M4 = WT1 - T2); 

t5 = T2 - T3, MS = pL(T2 - T3). 

Let pxi be the probability of observing nucleotide Xi (A, T, G, or C) at a given site at 

node i (fig. 2). Then, the probability of observing nucleotides X1, X2, X3, and X4 at 

nodes 1, 2, 3, and 4, respectively, is (Saitou 1988) 

FIG. 2.-Unrooted model tree for four sequences. The branch lengths can be given either as the time 

spans(ti,i=l,..., 5), if we assume a constant rate, or as the expected numbers of substitutions (Mi = tiFi) 

for the case of unequal evolutionary rates pi. 
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1124 Zharkikh and Li 

ProbWl, X2, X3, X4) = lZ C px,Prob(%-+&; MI, r) 
x5 X6 

X Prob(X6+X3; M3, r)Prob(X6+Xs; MS, r) 

X Prob(X5+X2; i&, r)Prob(X5+X1; M1, r) . 

(6) 

The pattern (Xi, X2, X3, X4) is said to be informative if it helps to distinguish 

between different tree topologies. Different tree-making methods have different infor- 

mative-site definitions. Some of them have been listed by Li et al. ( 1987). For example, 

in the case of the maximum-parsimony method, the pattern (Xi, X2, X3, X4) is in- 

formative; that is, it supports one of the three bifurcating trees in figure 1: 

tree I, if Xl = x2, x2 # x3, and x3 = x4 ; 

tree II, if Xi = x3, x2 + x3, and x2 = x4 ; (7) 

tree III, if XI = x4, x2 + x4, and x2 = x3 . 

For example, if Xi = X2 = A and X3 = X4 = G, then the site supports tree I. Using 

the above formulas, we can calculate the probability pi that a randomly chosen site is 

an informative site supporting tree i, i = I, ZZ, or ZZZ: 

PI= Z: C ProW Xl,X~,&&); 
x4 x1+x4 

(8) 

PII = C C PrWXI, &Xl, X4> ; 

x4 XI+& 
(9) 

PIII = Z C ProbWI, X2, X2, Xl) ; 

x2 x1+x2 

(10) 

where, for example, the summation Cx4 C x,zx4 is over all possible nucleotide config- 

urations in which X1 # X4, Xi = X2, and X3 = X4. Note that pi is also the expected 

proportion of informative sites supporting tree i when a sample of sequences is taken 

from the four species. 

The maximum-parsimony method is to choose the most parsimonious tree, i.e., 

the tree with the largest number of supporting sites. Other methods of tree reconstruc- 

tion are based on more complicated scores (see Li et al. 1987; Nei 1987). Some of 

them (e.g., the evolutionary-parsimony method) are linear combinations of the num- 

bers of informative sites. Presumably, such methods, in their statistical properties, 

share some similarities with the maximum-parsimony method. In this paper we shall 

consider only the statistical properties of the maximum-parsimony method. Other 

methods will be considered elsewhere. 

Sample Estimation 

In this section we consider the statistical properties of the distribution of the three 

types of informative sites in a sample of sequences of length N. The main purpose is 

to study the relationship between N and the probability of obtaining the true tree from 

the sequence sample. 

For a given set of aligned sequences of length N, we can count the number of 
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Statistical Properties of Bootstrap Estimation 1125 

informative sites, N,, NII. and NIII, supporting trees I, II, and III, respectively, and 

can calculate their sample proportions, p: = NI/N, pTI = NIlIN, and pFII = NIII/N. 

Under the assumption that each nucleotide site evolves independently and with the 

same rate of substitution, each of the numbers Ni, i = Z, ZZ, or ZZZ, has a binomial 

distribution, and hence the mean and the variance of p’ are 

E(P?) = Pi and Var(pr) = Pi( 1; Pi) (11) 

The observed proportions p?, pz, and pTII are said to support tree I, if p: 

> max(p2, p&). For a sample of N sites, the probability of obtaining tree I, PI. is 

PI = ProWp? > max(pl*I, P%)) . (12) 

When N is small, PI can be obtained from the multinomial expansion of 

(po+pI+pII+pIIr)N (see Saitou and Nei 1986); PO = 1 -pI-pII-pIII is the proportion of 

noninformative sites. When N is large, the following approach is computationally 

much simpler. Define the difference function 

r? = PF-max(pTb PETI) . (13) 

If ~7 > 0, then the given set of sequences supports tree I. Therefore, 

PI = Prob($>O) = 

Expression ( 13 ) can be rewritten as follows: 

1-Prob(y:<O) . (14) 

(15) 

Under the assumption of rate constancy and the assumption that tree I is the true 

tree, we have pII = pIII and pI > p II. So, the expectation of the first two terms in 

equation ( 15 ) is Ap, = pI-pII. The last term of the equation involves the absolute 

difference I x-y 1, the expected value of which is known as Gini’s mean difirence 

(Johnson and Kotz 1970, p. 67). If x and y are normal1 distributed with the same 

mean and with the variance 02, then E( 1 x-y I) w 20/ P x . When N % 1 /p*,, we can 

use the normal approximation to the distribution of p:. Note that the covariance 

between p? and pf, i # j, is -pipj/ N (see Johnson and Kotz 1969, p. 284). Therefore, 

if N 9 1 /pII, i.e., 1 IN Q pII. the covariances between p:, pTI, and pTII are of the order 

of p~p,~lN and can be neglected, note that pI, pII, and pIIf are usually much smaller 

than 1. We then obtain the following approximations for the mean and the variance 

of $: 

(16) 
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1 I26 Zharkikh and Li 

VMYF > e v~(p~)+var(Eq&)+var( lyy 

~ PAl-P1) +M-Pd 1_’ 

N N ( 1 7t . 

(17) 

The case of Ap1 = 0 in equation ( 16) corresponds to the trifurcating model tree 

(fig. Id). In figure 3, the plots for the probability density function of r: for different 

N are shown. The dashed line in the middle of each distribution indicates the mean 

value, E (r f ), which is always negative for this tree. As N increases, E (7: ) approaches 

0 (fig. 3), and the width of the distribution of 7; decreases in a manner such that the 

area for the right part of the distribution (i.e., r:>O) is approximately constant. The 

relative proportions of PI, PII, and PII are equal to l/3 and independent of N. Because 

of the nonzero probability of the equality p: = max(pl:, pI*II), the absolute value of 

PI is actually <i/3. However, PI approaches l/3, as N + cc. 

For Apr > 0 (tree I as the model tree), the picture is quite different (fig. 4). When 

N < No.5 = plI( 1 -p11)/7c( ApI)‘, formula ( 16) implies that the expectation of rf is 

negative (fig. 4a). For N = N0.5, E(yr ) = 0 (fig. 4b). In this case, -50% of the 

distribution of rf lies in the region of positive r;, i.e., PI m 0.5. When N > No,s, 

E( 7:) is positive (fig. 4c), and PI increases with N, approaching 1 as N + co. 

Thus, if the bifurcating tree (tree I) represents the true phylogeny, then, by in- 

creasing the sequence length, we can reach any given proportion PI. To estimate the 

sequence length required for obtainin tree I with a given probability p,, let us construct 

a new variable p = r: -E (yr )/ + Var ( y1 ) , which for N 9 1 /pII has nearly the normal 

distribution with mean 0 and variance 1. In terms of this variable, we can rewrite 

definition ( 14) as follows: 

-E(Y:) 

m 
= Prob( p>-&) . (18) 

The correspondence between PI and pp, can be obtained from the statistical table of 

the standard normal distribution. For example, for PI = 0.95, p0.95 = 1.65. Defining 

pp, for a given &and using formulas (16) and (17) for E(y:) and Var(y?), we can 

estimate the sequence length Np, that is required for the probability of obtaining tree 

I to be PI: 

Np, x 
G + b,vPI+( 1-t 1/7c))PI, * 

API I* (19) 

Usually, this formula underestimates Np,, because it does not take into account 

the discreteness of the model. Actually, there exists a nonzero probability of y: = 0 

(the probability of having a trichotomy, PO) that reduces PI by approximately one half 

of PO; that is, if we take N~I from formula ( 19)) we actually obtain PI = Pr0.5P0. 

As N0.sS increases, PO decreases, and PI approaches pl. A simple way to correct such 

an underestimation is to define PI = Prob(yT>l /N), rather than PI = Prob(yf>O), 
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a  

C 

-0.1 0.1 

FIG. 3.-Probability density of r: for the case of a trifurcating model tree for sequence lengths N = 20 

(a), N = 82 (b), and N = 2,3 15 (c). These values are chosen to provide a comparison with the cases of 

bifurcating trees shown in fig. 4. The probabilities are calculated using the multinomial distribution of the 

numbers of informative sites N,, N,,, and N,,, with expected proportions p, = p,, = p,,, = 0.044. This case 

corresponds approximately to the model in fig. la with time parameters T, = 100 Myr, T2 = Tg = 50 Myr, 

and the evolutionary rate of p = 1 0e8 substitutions per site per year. For N > 100, the normal approximation 

of the binomial distribution was applied. The dashed line on each plot corresponds to the mean value of 

-y: . The shaded part of each distribution represents the expected proportion of tree I-i.e., PI-which is 

approximately the same for any length of sequences. 
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a 

b 

C 

f (7;) 

-0.1 

FIG. 4.-Probability density of r: for the case of a bifurcating tree (fig. la) with time parameters T, 
= 100 Myr, Tz = 60 Myr, and Tg = 50 Myr and with the evolutionary rate of u = lo-* substitutions per 

site per year (a=P). These parameter values are chosen to give three qualitatively different types of the 

probability density plot: E(y:) < 0 (a), E(yf) = 0 (b), and E( 7: ) > 0 (c) . The expected proportions of 

informative sites are p, = 0.0541 and prI = pIlr = 0.0417. The difference Ap, = PI-pII is indicated by an 

arrow on the abscissa. From eq. (20)) No.J = 166 and N o 95 = 2,3 15. The sequence lengths used are N = 20 

(a), N = 82 (b), and N = 2,315 (c). The expected proportions of type I trees-i.e., P, (shaded area)- 

increases with N: PI = 0.293, 0.422, and 0.95 1 for plots a, b, and c, respectively. 
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Statistical Properties of Bootstrap Estimation 1129 

for the probability of having tree I. This increases the estimate of Np, given by formula 

( 19 ) approximately by 1 /Ap1 (see Fleiss 198 1, p. 42 ) : 

Np, = 

1 

G+PfdPI+t 1-c 1 IK))PII 2 

1 
1 

API +ii$ (20) 
A detailed investigation of the relationship between sequence length and the 

probability of obtaining the correct tree was provided by Saitou and Nei ( 1986 ). Using 

various evolutionary models and applying various tree-making methods, they estimated 

the minimum sequence length that is required for having the probability PI = 0.95 of 

obtaining the true phylogeny for three species with one or two outgroups. For short 

sequences (N-C 100)) they applied the exact multinomial formula for the calculation 

of PI. This approach becomes extremely tedious for long sequences. For this reason, 

they used simulation when N > 100. In one of their model trees for three species with 

an outgroup, they selected the following parameters: T,p = 0.09, T2p = 0.05, and 

T3p = 0.045 (fig. la). Two models of nucleotide substitution were used: the one- 

parameter model with a = p and Kimura’s two-parameter model with a = 2Ou/22 

and p = y/22. For these two models, they obtained N0.ss = 2,100 and No.ss = 3,300, 

respectively, for the maximum parsimony method. Our formula (20) gives similar 

estimates: No.ss = 2,153 and N 0.95 = 3,3 12 for the one- and two-parameter models, 

respectively. A good agreement between formula (20) and simulation results will be 

seen later (in table 4). 

In tables 1 and 2 we present values of pI and pII = pIrr calculated from formulas 

(8 ) and (9) for tree I, with the time for the outgroup-branching-point TI = 100 Myr 

and T2 and T3 varying from 0 to 100 Myr, and with the corresponding values of No.ss 

and N0.s given by formula (20) for p1 = 0.95 and p1 = 0.5, respectively. For the 

evolutionary rate, we used two different values: u = 10m9 and lo-*; the former is 

similar to the average rate of nonsynonymous substitution, while the latter is approx- 

imately two times higher than the average rate of synonymous substitution for com- 

monly studied mammalian genes (Li and Graur 199 1). 

Bootstrap Estimation 

Equation (20) can be used also for estimating /3, from which one can infer the 

expected proportion of type I trees, PI, if the sequence length, N, and the proportions 

of informative sites, PI, pIr, and PIII are given. However, such a direct estimation of 

P, for a tree with more than four species is a difficult task. For this purpose, one can 

use the bootstrap technique, which was introduced into phylogenetic studies by Fel- 

senstein ( 1985 ). The characters under study are assumed to evolve independently. In 

the bootstrap estimation procedure, the sites of the sequences under study are resampled 

randomly with replacement, and a tree is reconstructed for each resampled data set. 

It is supposed that the resampled data have the same distribution of informative sites 

as do repeated samples from the original process. For example, in the case of four 

species, the proportions P: *, PT,*, and PI:I* of trees I, II, and III among the bootstrap 

replicates are the estimates of proportions PI, PII, and PII*, respectively. 

As mentioned above, the bootstrap estimate of PI is a result of two steps of 

sampling : 

PpP:+Py, (21) 

where the first step is the sampling of sequences from the evolutionary process and 
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1130 Zharkikh and Li 

0.00 
I 0.00 

4.11 8.36 

0.00 0.00 

78 

I 21 

1.86 5.21 

1.86 I .66 

44 211 3.01 

I 11 31 3.0 I 

33 92 417 

I 8 16 47 

27 62 163 

I 7 12 23 

24 49 104 

I 6 10 16 

22 

I 6 

42 80 

8 13 

21 

I 5 

38 67 

8 12 

20 

I 5 

35 60 

I II 

19 33 55 

I 5 7 10 

19 

I 5 

32 51 

I 9 

11.18 13.37 15.08 16.40 17.43 18.24 18.87 19.37 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.92 9.98 11.57 12.81 13.78 14.54 15.13 15.59 

1.52 1.41 1.33 1.27 I .22 1.18 1.16 1.14 

5.50 1.44 8.94 10.11 11.02 11.73 12.29 12.73 

2.74 2.53 2.38 2.26 2.17 2.1 I 2.06 2.03 

3.12 5.55 6.97 8.07 8.94 9.61 10.14 10.55 

3.12 3.43 3.21 3.05 2.93 2.83 2.77 2.12 

161 4.15 5.50 6.55 1.37 8.01 8.51 8.90 

71 4.15 3.87 3.67 3.52 3.40 3.32 3.26 

280 1,341 4.41 5.41 6.19 6.80 7.28 1.65 

33 108 4.4 I 4.17 3.99 3.85 3.75 3.68 

173 473 2,315 4.56 5.31 5.89 6.35 6.71 

23 48 166 4.56 4.36 4.20 4.09 4.01 

130 285 795 3,960 4.65 5.21 5.65 6.00 

19 33 71 258 4.65 4.48 4.36 4.27 

107 210 470 1,333 6,142 4.71 5.13 5.46 

16 26 48 106 405 4.71 4.51 4.47 

94 172 342 777 2,237 11,460 4.74 5.06 

15 23 37 69 160 646 4.74 4.64 

86 150 278 561 1,291 3,763 19,474 4.77 

14 20 32 54 103 246 1,040 4.77 

Table 1 
Proportions (%) of Informative Sites pr and pII = pIII (on and above the Diagonal)- 
and Sequence Lengths N0.95 and A& Required for Having Probability, 
PI = 0.95 and 0.5, Respectively (below the Diagonal), of Obtaining Tree I 

TZ 0 10 20 30 40 50 60 70 80 90 100 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100. 

NOTE.-In each cell on and above the diagonal, the top number is the proportion (W) of informative sites p,, and the 

bottom number is the proportion (W) of informative sitesp,, = pII,. In each cell below the diagonal, the top number is N,,,, 

and the bottom number is NC,., The diagonal elements correspond to the cases of trifurcating trees. All these values are 

calculated using expressions (S), (9), and (20), for p = lo-‘, T, = 100 Myr, and various combinations of the divergence 

times T2 and T3. 

where the second step is the bootstrap resampling. PI, as defined in the previous 

section, is the probability that a random sample of sequences from the evolutionary 

process will support tree I. Now suppose that a sample of sequences is taken. Boot- 

strapping of this original sample of sequences produces new samples (bootstrap rep- 

licates) each of which supports tree I with probability PT. From the resampled data 

sets (i.e., the bootstrap replicates), one calculates the proportion P: * of the bootstrap 

replicates that support tree I. This proportion is actually an estimate of PF rather 

than of PI. 

For a given set of sequences, the proportion Pr * has the binomial distribution 

with the mean and the variance 

E(P:* IP:) = PT and 
PT(1 -p:> 

Var(P:*Im = Nb , (22) 

where Nb is the number of bootstrap replications. Because P: is, in turn, a random 

variable, the distribution of PT * is actually a compound distribution (Johnson and 

Kotz 1969, p. 183), the mean and the variance of which are 
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Statistical Properties of Bootstrap Estimation 1 I3 1 

Table 2 

Proportions (I) of Informative Sites pI and p II = pIII (on and above the Diagonal)-and 

Sequence Lengths NO.M and N0.5 (below the Diagonal)-Calculated for p = lo-‘, T, = 100 

Myr, and Various Combinations of Divergence Times T2 and T3 

T2 0 10 20 30 40 50 60 70 80 90 100 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

loo 

I 0.00 0.00 0.87 0.00 0.00 1.73 2.57 0.00 3.39 0.00 4.19 0.00 4.98 0.00 5.75 0.00 6.5 0.00 I 7.25 0.00 7.97 0.00 

I 424 114 0.06 0.06 0.91 0.06 0.06 1.74 0.06 2.56 0.05 3.35 4.14 0.05 0.05 4.90 0.05 5.65 0.05 6.39 0.05 7.11 

I 214 57 532 120 0.11 0.11 0.11 0.94 0.11 1.75 0.11 2.54 0.11 3.32 4.08 0.11 4.83 0.11 0.10 5.56 0.10 6.27 

I 144 38 250 60 616 125 0.16 0.16 0.91 0.16 0.16 1.76 0.16 2.53 0.16 3.29 4.03 0.16 0.16 4.15 0.15 5.46 

I 109 29 163 40 276 62 700 131 0.2 0.2 1 1 0.2 1.0 1 0.2 1.76 1 0.21 2.52 0.2 3.25 1 0.2 3.97 1 0.20 4.68 

I 23 88 122 30 177 41 302 64 787 138 0.26 0.26 0.26 1.03 0.26 1.77 0.26 2.50 0.25 3.22 0.25 3.92 

I 20 74 97 24 131 31 191 43 329 67 878 144 0.3 0.31 1 0.31 1.05 0.30 1.78 0.30 2.49 0.30 3.19 

I 64 17 81 20 104 25 140 32 205 44 357 69 974 151 0.35 0.35 0.35 1.08 0.35 1.78 0.35 2.48 

I 56 15 70 17 86 21 110 26 149 33 219 46 385 12 1,076 159 0.40 0.40 0.39 1.10 0.39 1.79 

I 51 13 61 15 74 18 91 21 117 26 158 34 235 47 416 75 1,184 166 0.44 0.44 0.44 1.12 

I 46 12 55 14 65 16 78 19 96 22 124 27 168 35 250 49 448 77 1,298 174 0.48 0.48 

NOTE.-la each cell on and above the diagonal, the top number is the proportion (‘70) of informative sites p,, and the 

bottom number is the proportion (9%) of informative sites p,, = p,,, In each cell below the diagonal, the top number is A$, pS, 

and the bottom number is AC,,. 

E(P:*) = E(P:) (23) 

and 

Var(P:*) = Var[E(PF* IP:)]+E[Var(P?* IP?)] 
(24) 

= Var(P:)+ $ E[P:( I-P?)]. 

We can see that the variance consists of two components: the first one, Var(PT ), 

represents the variance of sampling of sequence data from the evolutionary process, 

and the second represents the variance arising from bootstrap resampling. Note that 

the second component decreases to 0 as Nb + co but that the first component is 

independent of Nb and remains constant even as Nb -P co. However, the distribution 

of p:* approaches the distribution of P: as Nb -+ co. The variance Var( PT ) refers 

to the effects of sampling of sequences (with finite length N) from the evolutionary 

process and can be reduced to 0 only by increasing N to infinity. For finite N, PT will 

vary among samples, and so will P: *, regardless of the number of bootstrap replications 

conducted. Therefore, to understand the full variation of PF *, one needs to consider 
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1132 Zharkikh and Li 

not only the variation over bootstrap replicates but also the variation over samples 

taken from the evolutionary process. 

Obviously, to understand the distribution of P: * , we need to study the distribution 

of Pr . We now characterize the distribution of PI*. We begin by recalling the distri- 

bution of 7: that was described in the previous section. In figure 5a, an example of 

the distribution of r; among the original data sets is shown. For this distribution, the 

probability of obtaining tree I is defined by equation ( 14). For our purpose, it is more 

convenient to write it in the continuous mode: 

PI’ 1- 
s 

_qf(S)dG, (25) 

where ST1 f(y: )dyf = Prob(y:<x), i.e., f( 77) represents the probability density 

(frequency) function of r:, with the mean 7: = E(y:). 

a 

b 

1.0 

0.5 

pI . 
I &!I I 
I 

-0.1 5; 

0.5 
C 

3 

FIG. 5.-Graphic representation of the frequency-function inference for the expected proportion of 

type I trees, PF a, Probability density function of rr. The parameter values used are the same as in fig. 3. 

The sequence length used is N = 82. The shaded area is equal to PI. b, Expected proportion of type I trees, 

P: , for the sampled data that are characterized by the given value 7: [ eq. (28)]. For T: = 0, this proportion 

isP:(O)=0,5;fory:=~~,P:(y:)= P,. c, Probability density function of P: [ eq. (3 I )] . To correspond 

with plot b, the axes have been rotated by 90” counterclockwise. The dashed line corresponding to yr 

= (7 :+6)/ 2 gives the probability density prob( P: ) x 1. 
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Statistical Properties of Bootstrap Estimation 1133 

Once a sample is taken from the evolutionary process, it is characterized by a 

particular value of 77 = p;-max(p?,, pz,) = Ap:. Suppose that p:, 2 pz,. Then 

Ap? = p?-p?,. Now consider bootstrap resampling of the original sample. Denote 

the difference function for a resampled data set by -yF *. The distribution of ‘y; * is 

characterized by the frequency function g( rT * 1 y: ) with expectation 7 I* * . By analogy 

with equation ( 16), the value of 7 F * can be defined as 

y:* = WY?* IY?> = APT-a = yl*-s, (26) 

where 6 = a p?,( 1-pT,)/N. Because the proportions pTI and pTI in a sample are 

often unequal, the value of a in this case is likely to differ from 1 / $ R, unlike the case 

of equation ( 16). From equation ( 15 ), if p;“, + 0, then E(y?)+E(p: -pII) = ApI 

and a + 0. In general, 0 5 a I C1’*. 

For long sequences, the distribution g( rl* * 1 y;) of ~7 * among the resampled 

data sets will have approximately the same shape as does the original distribution 

f($ ). The two distributions differ from each other only by the shift 7; - 7 7 * in 

the abscissa, which is the difference between the mean of f( 7;) and the mean of 

g(yr * 1 yf ). That is, 

g(Yf* Iyr*) =f(yr*+gy:*). (27) 

Thus, by analogy with equation (25) we can write the particular distribution of rf * 

given ~7 and define the expected proportion Pr of type I trees among the resampled 

data sets as a function of y: (fig. 5b): 

f%Yr*) = 1-c a;* lyl*)dyl** N l- 
s 

_$:*+,:-,:*,,,:* 

(28) -* -.* 

s 

YI-YI 

s 

7 ;+;+s 
= I- f(r:*)dyl** = I- f(Y:*)dYl** * 

-I 
_1 

From probability theory, it is known that, if x is a random variable with the 

frequency function f( x) and if y = u(x) is a monotonic function, then the frequency 

function of y can be expressed as follows: 

W(Y) = g  (29) 

Taking U(X) as P? ( y T ), we can derive the frequency function of P: . From equation 

(2g), 

dP; 
* w j-(7 :--yf+&, . 
dYI 

(30) 
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1 I34 Zharkikh and Li 

So, the frequency function of P? is (fig. 5c) 

prob(P7) B 
ftrr) 

f(r?-rl* +6) * 
(31) 

Note that for 7: = (5?+6)/2, vT-y:+S = (7:+6)/2 = ‘y?, and so the value ofthe 

above function is equal to 1. This point is indicated on the abscissa of the plot in 

figure 5c. 

Combining equations ( 30) and ( 3 1)) we obtain 

s 
Y 

Prob(P?<y) = prob(PT)dPT = _:f(r:)dr: = Prob(y?<x), 
s 

(32) 
0 

where y = PT (x), in correspondence with definition (28). For large N, equation ( 32) 

gives the following two characteristic points of the distribution of PF: 

Prob( P:>‘h) m Prob(y?>O) = PI, (33) 

and 

Prob( P?>P,) x Prob(yr>y:) = Y2 ; (34) 

that is, for large N, the probability for PT (the expected proportion of obtaining tree 

I among bootstrap replicates) to be P/2 is approximately PI, and the probability for 

P: > PI is ~i/z. The prob( Pr ) values corresponding to these two points are shown 

in figure 5. 

In figure 6, the frequency functions of Pr for a trifurcating and a bifurcating 

model tree are presented. Figure 6a is calculated for the case of the trifurcating tree 

(fig. 1 d) . The proportions of all types of informative sites in this case are equal: pI 

= pII = pIII. The probabilities of different types of sampled trees will also be equal, PI 

= PII = PIII, and its value approaches l/3 when N --, co. Although equation (3 1) is 

inferred for long sequences, the main properties of the frequency function prob( PT ) 

hold also for short sequences. For the parameter values used, if N > 20, then the 

frequency function prob( PF ) is practically independent of the sequence length. Note 

that the frequency function of P: has a negative slope; that is, it decreases with in- 

creasing PT. Therefore, the probability for PF to be 295% is small, and so is the 

probability for tree I to appear in 295% of the bootstrap replicates. 

Shown in figure 6b-d are graphs corresponding to the bifurcating tree (fig. la). 

Figure 6c represents the case where the distribution f(rF) is symmetrical, i.e., 

f(rr--r?+s) = f(tl*+rl*-&). In this case, if 77 = 6, then, from equation (31), 

prob( P: ) = f( y? )/f( yr ) = 1. According to equations ( 16) and (26)) this condition 

occurs when E(y:*) = 0 and E(yf) = ApI-~pII(l-pIl)/N~ = 6; therefore, ApI 

= tp,,( I-p,,)/Nx+& So, for a sequence length close to N’ = (ct+~-~.~)~p~~( l-p,,)/ 

(AP)~, we will have a nearly constant frequency function of PT , i.e., a nearly uniform 

distribution. For the proportions of informative sites, pI = 0.0541 and pII = pIII 

= 0.04 17, used in the model tree, N’ = 200 (fig. 6~). For short sequences (N<N’), 

the frequency function, prob( PT ), has a negative slope (fig. 6b). When N > N’, this 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/9
/6

/1
1
1
9
/1

0
7
3
6
7
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



0:5 i 

b 
3 - p=W';) 

C 

d 

3 

2 

1 

0 

FIG. 6.-Distribution of the expected proportion of type I trees, P* , , among bootstrap replicates for 

(a) a trifurcating model tree and (b-d) a bifurcating model tree, with the same parameters as in figs. 3 and 

4, respectively. In the case of trifurcation, the plot of the distribution is nearly the same for all sequence 

lengths N 2 20. For the bifurcating tree the distribution depends on N: when N c 200 (N=82), the plot 

has a negative slope (b); when N = 200, the frequency function is approximately constant, prob( P: ) = 1 

(c); and when N > 200 (N=2,315), the plot has a positive slope (d). 
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1136 Zharkikh and Li 

function has a positive slope. In figure 6d, N = 2,315, which is much larger than N’ 

= 200, and prob( PT ) increases with PT , particularly after P: becomes >75%. Note, 

however, that even in this case, where PI = 95%, the probability for P: to be 295% 

is still not large. To see the difference between PI and P? , let us consider a hypothetical 

example. Suppose that a sample of sequences is taken and that there are 10, 8, and 8 

informative sites supporting trees I, II, and III, respectively. In this sample, tree I will 

be chosen as the true tree, but P? is certainly <95%, because the number of informative 

sites supporting tree I is only slightly higher than the number of those supporting trees 

II and III, so that the probability that a resampling of the original sample will fail to 

support tree I is >5%. 

Phylogenetic Inference 

All the above analyses assume that we know a priori the true phylogeny (tree I). 

It means that, for any kind of sample, we always estimate the probability of having 

tree I. Let the probabilities of obtaining a sample supporting tree Y, Y = I, ZZ, ZZZ 

(the bifurcating trees) or 0 (the trifurcating tree), be PI, PII, PIII. and PO, respectively. 

Then the probability of obtaining tree I from a bootstrap resampling of a random 

sample of sequence is 

P? = Prob(R,IS,)P,+Prob(RIISI,)P,,+Prob(R,ISIII)P,~~+Prob(R,ISo)Po , (35) 

where Prob( Rx 1 Sy) is the conditional probability that a resampling of sample Y will 

support tree X . 

In usual practice, we infer from a given set of sequences a phylogeny that can be 

classified as any one of the three possible bifurcating trees in figure 1 (for long sequences, 

samples supporting the trifurcating tree are usually rare and are neglected in this 

analysis). We then conduct bootstrapping and compute the proportion of bootstrap 

replicates that support the inferred tree. The probability that the tree obtained in a 

single bootstrap replicate is the same as the inferred tree is given by 

p*x = Pro b (RIISI)PI+Pro b (RIIISIIIPrr+Pro b (RIII ISIIIPIII. 

Obviously, P: tends to be > PT. 

(36) 

In terms of the difference function, we consider tree I as the true tree only when 

the number of type I informative sites, NI, is the largest, i.e., r? > 0. Otherwise, we 

assume the true tree to be tree II, if 77, > 0, or tree III, if yI*II > 0. Since in sample 

estimation all three types of decisions may be made, we call such decisions “mixed 

decisions.” To study the statistical properties of Ps, let us construct a new difference 

function 

(37) 

where N,,,,, = max( N1, NII, N,,,), and where Nmed is the second largest of the three 

numbers. The function -y: is defined in the region 0 I y; I 1 and is characterized 

by the frequency function f&r:). We will use the function fwith the subscripts X, 

Z, ZZ, and ZZZ to distinguish among the frequency functions of y$, r:, yX, and yI*II, 

respectively. Because ~7 > 0, rT1 > 0, and -yz, > 0 are mutually exclusive events, the 

function j&*x) is simply the sum of all the functions fi( y:), fil(y:), and j&y:) 

taken in the positive region of their arguments: 
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Statistical Properties of Bootstrap Estimation I 137 

where y*x > 0. 

In figure 7, the frequency functions of y: for various sequence lengths are drawn. 

The upper set of the plots (fig. 7a-c) corresponds to the trifurcating model tree. As 

in the case of the frequency function of 7: (fig. 3), the plots for different sequence 

lengths can be transformed to each other by resealing the axes x and y. The lower set 

of the plots (fig. 7d-f) corresponds to the case of bifurcation. As the sequence length 

increases, the distribution becomes narrower. For N > No.,, , the function fX( y :) (fig. 

7f) becomes similar to the function fi( $) (fig. 4~). 

According to equation (3 I), each of the terms in equation (38) gives the corre- 

sponding component of the probability density function of P*,: 

ProMP: 1 z probl(P:)+probl~(P*x)-tproMP:). (39) 

As in the case of &(r$), we use the notation probX(P%) to distinguish it from the 

previously defined functions proby( Y = I, 11, and 111. Because y*x is always >O, 

equation (33) implies that P$Yz (fig. 8~). Graphically, the function P*x(y*,) shown 

in figure 8b defines the correspondence between the probability density functions 

fx(y;) and probX(P*,) in the following manner: if y = P;(x), then Prob(y%lx) 

= Prob(P; 2 y). 

For the trifurcating model tree (fig. Id) all the three components in equation 

(39) are identical, and we have probx(P*x) = 3probl(P$) (fig. 9a). In this case, the 

properties of the distribution of PC are very similar to those of the distribution of 

PT. The plots for both distributions fit each other well if the latter is scaled by the 

multiplier 0.5 in the abscissa and by 2 in the ordinate and is shifted to the region 

[0.5, 1.01. In particular, the mean value E(PT) = l/3 corresponds in this way to 

E( P*,) x 0.5+(0.5 X1/3) z 0.66. This is very close to the value obtained by simulations 

(results not shown ). This means that, under the trifurcating model tree, the expected 

proportion of bootstrap replicates supporting an observed bifurcating tree is close to 

66%. As in the case of the frequency functions of PT (fig. 6a), the plots for 

probX( P*,) are approximately the same for different sequence lengths (fig. 9a). 

The frequency functions of P: in figure 9b-d correspond to the case of a bifur- 

cating model tree. In figure 9b, N = 200, and probX( P;) is considerably higher than 

prob,( Pr ), though the difference decreases as P; increases from 0.5 to 1. Thus, in a 

sample of short sequences, P: can be considerably larger than PT. As the sequence 

length increases, the proportion of correct decisions PI grows and the terms fr(y:) 

and probl(P:) in equations ( 38) and ( 39)) respectively, become dominant. For N 

> NO.sS (fig. 9d), the function probX( P?) is very similar to the function prob,( P: ) . 
Note that the condition for probX(P$) to be nearly constant requires a longer 

sequence length than does the corresponding condition for prob,(P?) to be nearly 

constant. For example, when N = 200, the plot for prob,( P: ) is approximately constant 

(fig. 6c), but the corresponding plot for probX( P);) still has a negative slope (fig. 9b). 

Indeed, although the first term in equation ( 39)-probl( P*,)-is nearly constant for 

N = 200, the last two terms-probll( P>) and prob& P*,)-  always have a negative 

slope, if tree I is the true tree. Thus, the sum of these functions will also have a negative 

slope. The slope disappears only when N = 550 (fig. SC). For larger values of N, the 

plot for probX(P:) will have a positive slope (fig. 9d). 
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FIG. 7.-Probability density functions of ‘yz for the case of a trifurcating tree (a-c) and a bifurcating tree (d-f), calculated in the same way and with the same parameters 

as for the density function of r: in figs. 3 and 4, respectively. The sequence lengths used are N = 20 (a and d) ; N = 82 (b and e) ; and N = 2,3 15 ( c and f) . 
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30 - fx(7;r) 

- 
a 

20 

10 - 

7; 

0 0.1 

-0.1 0 0.1 4 3 2 1 

Probx (p;) 

FIG. K-Inference of the frequency function of P:, the expected proportion of bootstrap replicates 

supporting the inferred tree X. a, Frequency function of r: for the case of a trifurcating tree (N=20). The 

parameters used are the same as in fig. 3. b, Expected proportion of tree X (P;) for the sampled value 

7;. This plot is the same as in fig. 5b. c, Probability density function of P; [ eq. (39)]. 

Bootstrap Estimation of Confidence Level 

In the case of selecting one of the three alternative bifurcating trees for three taxa 

with one outgroup, the common practice of estimating the confidence level for a 

selected tree by bootstrapping is as follows: Let P);* be the proportion of bootstrap 

replicates in which tree X is chosen. Then, P:* is taken as the confidence level for 

three X. A common confidence level for accepting a tree is 95%. We investigate below 

the probability of accepting a tree at a given confidence level pX. This probability 

obviously depends on the number of bootstrap replications and on the sequence length. 

We shall also study the distribution of P;* . 

An important question is, What is the probability of accepting an erroneous tree 

as the true tree? If the trifurcating tree is used as the model tree, then trees I-III are 

all considered as erroneous trees. Therefore, this model tree gives the largest probability 

of accepting an erroneous tree as the true tree. In this case, the probability is given by 

Prob( P;* z-p,) = r _’ probX( P;* )dP*x* (40) 

In figure 10 the plots for Prob( Pf;* rp,) are shown for various numbers of bootstrap 
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1 
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2 

probx Kc) 

C 

probx (P;) 

1 ----___ ---___ ----___ ---. p; 
5 1 
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3 
J 

probx(~;) 

2- \ _F 

___--- 
____-- 

_-- 

_____--- 
1. 

G 
, 
0 0.5 1 

FIG. 9.-Distribution of P;, the expected proportion of bootstrap replicates supporting the inferred 

tree X for (a) a trifurcating tree and (b-d) a bifurcating tree. The parameter values used are the same as in 

fig. 6. For the case of trifurcation, the plot of the distribution is the same for any sequence length. For the 

bifurcating tree, the sequence lengths used are N = 200 (b), N = 550 (c) , and N = 2,3 15 (d) In each plot, 

the dashed line represents prob,( P: ), where P: is the expected proportion of type I trees among bootstrap 

replicates. 
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0.0 

0.8 0.9 1.0 

PIG. IO.-Probability of P:* r Isx inferred from simulating the cam of a trifurcating tree with the 

same parameters as in fig. 3. The sequence length is N = 100. a, Entire region of O.O- 1 .O for p,r. The straight 

line represents 1 - p,r. b, More detailed plot for 0.8 5 px zc 1.0. The numbers of bootstrap replications are 

(from the top curve to the bottom) Nb = 10, 20, 30, 50, 100, 300, and 1,000. Ten thousand simulation 

replicates were conducted for each curve. 

replications, Nb. These plots are practically the same for different sequence lengths, 

so we show them only for N = 100. In table 3 the numerical estimates of this probability 

are also presented for several values of P ̂x. As Nb increases (fig. lo), the plot for 
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1142 Zharkikh and Li 

Table 3 

Prob(P y 2 pX), Inferred from Simulation with Various Numbers 

of Bootstrap Replications Nb 

Prob(P:* t &) FOR Nb OF 

PX 10 20 50 100 1,000 

0.80 0.316 0.246 0.198 0.187 0.178 

0.85 0.166 0.173 0.116 0.122 0.113 

0.90 0.166 0.112 0.045 0.069 0.059 

0.95 0.065 0.063 0.027 0.027 0.020 

0.96 0.065 0.026 0.027 0.02 1 0.017 

0.97 0.065 0.026 0.017 0.015 0.009 

0.98 0.065 0.026 0.017 0.010 0.005 

0.99 0.065 0.026 0.007 0.006 0.002 

1.00 0.065 0.026 0.007 0.002 0.000 

NOTE.-The parameters of the simulation are given in the legend to fig. IO. 

Prob(P*x*rpX) gradually approaches the asymptotic plot for Nb = 00, i.e., 

Prob ( P*,rp,) . The straight line in figure 1 Oa represents 1 -pX. Note that if pX is high, 

say, 290%, then Prob(P%*rp,) quickly becomes smaller than 1 -pX as Nb increases. 

For example, if Nb 2 50, then the probability for P*x* 2 95% is ~5% (fig. lob and 

table 3). Therefore, in the case of three taxa with one outgroup, if PX = 95%, then 

the probability of accepting an erroneous tree as the true tree is <5% as long as iVb 

;rr 50. Note that in the region of pX > 0.9, the plot for Nb = 300 is practically the same 

as that for Nb = 1,000 (fig. 10a). This means that, in the case of three taxa with one 

outgroup, for estimating the confidence level of pX r 90%, it is sufficient to use 300 

bootstrap replications. 

Figure 10a reveals also that, if pX<75%, then, even if Nb = 1,000, Prob(P:* 

2pX) is larger than l-pX or, in other words, the probability for P:* to be 275% is 

225%. This is not surprising, because, as shown in the last section, the expected pro- 

portion of bootstrap replicates supporting an observed bifurcating tree is close to 66%, 

when the trifurcating tree is used as the model tree. An implication of these results is 

that, if a bifurcating tree is observed in less than, say, 75% of the bootstrap replicates, 

then one cannot claim that it is better than the trifurcating tree. 

We now consider the distribution of P:* when tree I in figure 1 is used as the 

model tree. According to equation (20)) for a bifurcating model tree, any given value 

of PI can be reached by increasing the sequence length N. To study the sequence 

length required for Pf;* to be equal to or higher than a given value, we have conducted 

simulations with the parameters given in table 4. The number of bootstrap replications 

in each of these simulations is Nb = 300. In table 4 the p1 value was obtained from 

the average over 10,000 simulation replicates and therefore should be an accurate 

estimate of PI, which is the probability that a random sample of sequences will support 

tree I. The first set of simulations (table 4a) demonstrates that, for very short sequences, 

e.g., N I 40 for the parameter values used in table 4a, the mean value of P:* 

(P;*) is larger than PI. The two values become equal when N = 40, i.e., p*,* sx P, 

e 0.777. For N > 40, p*,* underestimates P,. 

The above phenomenon can be explained by considering PI* as a function of 

yl* [ eq. (28)]. For the expectation of a function of a random variable, u(x), one can 
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Table 4 

Average Values of PI, PII, and Py (PI, PI,, aud Py )), Iuferred from Simulation by Using a 

Bifurcating Model Tree with Various Divergence Times (fig. la) 

T2, T3 NM N PI PII Iy 

Na., -C N -C NOM: 
50,20 104 30 0.7040 0.0591 0.7588 

50,20 104 40 0.7766 0.0457 0.7769 

50,20 104 50 0.8295 0.0365 0.7962 

so,20 104 60 0.8595 0.030 1 0.8146 

50,20 104 70 0.8965 0.0219 0.8327 

50,20 104 80 0.9198 0.0187 0.8505 

50,20 104 90 0.9393 0.0149 0.8646 

50,20 104 100 0.9508 0.0115 0.8772 

50,20 104 110 0.96 11 0.0082 0.8907 

so,20 104 120 0.9691 0.0067 0.9028 

N = No,,: 

50, 10 49 49 0.9637 0.0053 0.907 1 

50,20 104 104 0.9528 0.0093 0.8847 

50, 30 280 280 0.9495 0.0148 0.8691 

50,40 1,341 1,341 0.9485 0.0209 0.8742 

50,45 5,847 5,847 0.9467 0.024 1 0.8673 

30, 10 92 92 0.9614 0.0076 0.8922 

30,20 417 417 0.9521 0.0158 0.8706 

30,25 1,762 1,762 0.9527 0.0195 0.8672 

80,50 470 470 0.9495 0.0185 0.8731 

80,60 1,333 1,333 0.9481 0.0204 0.8694 

80,70 6,741 6,741 0.9533 0.0212 0.8654 

N = 1,7N0.95 - No.gg: 

50, 10 49 70 0.9902 0.0013 0.9438 

50,20 104 165 0.9893 0.0025 0.9396 

50, 30 280 475 0.9895 0.0038 0.9417 

30,20 417 730 0.9907 0.0029 0.9407 

NOTE.-In all cases T, = IO0 Myr, whereas r, and T, are given in the table. The values of NW, were estimated using 

eq. (S), (9), and (20) for p = 10-s and a = p. Nis the actual sequence length used in the simulation. The number ofbootstrap 

replications Nb = 300. Ten thousand simulation replicates were conducted for each set of parameter values. 

usetheapproximation E(u(x)) = u(E(x)) +Y2u”(E(x))Var(x). Inthisequationthe 

first term on the right-hand side is u(E(x)) = PI* (7 7) x PI [ fig. 5b and eq. (34)], 

and the factor Var(x) = Var($ ) in the second term is positive. When 7 : < 0, the 

second derivative of the function P: ( y f ) at ~7 = 7 : is positive, and so the expectation 

of Pr , i.e., E( u(x)), overestimates PI, whereas, when 77 > 0, the second derivative 

at YI * = 7: is negative, and so the expectation of PT underestimates PI. The two 

values become equal when the sequence length N is approximately No.~, i.e., 7 : = 0. 

As stated above [see eq. (35 ) and (36)], P: is always greater than P? and approaches 

P: for large N. Since p*,* is not far from p*, for Nb r 300, the condition P*,* = PI 

requires N > No.~. For several models, it was found that the condition holds when N 

= N0.78. Therefore, if N > N0.78, then P>* is expected to underestimate PI. 

When we take N = N0.95, i.e., PI = 95%, the corresponding values of p*,* are 

87%-89% (table 4b). In order to reach PI = 99% and, correspondingly, P*,* = 94%, 

N should be - 1.7 times larger (table 4c), i.e., N = 1.7No.95. This relation can be 

approximated by a simple equation: 
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1144 Zharkikh and Li 

where C and a can be estimated from the simulation data. For P = PI. C z 0.6 and 

a=2.48;and,forP= P*x*,C=0.3anda= 1.01. 

Note that this estimation of PI and P %* depends only on the ratio N/ NO.ss. This 

can be explained by considering eq. ( 19). Expressing pp from this equation, we can 

write 

Since \lNosAp = m, we obtain 

PP = PO.95 

m-i%-75-m 
1-1JNoJ!No.95 . 

(42) 

(43) 

For most cases, N0.gs b NO.s. Neglecting terms containing the ratio No.s/ No.95, we get 

a simple formula, 

(44) 

in which pp depends only on the ratio NpIN0.95. 

One of the important statistical properties of bootstrap estimation is the probability 

of failing to accept the true tree, Prob( P: * cp,) (when tree I is used as the model 

tree), which is evidently greater than the probability of failing to accept any of the 

three alternative trees, Prob( Pj;* dx). The two probabilities become equal as N be- 

comes large. On the basis of the results of simulation (table 5), we estimate these 

probabilities for the confidence level pX = 0.95. To characterize further the distribution 

of P;* we also consider a left cut-off point PL that gives Prob( P);* <PL) < 0.05 (table 

5). All these characteristics demonstrate that, unless N is very large, the distribution 

of p:* is wide and, hence, using P;* as a criterion for accepting a tree leads to a 

very high probability of failing to accept any bifurcating tree. For example, even if 

the expected value of PI is as high as 99.6%, so that the expected value of P:* is 

95.9% (N=2,800 in table 5), there is a 5% probability that PC* is <80%, and the 

probability of failing to accept any bifurcating tree, i.e., Prob(P;*<0.95), is >22%. 

Note that when the expected value of PI is 99.6%, almost all samples of sequences 

from the evolutionary process will support tree I but that, nevertheless, in a substantial 
proportion, i.e., 24%, of the samples, the support for tree I is not strong enough for 

P:* to reach 95%. It is clear from table 5 that, for Prob(P:*<95%) to be <5%, the 

sequence length required is at least three times (almost four times) longer than that 

required for PI = 95%. To understand the preceding conclusion, it is useful to consider 

the distribution of P$, which is the distribution of Py when Nb = cc. For example, 

in figure 9d, PI = 95%, but the probability for P$ 2 95% is less than the probability 

for P*x -c 95%. 
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Table 5 

Characteristics of the Distribution of P:* and P y , Estimated by Simulating the Bifurcating 

Model Tree (T,=lOO, T,=50, TJ=40, b=lO-*, and a=p), with Various Sequence Lengths N 

200 

400 

600 

800 

1,000 

1,200 

1,400 

1,600 

1,800 

2,000 

2,200 

2,400 

2,600 

2,800 

3,000 

3,500 

4,000 

4.500 

5.000 

0.509 0.686 0.956 0.938 0.433 

0.695 0.727 0.905 0.892 0.443 

0.695 0.764 0.828 0.832 0.467 

0.756 0.798 0.779 0.773 0.487 

0.792 0.834 0.719 0.679 0.510 

0.837 0.856 0.628 0.623 0.530 

0.859 0.868 0.586 0.580 0.544 

0.873 0.886 0.526 0.526 0.565 

0.900 0.911 0.460 0.459 0.618 

0.913 0.923 0.40 I 0.400 0.650 

0.933 0.932 0.340 0.339 0.700 

0.940 0.943 0.312 0.311 0.732 

0.947 0.948 0.285 0.285 0.755 

0.958 0.959 0.239 0.237 0.802 

0.967 0.965 0.222 0.220 0.820 

0.974 0.974 0.141 0.141 0.863 

0.983 0.983 0.088 0.088 0.920 

0.989 0.989 0.06 1 0.06 1 0.937 

0.993 0.993 0.029 0.029 0.963 

NOTE.-One thousand simulation replicates with Nb = 300 bootstrap replications were conducted for each sequence 

length. 4, P:‘, and P:’ denote the mean values of P, , P:' , and Py over simulation replicates. S, is Prob(P:‘t0.95), 

S, is Prob(Py<0.95), and Pr is defined by Prob(Py<P,) iz 5%. 

Discussion 

In this study we have considered four taxa and have assumed a constant rate of 

nucleotide substitution. Under this simple situation, one can draw the following con- 

clusion: As long as a reasonable number of bootstrap replicates (say, r 100) have been 

conducted, considerable (280%) confidence can be given to a tree that is supported 

by >80% of the replicates. In particular, the probability that a tree is an erroneous 

one is 4%, if it is supported by 295% of the replicates. Thus, one is on the safe side 

if he or she sets 95% as the level for accepting a tree. On the other hand, little confidence 

can be given to a tree that is supported by 175% of the replicates, for in this case the 

tree cannot be claimed to be better than the trifurcating tree. 

It should be emphasized that, under the ideal conditions assumed in this study, 

it is rather simple to identify the true tree. In practice, deviations from ideal conditions 

are likely to occur, and identifying the true tree can be very difficult. We discuss below 

the conditions assumed in this study. 

First, let us consider the assumption of a constant rate of nucleotide substitution. 

There is now strong evidence that this assumption is violated in many evolutionary 

lineages (e.g., see Wu and Li 1985; Britten 1986; Seino et al. 1992). As pointed out 

by Felsenstein ( 1978, 1985), unequal rates of evolution can mislead parsimony in- 

ferences, and bootstrapping does not correct this problem. Therefore, under unequal 

rates of evolution, the probability of accepting an erroneous tree is likely to be higher 

than that given in the present study. For the effects of unequal rates on bootstrap 

estimation, readers may refer to Hillis and Bull (accepted) and Zharkikh and Li 

(accepted). 
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Second, we consider the assumption of homogeneous sequences in which all sites 

are variable and evolve at the same rate. This assumption may hold approximately 

for nonfunctional sequences or for sequences with very weak selective constrains, e.g., 

intergenic regions and pseudogenes. In functional sequences there may be sites that 

do not change with time. Since such invariable sites cannot become informative, they 

do not contribute to the sequence length N used in the above analysis; in our for- 

mulation, we assumed that all sites are variable. Therefore, in practice, the effective 

sequence length can be considerably shorter than the actual length. In theory, invariable 

sites should be excluded from analysis, though such sites are usually difficult to identify 

in practice. Another problem is that in functional sequences not all sites evolve at the 

same rate. Obviously, how rate heterogeneity may affect bootstrap estimation is worth 

studying. 

Third, in many cases we have used a fairly high rate of nucleotide substitution, 

i.e., u = lo-’ substitutions per site per year. This high rate was used to facilitate 

computations and simulations because it leads to many informative sites in a relatively 

short time of divergence. If the rate is lower, then the sequence length required for 

P;* to reach a given confidence level will be different. 

As an example of application of the present results, let us consider the sequence 

data used by Li et al. ( 1992) for determining the phylogenetic position of the guinea 

pig. The four taxa they used are ( 1) guinea pig, (2) myomorphs (mice and rats), (3 ) 

primates, and (4) marsupials or aves as an outgroup. Among the 2,413 amino acid 

sites under study, there are 109 informative sites, of which 50,29, and 30 support tree 

III, tree I, and tree II, respectively, where tree I represents the traditional view that the 

guinea pig and the myomorphs are sister groups, tree II puts the guinea pig and the 

primates in one clade, and tree III assumes that the guinea pig is an outgroup to the 

myomorphs and the primates and that it therefore does not belong to the order Ro- 

dentia. From the data, we have p& = 50/2,413 = 0.0207, p: = 0.0120, and p; 

= 0.0 124. Using formula (20)) we estimate that the sequence length required for 95% 

probability of obtaining tree III is N 0.95 = I,8 13. From formula (20) one can show 

that, for N = 2,413, the probability of obtaining tree III is PII, = 0.969. Bootstrap 

estimation of PI,,, from Nb = 1,000 bootstrap replications, gives 0.977. From figure 

10, the probability for a bifurcating tree to appear in 20.977 of the bootstrap replicates 

is <0.009 if a trifurcating tree is used as the model tree. Taken at face value, this small 

probability supports Graur et al.‘s ( 199 1) hypothesis that the guinea pig is not a 

rodent; that is, tree III is the true tree. However, we must note the assumptions involved. 

First, it assumes equal rates among the primate, myomorph, and guinea pig lineages, 

but there is evidence that the rate of amino acid substitution is considerably lower in 

the primate lineage, though approximately the same in the other two lineages (Li et 

al. 1992). Second, it assumes that all amino acid residue sites are variable and evolve 

at the same rates, but it is likely that some sites have evolved faster than the others and 

that some sites are invariable. Therefore, the probability that tree III is erroneous can 

be substantially larger than 0.009, and the hypothesis needs to be reexamined using 

more sequence data. 
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