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The statistical properties of sample estimation and bootstrap estimation of phy-
logenetic variability from a sample of nucleotide sequences are studied by using
model trees of three taxa with an outgroup and by assuming a constant rate of
nucleotide substitution. The maximum-parsimony method of tree reconstruction
is used. An analytic formula is derived for estimating the sequence length that is
required if P, the probability of obtaining the true tree from the sampled sequences,
is to be equal to or higher than a given value. Bootstrap estimation is formulated
as a two-step sampling procedure: (1) sampling of sequences from the evolutionary
process and (2) resampling of the original sequence sample. The probability that
a bootstrap resampling of an original sequence sample will support the true tree is
found to depend on the model tree, the sequence length, and the probability that
a randomly chosen nucleotide site is an informative site. When a trifurcating tree
is used as the model tree, the probability that one of the three bifurcating trees will
appear in =95% of the bootstrap replicates is <5%, even if the number of bootstrap
replicates is only 50; therefore, the probability of accepting an erroneous tree as
the true tree is <5% if that tree appears in =95% of the bootstrap replicates and if
more than 50 bootstrap replications are conducted. However, if a particular bifur-
cating tree is observed in, say, <75% of the bootstrap replicates, then it cannot be
claimed to be better than the trifurcating tree even if > 1,000 bootstrap replications
are conducted. When a bifurcating tree is used as the model tree, the bootstrap
approach tends to overestimate P when the sequences are very short, but it tends
to underestimate that probability when the sequences are long. Moreover, simulation
results show that, if a tree is accepted as the true tree only if it has appeared in
=95% of the bootstrap replicates, then the probability of failing to accept any bi-
furcating tree can be as large as 58% even when P = 95%, i.e., even when 95% of
the samples from the evolutionary process will support the true tree. Thus, if the
rate-constancy assumption holds, bootstrapping is a conservative approach for es-
timating the reliability of an inferred phylogeny for four taxa.

Introduction
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The rapid accumulation of DNA sequence data has stimulated much activity i&
the reconstruction of phylogenetic relationships among organisms. It has also stimulated
much interest in the development of methods for tree reconstruction and for evaluating
the statistical confidence of an inferred phylogeny. Presently, among the statistic@
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1120 Zharkikh and Li

methods for evaluating the reliability of inferred phylogenies [see the reviews by Fel-
senstein ( 1988) and Li and Gouy (1991)}], the bootstrap method (Felsenstein 1985)
is the simplest and the most frequently used method when the number of taxa under
study is more than four. However, the statistical properties of this approach in the
context of phylogenetic reconstruction have not been well studied, though its theoretical
foundation in terms of general statistics has been examined thoroughly (Effron 1982).
The present paper explores properties of bootstrap estimates based on the maximum-
parsimony method of tree reconstruction. Recently, Hillis and Bull (accepted) have
also studied this problem.
For simplicity we consider the case of three taxa with one outgroup and assu

a constant rate for the evolution of nucleotide sequences. This simple case can be
treated analytically, making it easier to clarify some of the conceptual aspects of bocg-
strap estimation. Moreover, it allows a close examination of the statistical properti%s
of the distribution of informative sites in a sample of sequences, a study that was
initiated by Saitou and Nei ( 1986), and our analytic results turn out to be very usefal
for investigating the statistical properties of bootstrap estimation. The simple case alsd
makes it easier to study, theoretically, both bootstrap estimation of the conﬁdenée
level of an inferred phylogeny and the dependence of the confidence level on both t@e
amount of data under study and the number of bootstrap replications. Our ultimage
aims are to know whether the bootstrap approach tends to overestimate or underq%—
timate the confidence level of an inferred phylogeny and the probability of acceptifg

©

an erroneous tree as the true tree. g
3
Approaches and Results 3
(]

To help readersunderstand the analysis to be given below, we explain here the
approaches to be used. We also summarize the main results so that a reader cdh
understand the essence of the present paper without going through the mathematicg
analysis. =

We use a simple model tree in which there are three taxa with one outgroup.
The three possible rooted bifurcating trees (I, II, and III) are shown in Figure 1a—§.
We assume that the first tree (tree I) is the true tree and that the branching dates féz%
the outgroup, species 3, and species 2 are, respectively, T, T,, and T before the
present. The trifurcating tree (fig. 1d) is the best representation of the species phylogeily

when we cannot make a decision about the branching order. We use either tree I or

the trifurcating tree as the model tree in our analysis. g
8
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FiG. 1.—Three possible bifurcating trees (a-c) and the trifurcating tree (d), for three species with die

outgroup. Tree I is assumed to be the true tree in the bifurcating models.
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First, for a given model tree we study the evolution of a nucleotide sequence
along each branch of the tree and the probability of having a particular configuration
pattern of the nucleotides at the tips of the tree. Under the maximum-parsimony
method, which is the tree-reconstruction method to be used in the present study, a
configuration pattern is said to be informative if it is useful for distinguishing among
the three possible bifurcating trees. An informative site is said to support tree i
(i = I, II, or III) if the number of nucleotide substitutions required to explain the

Al A + + that it
observed configuration at that site is smaller under tree i than under either of the two

other possible bifurcating trees. We derive a formula for the probability (p;) that a
randomly chosen site will support tree i. The probabilities p;, p;;, and p;;; are the basic
quantities in subsequent analysis. g

Next, we study the statistical properties of the distribution of the three types oé
informative sites in a sample of sequences of length N. We then derive an analytlcg
formula for estimating the sequence length that is required if the probability of obtalmngl
the true tree from the sampled sequences is to be equal to or higher than a given valueg
e.g., 95%. The analytic results obtained in this section are useful for studying the;
bootstrap technique.

Third, we use either tree I or the trifurcating tree in figure 1 as the model tre@
and study the bootstrap estimation of P;, which is the probability of obtaining tree E
from a random sample of sequences of length N. The bootstrap estimation is formulatecﬁ
as a two-step sampling procedure: (i) A random sample of sequences is taken frorrb
the evolutionary process. (ii) The sites of the sequences in the original sample ar@
resampled with replacement (i.e., bootstrapped ), and a tree is reconstructed from th§
resampled data. The second step is repeated N, times, and the proportion of thI
bootstrap replicates that support tree I is taken as an estimate of P,. Symbolically, thé&
two-step procedure can be represented as

sdp@Puoly

(p1, Di1, pm)"(P}k, pl*l» P,;ll)—’(PT*, p,IkI*» PTI}')
v

P Pt PT*
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where p;, pi;, and py; are the underlying probabilities of informative sites supporting”
tree I, tree I, and tree III, respectively; pY¥, pl, and pjy are the corresponding pro=
portions of informative sites in a random sample of sequences from the evolutiona y
process and are considered as the underlylng probabilities of informative sites fog
bootstrap resampling; and p7 *, p5;*, and p7* are the proportions of informative sites.

in a sample bootstrapped from the original sample. The probabilities p; (i = I, II, I1

determine the underlying probability P; that a random sample of sequences from thS
evolutionary process will support tree I. In the same manner, the proportions p,c
determine the probability P} that a bootstrap resampling of an original sample wﬁ
support tree I. The proportlons p¥* determine the most parsimonious tree in a boote
strap replicate, and PT* denotes the proportion of the bootstrap rephcates in whlcﬂi
tree I is chosen. Since P} can be regarded as a random variable, PT* is actually a
compound random variable (Johnson and Kotz 1969, p. 183). This formulation clearly’

shows that the variance of a bootstrap estimate consists of two components: the first
one arises from sampling of sequence data from the evolutionary process, and the.
second arises from bootstrap resampling. The second component can be reduced t§
0 by increasing N; to infinity, but the first component is independent of bootstrap’



1122 Zharkikh and Li

resampling and can be reduced only by increasing the sequence length N. In order to
understand the statistical properties of bootstrap estimation of P;, we study the dis-
tribution of P} by using, as the model tree, either tree I or the trifurcating tree in
figure 1.

Fourth, since in practice we do not know a priori which tree is the true tree, we
assume that the tree inferred from the sequence sample is the true tree. Denote this
tree by X. In analogy with the preceding situation, let P% be the probability that a
bootstrap resampling of the original sample will support tree X and let P%* be the
proportion of bootstrap replicates that support tree X . Note that, since the tree inferred
can vary from sample to sample X can be tree I, tree II, or tree III. For this reason,
P% = P} and PY* = P}™*. Asin the case of P}, we study the distribution of P¥% byo
using, as the model tree, tree I or the trifurcating tree.

Finally, and most important, we study whether P%* X can be taken as the conﬁdence%i
level that tree X is the true tree. We show that, if P%* = 95%, then the probablhtyQ
that tree X i1s an erroneous tree is <5%, even if N, i1s as small as 50. In general, 1f>

* > 80% and N, = 100, then considerable (=80%) confidence can be given to treer
X as the true tree. However, if P%* < 75%, then little confidence can be given to trean
X, because it cannot be claimed to be better than the trifurcating tree. Further, wem
show that if P, ~ <78%, then P%* tends to overestimate P; but that, if P; > 78%;1
then P%* actually tends to underestimate P;. Indeed, when P;=95.2%, the expected3
value of P%™ is only 86.8% and the probability that P%* = 95% is only 42.0%. Eveno
when P; = 99.6%, so that almost every sample from the evolutionary process w1llc
support tree I the probability that P}* = 95% is still only 76.3%, though the expecte@
value of P%™ increases to 95.9%. Thus, the sequence length required for P%* = 95%=
is usually several times longer than that required for P; = 95%.

The above conclusions are obtained under the assumption of rate constancy.
Under unequal rates of evolution among lineages, the maximum-parsimony method?
can be positively misleading ( Felsenstein 1978), and so some of the above conclusions®
may not hold (Hillis and Bull, accepted; Zharkikh and Li, accepted).

[onle/sq

Evolution of Nucleotides and Informative Sites

N Aq8/9€20L/6L11

In this section we describe the model of nucleotide substitution and the method»
of phylogenetic reconstruction to be used in this study. We use Kimura’s (1980) two-y
parameter model of nucleotide substitution, in which the rate of transition and thed
rate of each type of transversion are a and P substitutions per site per year, respectively,;
transitions are changes between either A and G or T and C, while all other types of’
changes are transversions. Under this model, the total rate of substitution per site 1SL
1 = a+2pB, because at each site there are one type of transition and two types ofZ
transversion.

Let us replace the parameters o and B in this model by their ratio r = a/f and}
by the total rate of substitution per site @ = o + 2B. Then, o = p r/(r + 2) and Bg
= u/(r + 2). For each time interval ¢, we can define the probabilities that the nucleotidess
at the two ends of this interval are X and Y, respectively (Li 1986):

neom

220z 1snbny

Prob(X—Y: 1, W, r) = Ya + Yae ¥W/(r+2) — 1pe=2Mr+D/(r+2) |

~
[
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if X— Y is a transition;

Prob(X—Y: 1, u, r) = Va — Yae~ WD) | 2)

if X— Y is a specific type of transversion; and
Prob(X=Y;t, u,r) =% + Ype 4 U+2) 1y =2 1)/ (r42) (3)

Note that we can replace both parameter ¢ and parameter p in these equations
by the expected number of substitutions per site (M;) for branch i in figure 2:

M,'=til,l,' (l=1,,5) (4)

So, the above probabilities can be redefined as functions of only two parameters, M
and r: Prob(X—>Y; M, r).

Under the assumption of rate constancy, |; = u for all i, and all time spans in
figure 2 and the corresponding expected numbers of substitutions will be defined as
follows:

h=6p="T;, M, = M; =uT;;
ty =T, M3 =uT>;

t4 =27, — T>, M, = W2T, — Ty);
ts=T,— T3, Ms= (T, — T3).

(5)

Let py, be the probability of observing nucleotide X; (A, T, G, or C) at a given site at
node i (fig. 2). Then, the probability of observing nucleotides X;, X3, X3, and X, at
nodes 1, 2, 3, and 4, respectively, is (Saitou 1988)

FIG. 2.—Unrooted model tree for four sequences. The branch lengths can be given either as the time
spans(t;,i=1,...,5),if we assume a constant rate, or as the expected numbers of substitutions (M; = £;}1,)

for the case of unequal evolutionary rates ;.
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Prob(X;, X;, X3, Xa) = 2 2 Px Prob(Xs—>Xs; My, 1)

Xs Xg
X Prob(Xg—>X3; M3, r)Prob(Xe—>Xs; Ms, r) (6)
X Prob(Xs—>X,; M,, r)Prob(Xs—~>X,; M, r).

The pattern (X, X;, X3, X4) is said to be informative if it helps to distinguish
between different tree topologies. Different tree-making methods have different infor-
mative-site definitions. Some of them have been listed by Li et al. (1987). For example,
in the case of the maximum-parsimony method, the pattern (X, X3, X3, X4) is “b
formative; that is, it supports one of the three bifurcating trees in figure 1:

:

2

tree 1, if X, =X, X, # X, and Xs =X, i

teell, if X, =Xs, X#X, and X=X (B

eell, if X,=X,, Xo#X, and Xo=X;. =

N

For example, if X| = X; = A and X; = X; = G, then the site supports tree I. Usin §
the above formulas, we can calculate the probability p; that a randomly chosen site ﬁ_
an informative site supporting tree i, i = I, I, or III: o
S

o

=2 2 Prob(Xi, Xi, X4, Xa) ; (83

X4 X1#X, 3

3

pn=2 2 Prob(X, X4, X1, Xa); (99

Xs X1#Xs %

pu=2 % Prob(Xi, Xo, X3, X1); (103

Xy X1#X; 3

©

where, for example, the summation 2 x, 2 x,«x, is over all possible nucleotide conﬁg%
urations in which X; # X4, X, = X5, and X; = X,. Note that p; is also the expecte&’
proportion of informative sites supporting tree i when a sample of sequences is takeg
from the four species. c

The maximum-parsimony method is to choose the most parsimonious tree, i. e =
the tree with the largest number of supporting sites. Other methods of tree reconstrucz
tion are based on more complicated scores (see Li et al. 1987; Nei 1987). Some of
them (e.g., the evolutionary-parsimony method) are linear combinations of the numin
bers of informative sites. Presumably, such methods, in their statistical properties;
share some similarities with the maximum-parsimony method. In this paper we sha&
consider only the statistical properties of the maximum-parsimony method. Othé;‘
methods will be considered elsewhere.

Sample Estimation

| Uo Jasn o

In this section we consider the statistical properties of the distribution of the thre§
types of informative sites in a sample of sequences of length N. The main purpose ﬁ
to study the relationship between N and the probability of obtaining the true tree frorﬁ
the sequence sample.

For a given set of aligned sequences of length N, we can count the number o"f
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informative sites, N;, Ny;, and Ny, supporting trees I, II, and III, respectively, and
can calculate their sample proportions, pf = N;/N, pt; = Ny/N, and ph; = Nm/N.
Under the assumption that each nucleotide site evolves independently and with the
same rate of substitution, each of the numbers N;, i = I, II, or III, has a binomial
distribution, and hence the mean and the variance of p} are

pi(1 —p)

E(pf)=p; and  Var(p})= ¥

(11)

The observed proportions py, pJ, and pJy; are said to support tree I, if pr
> max(pJ;, piu). For a sample of N sites, the probability of obtaining tree I, Py, is 2

P; = Prob(p] > max(pl;, pin)) -

,\
—
%)
woJpépeoju

When N is small, P; can be obtained from the multinomial expansion oE
(po+pr+pitpm)” (see Saitou and Nei 1986); po = 1~p;—pu—puz is the proportion o?
noninformative sites. When N is large, the following approach is computatlonalls%J
much simpler. Define the difference function

~_~
[an—y
W

Y7 = pf—max(p}, plu) -

If y}" > 0, then the given set of sequences supports tree I. Therefore,
P; = Prob(y7>0) = 1—Prob(y;<0).

Expression (13) can be rewritten as follows:

—~
—
w

=
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o =p}._(pf1-;p?‘n+ Ip?}—zp}"ul).

Under the assumption of rate constancy and the assumption that tree I is the trucyC
tree, we have p;; = pyr and p; > pp. So, the expectation of the first two terms 113j
equation (15) is Ap; = p;—p;;. The last term of the equation involves the absolut%
difference | x—y/|, the expected value of which is known as Gini’s mean difference;
(Johnson and Kotz 1970, p. 67) If x and y are normally distributed with the sam&
mean and with the variance o2, then E(| x—y|) ~ 26/Vn. When N> 1/p;;, we cam
use the normal approx1mat10n to the distribution of p}. Note that the covarlancgg
between pf and pF 7, 1% j,is —p;p;/ N (see Johnson and Kotz 1969, p 284). Thereforeg
if N> 1/py, ie., 1/N < pp, the covariances between p7, pJ;, and pJy; are of the ordeg
of p;pi;/ N and can be neglected; note that p;, py;, and py; are usually much smalleg
than 1. We then obtain the following approximations for the mean and the variance’

Of rl.'
" / Val(pn ! p“(l p“)

—
288z 1snbny 9



1126 Zharkikh and Li

and

%* * %k *
+ —
Var(Y}) ~ Var(p¥ )+Var(—p ” 2” ”’)+Var(——| Pu 2” | )

~ 2d=p)  pu(l=pm) (1
N N n)’

(17)

The case of Ap; = 0 in equation (16) corresponds to the trifurcating model tree
(fig. 1d). In figure 3, the plots for the probability density function of y7 for different
N are shown. The dashed line in the middle of each distribution indicates the mean
value, E(y7 ), which is always negative for this tree As Nincreases, E(Y7) approachés
0 (fig. 3), and the width of the distribution of v L T decreases in a manner such that tlm
area for the right part of the distribution (i.e., Y7 >0) is approximately constant. Tl&
relative proportions of P;, Py, and P, are equal to s and 1ndependent of N. Becausc
of the nonzero probability of the equality pJ = max(pJ;, pi), the absolute value af
P, is actually <'s. However, P; approaches 3, as N = oo.

For Ap; > 0 (tree I as the model tree), the picture is quite different (fig. 4). Whéh
N < Nos = pu(1—pp)/=(Ap;)?, formula (16) implies that the expectation of yJ gs
negative (fig. 4a) For N = Nys, E(y7) =0 (ﬁg 4b). In this case, ~50% of tli
distribution of yJ lies in the region of positive v7, ie., P, ~ 0.5. When N > Nog,
E(y7) is positive (fig. 4c), and P; increases with N, approaching 1 as N = oo. :

Thus, if the bifurcating tree (tree I) represents the true phylogeny, then, by i 18‘
creasing the sequence length, we can reach any given proportion P;. To estimate tl?e
sequence length requlred for obtaining tree I with a given probability P;, let us construgt
a new variable B = Y7 —E(y7)/VVar(y7), which for N> 1/py; has nearly the normal
distribution with mean 0 and variance 1. In terms of this variable, we can rewngg
definition (14) as follows:

—E(v7)

P = Prob(B> W) = PI‘Ob(ﬁ>—BpI) .

Aa 8,9 881/6111/9/6/

The correspondence between P; and Bp, can be obtained from the statistical table of
the standard normal distribution. For example, for P; = 0.95, Bogs =~ 1.65. Defini

B, for a given P; and using formulas (16) and (17) for E(y7) and Var(y7), we can
estimate the sequence length Np, that is required for the probability of obtaining tré‘é
Ito be Py

Vou/n + BsVor-(1—(1/n)) pu T

Np ~
Fi Ap;

(4

—
i
Josn o¥snr Jo Juswi

Usually, this formula underestimates Np,, because it does not take into accourit
the discreteness of the model. Actually, there exists a nonzero probability of Y] = ®
(the probability of having a trichotomy, Py) that reduces P; by approximatelz one hq?
of Po; that is, if we take Np, from formula (19), we actually obtain P, = P—0.5F.
As N, s increases, P, decreases, and P; approaches P;. A simple way to correct such
an underestimation is to define P; = Prob(yy>1/N), rather than P; = Prob(y}">0¥,
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FIG. 3.—Probability density of Y] for the case of a trifurcating model tree for sequence lengths N = 2§

(a), N = 82 (b), and N = 2,315 (c). These values are chosen to provide a comparison with the cases g

bifurcating trees shown in fig. 4. The probabilities are calculated using the multinomial distribution of the

numbers of informative sites N;, Ny;, and Ny, with expected proportions p; = py = piy = 0.044. This casé

corresponds approximately to the model in fig. 1a with time parameters 7, = 100 Myr, T, = T3 = 50 My%

and the evolutionary rate of u = 10~ substitutions per site per year. For N > 100, the normal approximatios

of the binomial distribution was applied. The dashed line on each plot corresponds to the mean value of

'yf. The shaded part of each distribution represents the expected proportion of tree I—i.e., P,—which is
approximately the same for any length of sequences.
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arrow on the abscissa. From eq. (20), Nos = 166 and Nygs = 2,315. The sequence lengths used are N = 20
(a), N = 82 (b), and N = 2,315 (c). The expected proportions of type I trees—i.e., P; (shaded area)—
increases with N: P; = 0.293, 0.422, and 0.951 for plots a, b, and c, respectively.
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for the probability of having tree I. This increases the estimate of N, given by formula
(19) approximately by 1/Ap; (see Fleiss 1981, p. 42):

VI’H/W"‘BP,VPI"‘( 1-(1/7))py 2+ 1

Np, ~ .
F Ap; Ap;

1

(20)

A detailed investigation of the relationship between sequence length and the
probability of obtaining the correct tree was provided by Saitou and Nei (1986). Using
various evolutionary models and applying various tree-making methods, they estimated
the minimum sequence length that is required for having the probability P; = 0.95 of,
obtaining the true phylogeny for three species with one or two outgroups. For shoré
sequences (N<100), they applied the exact multinomial formula for the calculatlorb
of P;. This approach becomes extremely tedious for long sequences. For this reason;D
they used simulation when N > 100. In one of their model trees for three species with-:
an outgroup, they selected the following parameters: 7,p = 0.09, T>u = 0.05, and
T = 0.045 (fig. 1a). Two models of nucleotide substitution were used: the one‘%
parameter model with a = f§ and Kimura’s two-parameter model with o = 20u/22"
and B = p/22. For these two models, they obtained Nyos = 2,100 and Npgs = 3 300g
respectively, for the maximum parsimony method. Our formula (20) gives similaf
estimates: Npos = 2,153 and Nyes = 3,312 for the one- and two-parameter modelsg
respectively. A good agreement between formula (20) and simulation results will be:
seen later (in table 4). o

In tables 1 and 2 we present values of p; and p;; = p,y; calculated from formulasi
(8) and (9) for tree I, with the time for the outgroup-branching-point 7", = 100 Myg
and T, and T'; varying from O to 100 Myr and with the corresponding values of Ny, 952
and Nys given by formula (20) for P, = 0.95 and P, = 0 5, respectively. For th%
evolutionary rate, we used two different values: u = 107° and 107%; the former 139
similar to the average rate of nonsynonymous substitution, while the latter is approx—A
imately two times higher than the average rate of synonymous substitution for coms
monly studied mammalian genes (Li and Graur 1991).

Bootstrap Estimation

Aa 829€201/

Equation (20) can be used also for estimating B, from which one can infer the-
expected proportion of type I trees, P, if the sequence length, N, and the proportions»
of informative sites, p;, pyr, and pyy; are given. However, such a direct estimation ofY
P, for a tree with more than four species is a difficult task. For this purpose, one caﬁg
use the bootstrap technique, which was introduced into phylogenetic studies by Fel-
senstein (1985). The characters under study are assumed to evolve independently. Im
the bootstrap estimation procedure, the sites of the sequences under study are resampled'_“
randomly with replacement, and a tree is reconstructed for each resampled data setc
It is supposed that the resampled data have the same distribution of informative snes"
as do repeated samples from the ongmal process For example, in the case of fom%
species, the proportions P} *, P5;*, and P} of trees L, II, and I1I among the bootstrag

replicates are the estimates of proportions P, Py, and Py, respectively. >
As mentioned above, the bootstrap estimate of P; is a result of two steps o%
sampling: c
P;—~ P} — PT¥, (21)§

N

N

where the first step is the sampling of sequences from the evolutionary process and
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Table 1

Proportions (%) of Informative Sites p; and p;; = py; (on and above the Diagonal)—
and Sequence Lengths Ny s and N, s Required for Having Probability,

P, = 0.95 and 0.5, Respectively (below the Diagonal), of Obtaining Tree 1

T

T2 0 10 20 30 40 50 60 70 80 90 100

[0.00 4.71 8.36 11.18 13.37 15.08 16.40 17.43 18.24 18.87 19.37
000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 [78 1.86  5.27 792 9.98 11.57 12.81 13.78 14.54 15.13 lSﬁ
""" 21 1.86 1.66 1.52 1.41 1.33 1.27 1.22 1.18 1.16 1
{44 211 3.01 5.50 7.44 8.94 10.11 11.02 11.73 12.29 12.§3

0. 11 31 301 274 253 238 226 217 211 206 283

” [33 92 417 372 555 697 807 894 961 1014 1035

""" 8 16 47 372 343 321 305 293 283 277 2R

© [27 62 163 761 415 550 655 737 801 851 830

""" 7 12 23 71 415 387 367 352 340 332 336

s {24 49 104 280 1,341 441 541 619 680 728 785

""" 6 10 16 33 108 441 417 399 385 375 3@

6 [zz 42 80 173 473 2315 456 531 589 635 631

“““ 6 8 13 23 48 166 456 436 420 409 4@

7 [21 38 67 130 285 795 3960 465 521 565 690

""" 5 8 12 19 33 71 258 465 448 436 437

%0 {20 35 60 107 210 470 1,333 6742 471 513 536
""" 5 71 16 26 48 106 405 471 457

% [19 3355 94 172 342 777 2237 11460 474 506

“““ 5 710 15 23 37 6 160 646 474 434

100 [19 32 sl 8 150 278 561 1291 3763 19474 437

""" 5 7 9 14 20 32 54 103 246 1040 4F7

QO
NoTE.—In each cell on and above the diagonal, the top number is the proportion (%) of informative sites p;, and @e
bottom number is the proportion (%) of informative sites pyy = pypy . In each cell below the diagonal, the top number is N&&s,
and the bottom number is Nys. The diagonal elements correspond to the cases of trifurcating trees. All these values zze
calculated using expressions (8), (9), and (20), for p = 1078, T, = 100 Myr, and various combinations of the divergense
times 73 and T3.

cL0L/6LL

where the second step is the bootstrap resampling. P;, as defined in the prev1o@s
section, is the probability that a random sample of sequences from the evolutlonagy
process will support tree I. Now suppose that a sample of sequences is taken. Bom-
strapping of this original sample of sequences produces new samples (bootstrap réﬁ
licates) each of which supports tree I with probability P}. From the resampled dga
sets (i.e., the bootstrap replicates), one calculates the proportion PT* of the bootstxﬁp
replicates that support tree I. This proportion is actually an estimate of P} rath
than of P;. o

For a given set of sequences, the proportion PT™* has the binomial distributien
with the mean and the variance

1

PT(1— PT)

E(P}*|Pf)=Pf and  Var(P?*|P7)= i
b

o~
nbny 9L:30 Jasn a0ns
N’

where N, is the number of bootstrap replications. Because P7 is, in turn, a randdm
variable, the distribution of PJ* is actually a compound distribution (Johnson aﬁd
Kotz 1969, p. 183), the mean and the variance of which are

4
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Table 2

Proportions (%) of Informative Sites p; and p;; = p;;y (on and above the Diagonal)—and
Sequence Lengths Nygs and Ny s (below the Diagonal)—Calculated for p = 107°, 7; = 100
Myr, and Various Combinations of Divergence Times T, and T3

T3

T, 0 10 20 30 40 50 60 70 80 90 100

0 {0.00 0.87 1.73 2.57 3.39 4.19 498 5.75 6.51 7.25 7.97

AAAAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 [424 0.06 0.91 1.74 2.56 335 4.14 4.90 5.65 6.39 T.11g
“““ 114 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.052
20 {214 532 0.11 0.94 1.75 2.54 3.32 4,08 4.83 5.56 6.27C3_)
""" 57 120 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.100
30 [144 250 616 0.16 0.97 1.76 2.53 329 403 4.75 5.46§
""" 38 60 125 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15_,
40 {109 163 276 700 0.21 1.0 1.76 2.52 3.25 397 4.68%
"""" 29 40 62 131 0.21 0.21 0.21 0.21 0.21 0.21 0.203_
50 [88 122 177 302 787 0.26 1.03 1.77 2.50 3.22 3.92%
""" 23 30 41 64 138 0.26 0.26 0.26 0.26 0.25 0.253
60 [74 97 131 191 329 878 0.31 1.05 1.78 2.49 3. l9§
""" 20 24 31 43 67 144 0.31 0.31 0.30 0.30 0.308
70 {64 81 104 140 205 357 974 0.35 1.08 1.78 2.48%
"""" 17 20 25 32 44 69 151 0.35 0.35 0.35 0.355-
80 {56 70 86 110 149 219 385 1,076 0.40 1.10 1.79'8
AAAAA 15 17 21 26 33 46 72 159 0.40 0.39 0.3%
90 {51 61 74 91 117 158 235 416 1,184 0.44 1.128
""" 13 15 18 21 26 34 47 75 166 0.44 0.443
100 {46 55 65 78 96 124 168 250 448 1,298 0.483
""" 12 14 16 19 22 27 35 49 77 174 0.480

NoTE.—In each cell on and above the diagonal, the top number is the proportion (%) of informative sites p;, and the®
bottom number is the proportion (%) of informative sites p;; = pyr. In each cell below the diagonal, the top number is Ny o5 ,@
and the bottom number is Ny s.

OL/6LLLI9Y

E(P7™*) = E(PT) (23)
3
and ;
C
Var(P7*) = Var[E(P] *|P])]+E[Var(P]*|P])] (24)‘”
)
1 3
= Var(P}")+]—v;E[P7(1—P}")]. %

We can see that the variance consists of two components: the first one, Var(P}"),:_"
represents the variance of sampling of sequence data from the evolutionary process,Z
and the second represents the variance arising from bootstrap resampling. Note thatm
the second component decreases to 0 as N, = oo but that the first component 1sq,
1ndependent of N, and remains constant even as N, — oo. However, the dlstrlbutlono
of P}* approaches the distribution of P} as N, = oo. The variance Var(P}) refers—‘
to the effects of sampling of sequences (with finite length N) from the evolutlonaryi>
process and can be reduced to 0 only by increasing N to infinity. For finite N, P} w1llQ
vary among samples, and so will P} *, regardless of the numbcr of bootstrap rephcatlonsm
conducted. Therefore, to understand the full variation of P *, one needs to con31der'\>
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not only the variation over bootstrap replicates but also the variation over samples
taken from the evolutionary process.

Obviously, to understand the distribution of P} *, we need to study the distribution
of P¥. We now characterize the distribution of PT. We begin by recalling the distri-
bution of YT that was described in the previous section. In figure 5a, an example of
the distribution of Y7 among the original data sets is shown. For this distribution, the
probability of obtaining tree I is defined by equation ( 14). For our purpose, it is more
convenient to write it in the continuous mode:

(0]

—_
N
g

0
P = l—f_lf(v}")dv?‘,

where f * f(yDay? Prob('y 7<x),ie., f ('y 7) represents the probability densi
(frequency) function of y7, with the mean ¥ = E(Y7).

f(1)

20

3 2 1
prob(Pr)

FIG. 5. ——Graphlc representation of the frequency-functlon inference for the expected proportlon_of
type I trees, P} . a, Probability density function of ¥7 . The parameter values used are the same as in ﬁg(;’,’t
The sequence length used is N = 82. The shaded area is equal to P, b, Expected proportlon of type I trges,
Py o for the sampled data that are characterized by the given value y ; [eq.(28)]. For y; =0, this proportﬁ)n
is PT(0) ~ 0.5; for y, = y, , P} (y, ) = P;. ¢, Probability density function of P} [eq.(31)]. To correspcmd
with plot b, the axes have been rotated by 90° counterclockwise. The dashed line corresponding tog 7
=(¥: 7+8)/2 gives the probability density prob(P7) ~ 1.
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Once a sample is taken from the evolutionary process, it is characterized by a
particular value of Y7 = py—max(p}, ph) = Apy. Suppose that p}; = pJy. Then
ApT = pT—ph. Now consider bootstrap resampling of the original sample. Denote
the difference function for a resampled data set by Y7 *. The distribution of v * is
characterized by the frequency function g(y} * | y7 ) with expectation ¥ ;' * . By analogy
with equation (16), the value of ¥} * can be defined as

_ * 1_ *
V1® = BT v = apf-a| /22 yr g, (26)

where 8 = aVph(1—p3)/N. Because the proportions pJ; and pJy; in a sample are
often unequal, the value of a in this case is likely to differ from 1/V =, unlike the case
of equation (16), From equation (15), if n¥ 71— 0, then F('v, \—»F(ny n"\ = Ap,

M -aLail 107, 2352 T aivil Js 22 1 L .Lw) L By ) [AY L

and a = 0. In general, 0 < o < n~!/2,

For long sequences, the distribution g(y7* |y7) of y7* among the resampled
data sets will have approximately the same shape as does the original distribution
f(yT). The two distributions differ from each other only by the shift y7 — ¥7* in
the abscissa, which is the difference between the mean of f(y7) and the mean of

gy ™ |¥7). That is,
gt VD) =~ (T HIT AT (27)

Thus, by analogy with equation (25) we can write the particular distribution of y7 *
given y7 and define the expected proportion P7 of type I trees among the resampled
data sets as a function of yJ (fig. 5b):

0 0
Pran = 1-[ st inar® ~ 1= jarei-vran

(28)

gal HoA N Ak Tiniiv Hody g Nk
[ et < = parnan

From probability theory, it is known that, if x is a random variable with the
frequency function f( x) and if y = u(x) is a monotonic function, then the frequency
function of y can be expressed as follows:

S(x)

u'(x)’

w(y) = (29)

Taking u(x) as P} (y]), we can derive the frequency function of P} . From equation
(28),

d *
dyi ~ f(FI-7I+5). (30)

220z 1snBny 9|, uo Jesn soisnp Jo Juswipiedaq "S'N A 829€201/61 1 1/9/6/9101ME/qW/WOD dNO"dIWBpEoR//:SARY WOy POPECIUMOQ
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So, the frequency function of P} is (fig. 5¢)

57

S 7 =

(31)

Note that for y7 = (§7+8)/2, ¥ —y7+8 = (¥7+8)/2 = ¥7, and so the value of the
above function is equal to 1. This point is indicated on the abscissa of the plot in
figure 5c.

Combining equations (30) and (31), we obtain

N

Y X
Prob(P} <y) = [ prob(P1)art = | SGT)dvT = Prob(yf<x),  (

)

where y = P (x), in correspondence with definition (28). For large N, equation (
gives the following two characteristic points of the distribution of P¥:

Prob(P]>%) ~ Prob(y;>0) ~ P,

~_
—

and

Prob(P}>P;) ~ Prob(yI>y7) =~ Y2

~

/woo gho-oiwepesetBdny wofthspeoiioq

~—

that is, for large N, the probability for P} (the expected proportion of obtaining tree
1 among bootstrap replicates) to be > is approximately P;, and the probability Er
P} > P;is ~Y. The prob(P}) values corresponding to these two points are sho@n
in figure 5. ‘D

In figure 6, the frequency functions of P for a trifurcating and a blfurcatlgg
model tree are presented. Figure 6a is calculated for the case of the trifurcating tree
(fig. 1d). The proportions of all types of informative sites in this case are equal:p;
= pn = pmr- The probabilities of different types of sampled trees will also be equal, g’,
= P;; = Py, and its value approaches Y5 when N — oo. Although equation (31)Js
inferred for long sequences, the main properties of the frequency function prob(Pg)
hold also for short sequences. For the parameter values used, if N > 20, then the
frequency function prob(P7 ) is practically independent of the sequence length. Noge
that the frequency function of P} has a negative slope; that is, it decreases with in-
creasing PJ. Therefore, the probability for P} to be =95% is small, and so is t?ie
probability for tree I to appear in =95% of the bootstrap replicates.

Shown in figure 6b-d are graphs corresponding to the b1furcat1ng tree (fig. 135)
Figure 6¢ represents the case where the dlStI’lbuthn f(y7) is symmetrical, i E
f(y,—y, +9) = f(y, +71 —38). In this case, if ¥ = §, then, from equation (31%)
prob(P}) = f(v] ) / f (yH=1 Accordlng to equations (16) and (26), this condltlan
occurs when E(y7*) = 0 and E(Y}) = Ap,~Vpu(1—p;)/Nn = 8; therefore, Alio,

= Vpu(1—py)/ Nrn+86. So, for a sequence length close to N’ = (a+n 02 p(1— p,,%/
(Ap)?, we will have a nearly constant frequency function of P}, i.e., a nearly umfoml
distribution. For the proportions of informative sites, p; = 0.0541 and p; = @”
= 0.0417, used in the model tree, N' = 200 (fig. 6¢). For short sequences (N<N%),
the frequency function, prob(P7 ), has a negative slope (fig. 6b). When N > N', t@s

N
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FIG. 6.—Distribution of the expected proportion of type I trees, P}, among bootstrap replicates fofs
(a) a trifurcating model tree and (b-d) a bifurcating model tree, with the same parameters as in figs. 3 amﬁ
4, respectively. In the case of trifurcation, the plot of the distribution is nearly the same for all sequenceo
lengths N = 20. For the bifurcating tree the distribution depends on N: when N < 200 (N=82), the plok;
has a negative slope (b); when N = 200, the frequency function is approximately constant, prob(P7) = 1
(¢); and when N > 200 (N=2,315), the plot has a positive slope (d).



1136 Zharkikh and Li

function has a positive slope. In figure 6d, N = 2,315, which is much larger than N’
= 200, and prob( P} ) increases with P}, particularly after P} becomes >75%. Note,
however, that even in this case, where P; = 95%, the probability for P} to be =95%
is still not large. To see the difference between P;and P7, let us consider a hypothetical
example. Suppose that a sample of sequences is taken and that there are 10, 8, and 8
informative sites supporting trees I, I, and III, respectively. In this sample, tree I will
be chosen as the true tree, but P7 is certainly <95%, because the number of informative
sites supporting tree I is only slightly higher than the number of those supporting trees
II and III, so that the probability that a resampling of the original sample will fail to
support tree I is >5%.

Phylogenetic Inference

emﬁeowMoa

All the above analyses assume that we know a priori the true phylogeny (tree
It means that, for any kind of sample, we always estimate the probability of havmg
tree 1. Let the probabilities of obtaining a sample supporting tree Y, Y = I, II, HI
(the bifurcating trees) or 0 (the trifurcating tree), be Py, Py, Py, and Py, respectiveg.
Then the probability of obtaining tree I from a bootstrap resampling of a randofn
sample of sequence is

P = Prob(R;|S;)Pr+Prob(R;|S;;) Piy+Prob(R;| Sus) PurtProb(R,|So) Py,  (33)

rdno Wuepeoe/

where Prob(Ry| Sy) is the conditional probability that a resampling of sample ngll
support tree X .

In usual practice, we infer from a given set of sequences a phylogeny that can Ee
classified as any one of the three possible bifurcating trees in figure 1 (for long sequenc@
samples supporting the trifurcating tree are usually rare and are neglected in th:,s
analysis). We then conduct bootstrapping and compute the proportion of bootstrap
replicates that support the inferred tree. The probability that the tree obtained ina
single bootstrap replicate is the same as the inferred tree is given by

P% = Prob(R;|S;) Pr+Prob(Ry| Sy) P+Prob(Ryy; | S) P -

W
AagsgBI0L/6L)

Obviously, P% tends to be > P .

In terms of the difference function, we consider tree I as the true tree only when
the number of type I informative sites, Ny, is the largest, i.e., YT > 0. Otherwise, we
assume the true tree to be tree II, if y7; > 0, or tree II, if y7;; > 0. Since in samﬁe
estimation all three types of decisions may be made, we call such decisions * mlxgd
decisions.” To study the statistical properties of P¥, let us construct a new dlfferenae
function

n

~
(%3

Uo JosRI9oNSN( JO

-

where Npax = max(N;, N”, Ny), and where N4 is the second largest of the three
numbers. The function 7% is defined in the region 0 < Y% < 1 and is characterizéd
by the frequency function fi(y%). We will use the function f w1th the subscnpts g

I II, and IIT to dlstlngulsh among the frequency functions of Y%, ¥7, v}, and Y3 b

respectively. Because yJ > 0, ‘y n>0,and y 1> 0 are mutually exclusive events, th}:
function fx(y%) is simply the sum of all the functions f;(y%), fi(v%), and fi(v%)
taken in the positive region of their arguments:
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KR = OO (YY), (38)

where 7% > 0.

In figure 7, the frequency functions of Y% for various sequence lengths are drawn.
The upper set of the plots (fig. 7a—c) corresponds to the trifurcating model tree. As
in the case of the frequency function of y7 (fig. 3), the plots for different sequence
lengths can be transformed to each other by rescaling the axes x and y. The lower set
of the plots (fig. 7d-f) corresponds to the case of bifurcation. As the sequence length
increases, the distribution becomes narrower. For N > N s, the function fy(v%) (fig.
7f) becomes similar to the function f;(y]) (fig. 4c). 5

According to equation (31), each of the terms in equation (38) gives the corre2

sponding component of the probability density function of P%: 2
)

Q.

[0}

proby(P%) =~ proby(P%)+prob;(P%)+proby(P%) . (39§

3

As in the case of fy(y%), we use the notation proby(P %) to dlstlngulsh it from the:‘
previously defined functions proby( P%), Y =1 II, and III. Because 7% is always >0:
equation (33) implies that P%>Y: (fig. 8c). Graphically, the function P%(y%) showﬂi
in ﬁgure 8b defines the correspondence between the probability density functlong
fx(7%) and probx(PY) in the following manner: if y = P%(x), then Prob(y% >x§
= Pl'Ob(P X =)). S
For the trifurcating model tree (fig. 1d) all the three components in equat1018
(39) are identical, and we have probX(P ) = 3prob,(P%) (fig. 9a). In this case, th§
propertles of the distribution of P% are very similar to those of the distribution of
P7 . The plots for both distributions fit each other well if the latter is scaled by th&
multiplier 0.5 in the abscissa and by 2 in the ordinate and is shifted to the regmm
[0.5, 1.0]. In particular, the mean value E(P]) ~ Y corresponds in this way té
E(P%) = 0.5+(0.5 X'5) = 0.66. This is very close to the value obtained by 51rnu1at10nsi
(results not shown ). This means that, under the trifurcating model tree, the expectedz
proportion of bootstrap replicates supporting an observed bifurcating tree is close t&
66%. As in the case of the frequency functions of P} (fig. 6a), the plots foﬁ
proby(P%) are approximately the same for different sequence lengths (fig. 9a). i
The frequency functions of P% in figure 9b—d correspond to the case of a bifur—
cating model tree. In figure 9b, N = 200, and probx(P%) is considerably higher thaf’
prob;(P}), though the difference decreases as P% increases from 0.5 to 1. Thus, in &
sample of short sequences, P% can be considerably larger than P7T. As the sequencg
length increases, the proportion of correct decisions P; grows and the terms f;(Y%3
and prob,(P%) in equations (38) and (39), respectively, become dominant. For
> Npss (fig. 9d), the function probx(P%) is very similar to the function prob,( P} )< P
Note that the condition for probx(P%) to be nearly constant requlres a longd%
sequence length than does the corresponding condition for prob;(PT) to be nearl@
constant. For example, when N = 200, the plot for prob,( P} ) is approximately constant
(fig. 6¢), but the corresponding plot for proby(P%) still has a negative slope (fig. 9b 2
Indeed, although the first term in equation (39)—prob,(P%)—is nearly constant fos
N = 200, the last two terms—prob;( P ) and prob;(P%)— always have a negativé>
slope, if tree I is the true tree. Thus, the sum of these functions will also have a negatlvg
slope. The slope dlsappears only when N = 550 (fig. 9c). For larger values of N, thg
plot for proby(P%) will have a positive slope (fig. 9d).
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as for the density function of y; in figs. 3 and 4, respectively. The sequence lengths used are N = 20 (aand d); N = 82 (b and e); and N = 2,315 (c and f).
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FiG. 8.—Inference of the frequency function of P}, the expected proportion of bootstrap replicates
supporting the inferred tree X. a, Frequency function of y x for the case of a tnfurcatmg tree (N=20). THe
parameters used are the same as in fig. 3. b, Expected proportion of tree X (P%) for the sampled valu‘é
7 %. This plot is the same as in fig. 5b. ¢, Probability density function of P% [eq. (39)].
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Bootstrap Estimation of Confidence Level

819¢€/0L/6

In the case of selecting one of the three alternative bifurcating trees for three taxa
with one outgroup, the common practice of estlmatlng the confidence level for%
selected tree by bootstrapping is as follows: Let P%* be the proportion of bootstrag
replicates in which tree X is chosen. Then, P%* is taken as the confidence level f(g
three X. A common confidence level for accepting a tree is 95%. We investigate below
the probability of accepting a tree at a given confidence level Py. This probability
obviously depends on the number of bootstrap replications and on the sequence lengtB.
We shall also study the distribution of P%*

An important question is, What is the probability of accepting an erroneous trc;;
as the true tree? If the trifurcating tree is used as the model tree, then trees I-III afe
all considered as erroneous trees. Therefore, this model tree gives the largest probabilifir
of accepting an erroneous tree as the true tree. In this case, the probability is given by

snp

Vv 9

1 c

Prob(P%*>Py) = f,, proby(P%*)dP%* . (46
i S

N

rap

In figure 10 the plots for Prob( P%* =Py) are shown for various numbers of bootstra
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FiG. 9.—Distribution of P%, the expected proportion of bootstrap replicates supporting the infe@ed

tree X for (a) a trifurcating tree and (b-d) a bifurcating tree. The parameter values used are the same agin
fig. 6. For the case of trifurcation, the plot of the distribution is the same for any sequence length. Forghe
bifurcating tree, the sequence lengths used are N = 200 (b), N = 550 (c), and N = 2,315 (d). In each plm
the dashed line represents prob,(P, ), where P is the expected proportion of type I trees among bootstrap
replicates.
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T
0.8 0.9 1.
Px
~ O
FiG. 10.—Probability of P%* = Py inferred from simulating the case of a tﬂfurcating tree with the
same parameters as in fig. 3. The sequence length is N = 100. a, Entire region of 0.0-1.0 for Px. The straigﬁt
line represents 1 — Py. b, More detailed plot for 0.8 < Py < 1.0. The numbers of bootstrap replications afe

(from the top curve to the bottom) N, = 10, 20, 30, 50, 100, 300, and 1,000. Ten thousand simulatic(:nn
replicates were conducted for each curve.
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replications, N,. These plots are practically the same for different sequence length%,
so we show them only for N = 100. In table } the numerical estimates of this probability
are also presented for several values of Py. As N, increases (fig. 10), the plot for
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Table 3

Prob(Py" = Py), Inferred from Simulaiion with Various Numbers
of Bootstrap Replications N,

Prob(PY* = Py) FOR N, OF

Py 10 20 50 100 1,000
080 ... 0.316 0.246 0.198 0.187 0.178
085 ..... 0.166 0.173 0.116 0.122 0.113
090 ..... 0.166 0.112 0.045 0.069 0.059
095 ..... 0.065 0.063 0.027 0.027 0.020
096 ..... 0.065 0.026 0.027 0.021 0.017
097 ..... 0.065 0.026 0.017 0.015 0.009
098 ..... 0.065 0.026 0.017 0.010 0.005
099 ..... 0.065 0.026 0.007 0.006 0.002
1.00 ..... 0.065 0.026 0.007 0.002 0.000

NOTE.—The parameters of the simulation are given in the legend to fig. 10.

ofmiefEor//:sdny Woy papeojumod

Prob(P%*=P,) gradually approaches the asymptotic plot for N, = o, i,
Prob(P%=Py). The straight line in figure 10a represents 1—Py. Note that if Pyis h1 h,
say, =90%, then Prob(P%*=Py) quickly becomes smaller than 1—Py as N, i mcreass:s
For example, if N, = 50, then the probability for P%* = 95% is <5% (fig. 10b Shd
table 3). Therefore, in the case of three taxa with one outgroup, if Py = 95%, t@n
the probability of accepting an erroneous tree as the true tree is <5% as long as?\fb
= 50. Note that in the region of Py > 0.9, the plot for N, = 300 is practically the sagle
as that for N, = 1,000 (fig. 10a). This means that, in the case of three taxa with Ghe
outgroup, for estimating the confidence level of Py = 90%, it is sufficient to use %)0
bootstrap replications.

Figure 10a reveals also that, if Py<75%, then, even if N, = 1,000, Prob(P**
>Py) is larger than 1—Py or, in other words, the probability for P}* to be >75‘7\1$
225%. This is not surprising, because, as shown in the last section, the expected pt,b-
portion of bootstrap replicates supporting an observed bifurcating tree is close to 6@6,
when the trifurcating tree is used as the model tree. An implication of these result€is
that, if a bifurcating tree is observed in less than, say, 75% of the bootstrap rephcat‘és
then one cannot claim that it is better than the trifurcating tree.

We now consider the distribution of P%* when tree I in figure 1 is used as ﬂle
model tree. According to equation (20), for a bifurcating model tree, any given vagle
of P; can be reached by increasing the sequence length N. To study the sequerite
length required for P%* to be equal to or higher than a given value, we have conducted
simulations with the parameters given in table 4. The number of bootstrap rephcatlcgls
in each of these simulations is N, = 300. In table 4 the P, value was obtained frcgn
the average over 10,000 simulation replicates and therefore should be an accurae
estimate of P;, which is the probability that a random sample of sequences will suppgrt
tree L. The first set of simulations (table 4a) demonstrates that, for very short sequencgs
e. g N 40 for the parameter values used in table 4a, the mean value of P;;
(P%*)is larger than P;. The two values become equal when N =~ 40, i.e., P%* z@’,
~ 0.777. For N > 40, P%™* underestimates P,. &

The above phenomenon can be explained by considering PF as a function @f
¥7 [eq. (28)]. For the expectation of a function of a random variable, u(x), one can
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Table 4

Average Values of P;, Py, and P¥* (P;, Py, and PY"), Inferred from Simulation by Using a
Bifurcating Model Tree with Various Divergence Times (fig. 1a)

T Ts Noss N B Py Py
Nys < N < Nygs:
50,20 ..... 104 30 0.7040 0.0591 0.7588
50,20 .. ... 104 40 0.7766 0.0437 0.7769
50,20 ..... 104 50 0.8295 0.0365 0.7962
50,20 ..... 104 60 0.8595 0.0301 0.8146
50,20 ..... 104 70 0.8965 0.0219 0.8327
50,20 ..... 104 80 0.9198 0.0187 0.8505
50,20 ..... 104 90 0.9393 0.0149 0.86%6
50,20 ..... 104 100 0.9508 0.0115 0.8212
50,20 ..... 104 110 0.9611 0.0082 0.8507
50,20 ..... 104 120 0.9691 0.0067 0.9998
N = Nogs 3
50,10 ... .. 49 49 0.9637 0.0053 0.9¢71
50,20 ..... 104 104 0.9528 0.0093 0.88547
50,30 ..... 280 280 0.9495 0.0148 0.8€31
50,40 ... .. 1,341 1,341 0.9485 0.0209 0.8742
50,45 .. ... 5,847 5,847 0.9467 0.0241 0.8673
30,10 ..... 92 92 0.9614 0.0076 0.8922
30,20 ..... 417 417 0.9521 0.0158 0.8706
30,25 ..... 1,762 1,762 0.9527 0.0195 0.8672
80,50 ... .. 470 470 0.9495 0.0185 0.8%31
80,60 ..... 1,333 1,333 0.9481 0.0204 0.8694
80,70 ..... 6,741 6,741 0.9533 0.0212 0.8654
N = 1.7Nogs =~ Nogs 3
50,10 ..... 49 70 0.9902 0.0013 0.9238
50,20 ..... 104 165 0.9893 0.0025 0.9396
50,30 ..... 280 475 0.9895 0.0038 0.9817
30,20 ..... 417 730 0.9907 0.0029 0.9407

NOTE.—In all cases 7; = 100 Myr, whereas 7 and T are given in the table. The values of Ny gs were estimated @g
eq. (8), (9), and (20) for it = 10~* and 0. = B. N is the actual sequence length used in the simulation. The number of bootgap
replications N, = 300. Ten thousand simulation replicates were conducted for each set of parameter values.

‘NnAq gz

use the approximation E(u(x)) = u(E(x)) + l/zu”(E(x))Var(x) In this equation ﬁle
first term on the right-hand side is #(E(x)) = P7(Y7) ~ P [fig. 5b and eq (34%],
and the factor Var(x) = Var(yJ) in the second term is positive. When ¥; < 0,
second derivative of the function P7(yF)aty] =¥7 is posmve and so the expectatg
of P, , L.e., E(u(x)), overestimates P;, whereas, when y ¥ > 0, the second derivative
at yJ = Y7 is negative, and so the expectation of PT underestimates P;. The tavo
values become equal when the sequence length N is approximately No s, ie, V7 —nO
As stated above [see eq. (35 yand (36)], P% is always greater than P and approacges
P7¥ for large N. Since P%* is not far from P% for N, = 300, the condition Py* —SP,
requires N > Ny s. For several models, it was found that the condition holds whex N
~ Ny 5. Therefore, if N > Ny 73, then P%* is expected to underestimate P;. >

When we take N = Nogs, i.e., P; = 95%, the corresponding values of P%* @re
87%-89% (table 4b). In order to reach P; = 99% and, correspondingly, P%* = 94%,
N should be ~1.7 times larger (table 4c), i.e., N = 1.7Nygs. This relation canEbe
approximated by a simple equation:
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E(P) ~ 1—Ce™N/Noss | (41)

where C and a can be estimated from the simulation data. For P = P;, C =~ 0.6 and
a ~ 2.48;and, for P = P%*, C =~ 0.3 and a ~ 1.01.

Note that this estimation of P; and P%* depends only on the ratio N/ Nps. This
can be explained by considering eq. (19). Expressing B, from this equation, we can
write

Br _ V—N;AP_VPH/R

= . (42)
Boss  VNossAp—Vpu/m g
]
<)
Q
Since VNosAp = Vp;/m, we obtain §
g
By = B VNp/Noss—VNos/Noss B)
P = Po.9s
1-VNo.s/ Noos 2
Q.
For most cases, Nygs > Nos. Neglecting terms containing the ratio No.s/Noos, weget

a simple formula,

Np
Noos’

BP ~ [3095

~~
/e|o!1m/eq-g/u100'dn0'o|
A

in which Bp depends only on the ratio Np/Nogs.

One of the important statistical propemes of bootstrap estimation is the probablﬂty
of failing to accept the true tree, Prob( P} *<Py) (when tree I is used as the moﬂel
tree), which is evidently greater than the probability of failing to accept any of $he
three alternative trees, Prob(P%* <Py). The two probabilities become equal as N Zbe-
comes large. On the basis of the results of simulation (table 5), we estimate thgse
probabilities for the confidence level Py = 0.95. To characterize further the distribution
of P%* we also consider a left cut-off point P; that gives Prob(P%* <P, ) < 0.05 (tdble
5). All these characteristics demonstrate that, unless V is very large, the distribution
of P%* is wide and, hence, using P%* as a criterion for accepting a tree leads t§ a
very high probability of failing to accept any bifurcating tree. For example, ever if
the expected value of P; is as high as 99.6%, so that the expected value of P% x5 18
95.9% (N=2,800 in table 5), there is a 5% probability that P%* is <80%, and the
probability of failing to accept any bifurcating tree, i.e., Prob(P%*<0.95), is >2§%.
Note that when the expected value of P; is 99.6%, almost all samples of sequerﬁ:‘es
from the evolutlonary process will support tree I but that, nevertheless, in a substangial
proportlon i.e., 24%, of the samples, the support for tree I 1s not strong enoughﬂfor
P%* to reach 95%. It is clear from table 5 that, for Prob(P%*<95%) to be <5%, Qhe
sequence length required is at least three times (almost four times) longer than @at
required for P; = 95%. To understand the preceding conclusmn it is useful to consider
the distribution of P¥%, which is the distribution of P%* when N, = co. For example,
in ﬁgure 9d, P; = 95%, but the probability for P = 95% is less than the probab@ty
for P% < 95%.
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Table 5

Characteristics of the Distribution of P}* and P%”* , Estimated by Simulating the Bifurcating
Model Tree (T;=100, T,=50, T5=40, p=10"%, and a=p), with Various Sequence Lengths N

N B, P Py S; Sy P,

200 ... .. 0.620 0.509 0.686 0.956 0.938 0.433

400 ... 0.738 0.695 0.727 0.905 0.892 0.443

600 .. ... 0.819 0.695 0.764 0.828 0.832 0.467

800 ... .. 0.877 0.756 0.798 0.779 0.773 0.487
1,000 ..... 0.916 0.792 0.834 0.719 0.679 0.510
1,200 ... .. 0.928 0.837 0.856 0.628 0.623 0.539
1,400 .. ... 0.952 0.859 0.868 0.586 0.580 0.5%4
1,600 ... .. 0.971 0.873 0.886 0.526 0.526 0.565
1,800 ..... 0.981 0.900 0911 0.460 0.459 0.6
2,000 ..... 0.984 0.913 0.923 0.401 0.400 0.65b
2,200 ... .. 0.989 0.933 0.932 0.340 0.339 0.760
2,400 ... .. 0.991 0.940 0.943 0.312 0.311 072
2600 ..... 0.994 0.947 0.948 0.285 0.285 0.78
2,800 ... .. 0.996 0.958 0.959 0.239 0.237 0.862
3,000 ..... 0.999 0.967 0.965 0.222 0.220 0.820
3,500 .. ... 0.999 0.974 0.974 0.141 0.141 0.863
4,000 ... .. 1.000 0.983 0.983 0.088 0.088 0.92D
4500 ... .. 1.000 0.989 0.989 0.061 0.061 0.957
5000 ... .. 1.000 0.993 0.993 0.029 0.029 0.963

NOTE. -—One thousand simulation replicates with N, = 300 bootstrap replications were conducted for each sequerﬁe
length. P;, Py , ,and Py X denote the mean values of P;, P; , ,and Py x over simulation replicates. S; is Prob(P, *<0. 9%
Sy is Prob(P ¥*<0.95), and Py is defined by Prob(P%*<P;) ~ 5%.

Discussion

9/6/3[014Ee/d

In this study we have considered four taxa and have assumed a constant rate of
nucleotide substitution. Under this simple situation, one can draw the following con-
clusion: As long as a reasonable number of bootstrap replicates (say, =100) have bee?a
conducted, considerable (=80%) confidence can be given to a tree that is supportﬁ
by >80% of the replicates. In particular, the probability that a tree is an erroneoﬁs
one is <5%, if it is supported by =95% of the replicates. Thus, one is on the safe si
if he or she sets 95% as the level for accepting a tree. On the other hand, little confidence
can be given to a tree that is supported by <75% of the replicates, for in this case tl@
tree cannot be claimed to be better than the trifurcating tree. 3

It should be emphasized that, under the ideal conditions assumed in this studgy
it is rather simple to identify the true tree. In practice, deviations from ideal condltloﬁ’s
are likely to occur, and identifying the true tree can be very difficult. We discuss belo_
the conditions assumed in this study.

First, let us consider the assumption of a constant rate of nucleotide substltutxoﬁ
There is now strong evidence that this assumption is violated in many evolutlonam
lineages (e.g., see Wu and Li 1985; Britten 1986; Seino et al. 1992). As pointed ogt
by Felsenstein (1978, 1985), unequal rates of evolution can mislead parsimony ig-
ferences, and bootstrapping does not correct this problem. Therefore, under unequal
rates of evolution, the probability of accepting an erroneous tree is likely to be highcgr
than that given in the present study. For the effects of unequal rates on bootstraj
estimation, readers may refer to Hillis and Bull (accepted) and Zharkikh and
(accepted).

nsn(g
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Second, we consider the assumption of homogeneous sequences in which all sites
are variable and evolve at the same rate. This assumption may hold approximately
for nonfunctional sequences or for sequences with very weak selective constrains, €.g.,
intergenic regions and pseudogenes. In functional sequences there may be sites that
do not change with time. Since such invariable sites cannot become informative, they
do not contribute to the sequence length N used in the above analysis; in our for-
mulation, we assumed that all sites are variable. Therefore, in practice, the effective
sequence length can be considerably shorter than the actual length. In theory, invariable
sites should be excluded from analysis, though such sites are usually difficult to identify
in practice. Another problem is that in functional sequences not all sites evolve at the
same rate. Obviously, how rate heterogeneity may affect bootstrap estimation is wo
studying. g

Third, m many cases we have used a fairly high rate of nucleotide substltutlog,
i.e., u = 107® substitutions per site per year. This high rate was used to fac111tage
computations and simulations because it leads to many informative sitesin a relative5/
short time of divergence. If the rate is lower, then the sequence length required fﬁi‘
P%™ to reach a given confidence level will be different. =

As an example of application of the present results, let us consider the sequen&
data used by Li et al. (1992) for determining the phylogenetic position of the gum@
pig. The four taxa they used are (1) guinea pig, (2) myomorphs (mice and rats), (3
primates, and (4) marsupials or aves as an outgroup. Among the 2,413 amino acfd
sites under study, there are 109 informative sites, of which 50, 29, and 30 support tr
IIL, tree I, and tree 11, respectively, where tree I represents the traditional view that the
guinea pig and the myomorphs are sister groups, tree II puts the guinea pig and tle
primates in one clade, and tree III assumes that the guinea pig is an outgroup to tlie
myomorphs and the primates and that it therefore does not belong to the order R&-
dentia. From the data, we have pJ; = 50/2,413 = 0.0207, p}; = 0.0120, and p@
= 0.0124. Using formula (20), we estimate that the sequence length required for 95%
probability of obtaining tree HI is Nyg9s = 1,813, From formula (20) one can shoigf
that, for N = 2,413, the probability of obtaining tree III is Py; = 0.969. Bootstr
estimation of Py, from N, = 1,000 bootstrap replications, gives 0.977. From figufe
10, the probability for a bifurcating tree to appear in =0.977 of the bootstrap replicatés
is <0.009 if a trifurcating tree is used as the model tree. Taken at face value, this smai_l
probability supports Graur et al.’s (1991) hypothesis that the guinea pig is not“a
rodent; that is, tree 111 is the true tree. However, we must note the assumptions involveg.
First, it assumes equal rates among the primate, myomorph, and guinea pig lineages,
but there is evidence that the rate of amino acid substitution is considerably lower ﬁl
the primate lineage, though approximately the same in the other two lineages (Li gT
al. 1992). Second, it assumes that all amino acid residue sites are variable and evolye
at the same rates, but it is likely that some sites have evolved faster than the others ar‘ﬁd
that some sites are invariable. Therefore, the probability that tree III is erroneous cﬁl
be substantially larger than 0.009, and the hypothesis needs to be reexamined usmg
more sequence data.
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