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A path integral method 18 developeéd tor the calcuiation of the
statistical properties of turbulent dynamical systems. The method is
applicable to conservative systems which exhibit a transition to stochasticity
as well as dissipat ve aystems which exhibit strange attractors. A specific
dissipative mappinc is considered in detail which models the dynamics of a
Brownian particle in a wave field with a broad freguency spectrum. Results
are presented for the low order statistical moments for three turbulent
regimes which exhibit stiange attractors corresponding to strong,
intermediate, and weak ceollisional damping. 1In the Alssipationless limit this
smap is equivalent to the conservative Chirikov-Taylor mapping. The turbulent
behavior of the Chirikov-Taylor mapping is shown to be diffusive due Lo the
intrinsic stochasticity; and the stochastic diffusion coefficient derived by
Rechester and White is recovered. The statistical dynamics are significantly

altered by the inclusion of damping which restricts the chaotic motion to a
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strange attractor which is bounded in phase space. Specifically, for weak and
intermediate damping the long-time dynamics = & no longer diffusive; and the
corrections to the random phase results for the low order moments decay away
for long times. In addition the "accelerator modes™ which are exhibited by
the Chirikov-Taylor mapping, are destroyed by the drag. Thesge results provide
a new description of the effects of collisional damping ¢ the stochastic

heating of plasmas by electrostatic waves.



1. Introduction

Classical dynamical systems which exhibit a transition to chaos arise in
a variety of physical, chemical, and biological problems.1 Two different
kinds of chaotic or turbulent behavior have been observed. For conservative
or Hamiltonian systems the phase space orbits appear to wander ergodically.
This motion is called stochastic.2 For dissipative systems the trajectories
are attracted to a very complicated manifold in phase space. This complex
structure is called a strange attractor.3 The chaotic dynamics of both
systems are characterized by a sensitivity to initial conditions, the
divergence of nearby orbits, and a positive Kolmogorof-Sinai entropy.2'3'4
The mechanisms for the onset of both types of turbulent behavior have

5:6,7,8 It is currently believed that the onset of

been examined extensively.
chaos follows a sequence of bifurcations of stable periodic orbits. These
studies are important because they provide criteria for the appearance of
chaotic motion.

The complexity of the dynamics after the transition to chaos suggests
that a statistical description is appropriate. Although considerable work has
been devoted to proving that a statistical description is validf less
analytic progress has been made on the calculation of the probability
distribution which describes the turbulent dynamics.

A4 complete theory of turbulence must provide both the conditions for
onset and the means for predicting observeble properties of the turbulent
dynamics. The purpose of this paper is to present a path integral method for
analytically calculating the statistical properties of turbulent dynamical
systems. Our method 1s based on a very powerful functional integral approach

9,10

to classical statistical dynamics which has been discussed in an earlinr

11

publication. This formalism is applicable to a wide clas. of dynamical




systems described by differential equations as well as maps. In our initial
investigations we have restricted our attention to maps because they are

easier to tieat. Although systems with continuous time such as the Lorenz12

model pose a numbsr of technical deft‘icult‘.:l.es,l'‘1’14 we hope to consider them in
future work.
We have previously applied this approach to a class of dissipative

15

map-oings which exhibit strange attractors. Here we will consider a mnre

general mapping which encompasses conservative as well as dissipative systems.
The folliowing two-dimensional map was proposed by Zaslavskii16‘17 to

model the effects of a periodic perturbation with a broad frequency spectrum

on a nonlinear oscillator with a stable limit cycle

X =X + vy mod 1 (1)

y = xyn_1 + k sinzﬂxn_T {2)
where % < 1 . 1Ia terms of action-angle variables, x is proportional to the
angle, y is related to the action, and k is the magnitude of the perturbation.
Eqs. (1) and (2) can also be used to describe the motion of charged
particles in a field of electrostatic waves. Consider the interaction of a
test particle with an electric field composed of a broad spectrum of plane

18

waves with equally spaced phase velocities. The equations of motion in one

dirension can be written

dx

ax _ 3)
at -V

4 N

E=-w+ k] sinzmix-nt) +x (4



where k is proportional to the amplituda of the waves.

weak collisions with background particles give rise to the drag v and the
gource of random noise r . The drag due to collisions with neutrals can be
assumed to be independent of v; however, for Coulomb collisions with charged
particles a more complicated velocity dependence is required for v. The
collisional noise is apsumed to have Gaussian statistics with zero mean and

short correlation time

<r{t}r(t')> = 2DG({t-t") - (5}

For a neutral background at temperature © , y and D are related by19

D = Ay (6)

in the absence of other disgipative forces.

If we let N+w BEge. (3) and (4) can be reduced to the mappinq18

x =X + v (7)
= + k sin 2 +
v kvn_1 sin ™ 4 r {8)

where A 1 - v . Por sufficiently large k we can neglect Thoq compared with
the nonlinear term; and we recover the 2aslavgkil map.

The Zaslavekii map is dissipative for A < * . 1In numerical studies of
Ege. (1) and (2), Zaslavakii’®’'7 found that for k <¢ 1 all orbits are
attracted to stable fixed pointe; however, for k : 1 a strange attractor

appeara. In Figs. 1 and 2 we have advanced the mapping for 10% time steps




with A = .1 for k = 1.4 and k = 11.4, respectively. Figure 3 shows a
magnified view of Fig. 1 which reveals the complex structure of the attractor.

In terms of our physical model, Brownian particles in a wave field wander
randomly along a strange attractor in a bounded region of phase space
for k i 1T and A < 1. The primary effect of the fluctuating part of the
collisional noise, r_q. in BEq. (8) is to wash out the fine structure of the
attractor.zo

Using the path integral method we calculate new, analytic results for the
first few statistical moments of the dynamics of Eqs. (1) and (2) as Ffunctions
of time for three turbulent regimes carresponding to £trong, intermediate, and
weak damping. These results are significant because they show explicitly the
effects of dissipation on the turbulent dypamics.

In the dissipationless limit, X = 1, Egs. (1) and (2) reduce to the
Chirikov-Taylor mapping which has been used extensively to model the dynamics

23,18 For 2nk < .97 the orbits in phase space are

of Hamiltonian systems.
confined by preserved KaM surfaces.6 For 21k > .97 a transition to global
stochasticity occurs. 1In this turbulent regime the orbits of the particles in
our physical model diffuse in velocity.
Rechester and Whitez1 have recently calculated the stochastic diffuaion
coefficient for the Chirikov-Taylor mapping using an analytic method similar
to ours which, however, required the introduction of a small random velocity
field with zero mean in Eq. (1}. In the nondissipative limit X=1, our
result for the second moment of yg, averaged over initial xg reproduces the
leading terms of their asymptotic expression for the diffusion coefficient.
Purthermore, in order to characterize the statistical dynamics by a
diffusion coefficient the statistics must be Gaussian. Although Rechester and
White did not calculate the higher moments, our results show that these

statistical moments are approximately Gaussian for X = 1.



LI ['] TTom

Recently, several papers have appeared which use similar path integral
methods to study the effect of Gaussian random noise with zero mean on
Hamiltonian systems-22’23 However, these investigations neglect the drag
which is generally associated with collisional noise. Our results for the
Zaslavskii map show that the long-time statistical properties of the strange
attractor, which characterizes the chaotic behavior of the dissipative
systems, can be very different from the statistical properties of systems
which include only the fluctuating part of the collisional noise. In
particular, since the dynamics lie on a strange attractor which is bounded in
phase space, the statistics are no longer Gaussian. Moreover, the damping
destroys the "accelerator modes” which can dominate the statistical dynamics
of doubly periodic, conservative systems with noise.22

Our calculations for the dissipative cases are not significantly changed
by the inclusion of a small amount of random noise. Although our formalism
can be applied directly to problems with random forces, as shown in Section 2,
we have chosen to neglect the sources of random noise since they only obscure
the chaotic behavior induced by the nonlinearities alone.

This work has direct applications to problems in stochastic heating of
plasmas by electrostatic waves. In the long-time limit the statistical
moments describe the particle distribution function which results from the
balancing of the collisgional drag with the nonlinear acceleration. Previous
studies of the steady-state distributicn function have ignored the strange
attractor which characterizes the dynamics. Our results for the sgtatistical
properties of the strange attractor provide a new qualitative and quantitative

degcription of the effects of callisional dawping on the stochastic wave

heating.
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The path integral formalism is developed for a very general class of
mappings in Section 2. In Section 3 we present our calculations for the
2agslavskii map; we compare the results for the congervative and dissipative
caseg; and we discuss the applicatlons to problems in stochastic wave

heating. In Section 4 we summarize our contributions.

2. Path Integral Formalism

Consider a broad class of dynamjcal systems defined by mappings of the
form
X, 0= ftx, Y,  1=1, 2. . {9)

We are interested in calculating observable properties F[{;k) ] of

k=0, 1,...7
the dynamics. 1If we could solve Bg. (9) analytically it would be a simple
matter to evaluate any functional of the Jdynamics F[{;k)k) . However, for
nonlinear maps which exhibit gtrange attractors or stochasticity this can only
be done numerically in most cases.
The path integral formalism provides an alternative approach. Any
functional of the dynamics F(ik}k can be represented by a path integral
using the following identity
E .
FI(X)) = 130 fd;i' 5(:?1- -:?i)rf{;k'}k) . (10)
since the integrands only have support for ;1' which are solutions to Eq. (9)

with a given initial condition ?co . By. (10} can be rewritten

T
F((X}) = 1”9 J ekt sk, - FGE_ ISR - x )RR 'Y, - (1N

I g



For example, one functional of the dynamics of considerable interest is
the conditional probability distribution for arriving at a point % in phase

space at time T given the initial position ;0
» > > »>
Pix,Tlxg) = Olx = Xg) . (12)

Here QT is the solution of Eq. (9) at time T. Using Eg. (11} the conditional

probability can be written

+ > T=1 > + +* > >
P(x,Tlx) = [T jdxi{a(x - Aoy~ f(xT_1))

> > >
x 5(xT_1- x_ .= f(x

> > -+
2 pog) ) Xeeex B(X,- X- HE ) . (13)

Eq. (13) can also be derived using the semi-group property of the transition

probahility13'15

> > - > > > >,
B(X_1%,) fax | plx_Ix JR(% IR, 3 . (14)
If we replace the Dirac § functions by their Pourier transforms, Eq. (11)
can be written in a form reminiscent of the path integrals which arise in
quantum theories. If the range of any component x: is {~o,w}, then
a a a
tpyfx] - fx_p) (15)

a « = 1 (w . a
B(xy = £x ) & 5= __fc ap e ca=1,2... .



If the range of x: is periodic or is bounded on a finite interval, for

example (0,2n), or is periodic, then the corresponding 6(x§ - f(x:_1)) can

be replaced by

-] -]
Tos(xp - Etx ) - 2m) = ;—n Ja  © . (16)
ne—w _

i

o

Using either Eg,. (15) or (16) we can then express any functional of the

dynarics as

ip; [x3-Fxr_p)

> T N T ds o i-1
e} Y= T fax: {n [Fi
kk j=0 = J {1=1 v
¥ +> >
x atxyt = x ) F(ix. ")) 17

where for notational conve;ience we use fdgi to represent both the integral
< d ,
and the sum. The normalization constant is V = {21) where 3 is the number
+
of components of x.

In particular, the conditional probability is given by

g P SR TS 1

> > -1 > T dpi *Pp [x z[xT-i)’

P(x,Plx ) = N fax. [n [—="e

0 . i ot v
j=1 i=1
T > > >
17 pi.[xi—f(x )1 . (18)
i=1
X e ]

Reordering the indices and interchanging the order of integration, Egq. (18)

can be rewritten as

1p +x
T T > ¥ (19)
RIETIR) = [ e c(B,1%,)

Foos Wb,



- 11 -
where the characteristic function ia
> > > ¥ >
'~ ip, ex =1 nf X
cr-P |+ ] = Tn1 ,’ip.i { rd‘b e pi xi pi+1 { i]‘
Ppixgl = v 179y
i=)
> >
—ip1-?{x0 . £20)
x e

In Reference 15 the characteriatic function, Bg. (20), served as the starting
point for our calecwlation of the statistical properties of a strange
attractor.

Cne advantage of the path integral representation of the characteristic
function lies in the fact that averages over random forces, interactions, or
initial conditioas can be easily purformed. For example, averages with
respect to initial conditions contribute a factor of | dx, exp {-1;1. f(;o]}
to the integrand of the characteristic function, Bg. (20). Then the
statistical moments <;&n) are derived by differentiating the averaged
characteristic function n times with respect to ST and setting ET = 0.

Furthermore, Lf we add a random force ;1 to Eq. (9}, then the integrand
of the chararteristic function is modified by a factor of exp [-151-;11 .
Averages of tiie characterigtic function over the Aistribution of ;i act only
on this factor. If the statlstics are Gaussian with zero mean and covariance

El tnen this average gives
’

- > .-b 12 - g
Py Ty /2P0 °P; (213
{e > =e .
The expression for the characteristic function for the Chirikov-Taylor mapping
with nofase, which was derived in Reference 21, follows directly from Eqs. (20)

and (21).

Y e
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The most impocstant advantage of the path inteqral method is revealed if
wa perform the ;i integrations in Eg. (20). Then the characteristic function
for the statistical dynamice of the mapping, Bq. (9), is expressed entirely in
terms of paths in the Fourier transform space spanned by 51. The digtribution
of these paths in Fourier space is sharply peaked in Fouriler space near

>

p1 = 0 when the dynamics are turbulent and the trajectories in real space

wander chaotically over the entire range of ¥. . This greatly simriifies the

i
evaluation of the characteristic function and its derivatives. We have
exploited thig feature of the path integral representation of turbulent
dynamics to explicitly c. culate the moments of the conditional probability
digtribution in Section 3.

If the trajectories are confined by KAM surfaces or attracted to periodic
orbits, then the dynamics on these localized structures are poorly
approximated by the assumption that only Ei near 0 contribute to the
characteristic function, In these cases the calculation of the characteristic
function requires summations or integrations over a broad range of ﬁi, which,
in general, are no longer analytically tractable. However, if random noise
with zero mean is added to the mapping, numerical evaluation of the
characterigtic function ie possible since By, (Z1] cuts off the contributioas
from large ;i' This is the basis of the rumerical path-diagram methol of
Rechestar, Posenbluth, and WhiteZ?? which has been usecd to study the turbulent
diffusion coeffirient in the vicinities of the stochastic transition peint and
the localized "acceleraty; islanda® <2

Our path integral formalis: provides a much more general foundation for
studies of the statistical properties of dynamical systems than other

approaches which have nnly congidered the conditional probability

diattibution.”'z1 for example, the path integral representation of
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functionals of the dynamics can alsc be used tc calculate joint probabilities

and multi~time correlation functions. Wz can define a characteristic

functional Z(E,E) vhich provides a complete statistical dynamical description

of these systemg

T
T L 2V OB R
2([%.8) = n fak, (%P3 €
Jm0 Ty

T
+ +
B CE AR AT (22
x e i=0

All correlation and response functions are generated by derivat’ves of Z with
respect fo :% and fn. The properties of thig characteristic functisnal, as
well as the extension of the path integral formalism to dynamical syatems

defined by differential equations, is digcussed in detail in Reference 19. 1In

this paper we will restrict ocur attention to the conditional probabiliviy

distribution, Eg. (18), and the corresponding characteristic function Eg.
(20).

3. Statistical Properties of the Zaslavskii mamn

To illustrate the utility of our furmaliem we calculate some of the

statistical properties of the Zaslavgkii map.

For Eqs. (1) and (2) the characteristic function, Eg. (20), is
- a -1 o @ d;
i
c(x y lxuyo) =0 ¥ | .
1m=1 -

-t

ot



1 12nx1[x1 - xi+1] - 1y1’1k si:2nxi

x { [ ax,e 1
0 i

- iy fyy = wvy = 2mx, ]
X { f dyie

-

. - in2 »
ix,xy = v,k sin2mx, -ihy.y, (23)
X e =]

- a

where we have defined ;, = (x,,v,) and 51 z (x,,yi) for i<T-1 . Since Eq.
i it i

(1) gives L in terms of x ané ¥’ the arguments of the characteristic

n-1

- -

2 (x, ¥) = (xT, yT—

function are xT] . The x1 integrations give ordinary

+
Pp
Bessel functions of integer order and the Yi integrations provide & functions

whi.h are used to eliminate the Yy integrals. These aanipulations leave

-~ - T-T « -
cix y lxoyol = 131 f J, - (ky1+’1
x, = i %141
i
“2megxg T ¥yk sin2mey —ddy,y, (24)
x e e
where the § functions from the ¥y integrations require that
T-1 .
- _ j=i-1_ = T-1-1 _
¥i4q = [ 7 = 2wy + A yT] . leT-1 . (25)
=141



The laet two factors in My. (24) contain the initial conditions. If we
average over A uniform distribution of X, on (0,1%’ we arrive at our final

expression for the characteristic function

.- S
cfxy lyy) = 1TT1 ] I.o. ey ))
x

. -y
xJ , (ky1] e

-
1

Y
ve : (26)
The statistical moments of Yo averaged over initial %, are derived from
Eg. (2%6) by differentiating with regpect to y and setting YpeXp = 0. For
example, the second moment is given by
2
2 -3 PO
oy = =g Clxgglyg) . (27)

T
ay - ..:
xT'YT 0

The derivatives of Bg. (26) are esasgily evaluated using the Bessgsel function

identity

dJn(ax)
= =3 (9, tan) - 3 tax ] . 28}

ni fferentiating By. {26) twice with respect to y and

setting L O gives

T=1 2 2(T=-3j=1) - o
<y 2) - - ’ kA n y E
T 4 ’
| 3= P F e § o

*We remark that the method does not veguire that the Alstribution be
unifoom. In fact an average with respect to a distribution with support on
any open set will do. Bowever, since the initial conditions decay away
rapidly for turbulent systems, the form of the distribution of initial
conditione is not very imr-ortant. 3|



(s tz, ) - 23 (z
P _ 3+1 s> I+1
xj xj+1 2 xj xj+1
+ J,: o (zj“)] J; = tz, . )
3 T4+ 1 i
T=1 T=1 ™ L]
L I o LN e noj ¥
ror0 b u L
el i b
x{a. . (z5,9) " 9. . tagy )]
X =X -1 -X +1
3 3+ 3 3+
x lJ; - 1(zl+1) - J; = +1(zl+1]] J
1 1+1 1 1+t
-iz,y,
x e
2r 2
+ A YO
where we have defined
T-1
n-i-1 *
z," ok ¥ A X .
mei+t

X »~ 1

]

{30)
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The first group of terms in BEg. (29) result from the applicotion of botk
carivatives on the jth Bessel function in Eg. (26). The second group of terms
arise from the action of one derivative on the jth pessel functicn and one on
the lth. Finally, the last term which exhibite the decay of the initial
conditions results from the application of both derivatives on the
factor exp {-11T;Ty0} . Te contribution resulting from the application of one
derivative on a Bessel function and the second on exp [—1XT;TyD} . vanishes
identically due to the syrmetry of the mapping in y.

in order to calculate <Ym2> we must perform the sums over the different
combinations of ;is . In Reference 15 the mapping was simpler and we were
able to evaluate the sums over ;1 exactly. However, because of the cvoupling
between x, <nd ¥y in Eg. {1), we can only calculate approximate results for
the statistical moments of the Zaslavskil mapping. In “efererce 21 Rechester
and White c.served that in the turbulent regime, Xk 21, for the Chir‘kov-
Tayior mapping, the asymptotic form of the Begsel functions

1 Vo

2_ - _x
I tz) ~ { plm ) cos(z > " ) (31)

zan be used to expand the characteiistic function in powers of :é:- .~ The
same approach can be used to evaluate Eq. (29). rank
Unless the arguments of the Beagel functiona are very small, each Ressel
function in Eq. (29) contributes a factor of . + ‘'Therefore, the
vrk

dominant contributions for k > 1 arige from the terme of Eg. (29} with the
least number of Bessel functions with nonvanishing arguments.

For example, i7 all ;i = 0, then the arguments of all the Bessel
functione are identically zerc. Cr-sequently, all of the Bessel functions of

nonzero order vanish and we are left with

[SERy TR
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2 T-1
2 5» 2AT-3-1) 20 2
Yy >y =3 jzo A + 3%y,
2 2T
I D IR G FC (32)
1-2

This is the dominant contribution to <yT2> Bince the terms corresponding to

other combinations of {x will contain at least one Bessel

i}i=1,...,T-1
function with large argument, which is small of order ', .
n ¥ 27k
As in Reference 15 the combination of {xi}i = 0 i8 equivalent to a random
phase approximation. If we neglect Eg. (1) and assume hat the x5 are

independent random variables, uniformly distributed on (0,.1), ther averagqing

Eg. (2) over x; we recover Bj. (32)

<yT2> RBA. <y'r2>c . (33}

The corrections to Eq. (32) can be determi~ed by calcnlating the
contributions from the combinations of {;1}1 which give risc to terms with one
or more Bes:rcl functions with large arguments. Physically, these corrections
to the random phase approximation correspond to the persistence of
correlations between succegssive time steps. These correlations diminish with
increasing k.

Since k > 1, the arquments, z;,,, defined by Bg., (30) will be large

unless

T=1 N
AT 2 L . (34)

1=i+1



2
The first order correction in mh to (yT > results from combinations of
Vank

for which only one is large.

LT P 2yt

In addition to the constraints on the arguments, Fg. (34), a condition on
the order of the Bessel functions must also be satisfied. The order n of any
Bessel function with small argument zi << 1 must be zero, otherwige a factor
of | ;i ) << 1 arises.

B careful study of the orders of the Basgel functions in BEq. {29) and the
congtraints on the arguments shows that first order corrections in i result
only in the limits of strong damping, A << 1, and weak damping, (? {21;’; << 1.
For intermediate damplng, the first corrections to the random phase
approximation are much higher order.

Wwe will explicltly calculate the first order corrections to the random
phase result in the sirong and weak daming limits. For intermediate Jdamwping
our analysis indicates that the corrections are very small; and that the

random phase approximation correspondiny to taking all {x = 0 is very

1h
good. For long times this conclusion has been verified by numerically
advancing the mapping. Figqure 4 shows a comparison of the analytic theory,
Eq. (32), and the numerical calculations of <yT2> ag a function or k for

intarmediate values of the damping, A = .Y and .5 .

A. Strong Damping

Consider the strong damping limit ) < #k' . We can satisfy the first

- 1
i th 1 be 1 if we & - A
requirement that only one zy be large we take xg [ integer << Fakn }
and {x!.)ia!j =0 . Then zm)j ~ 0, zj - Zﬁkxj, ana
Zpey ™ 20" ™ x j €< 1. An examination of the terms of B3. (29) shows that

the second condition, that the order of Bessel functiona with vanishing

20 T i Tung



arguments muat be zero, can only be satigfied if ;j = 32 or £1 .

If x, = 22, the first group of terms in Bg. (29) givesa a contribution of

3

%2 T areg-m -1
i CA TS I ENET SN S A O N
350 i<3
2 2T
=7 %——-i; ) [3,0am0) ] (35)

where we have used the gymmatries of the even ordered Bessel functions.
Fox xj = +1, the leading contribution from the second group of terms in Ej.
(29} is smaller than Eg. (35) by a factor of A ; and it can be neglected.

Therefore, combining Egs. (32) and (35), <yT2> in the strong damping limit is

1
given to first order in —— by

Y2nk

2

2 [1 = 3,0ank) ] . (36}

<yT > =

YL

The terms that we have neglected in writing Eq. (36} are smaller by tactors

of { 2 )or (2mn) .
Y21k

In Pigure 5 we show a comparison of the analytic result for <yT2> as a
function of k, with values ohtained by numerically advancing the mapping with
A = 10~2 and 1073 for 109 time steps. By. (5) agrees very well with the
numerical results except for { k= integer or half integer }. The
discrepancies are due to the appearance of attracting periodic orbits in the
vicinity of integer and half integer values of k. These attracting periodic
points have also been obsgerved by Zaslavakii.16'24 Since the periodic points
are highly localized in phase space and the trajectories no longer wander

ergodically, it is expected that our method which keeps only a few Fourier



components ;1 near 0 should fail. Although the terms we have neglected in our
asymptotic result, Bg. (36), are small, they are numerous. For integer and

half integer values of k the contribution of these other combinations of

Fourier components {xi}i can no longer be ignored.

These periodic points are not related to the “accelerator 151ands'22
whi-% modify the diffusion for the Chirikov-Taylor mapping with noise. The
attracting pericdic points of the Zaslavskii map can be studied analytically
in the strong damping limit, A+0, by reducing Bgs. (1) and (2) to a one

dimensional rnapz4

= i . 7
xi xi_1 + ks nznxi-1 (37)

Moreover, since Eg. (36) is independent of A, it also describes the second

moment oOf YT =k sinxTh1 for the one-dimensional map, BEy. (37). The results

of these investigations will be discussed in future work.
B. Weak Damping

Consider now the limit of weak damping, {1 - %) = v <« . which ig,

1

2nk

physically, the most important case. The z;,,. defined by Eg. (30), can only

T 1-t-1~

E A x) cancel. Therefore, the firgt
1=4+1

order correction to the random phase result ariseas from terms in which two

be small if terms in the sum,

a

xis are nenzeroc. The ;is are restricted even further by the second
requirement that the orders of Bessel functions with vanishing arguments be
zero.

The detailed calculations of the leading corractions to the random phase

regsult for <yT2> for weak damping are relegated to the Appendix. Combining

Egq. (32), (A4), and (A5), the final expression for ashort timee is



2 2r
2 k 1T =2 27-4 0, T<2
g > =3 [( Y Y =27 T3, (amk) cos(4nkay ) x 1, T2 !
2T-3 T<2
- T[ayzmo - 3p2ma) ] costamaay ) x {0 o0}
2 0
- 2tm - 2 Wayzm < {9 763

0, T3
2(T - 2) hnkv[J1(21:kJ - Jg(zﬂk)] « { 1, T»3 ]]

T 2
* Ny, . .38)
This result is valid for
1
1) large k e S ’ {39)
v2nk
2) weak damping 2nky << 1 , and (40)
P FETRAI
3) short times T <<y = {Min [2v, (xkv])®]) - (41

Eg. (38) has been verified by numerically advancing the mapping T time
steps for a uniform distribution of x35 on the interval (0,1). A comparison
of the numerical and analytical resgults for k = 10.=-12., v = .0l, and T = 5,
which satisfy the conditions (39)-(41), is shawn in Figure 6.

However, for long times T > y-1 the corrections to the random phase
result decay away exponentially with time. The third and fourth terms decay

27

as M . and the remaining terms decay as exp{-y~' as shown in the

Appendix. This result indicates that for long times the random phase
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approximation provides a good description of the statistical dynamlics for weak
2
damping. The convergence to the random phase result for <yT > for large T

is 1llustrated in Figure 7.
C. Nc Dam-ing (Chirikov-Taylor Map)

In the dissipationless limit v=0, Bg. (38) reduces to

2 2

g > =

nmiw

T<2
}

T - J,(4uk) cosldmky,) x { 1 T>2

0, T<2
- 2[5, 02w - 3 120k) ] cosf2mky ) x | 1 D2 }

0, T<3 2
- 2(7-2)3, (2nk) > { 1. 53 b+ oy, (42)

Eg. (42) is valid for all T. For large T >> 1 we recover the first order
results of Rechester and White for the turbulent diffusion coefficient of the

Chirikov-Tav .or mappiF921

cyT2> k2
e =T g (1 - 29,02 ] .

(43)

The diffusion coefficient, Eg. [43), characterizes the turbulent dypamics
only if the asymptotic long-time statistics are Gaussian. A straightforward
calculation shows that for X = 1 the long-time moments are Gaussian to first
order in .. .

v2rk
For example, the fourth moment of Yo averaged over x4 is defined by

|

- a1 | s,

Lcililt



w b = Qig (; i )
Yo a? pl¥el] (44)

xT,yT=0

For any 0 < A < 1 the contribution from all {x ], = 0 gives the random
i‘i

phase result

4 3 4 1 - RzT 2 3 .4 1 th
R S i
T s 7T 2 B 5 - 53
2T
1 - 2 T 4
st (22T 0 k) ; (45}
1 = A

In th2 limit X+1, T the first term in Bg. (45) dominates. Finally,

the inclusion of the first order corrections in due to other

||_-

~ v 2nk
combinations of {x |} 6 gives

i'i

4 3 22
yp > =7 KT [1 - 43,0200 ]
2
= 3¢y, > (46)

where we have neglented terms of order % and E%F .

The long time statistical dynamics are significantly changed by the
inclusion of any amount of damping, v > 0. First, the corrections to the
random phase result for the statistical moments are negligibly small for large
T > 7-1 . Second, gince the dynamics are restricted to a bounded attractor,

these moments do not describe a Gaussian distribution. For example, in the

1imit T»w, Eqgs. (32) and (45) reduce to

<y:) ~§ ( — ) (47)
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The second term in Eq. (48) is a non-Gaussian contribution to the fourth
moment. Third, since the disgipation destroys the periodicity of the map in

w22

the y direction, the "accelerator modes are eliminated.

D. Stochastic Wave Heating

The Zaslavskii map has important applicatiors in the study c¢f stochastic
wave heating of plasmas by electragstatic waves.18 If we neglect collisions,
charged pzrticles diffuse in velocity for sufficiently large wave
amplitudes. Then the heating of the plasma distribution function can be
approximately described by a Fokksr=-Planck equation with a stochasti-:
diffusion coefficieit Dy determined by the single particle Hamiltonian
dypamica, Eq. (43).

Previous efforts to incl 3e the effects of collisional damping have
simply added a viscous drag, v, to the Fokker-Pianck equa.tion.z5 In this
case a steady state is achieved where the collisional drag, v, balances the

collisionless diffusion Dg. The resulting distribution is Ma.wellian with a

temperature
. D
_ 2 8
8= .¥> = v (49)

Unfortunately, this approach completely ignores the strange attractor
which is embedded in the real dissipative system. 1In the long time limit,

T+o, the leading term for the second and fourch velocity moments on the

]
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strange attractor are given by Egs. (47) and (48). These moments do not
describe a Maxwellian distribution funection. Furthermore, using Eqs. (43) and

: (47), the average particle energy can be written to lowest order as

5 D
A <y = — (50)
. w1 - ;]
where v = 1 - ) . These conclusions differ qualitatively and quantitatively

from those which ignore the strange attractor. However, in the limit of weak
damping, v << 1, Eq. (50) reduces to BEg. (49) and the higher moments become
approximately Maxwellian. For example, as v»0, we can neglect the second
term in Eg. (48) compared with the first which gives

2
(y:) > 3<yi) (51

Consequently, the Fokker-Planck approach proves adequate in the limit of weak
damping. But for moderate damping the physical picture and the quantitative

regults for the particle heating can be significantlv different.
4. Conhclusion

We have discussed a very powerful path integral method for the
calculation of the statistical properties of turbulent dynamical systems which
is applicable to systems described by differential equations as well as
maps. Since the effects of random forces, interactions, and initial
conditi~ng are easily included, the method provides a foundation for similar
21,22

I
f
E approaches to the calculation of the statistical dynamics of conservative

L and dissipative gystenszo which introduce a source of random noise.




The path integral method is illustrated by the calculation of the low
order statistical moments of the Zaslavskil map17, Pgs. (1) and {2), which can
be used to model the dynamics of a Brownian particle in a wave fiela.'® e
calculate new results for three turbulent regimes which exhibit strange
attractors corresponding to strong, intermediate, and wezak collisioral
damping.

In the collisionless limit this mapping reduces to the conservative
Chirikov-Taylor map whic: exhibits a tranaition to stochasticity rather than a
strange attractor. ©Our results show that this system is diffusive and our
expression for the gecond moment (average particle energy) recovers the
leading terms of the turbulent diffusion coefficient derived by Rechester and
White.21

However, the inclusion of any amount of dampii 3 has a significant effect
on the statistical dynamics. The long time statigtical properties of the
dissipative system are determined by an invariant distribution on the strange
attractor. Since the attractor is bounded in phase space this distribution is
not Gaussian. Moreover, our calculations for the low order statistical
moments for weak and intermediate damping indicate that they are well
described by the random phase approximation in the long-time limit. The
corrections decay away exponentially for times longer than a damping time

-1
Yy -

These results provide a new qu-litative and quantitative description of
the effects ~f damping on the stochastic heating of plasmas by electrostatic
waves., Dissipation should also have a significant effect on the statistical
dynamice of the Fermi napza which has been used to model cyclotron heating in
zognetically confined plasmas and the Kzrney map25 which has been used to

study lower hybrid wave heatingzs and the loas of high energy particles from

tokamaks.2’ Theae problems will be considered in subsequent publlcations.
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Appendix

We calculate the leading corrections to the random phase result for
2

<y "> for weak damping.
T T
In order for z1 - I K1-1-1 xy to be small at least two xls mgt be
1=441 " . .
nonNzero. For example, if xn + 0, xn_1 - -xn and {‘i}i#n,n-1 =0,
- - n-m *
= = a = « In
then Z on 0, z_ zukx“' zZ 4" 21tkvxn P nd Z <n 2k e
. o 1
this case only one z, is large for x { integer << Py 1 . aAn additional
contribution with only one large z, arises if %, +# 0 but all X 51 = .
Then z,,, % 0 and z = 2“k;1 . Thege choices of {;i]i provide the only first

order corrections to the random phase result. All other combinations

" 1
of {xi}1 give contributions which are higher order in —— .
a ¥2nk
The x.s are further restricted, as in the case of strong damping, by
i

the requirement that the order of Bessel functions with vanishing argument be
zero. Again a careful examination of the terms in BEg. (29) shows that this

condition can only be satisfied for x_i = +1 or 2 .

a

If xj = 11 and xj_1 = ¥1 , then the second group of terms in Eq. (29)

provides two first order contributions. First, for 1 = j-1 we get

T-1
c = ~k2 2 I k?(T-1-1)

.
; A Tot0r {3, 2ur) - T (29K} )

x 3 (2nkv) T 3 c2mkn’ ") (A1)

a °

where we have used the odd symmetries of the Bessel functions in order and

- -1

arqument to add the contributions from the combinations ;j - +1, ;j 1

and xj = =1, xj-i = +1 , An additiocnal factor of 2 results from the

Ll



interchange of j and 1 in the double sur in Eg. (29). Second, similar

arguments for l=3j-2 give

T=1
2 .2 2(T-1-1
c, = k> 2% T A% ) 5 (0)3. (2nk)
2 - 0 2
=2
1-3
x [Jo(2mkv) = 3y02mkv)] x T g (2mkN v . (A2)

i<l

Since we assumed 2nkv << 1 , Egs. (A1) and (A2} can be simplified further by

expanding some of the Bessel functions in their small arguments and using the

approximation
x 2
2 -{3) .
J(x)=1-( 3 1 ¥ ...z @ 2 ~ 1, for x << 1 . (A3
0 2
2 =2y
de also expand A =~ 1 - 2y =g for v << 1. Then, for

T << y-1 = {Min l2v, (nkv)2]1-1 +Eqs. (A1) and (A2) reduce to

c, +¢C, = -2 (r-2) {Asztznx) + Amkv[ 3, (2nk) - J}(an)]\ . (R4)
For large T > 7-1 these corrections decay away as e-YT. {For T ¢ 3 these
cor- ctions do not appear.) For times shorter than a damping time, 7_1 ; the
svstem appears to be diffusive; however, for long times the strange attractor
dominates the dynamics.

Since we assumed that kv is small the first term in the brackets
domlnates. The terms that we have neglected in writing Eg. (41) are much
smaller of order (znkv)2 .

Similar arguments ghow that for ;j = £2 the first group of terms in Eq.

(29) give a small ~ontribution of order (znkv)2 ; and the combinations
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;1 = $1, £2 give a first order contribution which is significant only for
gmall T > 2

2, 27-3
c, = -k {a faz(zm = Jy(2nk) | cos(2akAy,)

A2'I'—4
+ 85— J,(4nk) cos(dmkiy )} {(A5)

where the cosines of ¥y arise from the factor exp (-i&z#ol in Eq. (29).

Equations (A4) and (A5) give the leading corrections to <YT2> for

-1
<< 1, 2xky << 1, and T << v .

-

i
-
3
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FIGURE CAPTIONS

1.4 .

The strange attractor for A = .1 and k

The strange attractor for A = .1 and k 11.4.
A magnified view of the strange attractor in Pig. 1 which shows the
complex structure of the attractor.
Comparison of the analytical anq numerical values for <yT2) fFor
intermediate damping, A = .1 and A = .5 . The mapping was
advanced 109 time steps for the numerical calculations.
Comparison of the analytical and numerical values of <yT2> for
strong damping, X = .01 and X = .007 . The numerical points for
A= .001 and k = 10.0 and 11.0 lie cutside of the range of the
fiqure because of the presence of attracting periodic points.
Comparison of the short-time analytic results for <yT2> wiih the
numerical calculations for weak damping, v = (1-A) = .01, andg
T = 5.
Comparison of the short and long-time analytic predictions for

<yT2> with numerical calculations for weak damping, v = .01, and

long time, T = 30 .
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