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STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 

D. S. ORNSTEIN AND B. WEISS 

ABSTRACT. The theory of smooth dynamical systems and the 
theory of abstract dynamical systems (ergodic theory), although 
having the same roots, have for many years developed quite in-
dependently of one another. These theories have now matured 
to the point where they can be combined to shed light on the 
nature of chaotic behavior. 
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INTRODUCTION 

Ergodic theory arose from an attempt to study the long-term1 

statistical behavior of dynamical systems. The early successes of 
ergodic theory were Poincaré's recurrence theorem and Birkhoff s 
ergodic theorem. These results were proved without using the 
topological or differential structure that comes with a dynamical 
system. This led to abstract ergodic theory which studies measure-
preserving transformations (in discrete) time and measure-preserv-
ing flows (in continuous time) on abstract measure spaces or, equiv-
alently, abstract dynamical systems where all but the probability 
structure is abstracted out. 

1 We watch our system forever. 
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STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 13 

From another direction measure-preserving flows (or transfor-
mations) were introduced in order to model the stationary pro-
cesses of probability theory. The level of abstraction of abstract 
ergodic theory is what allowed one to put dynamical systems and 
random processes into the same mathematical framework. 

One of the problems concerning measure-preserving transfor-
mations that most interested ergodic theorists was the classification 
of the transformations that arise from independent processes—the 
Bernoulli shifts. The problem was considered important partly 
because of the role that independent processes have in probability 
theory and partly because of the simplicity of Bernoulli shifts. The 
first step in this direction was taken in 1958 when Kolmogorov and 
Sinai showed that not all Bernoulli shifts were isomorphic. This 
was done by transplanting the Shannon entropy from information 
theory to ergodic theory. 

The problem was solved in 1970 when it was shown that 
Bernoulli shifts were completely classified by their entropy. The 
method used to prove this also gave a number of other results 
with the following common theme: There is a unique measure-
preserving flow that is the most random flow possible (this is called 
the Bernoulli flow). 

Independently of the development of abstract ergodic theory, 
Hopf, Anosov, Sinai, Pesin, etc. made great progress in elucidat-
ing the structure of specific systems. They showed that certain 
systems had hyperbolic structure, a, sharp form of "sensitivity to 
initial conditions," which could be used to prove things like ergo-
dicity. 

The proof of the isomorphism theorem for Bernoulli shifts did 
not use the independence property of Bernoulli shifts. Instead it 
rested on a property (FD, or finitely determined) derived from in-
dependence. It was observed that hyperbolic structure could be 
used to check FD. In this way many concrete systems were shown 
to be isomorphic to the Bernoulli flow. These are the only cases 
so far of chaotic (positive entropy) systems that have been deter-
mined up to isomorphism. 

The main focus of this article will be the recent results that 
show that the isomorphisms produced by the abstract theory in 
some cases still preserve much of the concrete geometric structure 
that was abstracted away by abstract ergodic theory. 

The first result along these lines was motivated by the purely 
topological results of the Anosov-Smale school about structural 
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14 D. S. ORNSTEIN AND B. WEISS 

stability. Here isomorphism theory provides a fairly exact statis-
tical analog of these results. 

Further motivation came from the growing interest in chaos. 
A central issue here is understanding the phenomenon of systems 
that obey deterministic laws such as Newton's laws, but whose be-
havior seems to be random. Here isomorphism theory goes beyond 
sensitivity to initial conditions, which is a kind of randomness, by 
showing that in many cases the same system can be produced by 
Newton's laws or by a random mechanism based on coin flipping. 

A much discussed question about chaos is whether randomness 
comes from the effects of small random perturbations (like ther-
mal agitation) whose cumulative effect is large or from inherent 
deterministic laws. Here the isomorphism theory can show that, 
in certain cases, the process produced by small random perturba-
tions (where effects in principle are cumulative) can also be pro-
duced by small random perturbations in the device through which 
we are observing the system. These latter effects are clearly not 
cumulative. 

Chaos is sometimes studied by computer simulation. A result in 
this direction is the following: Bernoulli systems and (essentially) 
only Bernoulli systems have the property that long-term behav-
ior can be modeled by a finite state machine (e.g., a computer) 
equipped with a roulette wheel. 

Another question is whether long-term behavior is observable. 
It turns out that Bernoulli systems also have the property that their 
long-term behavior can be reconstructed from an observation of 
the system that lasts a (sufficiently long) finite time. 

The plan of this paper is the following. 
§1 is a detailed introduction. §2 contains new results that re-

late to chaos. These results are based on results in abstract er-
godic theory and results about specific smooth systems. §3 gives 
the abstract background on which §2 is based, while §4 gives the 
smooth dynamical background. §5 gives the proofs for our new 
results. These are based on fairly long proofs which we do not re-
produce but which can be found in the literature. The appendix by 
David Fried is about the relationship between structural stability 
and stochastic stability. 

1. OVERVIEW 

1.1 Smooth dynamical systems. For chaotic systems there is a 
very strong sensitivity to initial conditions, in the sense that 
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STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 15 

arbitrarily small changes in the starting point eventually produce 
large changes in the trajectory. Individual trajectories are there-
fore not reproducible and the emphasis is placed, rather, on the 
overall features of ensembles of trajectories. In this spirit we form 
the phase space, which is the manifold M of all possible config-
urations of our system. If, for example, our system is a billiard 
ball moving with velocity 1 on a table, the phase space would be 
the three-dimensional manifold of all possible positions and di-
rections of motion of the ball. The laws of physics tell us how a 
configuration changes and the time evolution of a configuration is 
represented by a trajectory, or orbit, in the phase space M. We 
can think of the time evolution, of the system as a whole, as a flow 
on M (i.e., a one-parameter family of transformations on M or 
the solution of an ordinary differential equation on M). 

There are several approaches to the study of such flows, each of 
which focuses on certain features of the flow and ignores others. 
The features that one is concerned with are usually pinned down by 
the notion of equivalence. For example, the "qualitative theory of 
ordinary differential equations" initiated by Poincaré and extended 
by people like Sinai, Anosov, and Smale focuses on the topology 
of orbits. This is made precise by saying that flows on manifolds 
are equivalent if there is a homeomorphism between the manifolds 
that takes orbits to orbits. A stronger equivalence is also studied 
(in connection with structural stability) in which the manifolds are 
the same and the homeomorphism moves all points by less than 
a, thus preserving some of the geometry as well as the topology. 

In many cases (e.g., Hamiltonian systems, billiard flows, geode-
sic flows, Axiom A attractors, etc.) there is an invariant measure 
on the phase space M that represents the probability that a con-
figuration is in a certain set in the phase space. In this case we are 
able to study the statistical properties of the system. 

Because a homeomorphism may take a set of measure 1 (proba-
bility 1 ) to a set of measure 0, it need not preserve the probability 
structure. Furthermore, a map that takes orbits to orbits need not 
preserve the parametrization of the orbits. Therefore, statements 
involving the evolution of a set E in M can get garbled under 
equivalence. 

Because of the above, when studying the statistical properties of 
a dynamical system, we replace equivalence by isomorphism. 

Definition of isomorphism. Two flows, ft acting on M, preserv-
ing a measure //, and ƒ acting on M, preserving /Z, are isomor-
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16 D. S. ORNSTEIN AND B. WEISS 

phic if there is an invertible measure-preserving map (j) between 
(M, n) and (M, ft) that takes orbits of ft to orbits of ft in 
a time-preserving manner, except possibly for a collection of or-
bits of measure 0 (i.e., <t>ft{x) - ft<f>(x) for all x except for an 
invariant set of measure 0). 

1.2. Abstract dynamical systems. 

1.2.1. Abstract systems. We can think of an equivalence class un-
der isomorphism as an abstract dynamical system. More con-
cretely we can define an abstract dynamical to be a one-parameter 
family ft of invertible measure-preserving transformations of an 
abstract (probability) measure space X where the map from XxR 
to X defined by (x, t) »-» ft(x) is measurable (i.e., the trans-
formations are put together in a measurable way), and ft (ƒ, ) = 

ftx+t2 ' 

1.2.2. Concrete systems. If we ignore sets of probability zero, then 
we can think of a concrete dynamical system as an abstract system 
together with a function P, where P is what we really see. If ft 

is a flow on a manifold M, then P would be the identity function 
from M as an abstract measure space to M as a manifold. For an 
experimenter the function P might be just a finite-valued function 
defined on M that describes his possible observations. 

1.3. Stationary processes. We have been describing measure-
preserving flows in the context of dynamical systems. They can 
also arise from stationary processes like Markov processes. 

The mathematical model for a continuous time 
stationary process taking values in a metric space 
M is a flow ft on an abstract measure space X 
and a function P from X to a metric space M. 
(P can be thought of as the result of an observa-
tion on X.) 

We justify the model as follows: A stationary process (like a 
diffusion on M) is a measure on all possible paths. 

If we start with ( ft, X, P) then for each x, the function from 
t to M, P(ft(x)), can be thought of as a possible path and X 
puts a measure on these paths. 

2 

See a formal description in the footnote at the beginning of §3. 
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STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 17 

On the other hand, given a stationary process the paths, func-
tions from t to M, form the measure space X, P tells us where 
the path is at time 0, and ft shifts the path by t. 

Note that ( ft, X, P) can be thought of either as a stationary 
process or as a concrete system. 

1.4. The picture from the point of view of abstract dynamical 
systems. 

I. A central consequence of the isomorphism theory is the existence 
of a unique abstract system that is the most random abstract sys-
tem possible. We call this system the Bernoulli flow or Bt. (The 
statement that Bt is the most random possible is, of course, not 
well defined and would not make sense if we did not identify iso-
morphic flows. However, we will now present theorems about Bt 

that make this clear.3) 
In order to understand the nature of Bt, let us focus for a 

moment on the case of discrete time. It seems clear that the 
most random kind of stochastic process is the process of inde-
pendent random variables, in its simplest version the tossing of 
a fair coin. The corresponding transformation, the Bernoulli shift 
(\, \), is defined as the shift4 on Az with product measure where 
A has 2 points each of measure \ . (The general Bernoulli shift 
B(- ' Pt•' ' ' ) > Pi > 0 9 YsPi — 1 is defined similarly.) The simplest 
form of the isomorphism theorem says: 

Theorem 1.4.1. B(- • -p. •• -pk) is isomorphic to #(• ••<?;• ••#/) if 
and only if £ p . log/?, = E Qj l°gtf; • 

The class of independent processes is thus fairly simple from the 
point of view of isomorphism. A stronger theorem is the following. 

Theorem 1.4.2. There is a flow Bt such that Bx is isomorphic to 
the Bernoulli shift (\ , \), and for any tQ, Bt is also a Bernoulli 

shift; in fact we get all Bernoulli shifts by varying tQ.5 Bt is unique 
up to a constant scaling of the time parameter {i.e., if Bt is another 

The results of this section may be found in [O 1]. 
4Points in Az are doubly infinite sequences { a , } ^ . The shifted sequence is 

the sequence {ât} , where ~ai = at_x , A = {ƒƒ, T} , a = H or a = T. The 
general Bernoulli shift is defined formally in §3.6. 

5 More precisely, finite entropy shifts. For infinite entropy, see below. Also, 
note that Bt refers to a one-parameter family of transformations indexed by t 
while Bx and Bt refer to a single transformation in the family. 
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18 D. S, ORNSTEIN AND B. WEISS 

flow such that for some t0, Bt is a Bernoulli shift, then there is a 

constant c such that Bct is isomorphic to Bt). 

II. To further justify our claim that Bt is the most random ab-
stract flow possible, and to see that it occupies a unique place 
among chaotic flows, we will compare Bt with all the flows that 
could be considered random or chaotic. We will describe the class 
of random flows by eliminating the ones that are generally consid-
ered nonrandom. These are called completely predictable and are 
characterized by the property that all observations on the system 
are predictable in the sense that if we make the observation at reg-
ular intervals of time (i.e., every hour on the hour), then the past 
determines the future. (By an observation we simply mean a mea-
surable function P on M—we can think of this as a stationary 
process.) It is not hard to prove that these are exactly the flows of 
zero entropy. 

Theorem 1.4.3. Any flow ft that is not completely predictable {i.e., 
ft has positive entropy) has Bct as a factor. {The c's are those for 
which the entropy of Bct is not greater than the entropy of ft.) The 
only factors of Bt are Bct, 0 < c < 1. 

The flow {gt, Y) is a factor of {ft, X) if there is a 0: X -> Y 
such that the inverse image of any measurable set is a set of the 
same measure and </>(fj(x)) = gt(<f>(x)) for all x except for an 
invariant set of measure zero.6 (If we insist that <f> is one-to-one 
and invertible, then ft and gt are isomorphic.) We could also 
think of a factor of ft as ft acting on an invariant sub-cr-algebra 
(these arise naturally from observations that do not generate). 

Theorem 1.4.3 implies that if a system has any observation that 
is not predictable, then the set of processes arising from observa-
tions on the system includes all the processes that can arise from 
observations on Bt. Furthermore, it can also be shown that if ft 

is not isomorphic to Bt, then there is some observation on f( that 
is more predictable than any observation on Bt in the sense that 
it is not VWB and not extremal. (VWB and extremal character-
ize the processes arising from Bt in terms of predictability and 
will be discussed in §3.) Furthermore, this observation cannot be 
approximated by observations on Bt in the sense of a-disparate 
(§2.6). 

'An eigenfunction in our terminology is a rotation factor. 
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STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 19 

III. One concrete realization of Bt is given by the following sta-
tionary process: Pick a > 0 and P > 0, with a/fi irrational. 
Flip a coin and wait a units of time if the outcome is heads (/? 
if the outcome is tails) before flipping again. The isomorphism 
theory implies that when we vary a, /?, and the bias of the coin, 
we get flows that are isomorphic to each other and to Bt (except 
for changing the unit of time, i.e., Bt —> Bct). 

If ajP is rational we get the direct product of Bt and the flow 
of rigid rotations of the circle. 

IV. So far, we have ignored the case of infinite entropy. (Note 
that smooth flows on compact manifolds must have finite entropy.) 
There are analogous results for infinite entropy that complete the 
picture. 

If in our discussion of Bernoulli shifts we want to include all 
independent processes (i.e., define Bernoulli shifts as those trans-
formations that arise from independent processes) then we must 
consider the cases when A is countably infinite or has a continu-
ous part. In the countably infinite case we still have isomorphism 
if and only if E^logp, . = E ^ l o g ^ . . If 2>/k>8P,- = oo or if 
A has a continuous part, then we get the unique Bernoulli shift of 
infinite entropy B°° . 

There is also a unique Bernoulli flow of infinite entropy B™ . 
B°° is the Bernoulli shift of infinite entropy for any £n. If ƒ 

'0 U *0 

is the Bernoulli shift of infinite entropy for some t0 then ft is 
isomorphic to B™ . 

The only factors of B™ are B™ or Bct. The only factors 
of B°° are B°° or !?(•••/>,.•••)• B™ is a factor of any flow of 
infinite entropy. B°° is a factor of any transformation of infinite 
entropy. A concrete realization of Bf° is given by any Poisson 
process on the line. 

V. The picture for flows not isomorphic to Bt is very complicated 
and poorly understood. 

At one extreme we have the completely predictable (zero en-
tropy) flows. These include billiards on a rectangular table with 
no obstacle and the horocycle flow on a manifold of negative cur-
vature, and the rigid rotation of the circle. 

The remaining flows, those that have some measurement that is 
not predictable (positive entropy), are generally considered chaotic 
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20 D. S. ORNSTEIN AND B. WEISS 

and are characterized by positive Lyapunov exponents. 
Among the flows having some nonpredictable measurement are 

those flows where all measurements are nonpredictable. These are 
called K flows or Kolmogorov flows (i.e., ft is K if it has no 
zero entropy factors; it is easy to see that Bt is K). 

It was once hoped that the picture would be fairly simple, at least 
in discrete time. The hope was that all K transformations were 
Bernoulli shifts (Bernoulli shifts are easily seen to be K) and that 
every transformation was either K, or zero entropy or the direct 
product of K and zero entropy (the Pinsker conjecture). Both of 
these conjectures turned out to be false, both in continuous and in 
discrete time. 

Theorem 1.4.4. There is a flow {transformation) that is not K, or 
zero entropy or the direct product of K and zero entropy. 

Theorem 1.4.5. There are uncountably many nonisomorphic K 
flows {K transformations) of the same entropy. {For flows this 
means that they cannot be made isomorphic by a constant rescaling 
of time.) 

0 entropy positive entropy 
all measurements not all measurements 

are predictable are predictable 

~ " ^ - ^ ^ C —Bernoulli 

K 

no measurements 
are predictable 

FIGURE 1 

1.5. Smooth systems and hyperbolic structure. Certain chaotic 
systems have what is called hyperbolic structure. For a diffeo-
morphism D of a two-dimensional manifold, this would mean 
roughly, two invariant one-dimensional foliations, one of which 
expands exponentially under D while the other contracts expo-
nentially. Hopf, Sinai, and Anosov used the hyperbolic structure 
to show that geodesic flow on manifolds of negative curvature was 
ergodic and in fact K. These results depended on delicate proper-
ties of the foliation and successive weakening of these conditions— 
Anosov flows, Axiom A flows, partially hyperbolic flows—were 

In the popular terminology of chaos, positive entropy corresponds to sensitivity 
to initial conditions. This makes sense even if there is no invariant measure. 
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studied. In addition, Sinai, Pesin, and many others found hyper-
bolic structure in a variety of specific systems. For example, Sinai 
[Si 4] found a partially hyperbolic structure in billiards with a con-
vex obstacle and used this to prove ergodicity and the K property. 

Hyperbolic structure was also used by Anosov [Ano 1] and 
Smale [Sm] to show that for certain systems, a small perturba-
tion in the defining vector field did not change the topology of the 
orbits and did not change the geometry of orbits very much. More 
specifically there is a homeomorphism from the space on which 
the flow is defined, to itself that moves points by < e and takes 
orbits of the original flow to orbits of the perturbed flow in an 
order-preserving way. 

1.6. Isomorphism of smooth systems. Combining hyperbolic struc-
ture and a variant of the isomorphic theorem of §1.4, we proved 
that the geodesic flow on a surface of negative curvature was iso-
morphic to Bt. This was the first nontrivial flow whose measure-
theoretic structure was determined exactly. Furthermore, the proof 
gave a general method for checking if a concrete flow was Bt. This 
has led, over the years, to showing that a very large number of 

o q 

very different looking concrete flows are Bt. ' (In fact, the only 
nontrivial case where something is shown to be isomorphic to a 
Bernoulli shift or flow depends on the isomorphism theorem.) 

Here is a small sampling of the flows that have been shown to 
be isomorphic to Bt or ~Bt, the direct product of Bt and the flow 
that rotates the circle. Geodesic flow on a manifold of negative 
curvature of any dimension is Bt. Axiom A attractors are Bt or 
'Bt [Rat 1, Bun]. The motion of a billiard ball on a table with 
a convex obstacle is Bt, [GO] a model for the Lorentz attractor 
is Bt [Rat 2]. The following theorem of Pesin [Pe] is especially 
striking: 
Theorem 1.6.1. Let ft be a smooth flow on a three-dimensional 
compact manifold that preserves a smooth10 invariant measure. 

o 

We can get a better feeling for the result that all geodesic flows on all surfaces of 
negative curvature are isomorphic (up to rescaling time) by contrasting it with the 
following result: Horocycle flows on surfaces of negative curvature are isomorphic 
(up to rescaling of time) only if the surfaces are the same (isometric). This means 
that the picture does not necessarily simplify when we identify isomorphic flows, 
and that a measure-preserving flow on an abstract measure space can, in principle, 
contain smooth information (we can reconstruct the surface) [Fe 0], [Ot]. 

o 
Many such examples can be found in [Si 7, Part II]. 
Absolutely continuous with respect to Lebesgue measure. 
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22 D. S. ORNSTEIN AND B. WEISS 

After ignoring an invariant set of measure zero, we have that: Any 
ergodic component on which ft is not completely predictable has 
positive measure and on each such component ft is either Bt or 

V 
Bt can also arise from a variety of stationary processes. A few 

examples are: A semi-Markov flow (where the particle remains 
in each of a finite number of states—st for a fixed time t{ and 
then jumps according to the spin of a roulette wheel) is Bt or 
Bt. In particular, if the process has two states, changes states with 
probability £, and if tx/t2 is irrational, then the process is Bt 

[O 5]. Poisson processes, continuous time Markov processes on a 
finite number of states, or Brownian motion with reflecting barriers 
(so it remains in a finite interval or square) are B™. [McCSh, 
AdShSmo] 

Here are a few results for discrete time. In an algebraic context 
we have the beautiful result of Katznelson, Lind, and Miles and 
Thomas: [Katz, Lin, MiTn 1, 2, 3]. Any ergodic automorphism of 
a compact Abelian group is isomorphic to a Bernoulli shift. For 
one-dimensional maps we have that the natural extension of the 
continued fraction transformation is Bernoulli; [Smo] the natural 
extension of the maps ax (I - x), for those a for which there is 
an absolutely continuous invariant measure, is Bernoulli [Led]. 

Because of the large variety of systems isomorphic to Bt or Bt, 
we conjecture that most chaos is Bernoulli. To the extent that this 
is true, the diversity that we see would come from different mea-
surements on the same abstract system. Furthermore, the diversity 
would be tamed because there are only a countable number of 
processes that can arise from observations on Bt (if we identify 
measurements that differ by a small amount except on a small part 
of the state space). Thus at the outer limit of randomness we get 
an extra amount of simplicity. 

1.7. a-congruence. Because very different systems can be isomor-
phic, we propose studying a stronger kind of isomorphism which 
takes into account both the geometry and the statistical properties. 

Definition of a-congruence. We will say that two measure-preserv-
ing flows ft and ft on the same compact metric space M are 

Compactness is essential. Any measure-preserving flow can be modeled by 
a C°° flow, preserving a smooth invariant measure, even on a two-dimensional 
manifold which is, of course, noncompact [ArOW]. 
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a-congruent if they are isomorphic and the map 0 from M to 
M that implements the isomorphism moves the points in M by 
< a except for a set of points in M of measure < a. 

If we agree that we cannot distinguish points in M that have 
distance < a, and if we are willing to ignore events of probabil-
ity less than a (experimental error), then a-congruent flows are 
indistinguishable. 

Assuming ergodicity for the flow, the ergodic theorem will imply 
that if two flows are a-congruent, then, almost surely, orbits of 
corresponding points in M are within a of each other except 
for a set of times of density < a . Thus a-congruent flows have 
essentially the same collection of orbits with the same probability 
distribution. 

We will also define a-congruence in a more general context. If 
ft and ft are flows on abstract measure spaces X and X and P 
(and P) are functions from X(X) to a metric space then: 

Definition. (ft,X,P) and (ƒ, ,X,ÎP) are a-congruent if there 
is an invertible measure-preserving </>, </>ft(x) = ft<t>{x) a.e. and 
d(P(x), ~P{(j)x)) < a except for a set of measure < a (d denotes 
distance in the metric space). 

An alternative wording of the above definition is the following: 
( ft, X, P) and ( ft, X , P) can be jointly modeled by a third sys-
tem (fl, X', P' U 7 ) where (a) P' (and 7 ) generate the entire 
a-algebra under f[ , (b) {f[, X', P') (and (j£, X\ ?')) give the 
same concrete systems as (ft, X, P) (and (ft, X, P)), and (c) 
T' and P' differ by less than a except on a set of measure < a . 
This says that our systems differ by a small change in the function 
that tells us what we see. 

P and P can be thought of as the functions that make the 
abstract system (ft, X) and (ft, X) into concrete systems. 

1.8. a-congruence and smooth systems. One kind of a-congru-
ence result is a statistical version of structural stability. Consider, 
for example, a rectangular billiard table with a convex obstacle. 
Pick a > 0. Now perturb the obstacle so that the shape and the 
curvature change by a small amount (depending on a ) . The orig-
inal and the perturbed billiard flow will then be a-congruent. (We 
may have to rescale time in one of the flows, by a small amount, 
i.e., change ft to fct, |1 - c\ < a , c is a constant.) We also 
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get an a-congruence result for essentially the same systems and 
perturbations for which structural stability holds. In addition, we 
get a-congruence results for some systems that are not structurally 
stable. 

The main difference between structural stability and the above 
a-congruence result is that the homeomorphisms in structural sta-
bility preserve the topology while the map in a-congruence pre-
serves probabilities. Moreover, in a-congruence the parametriza-
tion of orbits is preserved (or rescaled by a constant) and therefore 
corresponding sets evolve in the same way. On the other hand we 
lose all information about events of probability zero. 

Another stability result says that in certain cases adding noise 
to a system will have the same effect as leaving the system alone 
but adding noise to the device through which we view the system. 
Suppose we add noise to an axiom A diffeomorphism, D, by after 
applying D to a point x, jumping with uniform distribution in a 
sphere of small radius around D(x). Our result says that there is 
a viewer whose state changes randomly but independently of D, 
and where the point that we see when looking through the viewer 
(which depends on the point we are looking at and the state of the 
viewer) is with high probability close to the point we are looking at. 
If we look at the unperturbed diffeomorphism through this viewer, 
we see our perturbed system exactly (all joint probabilities are the 
same). The interest in this result lies in the fact that the effects of 
the first perturbations are clearly cumulative, while the effects of 
the viewer are not since the viewer does not interfere with D, and 
only misreads a point slightly. 

Another a-congruence result says that the randomness of sys-
tems isomorphic to Bt manifests itself in a more concrete way. 
Consider billiards with a convex obstacle. Pick a > 0. We can 
define a process on the same table, whose mechanism is governed 
by tossing a (biased) coin, that is a-congruent to billiards. The 
process can be described as follows: Our ball will always be at one 
of a finite number of points on the table. It will stay at each point 
p for time t(p) and will then jump to one of a pair of points ac-
cording to the flip of our biased coin. (The pair of points depends 
on p.) 

If we think of the function that implements the above a-congru-
ence as a device or viewer which looks at the billiard ball and 
according to its position and velocity sees one of the special points 
on the table, then our result could be phrased as follows: There is 
a viewer that is deterministic and does not distort by > a for a 
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collection of configurations of probability > 1 - a and when we 
look at the billiards through this viewer we see a ball that moves 
according to the flips of the coin. 

An additional a-congruence result says that the long-term be-
havior of a Bernoulli flow on a manifold is finitely accessible: 
There is an algorithm that takes an observation of our system for 
a sufficiently long, but finite, interval of time and produces a sta-
tionary process that could have been produced by watching our 
system (forever) through a viewer whose state changes randomly 
but with high probability, distorts very little. 

1.9. Historical overview of isomorphism theory of chaotic sys-
tems. Isomorphism theory for chaotic systems began in 1958 when 
Kolmogorov and Sinai introduced the concept of entropy (§2.4) 
into ergodic theory and used it to solve a long-standing problem 
by showing that not all Bernoulli shifts were isomorphic. They 
showed that the entropy of B(p{, p2, p3) was p{ logp{ +p2 logp2+ 
p3 log/?3, etc. and that shifts of different entropy could not be iso-
morphic [Ko ,1, Ko 2, Si 1]. 

In 1962 Sinai [Si 2] showed, in discrete time, that a Bernoulli 
shift was a factor of everything of equal or larger entropy. In 1967 
Adler and Weiss [AdW 1,2] proved an isomorphism theorem for 
automorphisms of the 2-torus. 

Entropy also gave the break up into completely predictable and 
not completely predictable and completely unpredictable [Ko 1, 
Ko 2, Si 1]. 

On the concrete side Sinai and Anosov showed that a large class 
of systems (including billiards with obstacles) had a "good hyper-
bolic structure" and used this to show that they were completely 
unpredictable [Si 3, Ano 1, Si 4]. 

Anosov also used hyperbolic structure to show that these systems 
were stable in a topological (rather than statistical) sense (struc-
tural stability) [Ano 1]. 

In 1970 Ornstein showed that Bernoulli shifts of the same en-
tropy were isomorphic [O 2]. The method was different from the 
Adler-Weiss proof or the Sinai proof. 

By a different set of ideas Ornstein showed that the completely 
unpredictable class contained more than the Bernoulli shifts and 
that not every transformation was the direct product of a com-
pletely unpredictable and a completely predictable transformation 
(the Pinsker conjecture) [O 7, O 8, O 9, OSh]. 
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By the method used to prove the isomorphism theorem for 
Bernoulli shifts, Ornstein showed that Bernoulli shifts can be em-
bedded in a flow and there is a unique Bernoulli flow Bt which 
strings together all of the Bernoulli shifts [O 6], that Bt was a 
factor (modulo scaling) of any flow that was not completely pre-
dictable (the continuous time extension of Sinai's 1962 result), and 
that the only factor of Bt is Bct, 0 < c < 1 [O 1], 

The connection with concrete systems was made when Ornstein 
and Weiss showed that the geodesic flow on a surface of negative 
curvature is isomorphic to Bt [OW 3]. Since then it was shown 
that a large class of specific flows was isomorphic to the Bernoulli 
flow. This was done by using the hyperbolic structure (elucidated 
by Sinai-Anosov-Pesin and others) to check a criterion, VWB (see 
§2.6), which makes the isomorphism theorem work [GO, Pe, Rat, 
Bun]. 

In many cases the isomorphisms produced by the theory do 
not move points very much and these are the results about a-
congruence and stability that we will focus on in the next section. 

1.10. More recent results in abstract isomorphism theory. We have 
so far described the history of the isomorphism results that we have 
been concerned with in this paper. The subject, however, does not 
end here and some of the deepest results in isomorphism theory 
are outside the scope of this paper. We will now try to give the 
reader a hint of these results. 

Thouvenot [Tho 1, Tho 2] introduced the idea of relativizing 
with respect to a factor, and showed that the isomorphism argu-
ments could be relativized. This gave criteria for when a factor 
had an independent Bernoulli complement. Our results involving 
viewers whose state changes use this theory. 

A sample result of the Thouvenot theory is that a factor of the 
direct product of a zero entropy and a Bernoulli is again of that 
form. 

Thouvenot's theory^can also be obtained by substituting a dif-
ferent metric for the d metric of §3 [Rud 2]. Feldman introduced 
yet another metric and initiated the study of measure-theoretic 
equivalence where one weakens the definition of isomorphism by 
allowing orbits to map to orbits with a time change that varies from 
point to point along the orbit [Fe 1]. Ornstein, Rudolph, and Weiss 
modified the isomorphism machinery to accommodate Feldman's 
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metric [ORudW]. This direction culminates in Rudolph's equiva-
lence theory [Rud 2]. 

Rudolph has a very deep theorem about the Bernoulliness of 
compact extensions of a Bernoulli shift [Rud 3, Rud 4]. The 
Bernoulliness of many concrete examples relies on this result. 
Rudolph's compact extension result together with an isomorphism 
theorem for actions of a skew product of the integers and a com-
pact group allows him to classify12 the factors of a Bernoulli shift 
with finite fibers [Rud 5]. There are results that indicate that the 
classification of all factors of a Bernoulli shift has much of the 
complexity of the general classification problem for transforma-
tions [O 10]. 

Ornstein and Weiss [OW 2] developed an isomorphism theory 
for actions of a general amenable, unimodular group. This builds 
on Rudolph's isomorphism theory for Z skew compact group, the 
isomorphism theorems for Zn and Rn , Feldman's r-entropy [Fe 
2], and new proofs of the Shannon-McMillan theorem. 

The above results build on the original proof of the isomorphism 
theorem for Bernoulli shifts but in many cases there is a new level 
of intricacy and ingenuity. 

In a different direction, Keane and Smorodinsky [KeSmo] have 
proved a version of the isomorphism theorem for Bernoulli shifts 
where the codes are finitary. The Adler-Weiss isomorphism the-
orem for toral automorphisms was also finitary and there is now 
a large and active area concerned with various kinds of finitary 
codes. 

Lastly we should mention that there is a rich and beautiful col-
lection of counterexamples. In particular we mention Rudolph's 
theory of "minimal self joinings," a systematic method of con-
structing certain kinds of examples [Rud 6]. 

2. a-CONGRUENCE 

2.1. Strong stochastic stability. The individual orbits of chaotic 
systems are highly unstable but in certain cases the system as a 
whole will be stable. To discuss the stability of a certain system, 
we must specify the allowed perturbations and give a way of mea-
suring their size. We must also specify the sense in which we want 
the perturbed system to be close to the unperturbed system. In all 
of our results "close" will mean a-congruent, for small a. Since 

1 We want an isomorphism of the whole system that takes corresponding factors 
to each other. 
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we have results for many kinds of perturbations, we will make a 
definition that focuses only on the sense of closeness. 

Definition. ft is stochastically stable under a certain kind of per-
turbation if given ft and a > 0 and if ft is a small enough per-
turbation (of the right kind) of ft there is a constant c, 11 -c\ < a 
and ft and fct are a-congruent. 

( ft and ft cannot be isomorphic unless the entropies are the 
same, c is the unique scaling of time that makes the entropies of 
ft and ft the same.) 

We will postpone for the moment a discussion of the kinds of 
systems and the kinds of perturbations for which we have stochas-
tic stability and focus on what stochastic stability tells us, by com-
paring it with a celebrated kind of topology stability called struc-
tural stability (or Q stability). These topological stability results 
say that if ft is a flow of a certain kind on a manifold M, then 
given ft and a > 0, if ƒ t is a small enough perturbation of the 
right kind, there is a homeomorphism of M to M that takes 
orbits of ft onto orbits of ƒ t and moves points by < a. 

The conclusion of stochastic stability differs from that of struc-
tural stability in three ways: The homeomorphism is replaced 
by an invertible measure-preserving map. The map takes orbits 
rigidly onto orbits (i.e., after rescaling time, the map is an isomor-
phism). Instead of moving all the points by < a, there is a set 
of points of measure > 1 - a that are moved by < a. (We will 
discuss the necessity of this weakening in Remark 3 below.) 

For example, if the perturbation only changes the speed of the 
flow and does this in a nonconstant way, then the structural sta-
bility homeomorphism could be the identity while the stochastic 
stability map must permute orbits. 

Before giving a discussion of a general class of systems and 
perturbations for which we have stochastic stability, we will give 
some concrete examples: 

Theorem 2.1.1. Let ft be the geodesic flow on a manifold L of 
negative curvature. Fix a > 0. If ƒ\ is the geodesic flow on 
L resulting from a small {given a) change in the Riemannian 
structure on L ,l3then ft and fct are a-congruent where \c-\\ < a. 

The corresponding metric tensors should be C -close. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 29 

(Note that a geodesic flow on L is really a flow on M, the unit 
tangent bundle to L, and preserves the Riemannian measure on 
M). 

Theorem 2.1.2. Let ft be the billiard flow on a square table with 
a convex obstacle. Fix a > 0. If f t is the flow resulting from a 
small (given a) perturbation in the obstacle and its curvature, then 
ft will be a-congruent to fct where | 1 - c\ < a. 

(Note that ft (and ft) is a flow on a three-dimensional man-
ifold M, consisting of positions on the table and directions; ft 

(and ft) preserve Lebesgue measure.) 
A general result is that we have stochastic stability for a class of 

situations that include essentially the same systems and perturba-
tions for which we have structural stability.,14 We will devote the 
rest of this section to a more careful statement of the above claim 
[Ma l ,Ma2] . 

A result (due mainly to Smale and Mané) characterizes the flows 
that are structurally stable under C1 perturbations of the defining 
vector field as axiom A systems (with some extra technical condi-
tions). Axiom A systems are, except for a set of measure zero, a 
finite union of axiom A attractors, and we will therefore focus on 
the stochastic stability axiom A attractors. These are discussed in 
§4.4 but we will summarize some points needed for this discussion. 

Axiom A attractors are smooth flows defined on a manifold 
M or a subset Q of ¥ . These flows are a generalization of 
geodesic flows on a manifold of negative curvature where Anosov 
first proved structural stability. 

C2 axiom A attractors do have a canonical invariant measure, 
the Sinai-Bowen-Ruelle measure (or SBR measure). This measure 
is believed to be physically relevant. When we consider an axiom 
A attractor we will always endow it with its SBR measure. 

To make sense out of stochastic stability, both the flow and its 
perturbation must have an invariant measure. A C flow that is 
sufficiently close C1 to an axiom A attractor is itself an axiom A 
attractor and therefore has an SBR measure. 

Definition of strong stochastic stability (SSS). We will say that a 
C2 axiom A attractor, ft on M, is strongly stochastically stable 

It is hoped that stochastic stability is a much more general phenomenon than 
structural stability, see §2.7. 
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or SSS if given a > 0 : if ƒ t is a C flow on M that is sufficiently 
close C1 to ft, then ƒ, and fct are a-congruent for | c - 1| < a . 

We turn to the question: Which C2 axiom A attractors are 
SSS? 

We first note that C axiom A attractors come in two flavors, 
that is, we have the following dichotomy. 

Type 1. ft is a suspension. This means that there is a nontrivial 
eigenfunction (i.e., a function g from M to the circle such that 
#(ƒ*(*)) = R

yt(s(x)) w h e r e ^ y r i s r o t a t i o n by J") • I f ƒ, h a s a 

measurable eigenfunction, then it has a continuous one and is not 
topological^ mixing. ft is isomorphic to the direct product of the 
Bernoulli flow and the flow that rotates the circle. 

Type 2. ft has no measurable eigenfunction. ft is topologically 
mixing. ft is isomorphic to the Bernoulli flow. 

The relevance of the above discussion is that a flow of type 1 is 
not isomorphic to a flow of type 2. It is also easy to see that if ft 

is type 1, then we can make an arbitrarily small perturbation, ƒ t , 
such that ft is type 2. 

This means that a type 1 flow cannot be SSS and a type 2 flow 
that is the C1 limit of type 1 flows cannot be SSS. 

Our theorem is that the above are only obstructions to SSS. 

Theorem 2.1.3. A C axiom A attractor is SSS if and only if it 
is not the C limit of C suspensions. 

The question now arises: Can an axiom A attractor be a Cx 

limit of suspensions but not a suspension itself? David Fried clar-
ified this situation for us and the complete answer is given in the 
Appendix. Here is part of the story: It can happen, but it cannot 
happen if ft is Anosov of dimension < 4. It cannot happen if 
the expanding and contracting foliations are not jointly integrable. 
It cannot happen if àimH{(U, JR) = 1 (U being a small open 
neighborhood of the attractor). 

Theorem 2.1.4. If ft is an axiom A attractor that is not a suspen-
sion, even if it is a C{ limit of suspensions, then one still has a lot 
of stability : either the perturbation ft is a-congruent to fct or to 
Rtxfct, | c - l | < a . 

Rt x fct acts on the product of the circle and the manifold. 
Here Rt is the flow that rotates the circle with small period and 
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the isomorphism <j> takes a point (y9x), where y is on the circle 
and x is in M, to a point x in M . x and x' are closer than a 
with probability > 1 - a (i.e., we are using the second definition 
of a-congruence). 

The a-congruence to Rt x fct could be pictured as follows: We 
could think of Rt as a viewer whose state or condition changes 
cyclicly. When we look at a point x in M through the viewer, we 
see a point x'(x = </>(y 9 x)) in M. x depends only on x and 
the state y of the viewer. When we look at fct through the viewer, 
we see exactly ft. We could recover the point we are looking at 
and the state of the viewer from the orbit that we see, i.e., there is 
an inverse viewer (whose state does not change). 

We could, of course, also think of the a-congruence between ft 

and fct as being implemented by a viewer whereby we look at a 
point x in M and see a point (f)(x) in M. Thus if we watch fct 

through this viewer, we will see ft (and looking at ft backwards 
through this viewer we see f c t ) . 

The main point of statistical stability is that the effect o f a C{ 

perturbation is in principle cumulative, whereas the distortions pro-
duced by a viewer are clearly not cumulative. 

Remark 1. The difficulties associated with types 1 and 2 do not 
occur in the theory of structural stability because we do not insist 
in this theory that orbits map to orbits rigidly. If we gave up on this 
requirement in the statistical case, the difficulty would similarly 
disappear. 

Proposition. Let ft be the flow on an axiom A attractor M. Then 
— 2 i 

given a> 0, if ft is a C flow, sufficiently close C to ft, there 
is an invertible measurable15 map from M to M that takes orbits 
to orbits and moves all points by < a except for a set of measure 
< a. 

Remark 2. The reason we do not strengthen SSS by requiring that 
(f) move all points by < e is that for axiom A flows there is only 
one orbit of the perturbed system that is uniformly close to a given 
orbit of the original system. If, for example, the perturbation only 
changes the speed of the flow, then each orbit must map onto itself. 
It is easy to see that this cannot be done rigidly and measurably 
unless the speed change is very special. If we strengthened the 

If (j) is not an isomorphism, it cannot take an invariant measure to an invari-
ant measure. 
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conclusion of Theorem 1 when L has dimension 2, then L and 
its deformation would have to be isometric. This follows from a 
theorem of Otal [Ot]. 
Remark 3. In Theorem 2.1.2 it is important not to change the 
curvature very much. If we approximate the boundary of our ob-
stacles arbitrarily well by polygons, then (*), after ignoring a col-
lection of orbits of total probability zero, any orbit of the original 
flow and any orbit of the perturbed flow will be D apart on the av-
erage, where D is the average distance between points in the state 
space. (This is because the perturbations have entropy 0.) If we 
take sufficiently good smooth approximations to the polygon, (*) 
will still hold but our perturbation will now have positive entropy 
and will even be Bernoulli. 

Here are a few general comments on the meaning of SSS. 
Two flows that are close in the C1-topology behave in a simi-

lar way for some finite amount of time. The closer they are, the 
longer this finite amount becomes, but it remains finite. Thus 
in a sense, knowing {ft} up to a small error in C1 determines 
only the short-term behavior of the system. The SSS of ft means 
that the approximate short-term behavior actually determines the 
long-term behavior arbitrarily far out in time (even though the 
individual orbits are sensitive to initial conditions). 

The number of different ft on M that are SSS is severely lim-
ited: For fixed a, there are only a countable number of different 
ft up to «-congruence. 

Stability properties are important from the point of view of ex-
perimentation or simulation. Because we can never duplicate an 
experiment exactly and in general we do not even know the the-
oretical model exactly, we need some stability properties in order 
to observe, simulate, or experiment with a system. 
Remark 4. We also have an a-congruence theorem for axiom A 
diffeomorphisms, but because we cannot scale time the result is 
not as clean. 
Theorem 2.1.5. Let f be a connected axiom A attractor on M 

— 2 

and pick a > 0. If f is a C diffeomorphism on M that is 
sufficiently close in C1 to ƒ, then either ƒ is a-congruent to the 
direct product of ƒ and a Bernoulli shift, or ƒ is a-congruent to 
the product of ƒ and a Bernoulli shift. 

We can interpret this result as saying that one of the diffeo-
morphisms can be reproduced exactly (ignoring probability 0) by 
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looking at the other through a viewer whose state changes ran-
domly but, with probability > 1 - a, distorts by < a. The viewer 
will not lose information in the sense that the orbit of ft that we 
are looking at and the states of the viewer can be reconstructed 
from the orbit of the perturbed process that we see. 

2.2. Stability under random perturbations. If a system is sensitive 
to initial conditions, then one might expect that small random ef-
fects such as thermal agitation would be magnified and that the 
resulting system would evolve in a very different way from the 
unperturbed system. On the other hand, the effects of small ran-
dom perturbations in the device through which we view a system 
(leaving the system alone) are not cumulative (we leave an orbit 
alone and only misread it slightly). In spite of the above we will 
show that in certain cases the process that results from small per-
turbations whose effects are cumulative (intrinsic perturbations) 
could be reproduced exactly by looking at our unperturbed system 
through a viewer that distorts randomly but not very much. 

The intrinsic perturbations that we have in mind will have in-
finite entropy and therefore cannot be a-congruent or even iso-
morphic to the unperturbed system. Some randomness has been 
added but our point is that the same process could have been pro-
duced by adding the randomness in an innocuous way (through a 
random viewer). 

The general setup is the following: We will start with a flow f 
(or diffeomorphism ƒ) on a manifold M, together with a collec-
tion of intrinsic perturbations and a way of measuring the size of 
these perturbations. 

Definition. We will say that ft (or ƒ) is stable under these in-
trinsic perturbations if given a > 0 : if the perturbation is small 
enough (relative to a), we can construct a "viewer" such that 

(i) the state of the viewer changes randomly but indepen-
dently of ft, 

(ii) the viewer distorts by < a with probability > 1 - a (the 
point in M that we see depends on the point in M that 
we are looking at and the state of the viewer), 

(iii) the process that results from looking at ft through the 
viewer is identical (all joint probabilities are the same) to 
the process that results from the small intrinsic perturba-
tion, 
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(iv) the viewer does not involve extra information in the sense 
that the orbit of ft that we are looking at and the state 
of the viewer can be reconstructed from the orbit of the 
perturbed process that we see. 

Note, (iv) also means that ft and the viewer produce our process 
in a nonredundant way. As well it means that ft together with the 
viewer is, measure theoretically, the minimal mechanism capable 
of producing our process (the intrinsic perturbation). 

Our viewer can be modeled as follows: The states of the viewer 
will form a measure space V. A measure-preserving flow on V, 
denoted by vt, will govern the way that the state of the viewer 
changes with time. The dynamical system that results from ft and 
the viewer will be the direct product of vt and ft: (vtxft, Vx M). 
(The measure on V x M is a product measure.) 

The way the viewer distorts will be described by a function Q 
from V x M to M. If we look at x in M through the viewer 
and the state of the viewer is w in V, then the point in M 
that we see will be Q(w, x). The reliability of the viewer will 
be the expected distance between x and Q(w, x) (using product 
measure on V x M). In addition Q will generate under vt x ft 

so that Q does not lose information. 
An intrinsic perturbation can be thought of as a stationary pro-

cess with values in M or a measure on M, the collection of all 
paths in M. We model this by (st, M, P) where st shifts each 
path in M by t and P is the function from M t o M that tells 
us where the path is at time 0. 

Restating our previous definition in the language of a-congru-
ence, we get: 

Definition. ft is stable under intrinsic random perturbations of 
a certain kind if, given a > 0, any sufficiently small intrinsic 
perturbation (denote the resulting process by (st, X, ~P) where X 
is the space of paths and P tells us where the path is at time 0) 
is a-congruent to the direct product of ft and some flow vt (call 
it (vt x ft, V x M)) relative to the functions 7 and Ö where 
Q(w, x) = x, w in V and x in M. 

This agrees with our previous definition if we let our viewer 
be (vt x ft, V x M, Q) where Q is the image of 7 under the 
a-congruence. 
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An alternative wording of our definition is the following: In 
{vt x ft, V x M, Q) we can make a small change in Q (obtaining 
Q), and {vt x ft, V x M, Q) models our intrinsic perturbation 
exactly and Q generates under vt x ft. 

(A) Our first example will concern a diffeomorphism (ƒ, M) 
because it is easiest to describe. The perturbation will be a Markov 
process on M obtained as follows: Apply ƒ to x and then jump 
with uniform distribution in a ball of radius r around f(x). Then 
apply ƒ again to the resulting point, etc. This will give a unique 
probability measure on the space X of paths through M which is 
invariant under the shift S. Our model for this Markov process 
is (S, X, JP) where P tells us where a path is at time 0. The size 
of the perturbation is measured by r. 

Theorem 2.2.1. An axiom A attractor that is Bernoulli is stable 
under the above kind of intrinsic random perturbation. 

(B) Our next example concerns perturbations that are not arbi-
trarily small but occur very rarely. All Bernoulli flows are stable 
under such perturbations (think of a billiard table with a convex 
obstacle that is bumped once in a great while). 

Start with a stationary process that alternates between long ran-
dom periods of quiet (all at least of size L) and short active peri-
ods of fixed size A. During the quiet periods we flow using ft(x). 
If we are at x at the start of an active period, then we diffuse for 
a period of time equal to A to a new point xA which has an abso-
lutely continuous distribution /u(x) which we assume dominates 
a fixed constant times the volume element in a ball of fixed radius 
around x. The nature of the diffusion is not relevant. From xA 

one continues to flow with ft until the end of the next quiet pe-
riod. Fixing the //(x)'s and measuring the size of the perturbations 
by 1/L we have: 

Theorem 2.2.2. Every Bernoulli flow on a compact manifold pre-
serving a smooth invariant measure is stable under the above in-
trinsic perturbations. 

(C) There is a continuous time analog to Theorem 2.2.1 but 
it is technically harder to describe because the perturbation takes 
place infinitesimally (i.e., our intrinsic perturbation results from a 
diffusion). 
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One formalism goes as follows. To the flow ft we associate its 
differential equation 

*P-nw. dt 

where F is a C2-vector field on M. The random perturbation 
will be given by wt = [w], . . . , wt ) , the standard d-dimensional 
Brownian motion, and C2-vector fields on M, Xl9 ... , Xd. The 
diffusion process xt can be described by a stochastic differential 
equation 

d 

dxt = V{xt) dt + Y, xMt) dw\ 
1=1 

or by an infinitesimal generator 

(*) L=V + \j^XiXi. 

Corresponding to the transition probability measure fi{x) above, 
we now have P(t,x,dy) which describes the distribution of a 
point at time t that was at x at time 0. If L is a nondegener-
ate elliptic operator, then these transition probabilities P(t, x9 •) 
have a unique invariant measure on the manifold, say v, and 
then a shift invariant measure Pv is defined on the space of all 
continuous maps from R to M, X = C(R, M), so that 

Pu({xteA}) = u(A) for all f 

and 

= / • • • / P(t{ - t0, u0, du{)P(t2 -tl9ux, du2) 

'"P(tk-tk_l9uk_l9 duk)du{u0) 

for t0< tx"- < tk and sets A0, . . . , An c M, where the integra-
tion is over all ute An 0 < / < R. 

An invariant measure // for the flow ft also gives a measure 
on X , say dm, which is described in a similar way by saying that 
m({tx G A0, . . . , xt e Ak}) equals the // measure of the set of 
those points u0 in A0 such that ft_t (uQ) G At. In a sense this 
is unnecessary for /u, since X with dm can be identified, up to 
a null set, with M itself. However, for the Markov process this 
trajectory space is essential and it is there that we will describe 
the stability. We metrize X by giving it the topology of uniform 
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convergence on compact sets. For the perturbation results we now 
introduce a parameter in (*) and write 

fi€ for the invariant measure on M, and x] for the corresponding 
Markov process. The appropriate measure on X will now be P e. 

We shall assume that the basic operator L is a nondegenerate 
elliptic operator in the relevant domain. In case we are interested 
in a proper attractor Q0, ft, with shrinking neighborhood U, 
then it is natural to suppose that the perturbation term is gradually 
killed in a smooth way so that at the boundary of U it vanishes. 
This guarantees that the trajectories of the Markov process never 
leave U. 

The basic analysis of such perturbations was carried out by Y. 
Kifer in [Ki 3], and his results are crucial to our proof of the 
stability result. 

Theorem 2.2.3. A C2 hyperbolic attractor (ft, //) with its SBR 
measure that is a Bernoulli flow is stable under the intrinsic pertur-
bation described above. 

2.3. Scaling time. If we increase the speed of a flow, the flow will 
become more random in the sense that its entropy will increase. 
In the case of a Bernoulli flow on a compact manifold M this 
increase in randomness manifests itself as follows: 

Theorem 2.3.0. {Informal) (B,x+y)t, M), y > 0 can be reproduced 
exactly by watching (Bt, M) through a random viewer. If y is 
small enough relative to a, then the viewer will be a-reliable. For 
all y > 0 the viewer will not involve extra information in the sense 
that the path (of Bt) that we are looking at and the states of the 
viewer can be reconstructed from the path (of Bn+y\t) that we see. 

In the language of a-congruence the above theorem reads as 

Theorem 2.3.1. Let (Bt, Y, P) be the Bernoulli flow where P 
identifies Y with the manifold M. Given a, if y > 0 is small 
enough then (2?,j w, Y, P) is a-congruent to (BtxB , YxY,7) 
where T(rx, r2) = P{rx). 

We interpret the above theorem in terms of the viewers as fol-
lows: (Bt x B t, Y x Y) is the direct product of (Bt, Y) and 
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(Byt, Y). P allows us to identify (Bt, Y) and (Bt, M). Our 
viewer is (B t, 7 ) . If Q is the image of P under the a-congru-
ence, then Q(r{, r2) tells us what we see when we look at r{ in 
M and the viewer is in state r2(r2 e Y). a-congruence implies 
that Q is close to P and thus our viewer is reliable. 

We can also slow Bt by looking at it through a deterministic 
viewer but we cannot reconstruct the orbit we are looking at from 
the orbit that we see. 

The above theorem can fail dramatically in the non-Bernoulli 
case. For example, if ft rotates the unit circle by t, then any 
orbit of ft and any orbit of fct will differ by \ on the average, 
no matter how close c is to 1, i.e., 

^ f \td-ctd\dt-> i . 
1 Jo 

There is also a K flow ( ft, X, P) such that the orbits produced 
by ( ft, X, P) and the one produced by ( fct, X, P), c ^ 1, differ 
in the same quantitative sense: There is an a > 0 (that does not 
depend on c) and 

lim i [Td(P(ft(x)),P(fct(x)))dt > a 

for all x , I in I and all c ^ 1 and d denotes the distance 
between points in the range of P. 

2.4. Bernoulli flows and Markov processes. Our next a-congru-
ence results describe, in a more concrete way, the randomness of 
systems isomorphic to B{. We will do this by comparing our flow 
ft on a manifold M, to a process that is generally thought of as 
random. We will define a semi-Markov process16 on M to be a 
process that stays at one of a finite number of points pt in M for 
time t. and then uses a roulette wheel to decide which of the p. 
to jump to. For the purposes of our comparison we could focus 
on a special semi-Markov process where we take 2N points in M 
and label each of these by a sequence of O's and l's of length Af. 
Fixing a (biased) coin (we get head with probability p), we get the 
label of the point to which we jump by erasing the first digit and 
flipping our coin to decide whether to add a 0 or a 1 to the end 
(e.g., 01111 => }}!!?). The holding times t0,t{ will depend in 

The theory of Markov partitions which has been developed for many of these 
flows is a topological notion and does not give rise to measure-theoretic Markov 
processes like the ones we have in mind here. 
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some arbitrary (but fixed) way on the label, e.g., we could take t» 
with /? = middle digit of the label. 

Theorem 2.4.1. If ft is a Bernoulli flow or Tït on a metric space 
M then, given a, there is a {special) semi-Markov process on M 
that is a-congruent to ft. 

We will now discuss the meaning of our theorem in the case of 
a billiard ball moving on a square table with a convex obstacle. 

To better visualize the result we will think of our isomorphism 
(p (of the a-congruence) as being implemented by a measuring 
device or viewer. Thus, when our ball has a certain position p 
and velocity q, we will see, when looking through the viewer, 
one of a finite number of points on the billiard table, cp{p, q). 
{<P(P 9 q) is a path of the semi-Markov process but we will only 
consider the position at time zero.) We will say that our viewer is 
e-reliable if for all but e of the p, q of q>(p, q) is within e of 
p . Our viewer is supposed to model a measuring device of finite 
accuracy or resolution. Note that this viewer, unlike the viewer in 
§2.2, is completely deterministic. 

Our theorem says the following: Given a > 0, there exists an 
a-reliable viewer such that the system seen through this viewer is 
a semi-Markov process. Furthermore the orbit of the billiard ball 
can (with probability one) be reconstructed from the orbit as seen 
through the viewer, i.e., the appearance of randomness did not 
come from loss of information. 

The billiard system and the billiard system seen through the 
viewer differ in that the billiard system as seen through the viewer 
produces only a finite amount of information in a finite time. This 
distinction, in terms of observations of finite accuracy, amounts 
to the following: We can reconstruct, from what we see through 
the viewer, the state at time 0 to any degree of accuracy by taking 
observations (of fixed accuracy) far into the past and future. To 
reconstruct the state at time 0 of the billiard seen directly we have 
to make observations of finer and finer accuracy, but these can be 
made at time 0. 

Our theorem also tells us that certain semi-Markov systems 
could be thought of as being produced by Newton's laws (billiards 
seen through a deterministic viewer) or by coin flipping. This may 
mean that there is no philosophical distinction between processes 
governed by roulette wheels and processes governed by Newton's 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



40 D. S. ORNSTEIN AND B. WEISS 

laws17. In this connection we should note that our model for a sta-
tionary process (§1.2) means that random processes have a deter-
ministic model. This model, however, is abstract, and there is no 
reason to believe that it can be endowed with any special additional 
structure. Our point is that we are comparing, in a strong sense, 
Newton's laws and coin flipping. 

Variants of Theorem 2.4.1 can be found in §5.2. 

2.5. Long-term versus short-term behavior and simulation. Since 
we cannot observe a system forever, we might ask about the con-
nection between long-term behavior and behavior that can actually 
be observed. If our system is Bernoulli, then there is a good con-
nection: 

If we have no knowledge of the system except that it is isomor-
phic to Bt, and we are allowed to observe a single orbit then, with 
probability one, if we see a long enough piece of the orbit we can 
construct a model that is a-congruent to the direct product of the 
flow we are trying to model and another Bernoulli flow. Thus, even 
though we have watched for only a finite time, our simulation is 
identical to a process produced by watching our system forever 
through a random viewer that distorts by < a with probability 
> 1 - a. In addition, the viewer will not involve extra informa-
tion in the sense that the orbit we are watching and the state of 
the viewer can be reconstructed from the path as seen through the 
viewer. 

Stating this more explicitly, we get: 

Theorem 2.5.1. Given ft, X, P, where (ft, X) is Bernoulli and 
a > 0, then for a. e. x e X, and T large enough, the algorithm be-
low will produce a process (Tft, TX, TP) that will be a-congruent 
to the direct product of( j \ , X, P) and another flow (Tgt, Y) rela-
tive to the function TT and P where P(y, x) = P(x), x e X, y e 
Y. If P identifies X with a manifold M, then we can think of 
(Tgt, Y) as a viewer and if TP is the image of TP under the a-
congruence, then we see TP(y, x) when the viewer is in state y 
and we are looking at x in M. 

We now describe the algorithm that produces our simulation of 
ft,X,P. 

The input to the algorithm will be an initial segment of a 

The popular literature emphasizes the distinction between "deterministic 
chaos" and "real randomness." 
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specific orbit of the original stationary process. The output will 
be a stationary process. 

The initial segment of the orbit can be viewed as a function from 
the interval [0, T] into a metric space. The algorithm takes any 
function Q: [0, T] —• M, (i.e., that maps the interval [0, T] into 
a metric space M), and constructs a stationary process Tft, TX, 
TP. (The result is that as T —• oo the new process is a good 
approximation of the original one.) 

The algorithm uses a function L(T) that tends to oo and 
satisfies 

Z(Tp°° a s 7^°°-
To be specific one can take L(T) = log T j log log T. 

The algorithm deals with a continuous input, the flow ft(x) 
where t is real. Naturally, in any digital realization the time 
variable must be discretized. However, the input {P(ft(x))}f=Q 

({ft, X, P) is the process we are trying to simulate) might be in 
some analog form, as a physical tape, so that we can deal with 
such an input without worrying about discretizing time. In the 
same way we will speak of choosing a random point t0, uniformly 
distributed in an interval [a, b] with the meaning being—either 
do so with some analog device or, if time is discretized, do so 
discretely. The theorem requires a minor modification of the fol-
lowing algorithm which is given later. 

Algorithm A. 
Al. Input: For t e [0, T] set Q(t) = P(ft(x)) with j c e l t h e 

starting point of the observations. 
A2. For JV = 1 , 2 , 3 , . . . choose a random point tN, uni-

formly distributed on [0, T-L(T)] independently of the previous 
choices, and set 

G((N - l)L(T) + s) = Q(tN + s) for 0 < s < L{T). 

Comment We are concatenating the block {Q(s)}se[t t +UT]\ t 0 

the right of the orbit that we have already built up. 
A3. Output: The path G(s), 0 < s < oo. 
This algorithm, for large enough T (and a.e. x), will yield a 

good approximation to the original process. Note that the algo-
rithm does not require knowledge of the dynamics of ft. The 
function L(T) is universal18 and will work for all Bernoulli flows 

18 

This is the main technical point beyond the isomorphism theory and requires 
a new Shannon-McMillan-Breiman type theorem [OW 4]. 
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in spite of the lack of uniformity of the ergodic theorem. The 
only problem might come from a bad starting point, but we as-
sume implicitly that the data with which we are presented reflect 
the physically significant invariant measure. Unfortunately, the 
algorithm as such fails to give a-congruence since the resulting 
process may not have sufficient entropy. We can correct for this 
by artificially adding some fixed entropy. To do this we add inter-
vals of length one between the successive blocks of lengths L(T) 
that the algorithm is concatenating, and label these intervals inde-
pendently with a collection of labels of size 2 ( r ) . This will ensure 
that the resulting process, for T large enough, will have entropy 
greater than the entropy of the given process (ft, P). 

Remark. The result in §2.4 (and the result above) implies that 
the Bernoulli flows can be modeled by a finite state machine (a 
computer) equipped with a roulette wheel. We may ask if there 
is an algorithm that allows us to produce a good simulation if we 
know the equations of motion. 

The usual approach is the following: 
We discretize time and phase space and approximate the vector 

field to determine how one of our discrete points in phase space 
will move to another discrete point in one unit of time. If we dis-
cretize finely enough and approximate the vector field well enough, 
then we can iterate this procedure and approximate a solution to 
our equations for a long period of time. However, if we keep it-
erating, our simulation will eventually be periodic (a computer is 
a finite state machine) and no periodic orbit can be close most of 
the time to a generic orbit of Bt or any mixing flow. 

If, however, our computer is equipped with a random device 
that acts like a roulette wheel, then the situation can be remedied 
in the following seemingly paradoxical way: Iterate our equation 
L times and then jump in a random way to another point, flip 
a coin whether to decide to wait 0 or /? units of time {fi/L is 
irrational, 0 < /? < 1), iterate L times again, etc. If our original 
system is Bt, and the invariant measure has bounded density with 
respect to Lebesgue measure, then we can prove that if L is large 
enough and we have discretized finely enough and approximated 
well enough (depending only on L), then the computer simulation 
will be a-congruent to the direct product of the original flow and 
the Bernoulli flow. This means that the approximation is good 
for all time and even that the simulated process could have been 
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produced by watching the system through a random viewer that 
distorts by < a with probability > 1 - a . (In addition, the viewer 
will not lose information in the sense that the orbit we are watching 
and the state of the viewer can be reconstructed from the path as 
seen through the viewer.) 

Our random jumps could be taken to be uniform over the whole 
discretized phase space or uniform over a discretized ball of radius 
r around our position when we jump. (Our computer simulation 
can be thought of as a flow if we stay at each discrete point for 
our discrete unit of time.) 

2.6. Instability, or when a-congruence fails. 

I. All of our results about a-congruence that we have presented 
depend on Bernoulliness in an essential way and are for the most 
part false, in the non-Bernoulli case. Not only are the relevant 
processes not a-congruent; they even fail to satisfy part of the 
defining properties of a-congruence in a quantitative way. The 
reason for this is that any non-Bernoulli process is quantitatively 
different from all Bernoulli processes. To make this precise we 
introduce the notion of processes being a-disparate. 

Definition of a-disparate. Processes ( ƒ,, X, P), ( ft, X, P) are 
a-disparate if for almost every x € X, and almost every I G I , 
the set of V s for which 

d(P(ft(x)),P(ft,(x)))>a 

has density > a . (d measures the distance between points in the 
common range of P and P). 

The appropriate sets of x and x can be described indepen-
dently of this definition, as the generic points of the flows ft, ft, 
respectively. These are the typical points for which time averages 
convergence to the spatial averages for all continuous functions of 
the process. 

For two fixed processes, the supremum of the a's for which they 
are a-disparate defines a metric on processes, called the ^-metric. 
It plays an important role in the isomorphism theory of Bernoulli 
flows and will be discussed in detail in the next chapter. Here is 
the basic result: 

Theorem 2.6.1. If {ft, X, P) is not Bernoulli and P is a genera-
tor, then there is a positive a > 0, such that ( ft, X, P) and any 
Bernoulli (ft,~X,7) are a-disparate. 
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Let's consider the results of §2.2 in this light. There the intrinsic 
perturbations give rise to Bernoulli flows regardless of the nature 
of the original flow. (In B we must assume that the process that 
produces the interference is Bernoulli.) Thus for a non-Bernoulli 
flow ft, there is an a > 0 such that all those intrinsic perturba-
tions, no matter how small, are a-disparate from ft. In this way 
microscopic perturbations that are too small to see will have a cu-
mulative macroscopic effect. This effect will be observable in a 
strong way as we shall see a little later on. 

II. In Theorem 1 we see the extent of our being able to model by 
Bernoulli processes. Suppose, however, that we are interested in 
modeling with semi-Markov flows or semi-multi-step Markov flows 
(or in discrete time, Markov or multi-step Markov processes). If 
a semi-Markov flow or process has no periodic factor then it is 
Bernoulli and in general it is the direct product of a Bernoulli and 
a rotation. A system will be a-disparate from this larger class if it 
is not the direct product of a Bernoulli flow and the inverse limit of 
rotations (which can be thought of as a clock that gives seconds, 
minutes, hours, days, ... and so on with an infinite number of 
nested periods).19 This makes good sense both in discrete time 
and continuous time. 

The class of products of Bernoulli and inverse limits of rotations 
is stable under factors and ^-limits. This follows from Thou-
venofs relative isomorphism theory and FieldsteeFs extension to 
continuous time. 

The next theorem is due to D. Rudolph and G. Schwarz [Rud-
Sch] in discrete time and K. Park [Pa] in continuous time. 
Theorem 2.6.2. (ft, X, P), P generating, is the d-limit of semi-
multi-step Markov flows10 if and only if ft is the direct product of 
a Bernoulli flow and an inverse limit of rotations. 

Thus, if ft is not the direct product of a Bernoulli flow and 
an inverse limit of rotations then, given a generating partition P, 
there is an a > 0 such that (ft, P) is a-disparate from any semi-
multi-step Markov flow. 

The output of a finite state machine equipped with a roulette 
wheel can be modeled by a semi-multi-step Markov flow (or, in 

19 
A more formal description is given in §3.7. 

20 

In a semi- «-step Markov flow we remain at each of a finite number of states 
si, a fixed length of time ti and then jump with a probability distribution that 
depends on st and the previous n states. 
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discrete time, a multi-step Markov process) and Theorem 2 tells 
us exactly which processes can be modeled by the outputs of such 
machines. In particular the existence of a non-Bernoulli K au-
tomorphism means that there is a discrete time process with no 
deterministic part whose randomness cannot be explained in terms 
of roulette wheels. 

Since most of our results involve modeling or approximating 
by Bernoulli or semi-Markov processes, they fail in a quantitative 
way when we stray too far from the Bernoulli case. 

III. a-disparate processes are quantitatively different and one 
might ask whether or not this difference can actually be observed. 
More generally, if we watch a sample output P(ft(x)) of a process 
(ft, X, P) andji sample output Q(gt(y)) of (gt,X,Q), can we 
estimate their d-distance? 

If we are allowed to watch forever, then there is no real problem 
because the Birkhoff ergodic theorem tells us that, with probability 
one, the entire process ( ft, X, P) can be reconstructed from a 
sample infinite orbit {P{ft(x))}^l0 (we assume that P generates). 

The following theorem captures our idea of observability in a 
better way. 

Theorem 2.6.3. There is a universal algorithm with the following 
properties: 

(a) The input is a pair of functions from the interval (0, T) to 
a metric space, {Pif^x))}1^, and {Q(ft{x))}^. 

(b) The output is a number DT (our estimate of the d-distance). 
If f(x) is Bernoulli or the direct product of Bernoulli and 
an inverse limit of rotations, then for almost every 
x, y chosen according to product measure on X x Y, DT 

converges as T —> oo to the d-distance between ( ft, X, P) 
and {gt,Y,Q). 

Remark 1. The above algorithm is robust in the sense that if we 
change each input by < /? in the Lx sense, then DT change by 
<2fi. 
Remark 2. If we make no assumption on ( ft, X, P) or 
(gt, Y, Ö), then liminfD, will be greater or equal to the d-
distance between (ft, X, P) and {gt,Y, Q). 

Remark 3. One can prove that there is no algorithm that will work 
for all {ft,X9P) and (gt,Y,Q). 
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2.7. Further directions for a-congruence. When do we have sta-
tistical stability? Structural stability is limited to axiom A and 
few realistic systems are axiom A. We also ask when is there 
a canonical measure like the SBR measure, and when do we get 
stability results for the measure of maximal entropy? 

Theorem 2 (see 1.2) shows that we can go beyond axiom A for 
certain perturbations. Another example due to Eloranta [E] is the 
following. Perturb the billiard system by taking two copies of a 
billiard table very close together and cutting a hole where each ob-
stacle is, and connecting the opposite holes with a smooth surface 
(of negative curvature). The billiard system is then approximated 
by a geodesic flow and the approximating flow is a-congruent to 
the billiard system, after a small rescaling of time, (a —• 0 as 
the tables get closer.) This example is interesting for two reasons. 
( 1 ) The conclusion of structural stability cannot apply because a.e. 
orbit will spend a small amount of time circling the hole, (2) The 
perturbation, although small, gives a qualitatively different system. 
Thus billiards can be smoothed without changing the long-term dy-
namics. 

If we restrict the kind of perturbation enough, we can get stabil-
ity results for wide classes of systems. For example, if (ft, M) is 
a smooth Bernoulli flow on a compact three-dimensional manifold 
M preserving a measure absolutely continuous with respect to Rie-
mannian volume, and if we perturb ft by changing the speed by a 
small C2 function (which may vary from point to point along an 
orbit) then (ft, M) will be a-congruent either to the perturbed 
flow ft or to ft times a rotation (this is the analog of Theorem 
2.1.4). The question now is when can the alternative be ruled out? 

We can also ask for systems other than axiom A that are stable 
under random perturbations. It seems that this is where the gap 
between what we can prove and what is true is the greatest. Most 
reasonable random perturbations are Bernoulli. If our original 
system is not Bernoulli we have no possibility of stability (see §2.6) 
so we assume that our original system is Bernoulli. Therefore, 
what we need to understand is how the invariant measure and the 
entropy change under the perturbation? For example, we do not 
know if there is a Bernoulli diffeomorphism of a two-dimensional 
manifold that is not stable under the perturbation of Theorem 
2.2.1 when we jump with uniform distribution in a disk of small 
radius around the point we land at under the diffeomorphism. 
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We can also look for different kinds of random perturbations. 
One example is the following: Take an ergodic automorphism of 
T, of a compact Abelian group &. Perturb the T process by 
taking any stationary process with values in 9, concentrated near 
0, and adding this process to the T process. We have stability 
when the noise process is Bernoulli. 

Any time we have a stationary process and another process that 
is supposed to approximate it, we can ask if the approximation 
is good for arbitrarily long time intervals. In this spirit, we can 
ask if the processes are close in the d sense or the sense of a-
congruence. (For example, Brownian motion confined to a finite 
interval with reflecting barriers is often approximated by a ran-
dom walk.) Eloranta has results along these lines that extend the 
Donsker invariance principle [E]. 

We can also study a-congruence for other systems like infinite 
particle systems. Here the group is Z " x R . (Zn corresponds 
to translation of a «-dimensional lattice and R to the time evo-
lution.) In certain cases Steif [Ste] has shown that the system is 
a-congruent to a system where the lattice is made up of an infi-
nite number of large disjoint cubes that do not interact with one 
another. Steif s cases are: (1) The M < e condition [Lig] where 
there is only one invariant measure. (2) The two extreme mea-
sures for monotone systems—each lattice site wants to imitate its 
neighbors (see [Lig]). These systems include most of the systems 
studied. This result is interesting because infinite particle systems 
are supposed to model large finite systems, and this result says that 
they do in a very strong sense. 

We can also ask for a-congruences that preserve some addi-
tional structure. One example is the (n - l)-frame flow on an 
«-dimensional manifold of negative curvature, n odd, n ^ 7 . In 
this case, we have a group larger than R acting. (We can rotate 
the frame at a point.) Using the isomorphism theory for this more 
general group, one can show (using results of Brin and Gromov 
[BrG]) that if we perturb the metric, the new frame flow will be 
a-congruent (after a small rescaling of time) to the original one 
and the conjugating map will take the collection of frames at a 
point to the collection of frames at another point. 

Understanding particular systems has been an ongoing project. 
Here is a recent example where work still needs to be done: Wo-
jtkowski [Wo 1, Wo 2] has shown that the following system has 
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FIGURE 2 

positive entropy: a ball of nonzero mass acted on by gravity and 
bouncing in an elastic way (no energy loss) where the floor is 
shaped like a wedge and n/2 < 6 < n (Figure 2). 

The Katok-Strelcyn [KatoStr] modification of Pesin theory 
almost certainly takes care of the singularities and if so, the system 
is either Bt or 2?, on each ergodic component. In either case the 
system would be a-congruent to a semi-Markov process as in §2.4. 
We could ask if a small change in 6 produces an a-congruent sys-
tem where we can make a arbitrarily small by making the change 
in 6 sufficiently small. (When 6 — n/2 or 6 = n the system 
has zero entropy and will therefore change discontinuously). The 
force of gravity could be taken as constant or inversely nonpro-
portional to the distance to the center of the earth. Will the latter 
small perturbation produce an a-congruent system with small a ? 
Some of the interest in the above system lies in the fact that it 
is so close to a ball bouncing on a flat floor—the first system one 
studies in calculus. 

3. A SURVEY OF SOME ABSTRACT ERGODIC THEORY21 

3.1. The ^-distance. When a stochastic process xn is observed 
through a noisy medium, the observed process can be represented 

21 
The results in this section that are not specifically referenced can be found in 

[OW l ] o r [ 0 1]. 
A stochastic process {x^™^ is a collection of random variables defined on 

some probability space (Q, I , ju) with values in some set A . The measure on 
A defined by the image of /z under the mapping œ «-• {x^œ)}0^^ is called 
the distribution of the process or the joint distribution of the variables {xn} . The 
process is called stationary if for each p , the distribution of {xn+p}

<^L_00 is the 
same as that of {x^™^ . If the process is stationary, then the shift T on Az 

(xn{co) = xn_l{Tco)) preserves JU and we can therefore also model a stationary 
process by a measure-preserving transformation T acting on a space X = A and 
a function P on X (P(co) = x0(co)). Note that V ^ r ' P generates the entire 
a -algebra of X (up to sets of measure 0). We denote this setup by (T, X, P), 
or if we want to emphasize the measure by (T, fx, P), etc. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 49 

by 
Xn = Xn + en > 

where the ert represent the error process. If the medium is not very 
noisy, then en will be small most of the time and then for most 
time instants n, xn will be close to xn . This is the archetypal 
example of two processes that we wish to think of as being close 
to one another. The ^-distance is a formal way of measuring the 
distance between processes that takes into account not merely the 
finite distributions but also the long-range behavior in the same 
way that the xn and the xn processes above are close. Since 
discrete time stochastic processes are simpler than continuous time 
ones, we will begin by explaining the ^-distance in that case, and 
further suppose that the processes are finite valued. 

When one is presented with two distinct stochastic processes 
{xn} and {yn}, then it makes no sense to ask questions such as 
what is the probability that xQ = y1, since these random vari-
ables need not be defined on the same probability space. Any way 
of defining the two processes on the same space is called a join-
ing of the two processes. More formally a joining is a stochastic 
process of pairs [xn, yn} such that {xn} has the same distribu-
tion, or probability laws as {xn} and {yn} has the same distri-
bution as {yn} . There is always at least one joining of any two 
given processes—the independent joining—obtained by declaring 
that the xn variables are all independent of the yn variables. We 
shall be dealing with stationary processes and in that case by a 
joining we shall mean a stationary one, i.e., {(xn , Fw)}!foo *s a^s0 

a stationary process. There are cases where the independent join-
ing is the only joining; however, in the situation that we will be 
studying there are typically many different joinings. 

Given two processes {xn}, {yn} we seek a joining between 
them {(xn , yn)} so that 

(*) P r { * 0 ^ o } 
shall be as small as possible. The infimum of (*) as we range over 
all possible joinings is the rf-distance between {xn} and {yn}. 
Formally _ 

d({xn}, {yn}) = inf Pr{x0 ^ y0}, 

where {(xn,yn)} ranges over all joinings of the given processes. 
This metric is much more stringent than the metric defined by the 
finite distributions. Here is a simple example to keep in mind. 
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Consider the two state Markov chain defined by the transition 
matrix 

( l - e e J 
and stationary measure (j, \). When e = 0, this is a pure pe-
riodic process with precisely two output sequences. As long as 
e > 0, the d-distance between this process and the pure periodic 
is \ , corresponding to the independent joining (indeed there is no 
other one). To see the former, observe that by stationarity 

Pr{*0^70} = i £ > { * , . # 7,.}. 

Now for a typical xt output when e is very small we will see 
long strings of alternations between the two states. However these 
will be out of phase about half the time with respect to either 
of the purely periodic alternations represented by {y •} . In finite 
distributions, of course, this family of Markov chains is continuous 
all the way down to 6 = 0 . The family is continuous in the d-
distance for e > 0. While fairly elementary, this fact is nontrivial; 
see §3.5. 

To compute the ^/-distance between two processes in terms of 
the finite distributions, one proceeds as follows. Define the d-
distance between {xn}^l9 {yn}„={ by 

- 1 N 

(**) d({xn}
N

n=x, {yH}^i) = u-
inf- u M E P r ^ * 7n) > 

where the infimum is over all joinings (now not required to be 
stationary) between the xn's and the yn's. It is a fact that 

Our main interest in this metric is the behavior at zero, and so 
variant definitions which give that same behavior are sometimes 
more useful. For example, the right-hand side of (**) can be 
replaced by 

inf {e : for some joining (xn ,yn), 

Pr{~\{l<n<N:xn^yn}\>e}<ey 

With this variant it is easy to see what to do if the process is 
not finite valued but takes values in a fixed compact metric space 
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(M, d). We take then the infimum of all e > 0 for which there 
is some joining such that 

f i N 

y„)>e\<e. 

After this discussion of the more standard situation we come 
to the one we need here. Now we have to begin with a measure-
preserving flow ft on a measure space (X, âS, fi). For example 
ft could be a smooth flow on a manifold X with SB the Borel 
sets and // a fixed invariant measure. A process will be defined by 
such a flow and a mapping 

which is a measurable mapping from X to a compact metric space 
(M, of). We will sometimes refer to P as a partition of X. For 
example, if X is a compact manifold, then the identity map with 
M = X defines a process. To any point x e X, and any T > 0, 
we associate a path in M defined by 

PT(x) = {P(ft(x)):0<t<T} 

and call that the P-T name of x . This map takes the measure /u 
onto a probability measure on M[ 'T ] , the space of [0, T]-paths 
in M, which we denote by juT . These are the finite distributions 
of the process P. Had we been considering a finite space M, 
and a discrete time flow {fn) , then these would just be our earlier 
finite distributions. For two measures juT, vT on M[ ' r ] define 

d(juT, vT) = inf{/?}, 

where /? ranges over all positive numbers for which there is some 
measure X on M[0 'T] x M[0 ' r ] satisfying 

(1) 7Tj o A = / / r , n2o X = uT; where 7rx 2 are the coordinate 
projections. This is a formal way of saying that A is a joining of 
fiT and vT. 

(2) xl(u,v):j^Td(u(t),v(t))>À<fi, 

Here u(t) and v(f) denote a [0, T]-path or an element in 
M[0, T] i.e., u(t) = P(ft(x)) for some x. 

If vT represents the finite distribution of some process 
(gt >

 v > Ö) with values in M then we define 

d((ft,fi,P),(gt,i',Q))= lim rf(/ir, vT). 
i — • O O 
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For the whole process this guarantees that for any /? greater than 
this of-distance there is a joining between them, a measure X on 
{M x M ) R , so that 

JL{(u,v):d(u(0),v(0))>fi}<fi. 

The notion of the ^-distance is implicit in the concept of a-
congruence. Indeed two processes that are a-congruent are within 
a in the ^-metric, but a-congruence involves much more since the 
(close) joining of the processes is required to be an isomorphism 
between them. 3 

d is not very useful for studying deterministic processes like 
the linear flows on the torus. Here almost any two different flows 
are far apart in d. Indeed, defining 

ft(x ,y) = (x + at,y + bt), gt{x, y) = (x + ct, y + dt) 

for (x,y) e T2 , if (a, b) and (c, d) are not rationally related 
then one can show that the only joining possible between processes 
defined by ft and gt are independent joinings. It is precisely for 
chaotic systems, the ones that have positive entropy, and are very 
far from such deterministic systems, that the df-metric proves to 
be a very useful tool. 

3.2. Entropy and a-entropy. For a continuous mapping T of a 
compact metric space (M, d) the topological entropy is defined 
by 

limlimsup — log{minimal number of (N, e) balls 
e-*0 W - K » iV 

that cover the space M}, 

where the (N, e) ball means a set B that satisfies 

d(Tnx, Tny)<e, all 0 < n<N, allx,yeB. 

This quantity measures the exponential growth rate of the number 
of diverging orbits and is denoted by 

The topological entropy is zero for nice flows like the irrational 
flow on the torus, and its positivity is an indication of some kind 

23 

Rudolph has unpublished examples that show that it is possible for processes 
to be close in the d sense and isomorphic without being close in the sense of 
a-congruence. In these examples there are joinings that are isomorphisms and 
joinings that produce a good c/-match but no joining that does both. 
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of chaotic behavior or sensitive dependence on initial data. In the 
presence of a measure fi that is T-invariant it is natural to count 
the minimum number of (TV, e) balls required to cover a set in 
X of large measure rather than all of X. For ergodic measures it 
turns out that fixing any c> 0 and calculating 

lim lim sup — log{minimal number of (N, e) balls 

neededto fill a set of //-measure c in X) 

gives the same number independently of c, and this number is 
called the measure-theoretic entropy of the system (M, T, / / ) , de-
noted by 

For flows ft, the measure-theoretic entropy was originally defined 
by means of the discrete time skeleta fnd . It was J. Feldman who 
showed how to define the entropy of a flow, with respect to a finite 
partition, directly in terms of the flow [Fe 2]. His definition is 
close in spirit to the one we just gave and works just as well for 
compact partitions. For a measurable flow (X, 3S, ju, ft) and a 
partition P : X —• M, a compact metric space, define a P — a — T 
ball to be a set B c X that satisfies 

j J d{P{ftx), P(fty)) dt<a all x, y G B. 

Now define for 0 < c < 1 

= lim sup -= log{minimal number of (P, a, T) balls 

needed to fill a set of // measure c in X}. 

For ergodic processes one shows that this limit is independent 
of c G (0, 1) and we call that limit the a-entropy of the process, 
denoted by h(P, a ) . The entropy of the process (P, /J) is defined 
by 

h(P, ft) = lim h(P, a) 

and finally the entropy of the flow is defined to be 

h(ft) = sup(P,ft), 
p l 

where the supremum ranges over all compact partitions, or over all 
finite partitions. This turns out to be the same as the more usual 
definition which is h(f{). 
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We have the formula first proved by Abramov, h{ ft ) — \t0\h(ft). 
Note that h(ft) refers to the entropy of the flow while h(ft ) , 
where t0 is thought of as a fixed real number, is the entropy of 
the transformation ƒ, . 

It is trivial that under rescaling, ft = fct, we have 

h(7t,P,a) = \c\h{ft,P9a), 

and thus also in the limit as a —• 0 

h{P9ft) = \c\h(P,ft). 

When P is changed to a P that is close to P in the sense that 
for some small ô > 0 

(*) /i(x: d(P(x), P(x)) <S)>1-S, 

then for most of the space X, (P, a, T) balls are (P, (a + 
2<J), T) balls so that for ergodic processes 

h(P, a + AS) < h(P, a) < h(P, a - 43). 

In the limit, as a —• 0 this continuity in P is lost and in general 
it is not true that as P„ —• P in the metric defined by (*) above, 

h{ft,P„)-+h{ft,P). 

In the totally discrete situation, when the number of elements 
in the partition is finite and held fixed and the time discretized, 
the entropy depends continuously on the partition. This continu-
ity allows for some results to be formulated more simply in that 
situation, and it is the lack of continuity in our setting that is re-
sponsible for the cumbersome definition of "finitely determined 
processes" below. 

One can establish a version of the Shannon-McMillan theorem 
for the a-entropy and it plays a key role in the proofs of the theo-
rems in the rest of this chapter. The remarkable thing is that a real 
meaning is given thereby not only to the process entropy h(P, ft) 
but to the a-entropy for each value of a. Here is one version of 
the theorem: 

Given e > 0, if T is sufficiently large then there is a subset X0 c X 
satisfying 

1. fi(X0)>l-e; 
2. for any P-a-T ball B c X0 

ju(B)<exv{-T(h(P,a)-e)}; 
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3. there is a covering of X0 by fewer than 

exp{T(h(P,a) + e)} 

(P,a,T) balls. 

Another way of understanding (3) is to observe that, in the pres-
ence of (2), (3) implies that most of the (P9 a , T) balls in that 
covering collection have measures which lie in the 

cxp{-T(h(P,a)±e)}. 

In the discrete situation one can take a = 0 and then there are 
canonical (P, N) balls which are simply the atoms of the parti-
tions vf "n1 f~lP. Thus the classical Shannon-McMillan theorem 
simply asserts that most atoms of V ^ 1 f ~ l P have exponential 
size approximately equal to exp{-Nh(f{P)} . In general the for-
mulation is of necessity more complicated. 

The Shannon-McMillan theorem has a simpler statement for 
very small a. This statement is about centered (P, a, T) balls. 
We define a (P, a, T) ball centered around y(t) e M[0,T] to be 
the set of y such that 

j;J*d{P{fty)9y{t))dt<a. 

If we use centered (P, a, T) balls, the value of a-entropy will 
change but the above Shannon-McMillan theorem will still hold 
and we will get the same limit h(P, ft) as a -• 0. In terms of 
centered balls we get a Shannon-McMillan theorem for h(P, ft)\ 

Given e > 0, if a is small enough and T large enough (given a), 
then there is a subset XQc X, ti(XQ) > 1 - e and any (P9a, T) 
ball with center in X0 has measure between exp{-T[h(P, ft)±e]} 
and there is a covering X0 by fewer than exp{T[h(P, ft) + e]} 
(P,a,T) balls. 

The way in which a-entropy was defined makes it clear that 
the topological entropy of the flow gives an upper bound for the 
measure theoretic entropy (for this and the following result see the 
discussion in Szlenk's book [Sz]). The fact that there always exists 
invariant measures which approach the topological entropy lies a 
little deeper and requires the construction of invariant measures. 

With the concept of entropy at our disposal we can return to our 
earlier discussion of predictable and nonpredictable processes. The 
results are easier to state in discrete time (for continuous time flows 
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ft, these results are best formulated by considering the discrete 
samplings of the flow {ft n}nez) . A finite state process {x^™^ 
is said to be predictable if x0 is a measurable function of the past 
{xn : n < - 1} . The fundamental connection with entropy is the 
following: A finite state process {x^™^ is predictable if and only 
if it has zero entropy, A flow has zero entropy if and only if the 
discrete samplings of any measurable function are predictable. 

Sometimes deterministic is used instead of predictable. Stan-
dard approximation theorems yield that if we are satisfied with 
predicting x0 up to a small error then & finite number of observa-
tions in the past suffice. Examples of such systems include periodic 
systems such as the simple pendulum or quasi-periodic systems like 
billiards on a rectangular table with no obstacles. Geometric ex-
amples include the horocycle flow on a negatively curved manifold 
or the geodesic flow on an ellipsoid. 

At the other extreme are the systems that are completely nonpre-
dictable, where no nonconstant measurement on the system taken 
at discrete times (i.e., ntQ) is predictable. These are exactly the 
systems that have no factors of zero entropy. These systems are 
also called A'-systems and for obvious reasons systems with com-
pletely positive entropy. 

By a theorem due to Pinsker, Rohlin and Sinai [RoSi] these sys-
tems also have the following characterization: A process 
{xn}nEZ is completely nonpredictable if and only if, for any k, 
and e > 0, there is an N so that the distribution of {xx, x2, 
. . . , xk} conditioned on {xn: n < -N} is within e of the un-
conditioned distribution but for a set of measure < e of specific 
outcomes of {xn : n < -N}. Informally, any fixed number of 
observations {x{, . . . , xk) is approximately independent of the 
remote past (and remote future). A flow is K if and only if any 
measurement taken at discrete times is completely nonpredictable. 

Examples here are all the examples of Bernoulli flows that we 
have already discussed, but in addition there are non-Bernoulli 
examples, [O 7]. The first smooth example was given by Katok 
[Ka 1], and some rather natural smooth ones are discussed in 
Rudolph [Rud 7]. 

3.3. Extremal processes. We start by recalling the definition of 
Bernoulli shifts as those transformations that arise from indepen-
dent processes. ft is a Bernoulli flow if ft is a Bernoulli shift 
for some fn. There are various characterizations of Bernoulli 
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processes. The last one to be discovered was the property of 
extremality due originally to J.-P. Thouvenot and first used ex-
tensively by D. Rudolph in his work on extensions of Bernoulli 
shifts. Since this characterization works for infinite entropy flows 
as well as finite entropy discrete time actions, we describe it first. 
To begin with the simplest situation, consider a discrete process 
{xn} with values in the finite set A. We say that the process is 
extremal if the measure jun that it defines on «-names (i.e., An) 
cannot be divided up into a small number of pieces that are far 
away from nn in the d-metric. In formal terms we require that 
for any e > 0, there is some ô > 0 and Ne, and for all n > Ne 

if jun , the measure 4 on An defined by {xt} is decomposed as a 
convex combination 

i=\ 

of probability measures kt, then most (measured by ct) of the kt 

satisfy 

(*) d(/in , kt) < e . 

In more precise terms 

T,ci>l~€ 

iei 
where I consists of all those indices that satisfy (*). 

The basic fact is that independent processes are extremal in the 
sense just described. It is easiest to prove this fact using the notion 
of finitely determined (see §3.5 below). For flows and compact 
partitions one can use the very same definition for extremality: 

Definition. A process (ft, P) is extremal if given e > 0 there 
is some ô > 0 and T0, and for all T > T0 if /uT denotes the 
measure on P - T names and 

i=i 

is a convex decomposition of /uT into probability measures jut, 
then 

E c / > 1 " " c 

iei 
Here is how the stochastic process {xt} defines the measure 
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where iel if 
d(/it, fiT) < e . 

Recall that a process P is called a generator for the flow 
(X, 32, /u, ft) if the cr-algebra generated by P , V ^ / J P coin-
cides with c^ modulo yU-null sets. 

Theorem 3.3.1, If one generator o f a flow is extremal so are all 
processes defined by that flow, and the flow is Bernoulli {isomorphic 
to Bct for some constant c > 0, or to Bf°). 

If in our definition of extremal we restricted the convex com-
binations of measures ut to be those that come from partitioning 
X, we would get an equivalent definition. 

Extremality in the latter form is especially easy to interpret in 
terms of predictability. Suppose ft is a Bernoulli flow on a metric 
space M, and that we would like to predict, to within e , the T-
name (M - T-name) of a point (in M) that we can see with only 
finite precision. The finite precision device, through which we view 
our starting point, partitions M into a finite number of pieces and 
extremality says that if there are fewer than 2 T pieces, then with 
probability 1 - e we can say nothing about T-names if we ignore 
an average error less than e . Thus exponentially (in T) good 
precision tells us nothing about the T future if the exponential 
rate is too slow. This means that if it takes ô~l units of time 
to get one extra bit of information about the starting point and if 
ô~l is too large, then no prediction is possible. 

Note that the entropy gives the slowest rate for which it is pos-
sible to predict arbitrarily well. 

3.4. Very weak Bernoulli (VWB). For an independent process the 
distribution of {x{, ... , xn} conditioned on any past event A of 
the form 

A = {co:xi(œ)=Çi,i<0} 

is the same as the unconditioned distribution. You come to the 
definition of a very weak Bernoulli process by relaxing a little bit 
on this both in the set of 4̂'s and on the relationship of the un-
conditioned to the conditioned distribution. We are considering 
here finite-valued discrete times processes P and use the notation 
fiN for the measure on iV-names defined by the distribution of 

S~1PvS~Vv---vS~ iV/\ 
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We have switched to the notation of a measure space (X, £%, / / ) , 
a measure-preserving transformation S: X -+ X and a finite val-
ued partition P of I . The process (S, P) is said to be very 
weak Bernoulli (VWB) if, given e > 0, there exists NQ and for all 
N > NQ and all L the set of all atoms A of V°_LS~lP for which 

d{/N\A9ju^)<e 

has total measure greater than 1 - e . Here we are using [iP
N\A to 

denote the measure on P - A/-names obtained by conditioning on 
the atom A. 

The following basic result from the isomorphism theory of Ber-
noulli shifts provides a way that specific flows can be shown to be 
Bernoulli since this property is often verifiable [OW 3]. 

Theorem 3.4.1. (a) The process (S, P), P finite, is very weak 
Bernoulli (VWB) if and only if 

(x, V s ~ n p , n , s \ 

is a Bernoulli transformation. 
(b) If for some t0, and finite partitions Pt, P. { refines Pt, 

and together they generate under ft {i.e., U;(v!°oo/r"^) ^ ^e 

whole a-algebra) and (ft , P.) is VWB then ft is isomorphic to 
Bct for some c > 0, or B°°. Conversely if ft is isomorphic to 
Bct, c > 0, or B°° then for any fixed finite partition P, and any 
t0^0, (ftQ,P) is VWB. 

Here is a variant of this property where both L and fi are given 
infinite values. For C in a set of atoms of V0_ooT~nP that has 
full measure 

( oo oo \ 

\jT~nP\C,\jT~nP\ = 0 . 
Note that since the first distribution is not stationary, this doesn't 
imply that the processes are the same. The rf-distance in (*) 
should be interpreted as: for some joining between the conditional 
variables {x^}™ and {xn}™ we have 

1 N 
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This property may be compared with one of the characterizations 
of K processes that we gave in §3.2. Instead of saying there that 
{xx, . . . , xn} becomes independent of the remote past {xn : n < 
-N} , we could equally well say that a fixed time range {xn : N < 
n < N + k} in the distant future becomes independent of the past 
{xn : n < -1} . On the other hand, for VWB processes the past 
gives vanishingly little information (on average) of the long-term 
future. 

In terms of how knowledge of the past allows us to predict the 
future we get the following table (observations with finite precision 
at discrete time intervals). 

Class of flow 

0 entropy 
Positive entropy 
K 

Bernoulli 

Knowledge of past for a generating 
observation tells us 

Everything about the future 
Not everything about the future 
Arbitrarily little about fixed time in dis-

tant future 
Vanishingly little about long-term future 

3.5. Finitely determined processes (FD). One of the key concepts 
that emerged from the proof of the isomorphism theorem for 
Bernoulli processes is that of processes whose long-range behavior 
is fixed or determined in the ^-metric by their finite distribution 
and entropy. Thus, after fixing the short-range behavior (i.e., the 
distribution of some finite number of variables), the long-range 
behavior (i.e., the joint distribution of all the variables of the pro-
cess) is essentially described by a single real parameter—the en-
tropy. The concept makes sense only for finite entropy processes 
and flows and we restrict to that case throughout this section. 

We begin with a definition for finite-valued processes or parti-
tions in discrete time. 

Definition. A process (S, P) is finitely determined if given e > 0 
there is a ô > 0 and an N such that whenever (S, T) satisfies: 
close in finite distribution 

^distribution (VQ&P) , distribution (WQS~17)} < Ö 
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and close in entropy 

\h(S,P)-h(S,P)\<ô 

then 
d((S,P),(S,P))<e. 

Since for fixed N the space of distributions on VQS~1P is finite 
dimensional the specific metric d that is used is not important, 
one can, for example, use the /^norm between the probability 
vectors, or the d-metric. The basic observation is that independent 
processes are finitely determined. That is fairly easy to see using 
the fact that the only way for the entropy of a process to be close 
to its theoretical maximum (the entropy of the partition P itself) 
is for P to be nearly independent of vZl

NS~~lP • After this basic 
observation is made, one can go on to show that the FD property 
is preserved under factor maps and this gives some insight into 
how the concept is very useful. 

When working with flows or compact partitions it is best to use 
the a-entropy even though this definition of finitely determined 
becomes more cumbersome. This was given by Feldman. 

Definition. A process (ft, P) is finitely determined if given e > 0 
there is an y > 0 and functions T(fi), S(fi) (that depend both on 
y and the process) such that if (ft, P) is any process that satisfies 
for some_/? 

(i) hfft,P9fi)>h{ft,Pl-j, 
(ii) d( distribution v J w / r P , distribution V%lfi)ftP) < S(fi)9 

then _ 
*((ƒ,, 7 ) , (ƒ , , />))<€. 

The extra p is necessary since the closeness in distribution re-
quired in (ii) depends upon the level /? at which the test process 
has enough entropy. For T(fi) chosen well (i) and (ii) together 
will imply 

\h(?t979fi)-h{ft,P)\<y 
since one can easily give upper bounds for the entropy in terms of 
finite distributions. 

The above form of the definition is the one that is used in prov-
ing the main isomorphism theorems (the original proof involved a 
messy discretization of time). However, in applications it is con-
venient to have another version of the definition in which ordinary 
entropy rather than a-entropy appears. 
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Lemma 3.5.1. If (ft9 P) is finitely determined and P is a finite 
partition, then given e > 0, there is an y > 0, ô > 0, and T such 
that if (ft, P) is ergodic and satisfies 

(a) ^h(ftQ, 7) > A(y;, P) _ y / o r *om6> t0 e (± , 2) , 

(b) rf(distvj/^, distvJ/,/>) < ? , 

(*) d((ft,P)Aft,P))<£-

Note that h(ft , P) rç/ers to Âe entropy of the Z-action generated 

by ft , while h(ft, P) refers to the entropy of the R-action, ft, 
teR°. 

Here is the main theorem concerning FD and Bernoulli pro-
cesses. 

Theorem 3.5.1. (Bt, P) is FD for all P. If (ft, P) is FD for a 
generator P, then ft is isomorphic to Bct for some constant c. 

If S is Bernoulli (S, P) is FD for all P. If (S, P) is FD for 
a generator P then S is Bernoulli. 

In particular if a process is not Bernoulli then we can find finite 
approximations to it that remain a fixed distance away in d. A 
zero entropy process (S, P) cannot be finitely determined since 
the «-step Markov approximation (with a tiny bit of pure random-
ness thrown in) (Sn , Pn) are certainly close in finite distribution 
and in entropy but there is no nontrivial (nonindependent) match-
ing between {S 9 P) and (Sn,^n) so that the ^-distance between 
them is bounded away from zero. Let us take a closer look at rota-
tions of the circle. Any two rotations, Ra, Rp , are fixed distance 
apart in d no matter what partition we take. Thus in any neigh-
borhood of Ra in the topology of finite distributions (entropy is 
not an issue since they all have zero entropy) there are an uncount-
able number of processes, all of whose mutual distance in d are 
greater than some fixed ô > 0. This is another example of how 
our results are limited to chaotic systems. 

An immediate consequence of the FD property for Bernoulli 
flows is the following result which has no analogue in discrete time: 

Proposition 3.5.1. If ft is a Bernoulli flow and P is a fixed parti-
tion, then the mapping 

c~(fct,P) 

is continuous in the d-metric. 
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For non-Bernoulli flows this kind of continuity can fail dramat-
ically. For the simplest examples consider the Kronecker flows on 
a torus of any dimension (including 1). 

Remark. A result that is much stronger than Proposition 1 was 
given in §2.3. 

3.6. Isomorphism theorems. We begin by stating again the ba-
sic definitions. Two measure-preserving flows (X, 38, fi, ft), 
(X, 38, /Z, ft) are isomorphic if there is a measurable invertible 
mapping 0: X -+ ~X such that ju(d~l(B)) = Jl(B) for all B G I 
and 

ftoe = doft 

for all t. 
A partition P : X —> M is said to be a generator if the smallest 

sub- cr-algebra of 38 with respect to which all ft o P's are mea-
surable is all of 38 (modulo //-null sets). In general this sub-cr-
algebra is denoted by P*™, thus P is a generator means that 
38 = P*™. While the existence of finite generators for trans-
formations of finite entropy was a nontrivial achievement (first 
accomplished by W. Krieger [Kri]) it is easy to find compact gen-
erators. Indeed if X itself is compact, as is often the case, then 
P = identity is trivially a generator. 

Abstract processes (ft, P), (ft, P) are isomorphic if the flows 
(X, P+™ , ft), (X, P+_Z , ft) are isomorphic. 

Finally, let us repeat again the definitions of y-congruence. First 
of all two flows ft, ft defined on the same space M, are y-
congruent if they are isomorphic via a mapping 6: M —• M that 
satisfies 

//{x: rf(x, 0(x)) >y} < y , 

where d is a fixed metric on M. Thus y-congruence strengthens 
the notion of isomorphism by requiring that the correspondence 
giving the isomorphism be close to the identity in a strong geomet-
ric sense. 

To compare flows on different spaces from this point of view 
we need to fix partitions on these spaces with values in the same 
space (M, d). So flows 

(ft,X,P), (ft,X,P) 

25We will denote a flow simply by ft or by (X, ft), or by (X, 38 , ft). 
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with both P and P taking values in (M, d) are y-congruent 
relative to P and P if there is an isomorphism 

6:X^X 

between (ft, X) and (ft, ~X) such that 

ti{x:d(P(x),P(6(x)))>y}<y. 

Note that this notion depends on more than the abstract process 
(ft, P) since we require that 0 be an isomorphism even if P is 
not a generator. 

The first definition is a special case of the second when we take 
& = p = identity. Notice that if (ft,X, P) and (ft,X,P) 
are y-congruent for small y, then the processes (ft, X, P) and 
(ft, X, P) are close in of since the map 0 defines a joining be-
tween (ft, P) and (ƒ,, P ) . This joining is simply the fi measure 
lifted up to the graph {(x, 6(x)): x e X} in X x X, The fact 
that this measure projects onto /7 in the second coordinate is the 
fact that 6 o fi = Ji, 

When processes ( / , , P + ~ , P ) and ( ƒ , , ? ! £ , P) are 0-
congruent we will simply call them congruent. In the language of 
probability theory, congruent processes are identically distributed 
processes, We_make the following convention: When we write 
(ft, P) and (ft, P) are congruent or identically distributed, we 
will always refer to the process (ft, P ^ , P ) . y-congruence, how-
ever, refers to the entire cr-algebra, not just the one generated 
by P . We will also write d(P, P) < y as an abbreviation for 
fi{x:d(P(x),P(x))>y}<y. 

Recall that ft is defined to be a Bernoulli flow (of finite or infi-
nite entropy) if and only if ft is a Bernoulli shift for some fixed 
t0, A Bernoulli shift is defined as follows. Let Y be a measure 
space of total measure one. Let Y., -oo < / < oo, be copies 
of Y, Let X = n!°oo Yt with product measure (points in X are 
sequences with values in Y). The Bernoulli shift acts by shifting 
each of the above sequences. 

Here is the weak isomorphism (or imbedding) theorem for Ber-
noulli flows: 

Theorem 3.6.1. Let (X, ft) be a Bernoulli flow and P any parti-
tion defined on X. 
(a) Imbedding. If h(ft) > h(ft, P) then there is a partition P 
on H such that the processes (ft, P) and (ft, P) are identically 
distributed. 
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(b) Stability of imbedding. If h(ft) > h(ft, P) and there is a 
partition P on X satisfying 

d((?t,?),{ft,P))<a 

then for any e > 0 there is a partition P such that 

d(P,P) <a + c 

and (ft, P) and (ft, P) are identically distributed. 

The result in (b) of course is a strengthening of (a), which fol-
lows from (b) by beginning with any partition. It is also the more 
basic result since it gives a hint as to how the theorem is proved. 
What it shows is that any approximate imbedding, one which is 
not too distant from the goal, can be changed slightly so as to be-
come an exact imbedding. In all of the subsequent generalizations 
the same pattern persists—first one establishes an embedding the-
orem of the type that we just gave and then when both flows are 
Bernoulli and the entropies are equal one obtains isomorphisms. 
In the next theorem, part (a) is the basic isomorphism theorem 
for Bernoulli flows of equal entropy and it appeared first for finite 
entropy in [O 6]. Part (c) is a refinement which is often useful and 
says that isomorphisms are prevalent. Parts (b) and (d) deal with 
^-congruences and are new; we shall give their proofs in §5. 

Theorem 3.6.2. (a) Isomorphism theorem for flows. If (X, ft) and 
(X, ft) are Bernoulli flows of equal entropy, then they are isomor-
phic. 
(b) If (X, ft) and (X, ft) are Bernoulli flows of equal entropy 
and P, P are partitions that satisfy 

d((ft,P),(ft,P))<jQ, 

then (X, ft, P) is y-congruent to (X, ft, P). 
(c) Prevalence of isomorphisms. If (X, ft) is a Bernoulli flow and 
R is a full entropy partition (i.e., h(ft, R) = h(ft)), then for any 
ô > 0 there is some R satisfying 

(i) R is a generator, 
(ii) d(R,R)<S, 

(iii) the processes (ft, R) and (ft, R) are identically distributed. 
(d) If (X, ft, P) is a Bernoulli flow and y, rj > 0 are given, then 
there is a ô > 0 such that any Bernoulli flow (X,ft, 7) that 
satisfies 

(i) d({ft,P),(ft,7))<y/20, 
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(ü) \h{ft)-h{ft)\<ô 
is y-congruent to {X, fct, P) for some constant c that 
satisfies |1 - c\ < r\. (6(d) differs from (b) only in the case 
of finite entropy.) 

3.7. Factors, d-limits, and the relativized theory. The main struc-
tural theorem concerning Bernoulli processes is: 

Theorem 3.7.1. (a) Any f actor of a Bernoulli flow is a Bernoulli 
flow, where by a factor we mean the restriction of the flow to an 
invariant sub-a-algebra. 

(b) If 38n are a-algebras, 3§i c ^ ; . for j > i and \J&n = 
^oo and if ft restricted to each £%n is a Bernoulli flow, 
then ft restricted to 3%^ is a Bernoulli flow. 

(c) If {ft , P^) are Bernoulli processes that converge in d 
to {ft, P), then (ft, P) is also a Bernoulli process, {i.e., 
ft acting on the a-algebra generated by P is the Bernoulli 
flow). 

Especially useful is part (b) which reduces proving that a given 
flow is Bernoulli to obtaining the result for special partitions. 

The next most random processes after the independent pro-
cesses are the Markov chains. Already for discrete time and finite 
state space a Markov chain is not necessarily Bernoulli because it 
may be periodic. If it is not purely periodic then from the point 
of view of the general theory it has a simple structure: it is the 
direct product of a finite rotation and a Bernoulli process. The 
d-limits of such processes are fairly easy to describe; they are the 
direct products of a Bernoulli process and an inverse limit of finite 
rotations (see [RudSch]). 

The best way to think about an inverse limit of rotations is as 
follows. When a process has a periodic factor with period px, there 
is a definite shift invariant way to divide almost every realization 
of the process into consecutive blocks of size px. If in addition 
there is a periodic factor with period pxp2, then one can group 
these px -blocks into p2-groups in a definite way. Continuing in 
this fashion, a process has such an inverse limit of finite rotations 
as a factor if almost every realization of the process can be given 
a hierarchical nested block structure into px -blocks, pxp2-blocks, 
etc. If these blocks completely determine the realization, then the 
process itself is an inverse limit of rotations. 
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It is a general consequence of the disjointness theory of H. 
Furstenberg [Fu] that a zero entropy factor (in particular an in-
verse limit of rotations) and a Bernoulli factor are independent. 
What is not always the case for a given process is that one can find 
a Bernoulli factor that generates together with the zero entropy 
factor. One of the consequences of J.-P. Thouvenot's relative the-
ory is a concrete criterion for exactly when this happens. This 
criterion is what is linking the results mentioned above. Because 
of its importance we give the general formulation. We first give 
the formulation for discrete time. 

Definition of relative Bernoulli. A process ( ƒ, P) is said to be rel-
atively Bernoulli with respect to a factor $f , if there is a Bernoulli 
factor âS that is independent of stf and together with st gives 
the entire cr-algebra of the process. 

When sf is generated by a partition Q{sf = V ^ / ' g ) then 
we look for a partition R such that 

(i) all flR are independent, 
(ii) the a -algebras V ^ f R and V^fQ are independent, 
(iii) Q V R is a generator, i.e., 

OO QO 

~oo —oo 

For the notions of relatively VWB and relatively FD one mod-
ifies the usual definitions by conditioning on the cr-algebra sf . 
One can define these notions directly in terms of s# by means of 
the Rohlin representation of X as a measurable bundle of measure 
spaces over X\sf , the space of the factor. A more finite definition 
is possible if one fixes some generator Q of sf . We give the lat-
ter first. It is convenient to use the notion of a relative ^-metric. 
Given two spaces X, X and partitions Q, Q so that ( ƒ, Q) is 
congruent to (ƒ,£?)> we define for partitions P of X, P of X 

dQ,Q((f,P),(f,P)) 

aŝ the supremum of Pr{P ̂  7} taken over all joinings of (ƒ, PvQ), 
(7, 7vë ) that identify (ƒ, Q) with (ƒ ,0 ) - More formally there 
should be a space with partitions (P1,7 , Q') such that: 

(a) (f,P\Q')~(f,PvQ), 

(b) ( / , p ' v ö ' ) ~ ( 7 , ? V Ö ) , 
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dQ g ( ( / , P)(f9 P)) = supPr(P ^ P') where the supremum is 

taken over all (ƒ' ^ ' v P ' v ö ' ) satisfying (a) and (b). 
As usual, these things may be calculated by looking for such 

joinings of VQ f (P V Q), VQ f(JP V Q) for each n , and this gives 
the finite definition of the relative rf-metric. 

Definition. A process (ƒ, P) is FD relative to the factor sf = 
V ^ / ö if given e > 0 there is a 5 > 0 and an w, such that if 
( ƒ , P V Ô) is any ergodic process satisfying: 

(i) ( 7 , 0 ) - ( ƒ , £ ) , 
(2) |A( / ,PVO)-A( / ,?VÖ)I<^, 

(3) dQQ{{vn
i=0f\pve),v*=0 ƒ ' ( ? v Q ) ) < ; , 

then _ _ 

dQtQ«f,P),(f,P))<e. 

This notion was first introduced by J.-P. Thouvenot [Tho 1] 
who proved that these are exactly the processes that are relatively 
Bernoulli. This work was extended by A. Fieldsteel in [Fi 1] to 
flows with a definition that is exactly analogous. He also proved 
the analogue of the statement that if ƒ, is Bernoulli, then ƒ,, as 
a flow, is Bernoulli, and showed that if P is Bernoulli relative to 
a factor for one fixed time ft , then it is relatively Bernoulli as a 
flow. 

To check that specific examples are relatively Bernoulli it is con-
venient to have the analogue of relatively VWB. In practice one 
usually does this when conditioning on the entire fibers of the fac-
tor (as opposed to a finite condition). 

Definition. We say that ( ƒ , P) is VWB relative to sf if for any 
e > 0 there is some A 0̂, and for e—a.e. atom A of $f and for 

any L there is a set <§* of atoms of V°_LfnP of relative measure 
in A greater than 1 - e and then for all N > N0 

d{yN
or

nP\AnE, vjrnP\A) < e, E e r . 

Here too variants are possible where one supposes sf generated 
by Q and looks only at the conditioning on a finite portion of 

Although this notion is not found explicitly in Thouvenot's 
work, it is straightforward to see that it too is equivalent to rel-
atively FD and to being relatively Bernoulli. For flows, one uses 
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this to check that f is relatively Bernoulli and then applies Field-
steel's result as we have described above. 

A further result, based on these was obtained in [ShiTho], where 
it is shown that the class of processes that are Jthe direct products 
of zero entropy and Bernoulli is closed in the of-metric. These re-
sults form the background to what we have said about of-limits of 
Markov chains and d-limits of semi-Markov processes (see The-
orem 2.6.2 and [Pa, RudSch]). Finally we mention the striking 
result that any factor of a process that is Bernoulli x zero entropy 
is again of that form. This shows that the class of Bx zero en-
tropy processes has the same structural properties that the class 
of Bernoulli processes themselves possess. We will give here one 
result that we use to prove the results of §2. 

Theorem 3.7.2. Suppose that (X, 3S, ft) is Bernoulli or the direct 
product of a Bernoulli flow and a flow of zero entropy. Let P be 
a partition such that (ft, P) is Bernoulli. Given e, there is a P 
satisfying: 

(i) d(P,P)<6. 
(ii) (ft, P) and (ft, P) are identically distributed. 

(iii) there is an f ̂ invariant a-algebra srf, independent of 

V^ooff SUch that 

^v(v~00ftP) = ^. 

In case (ft, P) has full entropy then J / can be taken to be the 
zero entropy factor alone. 

4 . A SURVEY OF SOME SMOOTH CHAOTIC SYSTEMS 

4.1. Introduction. In this section we shall review the material 
from the theory of dynamical systems that forms the subject mat-
ter of our study. The material is quite standard and can be found 
in various places. See, for example, [Shu, Ma 1, Sm]. The ba-
sic problem can be quickly stated: Given a system of ordinary 
differential equations 

dx 
(*) -jj-=F(xx,...,xd)9 \<i<d 

analyze and describe the qualitative behavior of solution curves 
xt{t), especially as t —• oo. A more general version deals with a 
manifold M and a vector field X on the manifold and studies 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



70 D. S. ORNSTEIN AND B. WEISS 

the integral of the vector field, or what amounts to the same, the 
flow 

ft:M-+M 

which gives, as {ftx} the integral curve that passes through a given 
point x. Even in the rare instances that explicit solutions of (*) 
can be found, their asymptotic behavior still presents a problem, 
while for the most part, of course, one cannot even hope for ex-
plicit solutions. The problem originates in Newtonian mechanics 
with the differential equations (*) describing the motion in the 
dynamical system phase space. 

Perhaps the simplest nontrivial case is the 2-body problem 
which in suitable coordinates (taking the origin at the center of 
gravity) gives rise to the system 

dqt dpi cqi 
—L-p —r

L
- *~ Z = l , 2 , 3 . 

dt l dt \\q\\
2 

Here there are basically two types of motion: 
(1) the two bodies eventually separate and grow further and 

further apart as time goes on; 
(2) there is a periodic motion so that one returns again and 

again to the starting position exactly. 
The first represents the prototype of wandering where there is no 
recurrence at all, while the second represents the simplest type of 
recurrence, namely periodicity. As soon as one admits a third 
body to the problem, the situation changes dramatically. A new 
type of behavior occurs—recurrence without periodicity and re-
currence in a highly nonregular fashion. A similar thing happens 
when one passes from the simple pendulum that exhibits a qualita-
tively simple periodic behavior to a compound pendulum obtained 
by adding a bar at the end that is free to rotate in the plane of 
the motion. Here once again one observes experimentally highly 
nonregular behavior. 

One of the early attempts to organize the study of such irregular 
systems was via the notion of structural stability. This important 
idea was introduced in [AndP] motivated mainly by physical con-
siderations. These lead one to look for systems whose essential 
qualitative behavior doesn't change under small perturbations of 
the underlying differential equations. The perturbations are sup-
posed to reflect our imperfect knowledge of the precise equations 
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that govern a system. A flow {ft} is said to be structurally stable 
if for any { ƒ,} which is nearby in the C1 topology (on the vec-
tor fields defining the flow) there is a homeomorphism close to the 
identity of the phase space that carries orbits of ft to orbits of ft. 
Somewhat paradoxically, the phenomenon of structural stability is 
intimately connected with instability of individual orbits, in the 
sense that small changes in the initial position can lead to expo-
nential divergence for large time values. Almost periodic flows are 
not structurally stable since the rotation number can be changed 
by very small changes in the vector field. This can be seen very 
clearly already for the linear flows on the two-dimensional torus. 
There is a good historical survey of structural stability in [Ano 2]. 

While there has been little success so far in rigorously explain-
ing phenomena, such as the compound pendulum, a great deal of 
progress has been made in the analysis of model problems that 
exhibit some kind of hyperbolicity which seems to be the source of 
the highly irregular behavior of solution curves in examples like 
the compound pendulum. The archetypal model example is the 
geodesic flow on a manifold, which represents the motion of a free 
particle constrained to move on the surface. Here one sees highly 
irregular behavior when the surface has negative curvature and one 
has a good understanding of the asymptotic behavior through the 
work of many mathematicians such as Hadamard, Morse, Hed-
lund, Hopf, Sinai, and Anosov. ([Ano 1] contains a good account 
of this work.) Following a quick summary of this work we shall 
describe the successively more encompassing generalizations with 
weaker hyperbolicity assumptions: Anosov flows, axiom A flows, 
partially hyperbolic systems (such as billiards with convex obsta-
cles). 

A parallel story can be told concerning discrete time systems in 
which the iterates of a single transformation replaces the continu-
ous time flow. In this brief survey we shall alternate between the 
two cases usually choosing to focus on that case for which the story 
is more easily told. 

4.2. Geodesic flows. Fix some compact Riemann manifold M 
with a Riemannian metric and let X = T{M

d denote the unit 
tangent bundle, i.e., the bundle consisting of pairs (u, Ç), where 
u G M and Ç is an element of the tangent space at u that has 
length one (already the metric is being used). The geodesic flow 
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gt acts on X and maps («,£) to the point (ïï,{) as follows: 
Form the geodesic starting at u in the direction £, 
follow it to a distance t (if £ < 0 go backwards), 
the point that is reached is ü while { is the unit 
tangent to that geodesic at ü (in the direction away 
from u, of course). 

The geodesic flow preserves the natural Riemannian volume 
element of X which is taken to be the measure in any measure-
theoretic discussion of the geodesic flow. When the manifold has 
positive curvature, the sphere for example, then the motion tends 
to be periodic or quasi-periodic. We shall concern ourselves with 
the case of negative curvature. There the first phenomenon that 
one encounters is the instability of the motion in the sense that 
small changes in the starting point typically lead to large devia-
tions as time goes by. One can see this explicitly very clearly if 
M is a two-dimensional manifold with constant negative curva-
ture because then the covering space is simply the hyperbolic space 
and typically straight lines, even if they start out very close to one 
another, will diverge apart. 

There is, however, a compensating feature, namely for any fixed 
point (u0, £0) if u is near u0 then there are special directions Ç 
for which gt(u0,Z0) and gt{u9Ç) stay close to one another, and 
in fact for some fixed constant c the points 

get close to one another exponentially fast. In the classic case of 
constant negative curvature these points lie on a horocycle through 
(u0, £0). Let's define in general the stable and unstable sets for x 
in X: 

W\x) = {y: lim d(gtiy)9 gt(x)) = 0} 

Wu(x) = {y: lim d(gt(y), gt(x)) = 0}. 

For the geodesic flow it turned out that these sets have the struc-
ture of submanifolds that intersect transversally at x (and are also 
transversal to the flow direction), and that furthermore their tan-
gent spaces at x together with the vector field defining the flow 
span the tangent space at x. These foliations play a major role in 
proving the structural stability of the flows. The stable and unsta-
ble manifolds have an important geometric property—namely, it 
turns out that they are dense in the manifold. From the point of 
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view of the measure-theoretic properties of the geodesic flow the 
key property is that they form absolutely continuous foliations. To 
motivate this definition we first sketch Hopf s argument for the 
ergodicity of the geodesic flows on surfaces of variable negative 
curvature. 

For any fixed continuous function 0, BirkhofFs ergodic theorem 
implies that 

1 tx 

(*) lim 7 / <t>(gsx) ds = (j){x), 

where <p is the projection of 0 onto the set of invariant functions. 
To prove ergodicity is equivalent to showing that for every contin-
uous function <j> this projection 0 is a constant a.e. Since </> is 
continuous if y e Ws{x) then since gsx and gsy get closer and 
closer also d((j)(gsx), (f>{gsy)) —• 0 and then </>(x) = <f>(y). But 
the invariant functions for gs and g_s are the same; thus if 0 
represents the limit in (*) when t —> — oo we have </> = </> almost 
everywhere. We are thus in the following situation. We have two 
functions (p, 0 such that 

(a) for a.e. x, </>(x) = <f>(x), 
(b) 0 , 0 are both constant along orbits, 
(c) (f) is constant on stable manifolds, 
(d) </> is constant on unstable manifolds, 

and would like to conclude that <\> is constant. Without further 
information we cannot draw such a conclusion. In spite of the fact 
that the three parts—the flow direction and stable and unstable 
manifolds—locally span the whole space since we only know (a) 
for a.e. x we cannot conclude that (f> is locally a constant. 

Here is a schematic diagram of what may happen (we have elim-
inated the flow direction by projecting onto a plane—in reality the 
stable and unstable manifolds never form such a two-dimensional 
surface). The vertical curves represent the unstable foliation and 
the horizontal lines the stable foliation. A function 0 taking two 
values ± 1 is defined in such a way that it is constant on horizon-
tal lines and is +1 on the upper half of the strip and -1 on the 
lower half. 0 (Figure 3, see p. 74) will be constant on vertical 
curves and will almost equal (j>. 

Iterating this kind of picture again and again allows one to re-
place most by almost everywhere (a.e.). Essentially, absolute con-
tinuity eliminates this pathology requiring that the mapping be-
tween different leaves of the unstable foliation, given by mapping 
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FIGURE 3 

along the stable manifolds is absolutely continuous with respect 
to the Lebesgue measure on the leaves. This allows one to con-
clude that (j) and 4> are locally constant functions. A further 
argument of a topological nature is required to finish the proof. 
Here by other methods one shows that the flow had dense orbits— 
or what is the same, is topologically transitive. This latter means 
that for any nonempty open sets U, V there is some t0 such that 
gtunv?0. 

The above considerations apply to a wider class of flows and 
actually prove more than ergodicity. There is an alternative, de-
pending on whether or not the stable and unstable vector fields are 
jointly integrable. If yes, then there is a rotation factor for the flow 
and the following discussion is valid for the Poincaré map to any 
such leaf. If not, then one sees that measurably any set foliated by 
both stable and unstable leaves has measure zero or one. Then one 
proves that the flow is a A -̂flow as follows (for geodesic flows such 
as we have been considering it is known that the first alternative 
cannot arise ): For this one notices that for any smooth partition 
P of the partition An V °̂ fkt P is essentially Wu . The Pinsker-
Rohlin-Sinai theorem [Ro, Si] implies that measure-theoretically 
the following two cr-algebras are the same 

f l V gkt p = H V gkt p U P t0 sets °f measure zero • 

Thus a measurable function which is constant along leaves of Wu 

is almost surely constant along leaves of Ws and as we have just 
seen such functions must be constant. Wé use the P-R-S theorem 
once again to conclude that our flow is K. 

This argument, and extensions of it, represent the contributions 

For more details, see the discussion in §4.4 below. 
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made by Sinai and Anosov to the geodesic flows in the 1960s 
after the theory of entropy was developed. With the further 
advances made in the theory of Bernoulli processes we were able to 
show in fact the geodesic flow is isomorphic to the Bernoulli flow 
[OW 3]. We shall sketch later on how one carries this out for a 
discrete time analogue, namely a hyperbolic toral automorphism. 

4.3. Anosov flows. An Anosov flow is one that possesses a global 
hyperbolic structure similar to the one present in the geodesic flow. 
Here is the standard definition: 

A flow ft : M -» M is called Anosov if there is an /^-invariant 
decomposition of the tangent bundle TM into a Whitney sum 

TM = ES @EU@E, 

where E is the direction of the flow and Es, Eu satisfy 

\\Dft{u)\\ < Ce^\\u\\ ueE\ t>0, 
( * ) 

\\Df_t(v)\\<Ce-Àt\\v\\ veE\ t>0 

for constants C, X > 0 with || || representing the norm with 
respect to some Riemannian metric. As usual, Df represents 
the differential of the map ƒ . It is technically somewhat easier 
to analyze an Anosov diffeomorphism which is a diffeomorphism 
ƒ : M -> M such that TM decomposes into TM = Es ®EU and 
the analogue of (*) holds (replacing t by an integer and under-
standing fn to be the nXh iterate of ƒ ) . Note that the time one 
map of an Anosov flow is not an Anosov diffeomorphism because 
of the presence of the flow direction. One reduces Anosov flows 
to Anosov-like maps by considering the first return map to a codi-
mension one cross-section transversal to the flow. The simplest 
example of an Anosov diffeomorphism is a hyperbolic toral auto-
morphism, i.e., an algebraic automorphism of T none of whose 
eigenvalues has modulus one. We shall use these to illustrate the 
results about flows. 

The first important result is the integration of Es, Eu to obtain 
stable and unstable manifolds. 

There are foliations <£?s, %u of the manifold M which are in-
variant under ft and whose leaves are tangent to Es, Eu , respec-
tively. If the flow is C , k > 2 then each leaf is a submanifold 
with smoothness C . As C. Pugh has recently shown [Pu] one can-
not obtain such a result with merely C 1 , although Cl+a for some 
a > 0 does suffice. Furthermore there is a metric on the manifold 
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such that if x, y belong to the same leaf of %s 

d(ftx,fty)<e~Xt forallf >0 

and some fixed A > 0 and similarly for &" with ft replaced by 
f_t. A similar result holds for Anosov diffeomorphisms. When 
ƒ is a toral automorphism these foliations are simply the affine 
subspaces parallel to the two basic linear spaces Es, Eu which 
group together the eigenvectors corresponding to modulus strictly 
less than one and strictly greater than one, respectively. 

A straightforward consequence of this is the fundamental shad-
owing of pseudo-orbits. We'll describe this for diffeomorphisms. 

Definition. A sequence {x^^L^^ is an e-pseudo-orbit for ƒ 
(with respect to a fixed metric d) if 

d(fxn9xn+l)<e alltt. 

Theorem 4.3.1. If ƒ is an Anosov diffeomorphism there is some 
60 > 0 such that if {x^^ is an e-pseudo-orbit with e < e0 there 
is a unique point x such that 

d(fnlx, xn) < c(e) all n, 

where fn is defined by f = identity, fn±l = f±l o fn and c(e) 
tends to zero with e . 

It might be helpful to compare this purely topological theorem 
when the pseudo orbit is produced by a perturbation, with shadow-
ing that comes from a-congruence. Here all perturbed orbits have 
a shadow orbit that is close all of the time, a-congruence produces 
a shadow orbit for almost every perturbed orbit that is close most 
of the time. The shadowing orbits produced by a-congruence, 
however, are generic; i.e., they are typical in the sense that their 
statistics reflect the statistics of diffeomorphisms or flows (see §2.6) 
while the orbits in the above theorems need not be generic (in fact 
they will all be periodic if the pseudo-orbits arise from simulating 
by a finite state machine, i.e., a computer). 

In the case of continuous time there is an additional differ-
ence. In the topological case, the shadowing orbit may have to 
be reparametrized in a way that varies from point to point along 
the orbit while in the measure-theoretic case we only have to 
reparametrize by a constant rescaling of time (which is the same 
for all orbits). 
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Here is a sketch of a proof of this shadowing theorem due to C. 
Conley [C]. One considers squares fibered by the stable and unsta-
ble manifolds, say take a piece of the unstable manifold through 
x, &" , and then through every y in that piece consider a small 
piece of %?*. When ƒ is applied to such a rectangle, one direction 
is stretched and the other is contracted, so that one gets a picture 
like 

(a) 

(b) 

FIGURE 4 

The point is that such a rectangle moves completely through an 
ordinary shaped rectangle centered at f(x). 

The e-pseudo-orbit defines an infinite sequence of rectangles, 
each of which is mapped to the next as just described, and then 
one obtains a continuum joining the top and bottom of the first 
rectangle that maps into all of the rectangles. This proves a one-
sided version of the shadowing theorem. Then reversing time one 
gets a continuum going across the other direction and their inter-
section point is the desired x . 

Now for structural stability one can proceed as follows. First 
we get a result of P. Walters [Wa] about topological stability in the 
sense that if g is C° close to ƒ then there is a continuous map 
h such that 

f oh = hog. 

For this notice that a true g-orbit is an e-pseudo-orbit for ƒ if 
g is sufficiently close to ƒ . Define h(x) to be the unique point 
whose true orbit follows closely upon the g-orbit of x. Then one 
works a little to see that h is continuous and onto. If g is C1 

close to ƒ then one first proves that g is also Anosov and that 
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the C(e) can be chosen uniformly in a neighborhood of ƒ , then 
reversing the argument one sees that each is a factor of the other 
and finally that they are actually topologically conjugate. 

The ergodic theory of these difFeomorphisms or flows is under-
stood best when ƒ or ft preserves a smooth measure. Anosov 
and Sinai showed [AnoSi] that they were AT-automorphisms and 
later on, with the development of the Bernoulli theory, they were 
shown to be Bernoulli [Az, Bun, Rat]. These results depend upon 
the measure-theoretic properties of the foliations &s, %u that we 
discussed in the previous section (absolute continuity). When ƒ 
or ft doesn't preserve a smooth measure there are several natural 
measures that present themselves for consideration. There is the 
measure of maximal entropy (which Bowen showed was unique, in 
general) and the measures defined by the natural geometric mea-
sures associated with the foliations %?s, <ê?u . These latter are the 
SBR measures which we discuss below. 

For difFeomorphisms these issues are best studied via the sym-
bolic dynamics for the Anosov difFeomorphisms. This beautiful 
subject that goes back to the work of Hadamard and Morse be-
came a very powerful tool for the analysis of hyperbolic systems. 
The key idea is that of a Markov partition, first used for classi-
fying automorphism of the 2-torus in [AdW 1, AdW 2] and then 
extended by Ya. G. Sinai [Si 5] and R. Bowen [B 1]. A discussion 
of these ideas would take us too far afield and so we return to the 
dynamics and take up the next generalization: axiom A flows. 

The main ideas and results of this section are due to Smale [Sm]. 

4.4. Axiom A flows. If {ft} is a flow on a manifold M the 
nonwandering set Q is defined by 

Q = 

[ x e M: for every neighborhood U of x, there are) 
arbitrarily large positive f s such that 
unft(U)*0 

Basically axiom A flows are those with hyperbolic structure on Q. 
The point is that only on Q, are there any interesting long-range 
dynamics and so that is where the hyperbolic structure is needed 
to recover results like those obtained for Anosov flows. Define in 
general a hyperbolic structure on an ft -invariant set A to be a 
continuous /^-invariant splitting of the tangent bundle TA(M) = 
Es + Eu + E where E is the one-dimensional tangent bundle to 
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the flow and there are constants C , A > 0 so that 

(i) \\Dft(v)\\ < Ce-Xt\\v\\ forveEs,t>0, 

(ii) \\Dft{u)\\ < Ce~kt\\u\\ forueEu,t<0. 

Definition. The flow ft is an axiom A flow if Q = A u F where 
1. F is the set of fixed points of the flow each of which is 

hyperbolic, (in particular F is finite). 
2. A is the closure of the nontrivial periodic orbits of ft and 

carries a hyperbolic structure. 
3. A and F are disjoint. 

The reason for the separation between F and the rest of Q is 
that the only way a point x in F can be hyperbolic is for the sum 

diml?* + dim J?" 

to equal the dimension of the manifold, since there is no flow 
direction at a fixed point, and this can't mesh continuously with 
Es, Eu that satisfy 

dim Es + dim Eu = dim M - 1. 

Anosov flows are axiom A flows. The nonwandering set is the 
whole manifold and there are no fixed points so the one thing to 
check is that periodic orbits are dense and indeed a variant of the 
argument that shows that e-pseudo-orbits are tracked by orbits 
does just that. 

For the axiom A case one establishes the existence of stable 
and unstable foliations integrating Es and Eu except that now 
these manifolds extend beyond Q, and so the theory becomes 
much more technical. The main result here can be formulated as 
follows: 

Theorem 4.4.1. If ft is an axiom A flow then for each point i e Q 
we have injectively immersed manifolds Wu(x), Ws(x) tangent to 
E", Es

x> respectively. They are characterized by the property 

s —kt 

W (x) = {y : for some c, A > 0, d(ftx, fty) <ce , t > 0} 

Wu{x) - {y : for some c, A > 0, d(f_tx, f_ty) < ce~ l, t > 0}. 
Two leaves Wu(x), Wu{y) either coincide or are disjoint. The 
families Wu = {Wu(x): x e ft}, Ws = {W\x): x e Q} are 
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invariant under ft, the leaves are as smooth as is the vector field 
that defines the flow and vary continuously with x. 

For this formulation compare [PuShu]. We reiterate the point 
that these Wu , Ws's extend in general beyond Q which might in 
fact have the structure of a Cantor set crossed with R. 

Next using this result one goes on to establish that Q decom-
poses into a finite number of components Q = Q0 U Q,{ U... U Q,m , 
on each of which ft is topological^ transitive. This means that 
most orbits (in the sense of: with the exception of a set of the 
first category) are dense. In terms of these components one can 
formulate the no cycle condition. A cycle is a finite chain 

Qt ,Qt , . . . , Q , =ai , 
'o M lk l0 

where for each 0 < j < k the /,'s are distinct and we have that 
— J

 J 

there is a point x e M whose a-limit set lies in fi and whose 
j 

co-limit set lies in Slr+l. Recall that the a-limit set of x is the set 
of limit points of ftx as t —• -oo and the co-limit set of x is the 
set of points of ftx as t —• +00. The orbit through x provides a 
kind of transition between Q. and Q.: , . The flow satisfies the 

j j 

no cycle condition if there are no cycles with k > 2. 
The form that the structural stability theorem takes here is the 

following: 
Theorem 4.4.2. An axiom A flow ft with the no cycle condition 
is Q-stable in the sense that for any flow ft sufficiently close to it 
in the C1 topology there is a homeomorphism of Q into Q, the 
nonwandering set for ft, that maps directed trajectories for ft to 
directed trajectories for ft. 

It follows in particular that the perturbed flow ft is also ax-
iom A. In the decomposition above, the sets £2/ are called basic 
hyperbolic sets. They have the property that there is an open set 
Ut D £l( such that ÇI. = f]teR ft ^ • ^ special case of these ba-
sic sets is formed by those where for some open neighborhood 
Ut and tQ9 for all t > tQ9 ft(Ut) c Ur It then follows that 
Qi = n,>o fSVd ' a n d s u c h systems are called axiom A attractors. 
One can prove that for a C axiom A flow these basins of attrac-
tion with those of point attractors, cover the manifold up to a set 
of Lebesgue measure zero. For these attractors a special measure 
is singled out by the following theorem. Denote by W the basin 
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of the attractor Q which is the union of the stable manifolds of 
points in Q. Thus W consists of all the points x that are asymp-
totic to some point y e Q, in the sense that d(ftx, fty) -> 0 as 
t —• +00. Let m denote the volume measure on the manifold. 

Theorem 4.4.3. There is a probability measure JU , invariant under 
ft, such that for m-a.e. x e W, the basin of attraction of Q, we 
have (m = Lebesgue measure) 

(*) lim -= ƒ (f>(ftx)dt= o du 

for all continuous functions (j>. 

The main point here is that for most points in W the orbit 
behaves in a statistically regular way. The attractor, which typically 
has measure zero and cannot be seen precisely, is what governs this 
regularity through the mediation of the invariant measure /u ; i.e., 
the dynamics on the attractor govern the long-term behavior of all 
points near the attractor. (The orbit of a.e. point in W is forward 
asymptotic to the orbit of a generic point on the attractor. Generic 
means that the time average of any continuous function converges 
along the orbit to its integral.)27 Conversely the points of the large 
set W—which always contains an open set—can be used to get 
good information about the hidden attractor. 

For the nature of the flow ft on the attractor with this spe-
cial measure (which we shall refer to as the Sinai-Bowen-Ruelle 
measure, cf. [Si 6, BRue]) we first have to discuss the basic di-
chotomy for flows and it's best to begin with Anosov flows (a 
special case of an axiom A attractor). A simple example will 
illustrate the possibilities. Take an Anosov diffeomorphism ƒ of 
a compact manifold M. Consider the constant time suspension 
flow of ƒ defined as follows. First take M x [0, 1] and iden-
tify points (x, 1) with (ƒ(*), 0). Then flow along the vertical 
fibers, i.e., ft(x, r) = (JC , r + t). Where r + t is greater than 1, 
one reduces using the identification just made. This flow is never 
mixing because one has eigenfunctions. Indeed if one collapses 
M to a point then our flow is just the periodic flow around the 
circle. Nonetheless the flow is seen to be an Anosov flow. Thus 
Anosov flows need not be mixing and a fortiori need not be K 
or Bernoulli. However, in this example, after one accounts for 

27 

Thus the long-term behavior of certain dissipative systems is governed by a 
finite invariant measure. 
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the periodic behavior, the resulting transformation is Anosov and 
one has a well-understood ergodic behavior. In general, this is es-
sentially the only way that an Anosov flow can fail to have good 
mixing properties. To formulate the next theorem, due to J. Plante 
[PI] (an earlier version is due to Anosov who uses a smooth invari-
ant measure), recall that strongly stable and strongly unstable 
foliations %ss, %uu are the ones that integrate the strictly sta-
ble and strictly unstable directions. 

Dichotomy Theorem. If ft is an Anosovflow of a compact manifold 
M such that there are no wandering points then either 

(I) Each strongly stable and strongly unstable manifold is dense 
in M, or 

(II) ft is the suspension {constant time) of an Anosov diffeomor-
phism of a compact C1 submanifold of codimension one 
in M. 

In [B 1], R. Bowen proves an analogous dichotomy theorem for 
axiom A flows. The resulting structure in the case that leaves are 
not dense is not quite as smooth as in the above and one gets on the 
cross section not an axiom A diffeomorphism but a homeomor-
phism that behaves qualitatively like an axiom A diffeomorphism 
(i.e., the global, integrated versions of the properties hold). For 
case (I), the symbolic dynamics of the SBR measure enable one to 
establish that the flows are K and even Bernoulli (cf. Bunimovich 
[Bun] and M. Ratner [Rat]). In case (II) the flow is measure-
theoretically a Bernoulli times a pure rotation. 

The cases (I) and (II) also correspond to the weakest kind of 
mixing—namely topological mixing. That is to say that case (I) 
holds if and only if the flow is topologically mixing. It then turns 
out that this implies the strongest kind of measure-theoretic 
mixing. 

4.5. Partially hyperbolic systems and billiards. The next class of 
flows for which a good analogue of much of the theory above can 
be still established consists of those flows for which one has some 
hyperbolicity but it is not uniform and it expresses itself in the 
long-range behavior. Here one finds such simple physical systems 
as billiards with convex scatterers that can model the hard sphere 
gas, geodesic flows on manifolds with some positive curvature, and 
so on. The most basic idea here is that of Lyapunov exponents 
and the theorem of Oseledec and we proceed to explain that next, 
beginning with the case of diffeomorphisms. 
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An important feature of a diffeomorphism f: M -> M is that 
one can linearize in an infinitesimally small neighborhood of any 
point. Doing this to fn and applying the chain rule we get 

(*) Dfn(xQ) = {Df){xn_{) • Df(xn_2) • • • Df{xQ), 

where xt = fl(x0) and Df(x) is of course a linear mapping from 
TXM to Tj-^M. This expression is a multiplicative analogue of 
a sum g(x0) + g(x{ ) H h <?(*„_ j ) which forms the matter of the 
classical ergodic theorems and the multiplicative ergodic theorem 
of Oseledec is a general kind of limit theorem for expressions such 
as (*). The general setup is as follows. A finite measure-preserving 
transformation T: X —• X is given and a vector space Vx of fixed 
dimension is attached measurably to each x e X. Finally one is 
given a linear transformation A(x) at each x e X mapping Vx 

to VTx . By fixing bases in a measurable way one can think of the 
A(x)'s as being matrices. Define 

An(x) = A{Tn~lx)A(Tn~2x) • • • A(Tx)A{x). 

To simplify the formulation we assume that T is ergodic, in the 
general case the various constants appearing below become general 
functions that are invariant under T. 

Theorem 4.5.1. [Os, Rag] If (X, 38, //, T) is an ergodic measure-
preserving transformation and A{x) a d x d matrix-valued mea-
surable function such that log(||^(x)||) is integrable then there are 
constants kx < X2 < •• • < kt and subspaces 0 = V0 c Vx{x) c 
V2(x) c • • • c J/.jC*) C V[ = R that depend measurably on x 
such that for a. e. x : 

(i) ^(*)^.(x) = ^ ( r * ) , i < i < e , 
WforveViix^V^ix) 

(*) lim -log\\A(Tn~lx)A{Tn~2x)---A{x)v\\=L. 

The Af. are called the Lyapunov exponents, they describe the possi-
ble exponential growth rates of vectors under An(x). Their mul-
tiplicity is dim^. - d im^._j . In case A~l(x) also satisfies the 
integrability assumption and T is invertible then one can replace 
the lattice of subspaces V{ by eigenspaces At(x) such that 

R^ = AJ(JC) e A2(x) e • • • e Ae(x), 

i4(jc)A,.(jc) = A.(rx) and for v e At(x) \ {0}, (*) holds. 
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The basic application of the theorem is to a diffeomorphism ƒ 
on a manifold M. The vector space associated to a point x is the 
tangent space to M a t x , TXM, and the linear map A(x) is the 
differential f(x). For each invariant measure the multiplicative 
ergodic theorem applies and gives a set of full measure for which 
exponents exist. Asymptotic hyperbolicity expresses itself in the 
condition that all Lyapunov exponents differ from zero. In that 
case Ya. Pesin [Pe] showed that much of the theory of axiom A 
systems carries over. He treats the case when a smooth measure, 
i.e., absolutely continuous with respect to the volume element, is 
preserved and develops a theory of locally stable manifolds which 
form measurable functions rather than smooth ones, but are still 
absolutely continuous. These in turn are used to establish the basic 
ergodicity properties. The main results are: 

(I) The diffeomorphism has at most a countable number of er-
godic components (after ignoring an invariant set of mea-
sure 0). 

(II) On each ergodic component some iterate of the diffeomor-
phism is Bernoulli. 

For flows ft the results are quite similar, the exponents now 
capture the possible values of 

limsup-log||âfA||, 

where v is in the tangent space to the manifold. In the proofs 
of these results an important role is played by the entropy formula 
which computes the entropy of the system in terms of the expo-
nents: 

*(/) = - f E W<M*) . 

Here we must take account of the multiplicity and repeat each X. 
according to the dimension of the associated eigenspaces. 

It follows that if a diffeomorphism of a two-dimensional man-
ifold has positive entropy, then at least one exponent is positive. 
Then the fact that the diffeomorphism preserves a smooth measure 
shows that the other exponent must be negative and so the theory 
applies and this is how the general result concerning positive en-
tropy diffeomorphisms of 2-manifolds is obtained. For flows there 
is always one neutral direction, and the theory applies when all 
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exponents not in the flow direction are different from zero. This 
gives the result for positive entropy flows on 3-manifolds. 

Even before this theory, Anosov and Sinai [AnoSi] succeeded 
in extending the analysis to some physical systems that were not 
completely smooth. The archetypal example was the two-dimen-
sional billiards with a convex scatterer. The inherent hyperbolicity 
enabled them to construct stable and unstable manifolds, establish 
absolute continuity, and prove the K property for these systems. 
Then in [GO] the Bernoulli property was established and some 
perturbation results of [E] enable us to extend some of our results 
to such systems. 

In [KatoStr] the theories of Pesin and nonsmooth systems are 
combined to obtain quite general results for partially hyperbolic 
nonsmooth systems. There is much room here for further work. 

An important difference between the Pesin or billiard foliations, 
and those of axiom A, is that their lack of uniformity destroys the 
proofs of e-shadowing and structural stability. It is hoped that 
much of this gap will be filled by statistical stability. 

4.6 Proving that smooth systems are Bernoulli. The first example 
of a Bernoulli flow was given in [O 5]. This was the flow built on 
an independent process on two equiprobable symbols with a height 
function taking constant values on the two sets of the basic parti-
tion. The first smooth flow that was shown to be Bernoulli was the 
geodesic flow on a two-dimensional manifold with negative curva-
ture [OW 3]. The method developed in that paper forms the basis 
for almost all of the subsequent proofs that smooth or otherwise 
physically defined systems (such as billiards) are Bernoulli. 

The situation that appeared there, and indeed the most fre-
quently occurring one in which we can prove that a system is 
Bernoulli is that of hyperbolicity (i.e., if Es

x, Eu
x represent the 

asymptotically contracting and expanding directions at x, then 
for a set of full measure dimEs

x + dim is" = dim manifold for 
diffeomorphisms) d i m ^ - h d i m ^ - f l = dim manifold for flows. 
In most cases where this happens we can prove: 

(A) 

(1) A countable number of ergodic components exhaust the 
given invariant measure; 

(2) On each such component the flow is either Bernoulli or a 
Bernoulli flow times a pure rotation (finite periodic trans-
formation for diffeomorphisms). 
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Once (A) has been established, further special arguments are 
needed to establish ergodicity. This has been carried out in some 
special cases like the geodesic flow on a negatively curved manifold, 
certain billiards with convex scatterers, axiom A attractors, and 
others. In these cases it also turns out that in the alternative in 
(2) above the rotation part does not occur so that these flows are 
indeed Bernoulli. 

Here is a precise condition that implies (A). Denote by I?5, &u 

foliations that integrate Es and Eu ; the leaves of these need not 
be complete manifolds, but there are enough of them so that a set 
of full measure can be covered by hyperbolic blocks. For a single 
transformation, a hyperbolic block is obtained from a bundle B of 
parts of leaves from %s and another such bundle C from %u, 
such that each contracting piece intersects each expanding piece 
in exactly one point. The hyperbolic block is the set of all these 
intersection points, and thus has the abstract structure of a product 
space. 

(HB) 

(a) A set of full measure can be covered by a countable number 
of hyperbolic blocks; 

(b) In each of which the invariant measure JJL is equivalent to 
a product measure. 

For flows we define a transverse hyperbolic block by requiring 
that bundles B and C from I?5 and %u, when projected by 
the flow onto a manifold transverse to the flow, form a hyperbolic 
block in the previous sense. (We define a hyperbolic block to be a 
transverse hyperbolic block thickened by the flow.) 

(HB) 

(a) There are a countable number of transverse hyperbolic 
blocks that sweep out a set of full measure under the flow. 

(b) On each transverse hyperbolic block, the transverse invari-
ant measure is equivalent to a product measure (transverse 
measure is defined by thickening the transverse manifold 
in the flow direction). 

(c) If O is an open subset of a manifold transverse to B 
(or C) , then the part of B (or C) that intersects O is 
measurable. 

In the following we assume that the invariant measure is separable 
and that continuous functions are dense in L{. The only property 
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of the leaves of Ws (and &u) that we need once we have (HB) is 
that they contrast under ft(f_t). 

Theorem. The condition (HB) implies (A). 

It is worth pointing out that once (HB) has been established, 
then the smoothness of the flow is no longer needed to prove the 
theorem. Thus the nonsmooth systems such as billiards or bounc-
ing balls are covered by this format. 

In the literature one does not usually see (HB) (b) proven ex-
plicitly; however, it can be established given the conditions: 

(i) In the disintegration of the invariant measure // along the 
leaves of &u , the conditional measures are absolutely con-
tinuous with respect to Lebesgue measure on these leaves; 

(ii) The foliations &u and &s are absolutely continuous. 
If the invariant measure is smooth, then (ii) alone suffices since it 
implies (i) in that case. 

(iii) Fix one leaf in a hyperbolic block, and let O be an open 
subset of this leaf. Then the collection of leaves (from the 
other bundle) that intersect O is measurable. 

This formulation is new, and a detailed proof will appear in a 
later publication of ours. We give here an outline of the proof of 
the theorem. 

The proof of (A)(1) follows the outline sketched above in 4.2. 
The assumption that // is equivalent to produce measure on a 
hyperbolic block shows that if the invariant set has positive inter-
section with a hyperbolic block, then it completely fills it whence 
the fact that the invariant a -algebra is atomic and hence a count-
able number of ergodic components exhaust the measure. 

For the next step we want to investigate the Pinsker algebra— 
or algebra of zero entropy factors for the flow. It may not be 
easy to establish the existence of a smooth generating partition; 
but, nonetheless, there are smooth partitions Pn such that (J Pn 

generates and using the fact that the full Pinsker algebra can be 
approximated by the Pinsker algebras of the factors defined by 
the Pn's one sees that sets in the Pinsker algebra contain entire 
leaves of ê?u and ê?s (up to ^-measure zero of a set of leaves 
and conditional measures on leaves). We now want to show that 
the flow on the factor defined by the Pinsker algebra contains a 
single orbit (having fixed one ergodic component that gave positive 
measure to some hyperbolic block). For any fixed hyperbolic block 
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B we take some T0 sufficiently large and then verify that if u is 
a subset of the Pinsker algebra whose intersection with B has 
positive measure , then Ui/i<r f^u) ^ s a^ °f ^ e block B . It is 
easy to see that this implies that ft restricted to the Pinsker algebra 
consists of a single orbit. If the orbit is a point, then the flow is 
a AT-flow, otherwise it is the flow built under a constant function 
over a measurable cross section. This cross section is completely 
fibered by ^s and ^u . 

Next we have to show that the Â -flow is Bernoulli. For this we 
use the method of our paper [OW 3]. The new observation is that 
when \x is equivalent to the product measure its Radon-Nikodym 
derivative with respect to product measure on a fixed hyperblock is 
measurable and therefore locally almost constant. If we restrict to 
small hyperbolic blocks, we get that the R-N derivative is constant 
but for a set of small measure; and, therefore, the map along leaves 
of ê?s+{ between leaves of l?M is close to measure-preserving for 
most pairs of leaves. 

It is not easy in general to get a nice disjoint covering of the 
space by such hyperbolic blocks. We get around this difficulty 
by looking at fn(B) for many n's and one fixed good hyperbolic 
block of the type that we just described. The ergodic theorem says 
that for N large these {fn{B) : 0 < n < N} form an almost even 
covering of the space, and we use this almost even covering to map 
fixed past atoms along leaves of J?5+1 onto the whole space. When 
this is done in an almost measure-preserving way, this construction 
verifies the VWB condition for a fixed smooth partition. For a 
smooth partition nearby points on the same leaf of g?s+l will have 
almost the same future name, and this gives the closeness in d of 
the future conditioned on the past with the unconditional future. 
The ASproperty is used in an essential way in this argument to 
see that most past atoms are well distributed among the mapping 
boxes. 

When the flow is not K, first we see that the Poincaré map on 
the measurable cross section is K. This is done by extending the 
cross section by ft, 0 < / < t0 with t0 small. Then an argument 
similar to the one above for maps rather than flows shows that 
the Poincaré map is a Bernoulli shift, and it follows then that the 
whole flow is a Bernoulli flow times a pure rotation. 

For some specific systems, other methods have been used. Even 
before the isomorphism theory of Bernoulli shifts, Markov 
partitions were introduced in [AdW 1,2] and used there to classify 
automorphisms of the 2-torus by special finite state Markov shifts 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 89 

which were further classified via methods of symbolic dynamics by 
their entropy. Later Azencott [Az] used these Markov partitions to 
verify the VWB condition and prove Bernoulliness. For nonhyper-
bolic toral automorphisms VWB was verified using some diophan-
tine estimates [Katz]. In some constructions of smooth systems 
the Bernoulli property is obtained by using an additional ingredi-
ent from the abstract theory—namely the result of Rudolph [Rud 
4] that mixing compact extensions of Bernoulli flows are Bernoulli, 
see [BrFeKato]. 

We should point out that the method for verifying the K-
property is due to Sinai and predates the Bernoulli theory. The 
importance of strengthening K to Bernoulli is that at the level of 
abstraction of isomorphism the Bernoulli property is definitive— 
there is only one Bernoulli flow. 

A large collection of systems that have been shown to be Ber-
noulli (or K) can be found in [Si 7]. 

4.7 Smooth models for abstract systems. The most important 
question on the interface between smooth dynamics and abstract 
ergodic theory is what properties, if any, are forced upon a dynam-
ical system in virtue of its coming from a smooth flow or trans-
formation. There is one basic restriction that comes from the fact 
that the manifold is finite dimensional and that is the finiteness of 
the entropy. Are there any further restrictions? If one admits non-
smooth invariant measures, then the Smale horseshoes show that 
one has all processes that can be represented on a finite shift space 
and then since every finite entropy process has a finite generator 
[Kri] we get all finite entropy processes. The way in which these 
sit on the manifold makes it clear that we should not be consider-
ing these as smooth systems and so henceforth we shall restrict to 
smooth invariant measures. 

Next it is worthwhile observing that without compactness the 
problem becomes much easier. Here it was shown in [ArOW] that 
any ergodic flow has a model as a C°°-flow preserving a smooth 
measure on a two-dimensional manifold that is of course not com-
pact. Having focused the problem the results become much more 
scarce. It has been shown that on all compact manifolds there 

28 

are smooth Bernoulli diffeomorphisms (cf. [BrFeKato]) . In the 
28 

Related results are: Any compact closed manifold of dimension 2 or 3 has a 
C°° Riemannian metric whose geodesic flow is Bernoulli [Ka 2]. Any compact real 
analytic surface has a real analytic metric whose geodesic flow is Bernoulli [BurGe]. 
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other direction, there are some non-Bernoulli A^-automorphisms 
that have been given smooth representations [Ka 1, Rud 7] but no 
essential progress has been made on the general question. 

It is worth pointing out that for a pair of commuting transfor-
mations entropy provides further restrictions. Here we are really 
thinking about a Z2-action rather than a Z-action and again ask 
when does an abstract Z2-action have a smooth realization. This 
means a pair of commuting diffeomorphisms preserving a smooth 
measure such that the Z2-action defined by fkgl is isomorphic 
to the given Z -action. It was pointed out by M. Herman that 
for a pair of commuting transformations of that type the entropy 
inequality 

h(fg)<h(f) + h{g) 

is a consequence of the Pesin theory. Since there are finite entropy 
examples of abstract commuting transformations for which the 
inequality is false (cf. the discussion in [OW 1, Appendix A(b)]), 
one sees a further restriction arising from the entropy theory. 

In low-dimensional manifolds smooth actions have special prop-
erties. In dimension one, homeomorphisms cannot have very com-
plicated dynamics, and essentially one gets either trivial dynamics 
or things like circle rotations. In dimension two, homeomorphisms 
can be quite general but difFeomorphisms are limited. In particular 
if a diffeomorphism of a compact two-dimensional manifold pre-
serves a smooth invariant measure then (by Pesin) on every ergodic 
component of positive entropy it must be Bernoulli times a finite 
rotation. Similarly if ft is a smooth flow on a three-dimensional 
compact manifold preserving a smooth invariant measure, then on 
every ergodic component of positive entropy ft is Bernoulli times 
a rotation. 

5. PROOFS OF THE NEW RESULTS 

5.1. Proofs for strong stochastic stability (§2.1). Theorem 2.1.1 is 
a special case of Theorem 2.1.3 once one observes that a geodesic 
flow on a manifold of negative curvature is an Anosov flow in 
which the expanding and contracting foliations are not jointly in-
tegrate. This may be found in [Ano 1]. 

Theorem 2.1.3. A C2 axiom A attractor is SSS if and only if it 
1 9 

is not the C limit of C suspensions. 
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According to Proposition 5.4 of [BRue], if the perturbation J 
converges to ft in the C1 topology. 

( 1 ) The SBR measures fi of ft converge weakly to the SBR 
measure JU of ƒ . 

(2) h(ft, fi) converges to h{ft, n). 
According to [Rat] the flow ( ft, fi) is Bernoulli. By the stability 

of axiom A attractors, {ft, fi) is again an axiom A attractor, of 
course, and (ft, fi) is also Bernoulli. Letting P be a partition of 
the manifold into sets of small diameter, P will generate under 
both fx and fx (this follows from the local product structure and 
structural stability). Relation (1) will imply that for any T 

(
T T \ 

dist\JftP9 dist\lftP) - 0 
0 0 / 

as the perturbation ft tends to ft. Together with (2) we,get from 
the version of FD given by the Lemma following the definition of 
FD that the processes converge in d. Now the Theorem follows 
from Theorem 3.6.2(d). D 

The proof of Theorem 2.1.2 follows along the same lines. The 
fact that the entropy of the perturbed billiards is close to the orig-
inal entropy was established by K. Eloranta [E]. He also showed 
that for a fine enough partition (even though it may not generate 
now with respect to ft for fixed t0) its entropy varies continu-
ously with respect to the perturbation. The invariant measure is 
geometrically defined and is clearly stable under the kind of pertur-
bation that we are looking at. Finally the fact that these billiards 
are Bernoulli follows from [GO] and thus once again Theorem 
3.6.2(d) and Lemma 3.5.1 give the result. 
Proposition. Let ft be the direct product of a Bernoulli flow and a 
flow of zero entropy {in particular a rotation). Let P be a partition 
such that {ft, JP) has full entropy and is Bernoulli. Given e , there 
is a P satisfying 

(i) d{P,P)<e, 
(ii) {ft, P) is congruent to {ft, P), 

(iii) ft is the direct product of the zero entropy factor and the 
o-algebra generated by P under ft. 

Proof. Iterating Lemma 5 of [Fi 1] gives a P that satisfies (i), (ii), 
and in addition generates together with the zero entropy factor. 
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The fact that (iii) holds, i.e., that (ft, P) is independent of the 
zero entropy factor follows from the basic disjointness result of H. 
Furstenburg [Fu]. 

Theorem 2.1.4. If ft is an axiom A attractor that is not a suspen-
sion, even if it is a Cx-limit of suspensions, then one still has a lot 
of stability: the perturbation ft is a-congruent either to fct or to 
Rt xfct, \c- 1| <a. 

Proof. Here the only novelty occurs when the perturbation fct is 
the direct product of a Bernoulli flow and a rotation. Having cho-
sen c, so that 

h(fct) = h{ft) 

we use the Lemma following the definition of FD to get closeness 
in d and then we apply Theorem 3.6.1(b) to (fctP) to get P, 
close to P such that (fct, P) is congruent to (ft, P). Now we 
can apply Theorem 3.7.2 to conclude the proof. 

Proposition. Let ft be the flow on an axiom A attractor M. Then 
given a> 0, if ft is a C flow, sufficiently close C to ft, there 
is an invertible measurable map from M to M that takes orbits 
to orbits and moves all points by < a except for a set of measure 
< a. 

Proof. If ft is an axiom A attractor and ft a small perturbation, 
then the Bowen-Ruelle result still applies. However, neither ft 

nor ft is necessarily Bernoulli. 
(1) Make a small (< e) change in the parametrization of ft to 

get ft. We can ensure that ft is Bernoulli and, in fact, we can 
make ft axiom A, so its SBR measure will be a scalar multiple 
of the original SBR measure. 

(2) With ft fixed, We can reparametrize each ft to ft so that 
the ft —• ft in entropy and finite distribution. We make another 
small change in ft, calling it ƒ so that ft is Bernoulli and ft 

still converges to ft in entropy and finite distributions. As in 
the previous proof, we can conclude at this point that ft and 
ft are e-congruent. This gives that ft is e-congruent to a small 
reparametrization of ft. D 

If (j) is not an isomorphism it cannot take an invariant measure to an invariant 
measure. 
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Proof of the dichotomy for axiom A attractors. In other words an 
axiom A attractor is either Bernoulli or the direct product of a 
Bernoulli and a rotation. Ratner proved Bernoulliness in the C-
dense case (see [BRue], Remark 3.5). Bowen [B 1], Theorem 3.2, 
shows that an axiom A attractor is either C-dense or a suspension 
(of a homeomorphism satisfying axiom A). The suspension is the 
suspension of a Bernoulli shift or the product of a Bernoulli shift 
and a finite cyclic permuation. One way to see this is to thicken the 
base and use absolute continuity of the expanding and contracting 
foliation that are in the base (this is proved independently whether 
we have a suspension) as in [OW 2] to prove Bernoulliness. Be-
cause a Bernoulli shift can be imbedded in the Bernoulli flow, we 
can write the suspension as the direct product of the Bernoulli flow 
and a rotation, o 

Remark. In a similar vein we establish our version of Pesin's theo-
rem that we gave in § 1.5. In [Pe] Theorem 9.7, Pesin states that the 
set on which we have nonzero Lyapunov exponents is the union of 
a countable number of ergodic components and on each of these 
we have either a Bernoulli flow or a suspension. He also proves that 
positive entropy implies positive Lyapunov exponents and obtains 
expanding and contracting fibers [Pe, Theorem 5.1]. The absolute 
continuity of the expanding and contracting fibers is proved inde-
pendently of whether the flow is a suspension and therefore the 
base, which contains complete expanding and contracting fibers, 
is a Bernoulli shift or the product of a Bernoulli shift and a finite 
cyclic permutation. Because Bernoulli shifts can be imbedded in 
a flow, the flow we started with is a Bernoulli times a rotation. 

5.2. Proofs for §2.4: Bernoulli flows and Markov processes. 

Theorem 2.4.1. If ft is a Bernoulli flow on a metric space M then, 
given a, there is a {special) semi-Markov process on M that is a-
congruent to ft. 

Proof. The original flow that was shown to be Bernoulli was the 
flow built under a function, where the base transformation T has 
an independent generator (P{, P2), and the height function k was 
constant on the atoms P{, P2 with values kx, k2 so that kx jk2 is 
irrational. With a given, choose these ki so that ft does not 
move points in M by more than ^a for 0 < t < max(/cj, k2). 
We then choose probabilities for Px and P2 that give the correct 
entropy. Then use the fact that ft is isomorphic to the Bernoulli 
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flow described above to find a cross section Y c X for the flow 
ft so that the return time function will take the values k{, k2 on 
sets P{, P2 in Y, with {Px, P2) being an independent generator 
for (T, Y). Here T: Y —• Y is the return map to the cross 
section. The fact that P = (P{, P2) is a generator implies that 
for N sufficiently large, the atoms of VN_NTjP = Q are mostly 
contained in sets of diameter less than ^ a . The process (7\ Q) 
is a Markov process, so that the flow ( ft, Q) is a semi-Markov 
flow (Q is the partition of M defined by assigning a point x of 
M to that atom of Q that the point first encounters when flowing 
back to the cross section Y). Choose now for each atom Q. of 
Q a point xi so that we minimize 

ei = ̂ {yeQi:d{y,xi)> j^a} . 

If the TV is sufficiently large then we can arrange things so that 

^e'<ma-

Replacing the sets of Q by points xt we get a concrete semi-
Markov flow that is isomorphic to ( ft, Q) and the isomorphism 
doesn't move most points by more than a and thus we have the 
desired a-congruence. 

For Bt one uses the same proof except that we take k{/k2 ra-
tional. We thus can prove Theorem 2.4.1 for Bt instead of Bt. • 

Here are other versions of this result: 

Theorem 5.2,1 • Let P be any finite-valued observation on a system 
isomorphic to Bt {i.e., P is a finite function on the state space 
X). Then we can change P {without changing the range) on an 
arbitrarily small subset of X so that the resulting observation is 
N-semi-Markov and generates {i.e., the doubly infinite sequence of 
observations determines the point in X). 

An iV-semi-Markov process has a finite number of possible out-
comes rt. Each r. lasts for time tx or t2 but not both. The next 
output is determined by a probability distribution []/ (we sPin 

a roulette wheel), which is determined by what the process did 
between time—iV and 0 for some fixed JV. (There are a finite 
number of possible 17/ 0 
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Proof. 
Step 1. We modify P (call it Px ) on an arbitrarily small set so 

that h{ft, P) - h{ft). (We could even make Px generate.) 
Step 2. We can make an arbitrarily small change in Px (call it 

P2) so that every orbit can be partitioned into intervals of length 
kx or k2 (for some kx, k2 small enough and kx/k2 irrational). 
P2 is constant on each of these intervals and each value in the 
range of P2 (range of P2 = range of P) is taken on intervals of 
length kx or k2 but not both. In other words: ft is represented 
as a flow built under a function g that takes values kx and k2. 
P2 is constant on each vertical line between the base and g and 
defines the partition according to whether a point lies below kx or 
k2. Step 2 follows from the argument of Rudolph [Rud 1], 

Step 3. Let Q be the partition of the points x in the base X, 
according to which atom of P2, contains the vertical line above x. 
Let T be the transformation on X. Take a sequence of multi-step 
Markov processes Tt, Qt that converge to T, Q in entropy and 
finite distributions. Let ifi be the corresponding flows and P{ the 
partitions corresponding to Q. as P2 corresponds to Q. {tft9Pt) 
will also converge in entropy and finite distributions. Furthermore 
if we pick a t0 small compared to kx and k2, P. will generate 
under t0 (this follows from the argument in [O 1, Lemma 1, p. 
58]). By the Lemma 3.5.1 .ƒ,, 3ö

i converges in d to ft, P. We 
now use Theorem 3.6.2 to complete the proof. D 

Theorem 5.2.2. Let T be a Bernoulli shift and P a finite-valued 
function such that h{P, T) - h{T). We can change P {to 7) on 
a set of arbitrarily small measure {without changing the range of P) 
so that 7 generates under T and T ,7 is multistep Markov, {k-
step Markov means that the probability of the next output depends 
only on the last k outputs.) 

This theorem will follow immediately from the discrete time 
version Theorem 3.6.2(b) and the following lemma: 

Lemma 1. A Bernoulli process {T, P), P finite, is the d-limit of 
k-step mixing Markov processes of the same entropy. 

To prove Lemma 1, we will need the following: 

Lemma 2. Let P, T be a finite state process. Given e we can find 
7t, 0 < t < I such that \Pt-P\ < e, 0 < t < 1, Tt is continuous 
in t and h{T ,7X) < h{T, P) and P0 = P. 
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Proof. We will start by defining Px. Pick a Rochlin tower of 
height n and pick a set E in the base such that m{[fn~~x TlE) = 
j€ . We get Pj by changing P on ( J " 1 TlE so that it takes on 
only one value on this set. It is easy to see that if n is large enough 
we have dropped the entropy by at least (1 - \e). To form Pt we 
take instead of E a part of E of relative measure e . D 

To prove Lemma 1 we pick a large n and take the «-step canon-
ical Markov approximation to T, P{, (TM, Px). If n is large 
enough h(TM, P{) < h(T, P). By continuity we can find a £0 

such that if we take the Markov approximation (TM, Pt) to T, 
3ö

t then h(TM, Pt) = h(T, P ) . We can make the finite distri-
bution of TM, P, as close to those of T, P by taking e small 
enough and since r , P is finitely determined T, P and P M , P, 
are close in d . D 
5.3. Proof for §2.2: Random perturbations. 

Proof of Theorem 2.2.1. By the theorem of [OShi] the random 
perturbation is a Bernoulli transformation with infinite entropy. 
Fix a finite partition P of the space into sets of diameters less 
than JQ(*. For this partition P , the results of [Ki 1, 2] imply 
that the random perturbation (S, P) is close in entropy and finite 
distribution to (ƒ, P ) . By the FD property of ƒ this implies that 
(ƒ, P) is close in d to (5 , P ) . By Theorem 3.6.1 there is a P 
which is close to P so that (S, P) is congruent to ( ƒ , P ) . Now 
Theorem 3.7.2 will give us the theorem. 

Proof of Theorem 2.2.2. We will postpone stating a lemma which 
would be unnecessary if we began by assuming an additional kind 
of uniformity for the distribution ju(x) of our ending position 
after the diffusion. Namely, the measures JU(X) are uniformly 
absolutely continuous with respect to the flow invariant measure 
dv . This means that for every e > 0 there is a ô > 0 such that 
any set E with v(E) < ô, ft(x)(E) < e for all x . With this 
assumption it is fairly easy to see what happens to the perturbed 
process. When the quiet-active process is fixed (for all time) the 
orbit of the perturbed process consists of random pieces of orbits 
of the ft flow. This differs from the independent concatenation of 
equal blocks from the (ft, M) process in two ways. The length of 
the blocks is variable and the distribution of each new block is not 
independent of the previous blocks but rather depends upon them 
in the simplest way possible, namely through the end position of 
the last block concatenated. 
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Observe that fixing the quiet-active process realization we have a 
Markovian (nonstationary) process on the manifold. The fact that 
each ju(x) dominates a fixed constant times the uniform distribu-
tion on a disc of fixed radius enables one to show, via a coupling 
argument, that fixing any two past atoms, which means of course, 
fixing two points on the manifold M, say u0 , v0, the positions of 
ut and vt for large t will have essentially the same distribution. 
The mixing property of the Bernoulli flow makes this coupling 
argument easy because after a long, fixed time, the uniform distri-
bution on a fixed ball will be spread throughout the manifold in 
a uniform way and thus a fixed proportion of the distribution of 
ut and vt can be matched the next time an active period occurs. 
Starting with Lebesgue measure in the arbitrarily distant past we 
thus get an invariant distribution for the perturbed process condi-
tioned on this fixed quiet-active orbit. Averaging this distribution 
over the various possible quiet-active realizations gives us an in-
variant measure for the perturbed process and completes the def-
inition of the process. (Formally, our description in the text only 
defined transition probabilities for the process.) The additional 
uniformity assumption at the beginning of the proof or the lemma 
that follows implies that the invariant measure will be absolutely 
continuous and that this absolute continuity will be uniform over 
our perturbations. 

We check the relative VWB condition by the coupling argument 
above and hence our process is relatively Bernoulli. Note that 
the entropy of the perturbed process is infinite since ju{x) has a 
continuous distribution. 

If we assume the active-quiet process is Bernoulli we could ap-
ply Theorem 3.7.2 once we have checked that the perturbed flow 
is d close to the original flow. If we do not make this assump-
tion we have to apply Theorem 5.7.2. In this case we must check 
that the perturbed flow is d close to the original flow relative to 
the active-quiet process. We check both of these using FD and 
checking finite distributions and entropy on each quiet-active or-
bit. Discretize time and space (this is harmless since we are only 
interested in the ^-distance) uniform absolute continuity of the 
invariant measure and the ergodic theorem imply the finite distri-
bution property, since the starting point of the long orbit pieces 
is not likely to be in a small set of the invariant measure for 
the Bernoulli flow. The same property of the invariant measures 
combined with the conditional independence of the successive 
blocks and the Shannon-McMillan theorem enables one to see that 
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the entropy is close to that of the original Bernoulli flow. Then the 
FD property gives us the remaining hypothesis of Theorem 5.7.2 
and an application of that theorem gives us Theorem 2 under our 
stronger assumption. 

To deal with the weaker assumption that we made in formulat-
ing Theorem 2 in the text we have to establish the requisite uni-
formity as a consequence of this weaker assumption. Abstractly 
we have the following situation. 

Lemma. Suppose we have a transition kernel P(x, dy) on the 
manifold that has the property that 

(*) P(x ,dy)>c dy for y e Br(x), 

where dy is the volume element and c and r are fixed positive 
constants, and in addition a collection of point transformations St, 
that represent ft where the t('s are the times between successive 
active periods in a fixed quiet-active realization. Fixing a starting 
measure ju (Lebesgue measure), the measures 

H = HPSkPSk2-PSK, 

(as k —• oo) become uniformly absolutely continuous with respect 
to the volume element. 

Proof. Suppose not, then for some a > 0, and arbitrarily large k, 
there will be sets Ak with k(Ak) —• 0, where X is the Lebesgue 
measure defined on the manifold, and 

l*Mk)>a. 

Let a0 be the supremum of the values of a for which such a se-
quence exists, and suppose that a is close to this supremum. Now 
the fact that the invariant measure for ft is absolutely continuous 
with respect to Lebesgue measure means that if k(Ak) -> 0 also 

Since (*) holds, we can conclude that for some constant b < 1 

P(x, Sk Ak) <b all x and k > kQ. 

Choose ô small enough so that (1 - S)/b > 1, and then observe 
that since P(x, dy) is absolutely continuous for all x, if Bk is 
the set of x's for which 

P(x,S'Ak)>Sa 
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then X(Bk) —• 0 as k —• oo. Now since 

a < fik(Ak) = J fik^{dx)P{x, S " 1 ^ ) < ôa + 7ïk_{(Bk)b 

we can conclude 

(izi) a <nk_x{Bt)t nk = / I P ^ - - P S ^ . 

If a is close enough to the supremum, a{\ - S)/b > a0, a contra-
diction which proves the required uniformity. D 

Proof of Theorem 2.2.3. (1) The difficult analysis of these random 
perturbations has been carried out by Y. Kifer [Ki 1]. The results 
of his that we need are the following: 

1. jue -+ IJL weakly (Proposition 1 of §2). 
2. P e —• dm weakly. (This follows easily from (1) above.) 
3. For any fixed partition P into sets of small diameter in M 

(viewed as a partition of the zero'th coordinate in X) and any 
fixed T 0 , 

lim A(aTo , / > , / > ) = A(*To ,P,dm) = h(ftQ, /i). 

Here ax represents the shift on X by r 0 , and the entropy is 
taken with respect to the invariant measure indicated in the argu-
ment. The last equality holds because if P is sufficiently fine it is 
a generator for f . 

(2) It follows from (1) and from the fact that the Bernoulli shift 
(fx , fi) is finitely determined that for any r0 if € is sufficiently 

small the process (ar , P, P<) is converging in d to (fr , P, /i). 
We want to conclude that the flows (at, P, P e) are also close in 
d. For this, one only needs to remark that the uniformities on the 
diffusion involved guarantee that with probability close to one the 
full trajectory of the Markov process x\ is close in d to the tra-
jectory determined by its r0 skeleton (if T0 is small enough). 
After this observation Theorem 3.6.1 will give us the imbedding 
of (ft ; fi) into the xt process by an imbedding that is close to the 
identity. 

As before we are now in the position to apply Theorem 3.7.2 to 
complete the proof of the theorem, a 

5.4. Proofs for §2.5: Long-term versus short-term behavior. 

Theorem 2.5.1. Given ft, X, P, where (ft, X) is Bernoulli and 
a > 0, then for a.e. x € X, and T large enough the following 
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algorithm will produce a process (Tft, TX ,TP) that will be a-
congruent to the direct product of ( ft, X, P) and another flow 
(Tgt, Y) relative to the functions TT and P where P(y, x) = 
P(x), x G X, y e Y. If P identifies X with a manifold M, 
then we can think of (Tgt, Y) as a viewer and if TP is the image 
of TT under the a-congruence then we see TP(y, x) when the 
viewer is in state y and we are looking at x in M ~ X. 

The major part of the work needed to prove this theorem is con-
tained in [OW 4] where we prove that the processes constructed 
by the algorithm described in the text converge in d to the flow 
(ft, P). In order to apply Theorem 3.7.2 it remains only to see that 
the process obtained by independent concatenations is a Bernoulli 
times a pure rotation. This follows readily by the relativized the-
ory described in §3.7. There is an obvious rotation factor due to 
the fixed length of the blocks we are concatenating and the random 
spacers of fixed lengths. Fixing this factor it is trivial to check rel-
ative VWB and thus Theorem 3.7.2 applies to prove the theorem. 

Discussion for remark. Let us first describe the simulation more 
precisely. We fix a t0 sufficiently small so that ft, the flow that 
integrates the given vector field, doesn't move points on the man-
ifold by more than a/10 for \t\ < tQ. Then we take L large 
enough so that if P is a fixed smooth finite generator under t0, 
the distribution on L-blocks given by V^Zof-kt ? concatenated 
independently will be within a/100 in d of the process (ft , P). 

This follows from the definition of FD. ° Next we discretize time 
finely enough and approximate the vector field well enough so that 
the numerical integration of the vector field will approximate to 
within a/100 the true orbit out to time tQL. Finally space is 
discretized to sets A. such that 

1. all the Aj's have equal Lebesgue measure, 
2. if x and y belong to the same Aj, ftx and fty stay within 

a/100 of each other for 0 < t < t0L. 
Now points Xj G Aj are chosen and a computer program is written 
that will move Xj at times kt0, 0 < k < L to within a/50 of 

Note, that while t0 can be estimated in advance from the vector field, L 
cannot since it depends upon the ergodic properties of the flow ft with respect to 
a presumptive smooth invariant measure. Thus various Us must be attempted. 
Given L and /0 , the further approximations and discretizations needed can be 
determined purely in terms of the vector field. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STATISTICAL PROPERTIES OF CHAOTIC SYSTEMS 101 

where fkt would really move JC. to. If the invariant measure were 
Lebesgue measure, then the distribution on L-blocks that we get 
by randomizing uniformly the starting point of the computation 
over the x 's would clearly be very close to the invariant measure 
distribution on L-blocks with respect to P. Thus the independent 
concatenation is close in d to the process ( f , P) and if we add 
entropy as in part A above then Theorem 3.7.2 will complete the 
proof. 

If the invariant measure has a bounded density with respect 
to Lebesgue measure, or if we randomize only over a fixed small 
piece of the space, we invoke the extremality property. When 
choosing L this will provide a further restriction, and then the 
proof continues as before. 

5.5 . Proofs §2.3: Scaling time. 

Theorem 2.3.1. Let (Bt> Y, P) be the Bernoulli flow where P 
identifies Y with the manifold M. Given a, if y > 0 is small 
enough then (B^l+y)t, Y, P) is a-congruent to (BtxByt, YxY, P) 
where 7{rx, r2) = P(rx). 

In the flow (B(Uy)t, Y, P), think of (B{Uy)t, P) as being an 
approximation to (Bt, P). Lemma 3.5.1 shows that as y tends 
to zero the d-distance between them tends to zero. Thus there 
is a ? such that d(P, P) is small and (5 ( 1 + y ) , , P) is congru-
ent (Bt, P), by Theorem 3.6.1(b). Now we are in a position to 
apply Theorem 3.7.2 to conclude the proof. D 

5.6. Proofs for instability (§2.6). Theorem 2.6.1 follows at once 
from Theorem 3.7.1(c), since, if there were no such a , ft would 
be Bernoulli. 

For the discussion of the results of §2.2 we need to verify that 
indeed our random perturbations are Bernoulli. 

First consider the setup in Theorem 2.2.1. The compactness of 
the manifold, and the fact that we jump with a uniform distribu-
tion in a ball of radius r around f(x), imply that the Markov 
process has a unique finite invariant measure absolutely continu-
ous with respect to Lebesgue measure. Now one checks the VWB 
property just like we checked the relative VWB in §5.3 (see also 
[McCSh, OSh]). A similar argument will apply to the discrete time 
skeleton of the diffusion in Theorem 2.2.3. For Theorem 2.2.2, af-
ter we added the hypothesis that the interference producing process 
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is Bernoulli, the relative Bernoulli properties that we checked in 
§5.3 give that the perturbations are Bernoulli. 
5.7. Some proofs for §3. Our main task here is to prove Lemma 
3.5.1 and to deduce the infinite entropy case of some of our 
theorems from the finite entropy case which can be found in the 
literature. 

Lemma 3.5.1. If (fn P) is finitely determined and P is a finite 
partition then given e > 0, there is an y > 0, ô > 0, and T such 
that if (ft, P) is ergodic and satisfies 

(a) jTf*( A, >p)^h(ft>p)-y f°r some ' o € ( 5 >2) 

(b) rf(dist vjf tP, dist vjftP) < ô, 

then 

(*) d((ft,7)9(ft,P))<e-

Note that h(ft , ~P) refers to the entropy of the Z-action generated 
by ft , while h(ft, P) refers to the entropy of the R-action, ft, 
teR°. 
Proof of the lemma. The fact that (ƒ,, P) is finitely determined 
means that given e > 0, we have y, S(fi), T{P) and that (*) 
follows if (i) and (ii) of the definition of FD above hold. Our 
main task is to see how the entropy condition (i) can be made to 
follow from (a) in the presence of (b) and where /? is determined 
by (ft, P) 9 y , and ô without further knowledge of (ft, 7). For 
this we have to be able to control continuous names through the 
discrete skeleton and this is done using the measurability of (ft, P) 
and the fact that P is finite. Together these imply that for any 
d > 0, by making r\ > 0 sufficiently small, we can guarantee that 
the set of x e X for which 

(**) \{t e [-r,, t,]: P(ftx) = P(x)}\ > $,(2IJ) 

has measure greater than 1 - 6. Replacing 6 by 26 and ^ by 
^ this will continue to hold for (ft, P) if ô is sufficiently small 
and T sufficiently large. We let £ c l be the set of x's where 
this analogue of (**) is valid. 

The ergodic theorem now ensures for us that for most x and 
N large enough 

{0 < n < N: Jnt x e E} > (1 - 30)N. 
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Finally if two such 3c's have their ft, P, t < N names close 
enough (this is one of our restrictions on /?) then in fact their 
(fnt , ~P)n<N names will agree up to an error of at most 100 . For 
6 sufficiently small and /? as above (note that the choice of /? is 
independent of the nature of (ft, 7) and depends only on 6, r\ 
which were obtained from ft, P) this in turn implies that most 
of the typical (ff9P9fi9N) balls can be covered by fewer than 
2yN/4 ( ƒ , , ? , # ) balls. Thus if 

then we will get as well 

h(ft,7,fi)>h{ft,P)-y. 

The final choices are y = y/2, T = T{fi), ô = d(fi) and (a) and 
(b) will imply (i) and (ii) and hence (*) will follow. D 

Theorem 3.7.2 is easily deducible from results in [Fi 2]. Field-
steel's results are for finite entropy and for convenience we record 
here the one we need in our notation. 

A. Prevalence of factors with Bernoulli complements. Let (ft, X) 
be a flow with R a partition such that V ^ ftR has a Bernoulli 
complement. If Q is any partition, for all e there is a Q such 
that 

(1) d(Q9Q)<e9 

(2) (ft,RV Q) and (ft, R V Q), are identically distributed, 
(3) V!°oo ft(R v Ö) has a Bernoulli complement in (ft, X). 

This is Lemma 3 of [Fi 2]. 

Theorem 3.7.2. Suppose that (X, 3S, ft) is a Bernoulli flow or the 
direct product o f a Bernoulli flow and a flow of zero entropy. Let 
P be a partition such that (ft, P) is Bernoulli. Given e, there is 
a P satisfying: 

(i) d(P9P)<6, 
(ii) (ft, P) and (ft, P), are identically distributed 

(iii) there is an ^invariant o-algebra $f, independent of 

V^ooftP SUch that 
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Note that in case (ft, P) has full entropy, $f can be taken to be 
the full zero entropy factor alone. (If in addition ft is a Bernoulli 
flow then P can be taken to generate. (This is theorem 3.6.2 c). 

Proof. For finite entropy the theorem follows at once from (A), 
and the fact that we have already noted that any Bernoulli factor 
is independent of any zero entropy factor. 

In case of infinite entropy for X, but finite entropy for P we 
first cut down to a large finite entropy factor that has a Bernoulli 
complement. (Model the Bernoulli flow by the direct product of 
countably many finite entropy flow.) In that factor, if it is large 
enough, there is a partition Px that is close to P and thus ( ft, P{ ) 
and ( ft, P) are very close in ^-metric. Therefore we can imbed 
an exact copy of ( ft, P) in the finite entropy factor that is close 
to P, apply the result already proved there, and then include in 
srf also the remaining infinite entropy Bernoulli complement, and 
the 0-entropy factor. 

When ( f, P) itself has infinite entropy we have to first find in 
that process a finite entropy factor P{ such that d(P, Px) is very 
small and V™00ftPx has a Bernoulli complement in V ^ / J P , with 
a generator P2 . We now apply the previous step to (ft, Px ) to ob-
tain JPj such that d(Px, Px) is small, and y°^00ftPx has a comple-
mentary invariant sub- a -algebra Ax. In Ax there is a Bernoulli 
complement to the zero entropy factor (by the way, we obtained 
Ax) and there we find a model for (ft, P2), say P2 , that generates 
this complement (since there is only one Bernoulli flow of infinite 
entropy). Now in V ^ ^(Pj V P2) we can find a copy of P, say 
P , which is a generator and d(P, Px) = d(P, JPJ) . This P will 
satisfy our requirements. D 

Theorem 3.6.2. 
(b) If {X, ft) and (X, ft) are Bernoulli flows of equal entropy 
and P, 7 are partitions that satisfy 

d((ft,P)9(ft,T))<-fa 

then (X, ft, P) is y-congruent to (X, ft, 7). 
(d) If (X, ft, P) is a Bernoulli flow and y, r\ > 0 are given then 
there is a ô > 0 such that any Bernoulli flow (X, ƒ , , 7) that 
satisfies 

(i) d{(ft,P)9(ft>T))<Y/20, 
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(ii) \h(ft) - h(ft)\ < ô is y-congruent to (X, fct, P) for some 
constant c that satisfies |1 - c\ < y. 

Part (d) has no analogue in discrete time since it depends upon 
a rescaling of the given flow ft so as to get it to have an entropy 
which equals the entropy of ( ft, P). That simple observation 
together with Proposition 3.5.1 of the preceding section which says 
that for c close to 1, (fct, P) is close to (ƒ,, P) in d, reduces 
part (d) to part (b). In turn when P and P have full entropy then 
one proves part (b) as follows: 

When h{ft, P) = h(ft): Apply part (c), a special case of The-
orem 3.7.2, to ( ft, P) to get a Px that is a generator and sat-
isfies d(P,Px) < y/10 and (ft,Px) and (ƒ,, P) are identically 
distributed. Then apply Theorem 3.6.1 and imbed (ft,P{) in 
ft regarding P as the initial attempt. Thus there is a Px such 
that d(P{, P) < 3y/10 and (ƒ,, 7X) and (ft, Px) are identically 
distributed. Now apply part (c) again to move Pj to ^ which 
still has the same distribution as (fnPx), and now generates un-
der ft. The fact that (ft, Px) and (ƒ,, Px) are identically dis-
tributed and both Px and Px are generators gives an isomorphism 
6 between ft and Jt which sends P{ to P{(P{(x) = Px(0(x))) 9 

d(P, P{) < y/2 and d(Px, T) < y/2 translates to y-congruences 
between (X,ft, P) and (X,ft,P). 

When P and P don't have full entropy use Theorem 3.6.1 (b) 
to change P to P by a small amount so that (ft, P) has the 
same distribution as (ft, P). Now Theorem 3.7.2 may be applied 
to both P and P to get Px and Pj such that the canonical iso-
morphism between the processes (ft, (Pi)t^^i) and (ƒ, (Pj)^? 
Pj) extends to an isomorphism of the whole flow. This isomor-
phism gives the required y-congruence. 

We will need an analogue of Theorem 3.7.2 for the proof of 
Theorem 2.2.2 when the active quiet process is not Bernoulli. To 
this end it is convenient to define what we mean by saying that 
in a flow (ft, X) a partition P defines a process (ft, P) that is 
e-close in d, relative to a factor sf , to another process (gt, Q). 
We mean that for a.e. fiber C of the factor sf (picture X as a 
measurable bundle of measure spaces over X\stf , the space of the 
factor). 

(*) d((fnP)\C9(gnQ))<e. 
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Note that the process (ft, P)\C is not stationary so that in defin-
ing d in this context we are of course not restricted to stationary 
joinings. 

In order to verify this kind of hypothesis one usually uses the 
FD property of a Bernoulli flow (gt, Q). Here is a finite version of 
this FD property which is useful. Given e > 0, there is a K and 
a ô > 0 so that if N is large enough and if kN is any distribution 
on iV-blocks satisfying 

(1) the distribution of AT-blocks (averaged over the different 
K 7 

starting points) is within ô of distVj g Q, 
(2) 

mmm
N

0tX"-HSl,Q) <s. 

then there is a joining between vf glQ and kN which is on average 
within 6 of the identity, i.e., 

d(kN,distv"giQ)<e. 

The sharp version of the basic imbedding theorem says that if (*) 
holds for (gt, Q) and ( ft, X, P), relative to the factor sf , where 
(gt, Q) is Bernoulli, and if (ft, X) has enough entropy relative 
to $f , i.e., if 

(**) h(ft,X)>h(ft,X,^) + h(gt,Q), 

then there is a partition P within e of P such that 
(i) V ^ / / is independent of s/ , 
(ii) (ft;, P) is congruent to (gt, Q). 

The relative isomorphism theorem says that if in addition (ft, X) 
is Bernoulli relative to J / and if equality holds in (**) then in 
addition we can arrange that 

(iii) ( V ^ / J P ) V stf is the whole cr-algebra of (ft, X) . 
We will need a variant of this when in (**) equality doesn't 

hold. It is a generalization of Theorem 3.7.2. 

Theorem 5.7.1. Suppose that (ft, X) is relatively Bernoulli with 
respect to a factor sé . Let (gt, Q) be a Bernoulli flow and P a 
partition of X such that (ft, P) is e-closein d to (gn Q) relative 
to sf. If 

h(ft9X)-h(ft,j/)>h(gt,Q) 

we can find a partition P and an invariant a-algebra srf satisfying 

(i) d(P,?)<e, 
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(ii) (ft, P) is congruent to (gt, Q), 
(iii) V ^ / J - P , so? , <$/ are mutually independent and span the 

whole a-algebra of (ft, X). 

Note that we do not assume that srf has zero entropy or is Bernoulli. 

For finite entropy the above theorem is Corollary 1 of [Fi 1], 
The case where stf has infinite entropy can be proved in the same 
way but we see no quick reduction to the finite case. 

APPENDIX BY DAVID FRIED, BOSTON UNIVERSITY31 

The interior of Bernoulli. Let A be a C2 hyperbolic attractor, 
A = f]t>0 ftU where ft: U —• U is a C semiflow transverse to 
d U, U is a connected C°° manifold. Assume A is nontrivial, 
i.e., consists of more than one orbit. We say A is circular if there 
is a map 6: A -> R/Z such that X6 = (d/dt)6{ftx) > 0 for all 
x e A. If X6 is constant for some such 6, then we say A is a 
suspension. 

Bowen has shown that A is a suspension if and only if A is 
not topologically mixing [B 1]. In turn A is topologically mixing 
if and only if the SBR measure is Bernoulli [Rat]. Thus if A 

1 2 

is not circular then all C -near C semiflows gt: U —• U define 
Bernoulli attractors A^ = f)t>oStU (A is topologically conjugate 
to A hence not a suspension). We will examine a circular A and 

1 2 

determine whether it is a C limit of C suspensions. This will 
give a converse to Theorem 2 of Ornstein and Weiss and identify 
precisely which A are SSS. 
Proposition A. For a nontrivial C2 hyperbolic attractor A the fol-
lowing are equivalent: 

(a) ƒ is the C1 limit of C2 suspensions. 
(b) ƒ is the C2 limit of reparametrizations that are suspen-

sions. 
(c) The distribution E ®E on A is integrable. 
(d) There is a cohomology class £ e Hl(U;R) such that the 

period l(y) of any closed orbit y c A and its homology 
class [y] e H{(U\ R) satisfy 

«y] = /00. 

David Fried was partially supported by the National Science Foundation and 
the Sloan Foundation. 
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Proof. 
(b) =» (a): Trivial 
(a) =>> (d): Suppose (j> is a C2 suspension flow C1 near to 

ƒ . Then there is a 0, c with (d/dt)0(</>tx) = c> 0. The closed 
1-form (l/c)dd = a; satisfies w(X) = 1, where X is the infinites-
imal generator of ƒ . Choose </>., 6., cz, JQ, o;/ so that </>. —• ƒ 
as i —• oo in the C1 topology. By the Lemma below, the sequence 
of cohomology classes [coj stays bounded as ƒ —• oo so we may 
suppose it converges to a class £ G Hl(M; R). Let ^ denote 
the closed orbit of <j>. corresponding to y under the topological 
conjugacy of <j>i to ƒ provided by Smale's Q-stability theorem. 
Then 

£[y] = lim / œi = lim l{y.) = l(y). 
l—>00 J y I—VOO 

(d) —• (c): Let co be a closed 1-form that represents £. For 
any closed orbit a>, 

/ © = «y] = /(y) 

so the function co(X) - 1 has integral zero over every such y. By 
Livshitz's theorem [Liv], there is a continuous function g on A 
differentiate along the flow such that 

co(X)-l=Xg. 

For nearby points x , j ; G A define 

c{x,y)= / œ + g {x) - g{y), 

where the integral is taken over any short path in U from x to y 
(two such paths are homotopic if x, y are close enough, relative 
to some Riemannian metric on U). Then 

c(x,y) + c(y,x) = 0, 

c(x,y) + c(y, z) = c(x, z)9 

so c defines a continuous Alexander 1-cocycle on A. Note that 
for x G A 

c(*, ftx) - f\co(X(fsx)) -Xg(fsx))ds = t. 
Jo 

Thus if y, x G A and y e W*(x) (respectively, y G W"(x)) then 

c(x, y) = c(ƒ,*, fty) -> 0 
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as \t\ —• oo with t > 0 (respectively, t < 0) and so c(x, y) = 
0. For xQ e A one sees that the locally defined function 
h{y) - c(y' > *o) > y e we(y') > / e A, is constant on local stable 
and unstable manifolds near xQ and satisfies 

h(y) - h(fty) = t 

for y e U, y near x0 . Thus Eu ® Es is integrable. 
(c) => (b): On a [/-neighborhood of x0 e A we have a contin-

uous function h constant on local stable and unstable manifolds 
but nowhere constant. One can arrange that h{y) measures the 
flow time between x0 and the codimension one manifold My con-
taining y formed by taking the point y' e A with y e W*{y') and 
setting 

My = \JW?(z)9 zeWe
u(y'). 

z 

Then h(y) - h(fty) = / . We define c(x, y) - h(x) - h(y) so that 
c is a continuous Alexander 1-cocycle on a neighborhood V of 
A and 

c(x, fty) = c{x,y) + t 

for x near y9\t\ small. Define c(x, y) for all pairs x, y e U, 
x near y , by 

c(x9y) = c(())Tx, </>Ty) 

with T > 0 chosen so ^ [ / c F . Then c is also a 1-cocycle and 

c(x, fty) = c(x,y) + t. 

Let ^ ^ ( [ / j R ) be the cohomology class of c. Then we choose 
a class £0 near £ with rational periods and represent £0 - £ by a 
C°° small closed 1-form ctf0. The 1-cocycle 

a (x ,y ) = c(x,3>) + / w0 

(where the integral is taken over a short path) represents £0. Let 
Y0 = X/(l + co0(X)) and define a C2 flow ^ by integrating Y0. 
Then 0 is C close to ƒ and we have 

a(x, c/)ty) = a(x,y) + t. 

Define the Abel map 

0: C/->R/r , 0 ( JC)= f a , 
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where b is a basepoint in U, x e U, T c Q denotes the set of 
periods of £0 and where the integral f£ a denotes the finite sum 

a{b, xx) + a{xx, x2) + --- + a(xn, x) 

over some sequence x0 = b, xx, . . . , xn, xn+x = x of closely 
spaced points. Changing the choice of sequence affects the sum 
by a period of £0 so 6 is well defined. As £0 has rational peri-
ods and as HX{U \ Z) is finitely generated (U is compact) T is 
discrete. Thus we may identify R/T with R/Z by rescaling. We 
see that 

so that 0 is a suspension. 

Now we turn to the question of constructing Bernoulli attractors 
that are the C1 limit of non-Bernoulli C2 flows. As noted above, 
the flows ft must be circular for this to hold. We let stf denote 
the C2 hyperbolic attractors on U and J ' c i the Bernoulli 
attractors, each with the C1 topology. 

Proposition B. 3S is open in stf o either $7 contains no circular 
flows or d im/ / 1 ( [ / ;R) = 1. 

Proof. <=) If sf has no circular flows then âS = s/ . Assume 
dim if *([/ ; R) = 1 and 0. -• ƒ , 0. G J / - ^ , ƒ G J / . Then take 
f as in the proof of (a) =» (d) of Proposition A and take the cocy-
cle c as in the proof of (d) => (c). Then since àimHl(U;R) = 1, 
HX(U\Z) has rank 1 and so the group T c R of periods of £ 
is discrete. Thus the proof of (c) => (b) (with { = £0, w = 0, 
a = c) shows that ƒ is a suspension, i.e., ƒ ^ ^ . 

=>) Assume ƒ G J / is a circular flow and dim i/1 ( t/ ; R) = /? > 
1. After reparametrizing we may assume that ƒ is a suspension. 
Near ƒ we will find y/ G38 n ^ - ^ . 

Let £ G Hl(U; R) be the cohomology class defined by the 
#:£ƒ-» R/Z arising in the definition of suspension. Then near 
Ç we choose Ç{ so that the group Tx c R of periods of £ is not 
discrete (this is possible since /? > 1). Then we represent Çx - £ 
by a small C°° closed 1-form cox and use 

y^z/a + c^x)) 
2 — — — — — 

to define a C flow y/ near ƒ . Proposition A shows ^ G J Z - J ' 

is not in the interior of Bernoulli. To see y/ G 3S we use 
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Lemma. The homology classes of closed orbits of any (j) e 
^ s p a n ^ ( M ; R ) . 

This lemma and our choice of Çx implies the ^ ( y ) , y a closed 
orbit of y/, are not all multiples of some positive constant and so 
y/ is not a suspension. 

To prove the lemma one argues just as in the transitive Anosov 
case [Fr]. If the orbits didn't span there would be a surjective 
homomorphism a: nlU —• Z with a(co) = 0 for all y. Take 
N > 0 and let UN be the iV-sheeted connected cyclic cover of U 
corresponding to 

nxU A Z-^Z/NZ 

with the lifted flow <j*N . Then A^ = f]t>0 <t>t UN is a connected 

hyperbolic attractor. But if N is large enough A^ does not con-
tain a dense orbit (for this step we refer to Theorem H in [Fr]) 
which is a contradiction. 

Thus we have characterized the interior of 3B . For the sake of 
completeness we mention that examples of circular hyperbolic at-
tractors with /? > 1 abound: for instance one can take an Anosov 
suspension flow in dimension 3 and DA p + 1 closed orbits (i.e., 
replace them by sources) to get an attractor with dimHx (U ; R) = 
P . For this choice of U, âS is not open. 

For an Anosov suspension with /? = 1 the openness of 3S was 
shown by Bowen [B 2] (no Anosov suspension with /? > 1 is 
known). 
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