
Journal of Business & Economic Statistics, October 1986, Vol. 4, No. 4 

Statistical Properties of Generalized 

Method-of-Moments Estimators of 

Structural Parameters Obtained From 

Financial Market Data 

George Tauchen 
Department of Economics, Duke University, Durham, NC 27706 

The article examines the properties of generalized method of moments GMM estimators of utility 
function parameters. The research strategy is to apply the GMM procedure to generated data on 
asset returns from stochastic exchange economies; discrete methods and Markov chain models 
are used to approximate the solutions to the integral equations for the asset prices. The findings 
are as follows: (a) There is variance/bias trade-off regarding the number of lags used to form 
instruments; with short lags, the estimates of utility function parameters are nearly asymptotically 
optimal, but with longer lags the estimates concentrate around biased values and confidence 
intervals become misleading. (b) The test of the overidentifying restrictions performs well in small 
samples; if anything, the test is biased toward acceptance of the null hypothesis. 
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1. INTRODUCTION 

The so-called Lucas critique is now widely under- 
stood. The argument that the parameters of traditional 
econometric models are not invariant with respect to 
shifts in policy rules, although not universally accepted 
(e.g., Sims 1982), is found by many to be compelling 
enough to have had a major impact on macroecono- 
metrics. There is now much ongoing work aimed at 
redirecting econometrics toward estimation of under- 
lying structural "taste and technology" parameters that 
are arguably invariant to a wider class of interventions 
than are more traditional parameter estimates. This work 
can be viewed as one step in a larger research program 
wherein estimates of the taste and technology param- 
eters will ultimately be used to guide the calibration of 
stochastic general equilibrium models, which will then 
be used to simulate the economy's responses to a variety 
of interventions. This research program is nowhere near 
complete, although it seems likely that completion of 
the program will absorb much research effort in mac- 
roeconomics over the next few years. 

There are basically two (not necessarily conflicting) 
strategies for obtaining econometric estimates of struc- 
tural parameters of rational expectations models. One 
approach, an example of which is Sargent's (1978) work 
on dynamic labor demand schedules, is to estimate by 
parametric maximum likelihood a reduced-form var 
model subject to the restrictions imposed on the var by 
the underlying optimizing model. This approach is en- 
tirely analogous to full information maximum likelihood 
for the simultaneous-equations model. Although max- 

imum likelihood estimation has several optimum prop- 
erties, its implementation in a rational-expectations 
context is difficult. For instance, it requires the 
econometrician to make distributional assumptions about 
random errors, and it requires a complete and credible 
description of the stochastic environment in which eco- 
nomic agents operate. At present there is little guidance 
from theory for making these specifications. In addition, 
this approach is not well suited to handling nonlinear- 
ities beyond what can be reasonably modeled in a quad- 
ratic-linear setup. 

The second approach is the generalized method of 
moments (GMM) instrumental variables procedure set 
out by Hansen (1982) and Hansen and Singleton (1982, 
1983). The procedure has been used in several financial 
market applications (Brown and Gibbons 1985; Dunn 
and Singleton 1984; Rotenberg 1984) and in labor mar- 
ket applications as well (Biddle 1984). The basic idea 
behind the approach is to apply the GMM estimator 
directly to orthogonality conditions implied by the first- 
order conditions of agents' intertemporal optimization 
problems. Specifically, residuals are formed by using 
realized values when conditional expectations appear in 
the first-order conditions and the instruments are com- 
prised of variables known at the time the expectation is 
formed. The procedure is a limited-information method 
analogous to two-stage least squares. Among its attrac- 
tive features are that it does not require strong distri- 
butional assumptions nor a complete description of the 
agents' environment. As noted by Garber and King 
(1983), however, the procedure does entail the implicit 
assumption that the first-order conditions are "exact," 
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in the sense that the functional form of the agent's ob- 
jective function is known to the econometrician and not 
subject to unobserved random fluctuations. Moreover, 
the GMM approach does not incorporate nearly as wide 
a class of specification tests as those developed by Newey 
(1985) and Tauchen (1985a) for parametric maximum 
likelihood models. Nonetheless, it still appears that be- 
cause of the attractive characteristics just noted, the 
GMM procedure will be one of the main econometric 
methods used in the longer-term research program out- 
lined previously. 

GMM parameter estimates are complicated nonlinear 
functions of the data. The nonlinearities arise directly 
through those introduced in the objective functions of 
the agents and indirectly through the estimation of the 
"optimal" weight matrix for the second-step minimi- 
zation. All of the econometric theory justifying infer- 
ence from GMM estimates is asymptotic, and often the 
sample sizes are not that large in relationship to the 
number of orthogonality conditions used in the esti- 
mation. In addition, there is little guidance from econ- 
ometric theory for choosing the appropriate lag lengths 
for forming the instruments. Results such as those of 
Hayashi and Sims (1983) are suggestive but not that 
helpful for practice with a given fixed-sized data set, 
because these results are based on an iterated-limit ar- 
gument wherein the limit is first taken with respect to 
sample size, after which a second limit is taken with 
respect to the dimensionality of the instrument set. 

The purpose of this article is to investigate the small 
sample properties of the GMM procedure applied to 
financial market data. Among the questions to be ad- 
dressed are the properties of the estimates and the qual- 
ity of the asymptotic approximations for small versus 
large instrument sets. In addition, the validity of the test 
of the overidentifying restrictions will be examined. In- 
formation on the small-sample properties of this pro- 
cedure is important for the research program discussed 
before. There should be a clear awareness of the con- 
ditions under which the procedure can give biased and 
misleading point and interval estimates. It almost goes 
without saying that a large-scale policy simulation based 
on invalid and misleading parameter estimates could be 
worse than useless. 

The main idea of the article is first to build small- 
scale artificial economies patterned in a general way on 
the ideas in Lucas (1978). Then pseudodata consisting 
of realizations of the dividends and general equilibrium 
asset prices are generated randomly, and the GMM es- 
timation technique is applied to these data. For each 
artificial economy, the entire process is replicated a large 
number of times, thus providing a large random sample 
of estimates of the underlying preference parameters 
that is then subjected to further statistical analysis. Al- 
though the research strategy is simple enough to de- 
scribe, there are a number of interesting methodological 
problems encountered in implementing it that are dis- 
cussed further later. 

Monte Carlo methods are not the only ones used pre- 
viously by econometricians to analyze instrumental vari- 
ables estimators. For example, Phillips (1982) and oth- 
ers have made extensive use of various analytical 
approximations to study instrumental variables esti- 
mators like two-stage least squares. These approxima- 
tions, however, exploit certain features of the estimation 
context that are not present in the case of the GMM 
procedure. Specifically, the approximations rest on the 
fact that the underlying structural model is linear and 
that the estimator is therefore a known and relatively 
mild nonlinear function of a few sufficient statistics from 
the sample, and, due to a normality assumption, the 
joint distribution of the sufficient statistics is known. 
None of these restrictive conditions are present in the 
case of the GMM estimator, which is why Monte Carlo 
sampling experiments are employed. 

The principal findings of this study are as follows: 
First, the GMM estimate of the curvature parameter of 
the constant relative risk aversion utility function can 
be biased, in certain not unrealistic circumstances, with 
the magnitude of the bias being as large as the asymp- 
totic standard error. The direction of the bias depends 
on the covariance structure of dividends and consump- 
tion. Generally, a strong positive correlation between 
dividend growth rates and consumption growth rates 
leads to an upward bias in the estimate of the curvature 
parameter, whereas a lack of correlation leads to a 
downward bias. Second, the test of the overidentifying 
restrictions performs reasonably well in moderate-sized 
samples. If anything, the test is slightly biased in favor 
of accepting the null hypothesis, which is consistent with 
some analytical results of Shapiro (1986) for a different 
but related model. A caveat that deserves mention, 
however, is that the sampling experiments reported 
in this article pertain to the one-asset case. As noted 
by Singleton (1985), the observed rejections of the 
specification with this test that are often encountered in 
practice appear to be due to the inability of the con- 
sumption-beta model to explain adequately the cross- 
asset structure of returns; subsequent work will explore 
more fully the properties of this test for the multi-asset 
case. The third finding pertains to the widely divergent 
parameter estimates that are sometimes encountered in 
practice when different lag lengths are used in forming 
instrument sets. In general, with short lag lengths nearly 
asymptotically optimal estimates of the curvature pa- 
rameter can be expected, but as lag length increases, 
the sampling distribution of the estimates becomes in- 
creasingly concentrated around severely biased param- 
eter values. Thus, contrary to what is sometimes pro- 
posed, it is probably inadvisable to use the range of 
estimates obtained with different instrument sets as an 
indicator of the reliability of the procedure or to perform 
Hausman (1978)-type specification tests on pairwise 
differences between the estimates, which should be zero 
asymptotically. Among a large set of estimates produced 
with various instrument sets, the most credence should 
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probably be placed on those estimates obtained with the 
smallest instrument sets, because the confidence inter- 
vals will thereby be the most reliable. 

The remainder of this article is organized as follows: 
Section 2 sets forth much of the notation, reviews the 
main ideas behind the GMM technique, and discusses 
some work by Hansen (1985a) on asymptotic lower 
bounds for the asymptotic variance-covariance matrix 
of GMM estimates. Section 3 gives the details of the 
construction of the data-generating process; Section 4 
presents the findings from the sampling experiments; 
and Section 5 contains the concluding remarks. 

2. THE GMM PROCEDURE AND 
APPLICATIONS TO FINANCIAL MARKETS 

2.1 Orthogonality Conditions and the 
Estimation Method 

Consider a representative agent who has real wealth 
available for immediate consumption c, or for invest- 
ment into M different real assets. Let Pit denote the ex- 
dividend real price of the ith asset and let dit denote the 
real dividend. The agent's intertemporal budget con- 
straint is 

M M 

Ct + qi,tPit = qi,t-(Pit + dit), 
i= 1 i=1l 

where qit is the amount of the ith asset that the agent 
carries into period t + 1. The right side of the budget 
constraint consists of the total real wealth available to 
the agent at time t, and the left side consists of the 
various expenditures on consumption and assets that the 
agent makes at time t. The agent's intertemporal utility 
function is assumed to be additively separable, 

lifetime utility = Et E #kU(ct+k) , 
-k=0 

where E,[ ] denotes the conditional-expectations op- 
erator given all information available to the agent at 
time t, the parameter 0 < / < 1 is the subjective rate 
of time preference, and the per-period utility function 
u(.) satisfies u' > 0 and u" < 0. Under regularity con- 
ditions that, among other things, restrict the agent from 
continuously rolling over debt, there will exist a unique 
solution to the agent's constrained optimization prob- 
lem. The first order conditions for maximizing lifetime 
utility subject to the budget constraint are 

pi,tu'(c,) = PEt[u'(ct+1)(pi, t+ di,t+1)], 

i = 1, 2, ... ., M. (2.1) 

These first-order conditions, which can be derived using 
a variety of different analytical methods (see, e.g., Lu- 
cas 1978; Grossman and Shiller 1982), are fundamental 
to modern asset pricing models. They form the basis for 
the GMM estimation technique that will be described 
presently, and they will also form the basis for the data- 
generating mechanism for the Monte Carlo work in Sec- 
tions 3 and 4. 

Hansen and Singleton (1982, 1983) developed meth- 
ods for estimating the underlying parameters of the rep- 
resentative agent's utility function by applying the GMM 
estimation method to orthogonality conditions implied 
by the first-order conditions (2.1). Their methods do 
not require additive separability of the intertemporal 
utility function, but because of computational con- 
straints only the additively separable case is considered 
in this article. The basic method proceeds as follows. 
Suppose it is reasonable to assume that the per-period 
utility function is a member of a parametric family, u(c) 
= u(c;yo), where yo denotes the true but unknown value 
of the parameter and the parameter space for yo E F is 
some finite dimensional space. The parameter vector yo 
determines the characteristics-for example, the cur- 
vature properties-of the per-period utility function. 
The subjective discount factor for the intertemporal util- 
ity function is also an unknown parameter denoted by 
fl0. (A subscript 0 will be used to denote "true" values 
when the identification is important.) The complete pa- 
rameter vector to be estimated will be denoted by 00 = 
(yo, Bo), and its dimension is p x 1. Define the error 
functions 

lu'(ct+i; y)(pi,t+1 + di,t+,,) ei,(O) = -1, u (ct; y)Pit 

i = 1, 2, .. ., M, (2.2) 

where 0 = (y, p/). Then the first-order conditions of the 
agent's optimization problem imply that each of the er- 
ror functions satisfies 

Et[eit(0o)] = 0; (2.3) 
that is, the conditional expectation of each of the error 
functions evaluated at the true parameter value is zero. 
Equation (2.3) states that the errors have mean zero 
conditional on the information set at time t, where the 
term "error" is used to denote the corresponding error 
function evaluated at the true parameter value. (The 
term "information set" means a sigma field of events.) 
Throughout this article I only consider the case in which 
lagged errors ei, -k(0o) for k > 1 are in the information 
set, so by (2.3) the errors are serially uncorrelated. This 
case covers a wide class of estimation problems, includ- 
ing most estimation using equity market data. There 
are, however, some interesting estimation problems with 
forward-market data (e.g., Hansen and Hodrick 1983) 
in which this is not the case, but investigation of them 
is deferred to later work. Equation (2.3) implies that 
the errors must be uncorrelated with variables in the 
information set I,, and thus if we let z, denote a finite 
dimensional vector of random variables that are I, mea- 
surable, then by the law of iterated expectations, 

E[ei,(0o)z,] = 0, i = 1, 2, .. ., M. (2.4) 

The Zt used to form the products in (2.4) are the in- 
struments for the estimation. In typical applications to 
financial market data, the set of instruments usually 
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consists of current and lagged values of consumption (or 
its rate of growth) and asset returns. A more compact 
way to write (2.4) is 

E[e,(00) 0 z,] = 0 

or 

E[g,(0o)] = o, (2.5) 

where e,(00) is an M x 1 column vector comprised of 
the eit(0o) and g,(O) = e,(O) 0 z, 

The condition (2.5) is the basis for the GMM tech- 
nique. Suppose the econometrician has data on asset 
prices, dividends, and the instruments. Define the func- 
tion 

gT(0) = ( E g(), 
t=l 

which is the sample average of the g,(0)'s, where T 
denotes sample size. Then, under regularity conditions 

(0) --> E[gt(0)] almost surely uniformly in 0 as T -> 
x. But since E[gt(00)] = 0, then choosing the estimator 
0 in such a way as to minimize the magnitude of gr(0) 
will give a consistent estimator of O(. In particular, con- 
sider the estimator 0 obtained by minimizing the quad- 
ratic form 

QT(O) = gT()' WTgT(O), (2.6) 

where WT is a symmetric nonsingular weighting matrix 
that satisfies WT -> W almost surely, where W is sym- 
metric and nonsingular. Note that the dimension of the 
right side of (2.6) is MR, where R is the number of 
components of the instrument vector. An order condi- 
tion for identification is MR > p. If MR is equal to the 
number of parameters p to be estimated, then in general 
it is possible to choose 0 so that gT(0) equals zero exactly 
and the value of the objective function (2.6) will be zero 
at the estimate. On the other hand, if MR exceeds p, 
then gT(O) cannot in general equal zero for any 0, and 
only asymptotically will the minimized value of the ob- 
jective function vanish. Hansen (1982) showed that un- 
der regularity conditions the estimator 0 that minimizes 
(2.6) is a consistent estimator of 00 with an asymptotic 
variance-covariance matrix 2w that depends on the lim- 
iting weighting matrix W Hansen also showed that, among 
all possible W's, the one that minimizes (in the matrix 
sense) the limiting variance-covariance matrix is 

Wo = (E[g,(0o)g,(0o)')- 1. 

The matrix W0 is just the inverse of the variance-co- 
variance matrix of the random variable gt(0o). If the se- 
quence of weighting matrices satisfies WT -- W0 almost 
surely, then the limiting variance-covariance matrix of 
the GMM estimator is 

? = [(E[agt(Oo)'/la])Wo(E[ag,(0o)/ao'])]-l. (2.7) 
In addition, the statistic TQT(0), which is the sample 
size times the minimized value of the objective function 
(2.6), is asymptotically distributed as a chi-squared ran- 

dom variable with degrees of freedom equal to the di- 
mension of g,(O) less the number of estimated param- 
eters. This statistic provides a test of the overidentifying 
restrictions inherent in (2.5). 

2.2 The Lower Bound for the Variance- 
Covariance Matrix of the GMM Estimator 

The expression (2.7) is the smallest asymptotic vari- 
ance-covariance matrix of the GMM estimator taken 
over all possible choices of sequences of weighting mat- 
rices WT -* W, holding constant the sequence of instru- 
ments {z,}. To emphasize the dependence of the asymp- 
totic distribution on the instruments, I will, in this 
subsection, write the asymptotic variance-covariance 
matrix as E?. Hansen (1985a) characterized lower bounds 
for E? as z, varies over an admissible set of instruments 
z, measurable with respect to the information set I,. 
Specifically, Hansen gave an expression for 

E0? = inf{E? : zt is It measurable}, 

where the infimum is to be interpreted in the matrix 
sense. Hansen actually derived the lower bound for a 
more general situation in which the errors are possibly 
serially correlated, although here I shall make use only 
of his results as they apply to the serially uncorrelated 
case. The lower bound .?? is entirely analogous to the 
Rao-Cramer lower bound for M estimators, and it plays 
a role in GMM theory similar to that of the Rao-Cramer 
bound in maximum likelihood theory. Since the lower 
bound 200 and its characterization is important for the 
subsequent sections, a brief overview of its derivation 
follows. 

In the next paragraph it is shown that any GMM 
estimator 0 based on a sequence weighting matrices WT 
such that WT-> W almost surely is asymptotically equiv- 
alent to another GMM estimator 0 defined to be the 
minimizer of the quadratic form 

eHT(0) 'eHO), 

where eHT(O) is given by 

eHT(0) = E Het(O), 
t=l 

(2.8) 

(2.9) 

and where H, is a p x M matrix whose elements are 
measurable with respect to the information set I,. Note 
that since H, has exactly as many rows as there are 
parameters to estimate, then in general eHT(0) will equal 
zero and the minimized value of the objective function 
(2.8) will vanish at 0. Thus, the equivalence between 
the estimators will mean that we can always view the 
GMM procedure as being asymptotically equivalent to 
another procedure in which the estimator is obtained 
by multiplying the error function e,(O) by a p x M 
instrument matrix H1, averaging the products over the 
sample, and then solving the set of implicit equations 

eHT(O) = 0, (2.10) 
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for the estimator. In this equivalent formulation the 
expression for the asymptotic variance-covariance ma- 
trix of the estimates is 

(E[H,tae,/l0'])- (E[H,e,e[ H; ])(E[H,ae,ld/' ])-1', 

(2.11) 

where e, and its partial derivative are evaluated at 00, 
which is suppressed for legibility. 

To establish the asymptotic equivalence of these two 
estimators, note that 0, which is the solution to the 
optimization problem 

min{gr(0)' WTgT(0)}, 
6 

where WT -- W almost surely, is asymptotically equiv- 
alent to the solution to the optimization problem 

min{gT(0) 'WgT(0)}. 
0 

The first-order condition for this last optimization prob- 
lem is 

(a9g0)/ae)WgT(0) = 0. 

The asymptotic distribution of the solution to this system 
of equations will be the same as the asymptotic distri- 
bution to the system of equations given by Vgr(O) = 0, 
where the p x M matrix V = (ag(0o)'/ld)W and g(0) 
= E[g,(0)]. Note that although the matrix V depends 
on the underlying true parameter value 00, it does not 
depend on the argument 0, and thus it is just a matrix 
of constants. Furthermore, given the definitions of the 
g's, the left side of the last equation is 

(T vg,(0) = (;) V[z, e()] 
t=l t=l 

= (4;) E H,e,(0) 
t=l 

= HT(0), 

where the matrix H, is just linear combinations of the 
elements of V and z,. This last equality establishes the 
asymptotic equivalence of 0 and 0. Thus, as previously 
noted, we can always view any GMM estimator as being 
equivalent to one obtained by multiplying the error 
function e,(0) by a p x M instrument matrix H, and 
then solving the set of implicit equations given by (2.10). 

Hansen's characterization of the lower bound matrix 
is as follows: Define 

D = ee,(0)/la ', D* = E,[D]. 

The rows of the M x p matrix D, are the gradients of 
the error functions with respect to 0, and the matrix 
D* contains the conditional expectation of these gra- 
dients. Now put 

, = E,[e,(0o)e,(00)'], 

which is the conditional variance-covariance matrix of 
the errors. Then the lower bound for the variance- 
covariance matrix of the parameter estimates is 

Eo? = (E[D*'I-) D*])-1. (2.12) 
The lower bound matrix 0?? has the interpretation of 

being the asymptotic variance-covariance matrix of a 
GMM estimator based on an "optimal" choice of the 
instrument matrix H, in (2.9). Specifically, if we define 
the instrument matrix 

H? = D*',-1, T t t (2.13) 
then ES is precisely the variance-covariance matrix of 
the GMM estimator using H? for the instrument matrix, 
as can be seen by substituting (2.13) into (2.11). In 
general, so long as the function He,(O) satisfies the 
regularity conditions given in Hansen (1985a), then this 
represents the most efficient choice of the instruments 
possible. There is a very deep connection between GMM 
estimation using the instrument matrix H? and maxi- 
mum likelihood estimation. Chamberlain (1983) dem- 
onstrated that in an iid setting, GMM estimation using 
this instrument matrix is equivalent to nonparametric 
maximum likelihood, where the probability distribution 
of the data is estimated nonparametrically along with 
the parameters of interest. These instruments cannot be 
used in practice, thoug, though, b eause the matrix H? depends 
on the underlying parameter vector 00, which is un- 
known. It is natural to conjecture, however, that if the 
dimensionality of the instrument vector z, used in (2.4) 
grows with sample size in a suitable manner so that the 
space spanned by z, is ultimately the full information 
set I, then the limiting variance-covariance matrix of 
the GMM estimator will be E??. This conjecture is mo- 
tivated by the results of Hayashi and Sims (1983) for 
linear models. (As noted in the Introduction, the Hay- 
ashi-Sims results are not quite the appropriate results, 
even for the linear case, because of the two-step limiting 
process in which sample size first tends to infinity and 
then the dimensionality of the instrument vector tends 
to infinity.) 

To my knowledge, there is no proof yet in the liter- 
ature for the conjecture just cited. In the sampling ex- 
periments, however, it will be possible to gain some 
insight into the small-sample properties of the asymp- 
totically optimal quasi-estimator using the instrument 
matrix H?, since the data-generating process and the 
"true" parameter vector are available and the required 
conditional expectations for calculating H? can be com- 
puted. (The term quasi-estimator is used because the 
matrix H? depends on the true parameter value.) In 
addition, the lower bound matrix SE can also be com- 
puted so that the sampling variability of 0 in infinite 
samples can be compared with its theoretical asymptotic 
lower bound. 

3. THE DATA-GENERATION PROCESS 

The design of the data-generation process follows in 
a general way the setup presented by Lucas (1978). I 
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use a one-agent exchange economy with externally given 
stochastic laws of motion for the consumption endow- 
ment and asset dividends. A set of integral equations 
that are to be solved for the implied asset prices is com- 
prised of the first-order linear conditions for the agent's 
intertemporal optimization problems. Following Mehra 
and Prescott (1985) the integral equations are reex- 
pressed in terms of growth rates to allow for (borderline) 
nonstationarities in the laws of motion for consumption 
and dividends. For reasons discussed more fully later, 
a discrete state space approach is adopted for solving 
the integral equations and generating pseudodata for 
the sampling experiments. 

The use of Monte Carlo methods in a rational ex- 
pectation context does raise a point noted by Sims in 
oral remarks at the 1984 Summer Meeting of the Econ- 
ometric Society. Because the random number generator 
is deterministic, so is the artificial economy, but the 
economic agents, who are presumably "rational," are 
never aware of this determinacy. A response to this 
point is to note that an estimator's sampling distribution 
is a complex multivariate integral on a very high di- 
mensional space, and the Monte Carlo method is used 
only to get good numerical approximations (which are 
otherwise unavailable) to this integral. 

3.1 The Asset Pricing Equations 

Write the first-order conditions (2.1) from the agent's 
intertemporal optimization problem as 

Pit = /t E, (Pi,t+l + dit+1) 
u (ct) 

i= 1, 2, ... ,M. (3.1) 
As previously noted, we will assume that this is an ex- 
change economy in which the laws of motion for the 
consumption endowment and the dividend streams from 
the M assets are externally given, and we will use the 
first-order conditions to solve for the implied asset prices. 
There is a slight difference between this setup and Lu- 
cas's in that consumption and the M dividends will be 
treated as having a nondegenerate (M + 1)-dimensional 
probability distribution, whereas Lucas (1978) defined 
the consumption endowment as the sum of the dividends 
from the assets, implying a singular joint distribution 
for dividends and consumption. The setup here, how- 
ever, is really no different nor any more or less general 
than Lucas's, because we can always think that there is 
an (M + 1)st asset that has been deleted from the list 
and that consumption is the sum of the dividends from 
all M + 1 assets. 

I now rewrite the first-order conditions (3.1) in such 
a way as to allow for nonstationarities in the laws of 
motion for consumption and dividends. The motivation 
for this step is the common empirical finding that, like 
many of the macroaggregates, per-capita consumption 
and measures of aggregate dividends are best described 

as stochastic processes that are stationary in growth rates 
instead of levels [see Hansen and Singleton (1982) and 
the empirical results in the next section]. Mehra and 
Prescott (1985) presented an approach for doing this 
that is generalized here in the obvious way. Define 
the dividend growth variables xit = di,ldi, 1 for i = 
1, 2, .. ., M, and define the consumption growth vari- 
able w, = c,/c_ 1. It is assumed that the per-period utility 
function is of the constant relative risk aversion family, 

u(c) = [1/(1-y)]c1-'. (3.2) 

Then, letting vi, = pildit denote the price dividend ratio 
for the ith asset, Equation (3.1) can be written in terms 
of these new variables as 

Vit= 
- 

E,[(1 + vi,t+1)(wt+1) -xi,t+ ]. (3.3) 

It is further assumed that the random variables xt = 
(Xl, X2, . . , XMt) and w, are jointly stationary first- 
order Markov processes with conditional cumulative 
probability distribution function F(w', x' I w,x) = Pr[wt+l 
< w', xt+l x' I W = w, Xt = x], where the vector 
inequality involving xt+1 is interpreted in the obvious 
elementwise sense and the primes denote values for "one 
period hence," not the transpose operator, with the dis- 
tinction obvious from the context in subsequent expres- 
sions. Thus, given this Markovian structure, the values 
w and x when the event {w, = w and xt = x} occurs 
completely characterize the state of the system, so 
the equilibrium price dividend ratios will be functions 
vi(w, x) of w and x. These functions are the solutions 
to the following set of integral equations: 

i(w, x) = [1+ vi(w', x')] 

x (w')-Yx dF(w', x' | w, x), 
i = 1, 2, . .,M. (3.4) 

Under regularity conditions analogous to those given by 
Lucas (1978), these "asset pricing" equations admit 
unique positive solutions for the price dividend ratios. 

Clearly, this device of reexpressing the asset pricing 
equations in terms of the price dividend ratios and con- 
sumption and dividend growth relies in an essential way 
on the presumed homotheticity of preferences for con- 
sumption across periods that is implicit in the use of the 
constant relative risk aversion utility function. The homo- 
theticity assumption, however, is crucial to avoid de- 
generacies when introducing nonstationarities in a rep- 
resentative agent framework. 

3.2 The Discrete State-Space Model 

Generation of the pseudodata for the sampling ex- 
periments requires solution of the integral equations 
(3.4) for the price dividend ratios. If the state variables 
of the economy are continuous-valued random vari- 
ables, however, the integral equations admit explicit 
solutions (or solutions that are feasible to approximate 
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in Monte Carlo work) only under very special circum- 
stances, and these special circumstances constitute a far 
too narrow set of possibilities for conducting interesting 
sampling experiments. Hence, a discrete state-space ap- 
proach is adopted. This approach is motivated in part 
by Mehra and Prescott (1985), who used a very coarse 
two-state model in their study of the "equity premium." 
Specifically, the laws of motion for consumption growth 
and dividend growth are taken to be a finite-space Mar- 
kov chain. With a finite-state Markov chain, as with the 
data-generation process, the solutions of the integral 
equations are simply the solutions to a large set of linear 
simultaneous equations. The parameters of the discrete 
Markov chain process are determined in such a way that 
the statistical properties of realizations of the Markov 
chain approximate closely the properties of an under- 
lying continuous-valued autoregression for the state 
variables. Perhaps the primary advantage of using an 
underlying autoregression to calibrate the Markov chain 
is that it then becomes straightforward to use empirical 
estimates from fitted autoregressions and other infor- 
mation to assign interesting and meaningful values to 
the laws of motion of the state variables. Theorem 3.1 
in Section 3.3 justifies the methodology by verifying that 
with a sufficiently fine discrete state space the results of 
sampling experiments become arbitrarily close to what 
would be obtained with a continuous state space. 

The notation for the discrete state space model is as 
follows. Let there be N states of nature indexed by the 
variable s, and let w(s) and xi(s) denote, respectively, 
the values of consumption growth and dividend growth 
for the ith asset in state s. Let x(s) denote the M x 1 
vector of dividend growths in state s. The transition 
probabilities will be denoted by 

n(s, s') = Pr[wt+1 = w(s'), 

Xtl = x(s') I Wt = w(s), Xt = X(s)]. 

Thus in this notation the (M + 1) x 1 vector (w, xt) 
of consumption and dividend growths follows a discrete 
Markov chain with transition probability matrix II = 
[nr(s, s')]. Furthermore, the integral equations (3.4) for 
the price dividend ratios are written as 

N 

Ui(s) = p E n(s, s')[1 + v-i(s')]w(s')-7xi(s'), (3.5) 
s' =1 

where vi(s) denotes the value of the ith price dividend 
ratio in state of nature s. These equations are simply a 
system of linear equations for the b(s) that can be solved 
fairly quickly in practice even when there is a rather 
large number of states, as is the case in multivariate 
situations. 

I now describe the method used to generate the Mar- 
kov chain for consumption and dividend growth. The 
basic idea is to start with a continuous-valued auto- 
regression and then take a discrete approximation to it. 

Specifically, consider the autoregression 
M 

log(xit) = bi + E ajllog(x,t -) + aislog(wt-l) + ei,t, 
/=1 

and i = 1,2, . M, 
M 

log(w,) = bs + asllog(xl,,-) + as,slog(wt- ) + ES,t, 
/=1 

where the bi are constants, the aij are autoregressive 
coefficients, S = M + 1, and the Egi constitute an S x 
S vector white noise process with variance-covariance 
matrix denoted by fl. The method of taking a discrete 
approximation can actually handle autoregressions with 
lag lengths of any finite order, although throughout this 
article I will use only first-order autoregressions. A more 
compact way to write this last system is 

Yt = b + Ayt, + t,, Et1[et] = 0, var(et) = fl, (3.6) 

where yt is an S x 1 vector comprised of the log(xi) and 
log(w,). Here we think of the i,, and hence the Yi, as 
having a continuous distribution over Rs or some subset 
of it. One should keep in mind that the term continuous- 
valued here pertains to the characteristics of the range 
space of the random variables eit and yit, not to the time 
index. That is, time is taken as discrete with a fixed 
interval length; the range space of the sit and yi, is con- 
tinuous, and the range space of the approximating Mar- 
kov chain is discrete. 

Tauchen (1985b) developed a method for finding a 
Markov chain that approximates well the statistical 
properties of the autoregressive (AR) model (3.6). An 
overview of the method follows. The first step is to 
transform linearly the system (3.6) to one with no in- 
tercept and a diagonal variance-covariance matrix for 
the innovations. The transformation is 

Yt - B[y, - (I - A)-lb], 

A - F = BAB-1, 

(3.7a) 

(3.7b) 
where B is a lower triangular matrix such that E = 
BfIB-~ is a diagonal matrix. This new system is written 
as 

Yt = Fyt-1 + t, var(rt) = ;(diagonal), (3.8) 
where y, now denotes the variables after the transfor- 
mation (3.7). It is assumed that the components of rt 
are jointly normally distributed and thus are mutually 
independent. The assumption of normality is for con- 
venience only and is not essential to the method. It is 
also assumed that the system (3.8) is stationary and thus 
the matrix equation E* = FE*F' + E has a unique 
solution for the variance-covariance matrix E* in the 
stationary distribution of Yt. The square root of the ith 
diagonal element of E* will be denoted by a*. 

A useful notational convention will be to employ a 
tilde to indicate the discrete-valued Markov process 
Yt = Y2t, ? y , Y s.)' that is the approximating process 
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for y, in (3.8) and to employ an overbar to indicate the 
values yi(k) that Vi, assumes. The values yi(k) are taken 
as equispaced over an interval [- Pa*, Pa*] that extends 
for P standard deviations ou in each direction from zero, 
where P is a small number. (The value P = 3 has been 
found to work well in practice.) 

Thus if Ki values are taken for the range of i,, then 
the kth is 

yi(k) = A[k - (K, + 1)/2], 

where Ai = 2Pu*l(Ki - 1). Any possible state of the 
approximating process is an event of the form 

[t = ((k), (k),..., s(ks) 

and there are N = K1 ? K2 ? ? ? Ks such events in total. 
Let the integer s be a label for these events so that each 
number s corresponds to an arrangement (k1, k2, . . . 
ks) of integers with 1 < ki , K for i = 1, 2, . . ., S. 

The transition probabilities H(s, s') = Pr[y,+l in state 
s' | 9, in state s] are assigned as follows. Let (kl, k2, . 

,ks) and (k;, k', . . ., k') be the arrangements cor- 
responding to s and s', respectively, and put 

yl(k,) 

,u =A (3.9) 
Sx1 

Ys(ks) 
The components ui of ju are the expected values of the 
continuous-valued process yi,,+ conditional on y, = 

(l(k), . . . ,s(ks))'. The idea is to center the density 
of the innovation ri,,t+ over p and then assign the prob- 
ability of getting y,,i+ = y(k') to be the probability mass 
that is within +?A/2 of yi(k'), with a suitable "fixup" at 
the endpoints. Specifically, put 

h(s, ki) = Pr[ i(ki) - < / + ri, < yi(k;) + - 

if 2 k k,' K, - 1 

= Pr ,(K) - A < ,i + r i] 

= Pr /, + , y/(l) + A] 

if k' = K, 

if ki = 1, 

where r/i is a random variable with the same distribution 
as the innovation ri., i, and h(s, ki) depends on s through 
the dependence of ui on s in (3.9). Then h(s, k') is taken 
to be the probability that ji.,_l = v)(ki) given y, in state 
s. By the conditional independence that is achieved via 
the transformation (3.7). the transition probability can 
be taken as 

S 

r(s, s') = I h(s, k;). 
/=l 

The final step of the method is to reverse the trans- 
formation (3.7) so that the discrete system corresponds 

to (3.6) with intercepts and a nondiagonal covariance 
matrix. This only affects the values assumed by the ap- 
proximating process with no effect on the transition 
probabilities. 

The algorithm used to generate realizations {y, y2, 
. . ., jT} of the Markov process is as follows. Put y(s) 
= (yl(kl), . . . , (ks))' for s = 1, 2,..., N, where 
as before the arrangement of integers (kl, . . ., ks) 
corresponds to the state labeled s. The recursive scheme 
is 

1. Let s = previous state; that is, ,_i = y(s). 
2. Draw u uniform from [0, 1]. 
3. Let the next state s' be the smallest number such 

that 7(s, 1) + z(s, 2) + * * + z (s, s') - u. 
4. Set s' - s and y, = y(s'). Return to step 1 if t is 

less than T; otherwise, terminate. 

To initialize the algorithm, the initial state is drawn 
from the stationary distribution of the Markov chain in 
a manner analogous to steps 2 and 3. 

3.3 Theoretical Justification 

Variables such as asset prices, dividends, consump- 
tion, and so forth are naturally modeled as continuous- 
valued random variables. This is obviously the case 
despite the fact that, because of the structure of the 
monetary system and the manner in which asset prices 
are quoted, the measurements of these variables are 
actually discrete-valued. The range spaces of the mea- 
surements are so fine that knowledge of their discrete- 
ness is not operational information; one obtains a better 
approximation by thinking of them as being continuous. 
In this article I therefore do not view the discrete state- 
space approach as an effort to model the extremely fine 
state space of the measured data, because this is evi- 
dently impossible. Instead, the discrete state-space ap- 
proach is used to get good numerical approximations in 
the sampling experiments compared with what would 
be obtained if the continuous case could be simulated. 

The general approach of using discrete methods to 
obtain approximations to the solutions of integral equa- 
tions was developed by Kantorovich, and a good ov- 
erview was given by Wouk (1979, chaps. 7 and 8). The 
specific method used here is the method of solution by 
numerical quadrature. The method is based on the one 
given by Wouk (1979. pp. 149-156), but with a different 
but analogous integration rule. The conditional distri- 
bution of the Markov process is the approximate kernel, 
and the space RM containing the solutions to the system 
of linear equations (3.5) is the numerical space. An at- 
tractive feature of this particular method and its imple- 
mentation here is that it not only gives approximate 
solutions to the integral equations, it also provides a 
probability model in the form of the Markov process 
suitable for generating pseudodata for the sampling ex- 
periments. Other methods, such as collocation, gener- 
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ally do not also provide a probability model along with 
the approximate solution. 

It is apparent from the construction of the approxi- 
mating Markov process that the joint distribution of 
realizations of the Markov process converges to that of 
the underlying autoregression. Specifically, let YKT = 

(YK1, YK2, ' ? , YKT) denote generically a realization of 
length T of the Markov process when a "grid size" of 
K is used. A suitable index of the grid size is the smallest 
of the number of discrete points used for the compo- 
nents of the ,'s; that is, K = min{Ki}. Then by con- 
struction law(yKT) -> lawAR as K -> oc, where lawAR 
denotes the joint distribution of a realization of length 
T from the underlying AR process. 

By virtue of the Skorohod construction (Serfling 1980, 
p. 23; Breiman 1968, p. 283), we can always identify 
weak convergence with almost sure convergence. Sko- 
rohod's result states that given the weak convergence 
of YKT to YT, where law(YT) = lawAR, then in general 
there exist random variables Y'T and YT defined on a 
common probability space with law(YK,) = law(YKT) 
and law (YT) = lawAR such that YKT-> Yr almost surely. 
This has some useful implications. Inspection of the proof 
of Skorohod's result (Breiman 1968, pp. 283-284) re- 
veals that the method used in the proof to define the 
YKT is the same as that used here to generate the Monte 
Carlo realizations of the Markov process. Thus I can 
take YKT = YKT; that is, the Monte Carlo realizations 
are just the random variables of the Skorohod construc- 
tion and hence YT = YT. Therefore, any continuous 
function of the data, say (IYKT), converges almost surely 
to L(YT). Moreover, the Monte Carlo realizations of 
the estimator 0 are also almost surely convergent. 

Theorem 3.1. Let OK = O(YKT) denote generically a 

realization of the Monte Carlo estimator of the quasi- 
true value of the parameter when a grid of size K is 
used. Then OK -> (YT) almost surely as K -> oo. 

In cases in which the objective function has multiple 
minimums, the estimator OK is interpreted to be a mea- 
surable selection from the set minimizers and the almost 
sure convergence is interpreted as meaning that lim sup 
of the set of minimizers is contained in the limiting set 
of minimizers. To sketch a proof, observe that OK is a 
minimizer of the GMM objective function when the 
realization of the data is YKT. But this objective function 

converges almost surely as K-> c to the GMM objective 
function when the realization is YT, uniformly in 0 on 

compact sets, and the conclusion follows by standard 

arguments. It is to be emphasized that the randomness 
here pertains to the random numbers generated in the 

sampling experiments and the limit is taken with respect 
to the grid size K, not with respect to T. 

To interpret the result, suppose that the limiting ob- 

jective function has a unique minimizer, which in gen- 
eral is true when T is large. Then the result implies that 
for almost every realization of T drawings from the uni- 

form random number generator used in the data-gen- 
erating algorithm (see the end of Sec. 3.2), there is a 

grid size K* such that if L1, L2 > K*, then I0L1 - 0L2[ 
< e, where e is arbitrary. Here 0L, and 0L2 refer to 
estimates based on pseudodata obtained with grid sizes 
L, and L2 but generated from the same T uniform ran- 
dom variables in the algorithm. In other words, except 
on a null set, for each group of T uniform u's we have 
to find that after K becomes large enough, then exper- 
imenting with finer grid sizes does not matter much. 

4. RESULTS 

To be in compliance with the standards set forth by 
Hoaglin and Andrews (1975) for documenting Monte 
Carlo work, Section 4.1 gives a detailed description of 
the experimental design and numerical methods. Sec- 
tion 4.2 contains some additional documentation and an 

accounting of the main findings from the experiments. 

4.1 Experimental Design and Methods 

The experiments reported here all pertain to a case 
in which the econometrician has data on returns from 

holding one asset and on per-capita consumption. The 

underlying autoregressive model for the period-to-pe- 
riod proportional growth in the dividend, x, = d,ldt_l, 
and the growth in consumption, w, = c/,c,_l, is 

log(x,) = bl + alllog(x,- ) + al2log(w,_l) + el, 

log(w,) = b2 + a21log(xt l) + a22log(w,_ ) + e2t, 

(4.1) 

where El, and 82, are jointly normally distributed white 
noise random variables with second moments (o2, (o2, 
and W12. 

Using the method described in the previous section, 
a discrete-valued Markov chain {,, w,} was taken as an 

approximation to the system (4.1). In the approximation 
each of x, and i, could assume one of eight values giving 
64 states of nature in total. For each of the experimental 
settings of the pseudotrue values of the discount factor 
,B and the curvature parameter y, the asset's price div- 
idend ratio v(s) is computed as a function of the state 
of nature s by solving the system of linear equations 
(3.5). Realizations of the discrete process {,, w,} were 

generated using the method described in Section 3.2, 
and the implied price dividend ratio 0, was calculated 

concurrently. Extensive trial testing with the discrete 
approximation to (4.1) showed that over the ranges of 
the a's, b's, and co's that are used here, the discrete 

approximation is exceptionally good-nearly exact. In 
what follows, think of the actual data-generation process 
as being (4.1), with little reference to the approximating 
discrete model, although to avoid possible confusion 
tildes will appear over the relevant quantities in for- 
mulas involving the pseudodata. 
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The notation for the description of the estimation 
method is as follows: Define the error function 

e,(O) = PfR,+w-+1L - 1, (4.2) 

where 0 = (/, y) and where 

Rt+l = [(1 + t+1)/0v] xt+l (4.3) 

is the asset's gross return from t to t + 1 per dollar 
invested in it. As can be easily checked, the expression 
(4.2) for the error function is equivalent to the expres- 
sion (2.2). Now define the instrument vector 

z, = (1, W,, . . ., ,_tL+l, R,, , Rt-L+l), (4.4) 

where L = NLAG > 1 denotes the number of lags used 
to form the instrument vector. The use of lags of con- 
sumption growth and asset returns as instruments is con- 
sistent with current practice in applied work (see Hansen 
and Singleton 1982). Put 

g,(0) = e,(0)z, (4.5) 

and 

t=l 
(4.6) 

In all cases sufficient data were generated to "prime" 
the lags appropriately so that reported econometric sam- 
ple sizes of T = 50 and T = 75 correspond to exactly 
that many terms in the sum in (4.6). 

The estimation method to be investigated is the Han- 

sen (1982) two-step procedure. In the first step a pre- 
liminary estimate 0(l) is obtained by minimizing the 
quadratic form 

QT (0) = gT(0)'WT gr(0), (4.7) 

where Wr is a matrix of preliminary weights comprised 
of the inverses of the diagonal elements of the matrix 
(1/ T) /T= g,(O)gt(0)' evaluated at the starting values for 
the nonlinear minimization of Q[(0). The purpose of 
using the preliminary weighting matrix W1 instead of an 
identity matrix is to keep all calculations across exper- 
iments on roughly the same numerical scale during the 
nonlinear optimization. Given the estimate O1 from the 
first-step estimation, the weighting matrix 

W2= g ) g( 
t=l 

(4.8) 

is formed and the function 

Q2 (0) = gr(0)'WTT(0) (4.9) 

is minimized to obtain the final estimate 0. Estimates 
of the variance-covariance matrix of 0 were calculated 
as 

T-l[(ag(O)'/a0) W2 (ag(O)/a0')]-1. (4.10) 

This expression takes account of conditional hetero- 
scedasticity. 

The primary computer used for the calculations was 
an IBM 3081 mainframe. The nonlinear optimization 

Table 1. Pseudotrue Parameter Values and Other Parameter Settings 

Experi- Autoregressive Error 
ment Gamma Beta matrix covariance Intercepts 

1A .30 .97 -.500 .000 .01 .00 .000 
.000 -.500 .00 .01 .000 

2A .30 .97 -.500 .000 .0001 .00 .000 
.000 -.500 .00 .01 .000 

3A .30 .97 -.010 .000 .01 .00 .000 
.000 -.500 .00 .01 .000 

4A .30 .97 -.010 .000 .0001 .00 .000 
.000 -.500 .00 .01 .000 

5A .30 .97 -.500 .000 .01 .00 .000 
.000 -.100 .00 .01 .000 

6A .30 .97 -.500 .000 .0001 .00 .000 
.000 -.100 .00 .01 .000 

7A .30 .97 -.100 .000 .01 .00 .000 
.000 -.100 .00 .01 .000 

8A .30 .97 -.100 .000 .0001 .00 .000 
.000 -.100 .00 .01 .000 

9A .30 .97 .073 .620 .013 r = .49 .0034 
.015 -.122 r=.49 .002 .0220 

10A .30 .97 .070 .000 .01 .00 .000 
.000 -.120 .00 .002 .000 

11A .30 .97 .070 .600 .01 .00 .000 
.000 -.120 .00 .002 .000 

12A .30 .97 .070 .000 .01 r = .50 .000 
.000 -.120 r=.50 .002 .000 

13A .30 .97 .070 .000 .01 .00 .000 
.000 -.120 .00 .002 .020 

NOTE: Experiments 1B-13B are the same as 1A-13A except gamma = 1.30. 
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was carried out in double precision FORTRAN using 
the DFP algorithm in the Goldfeld-Quandt package. 
The coding of the FORTRAN routines was checked by 
replicating the estimation on test data sets using PROC 
SYSNLIN in the Statistical Analysis System (SAS) pack- 
age. In addition, extensive checking was carried to en- 
sure convergence of the optimization routine. The ran- 
dom number routine for generating realizations of the 
Markov chain was the GGUBFS in the International 
Mathematical and Statistical Libraries (IMSL) package. 
The initial calculations to determine the parameters of 
the approximating Markov chain and the lower bounds 
for the variance-covariance matrix of the estimates were 
done in PROC MATRIX in SAS, and most of the post- 
processing of data from the sampling experiments was 
done in SAS. 

There are 26 sampling experiments labeled 1A-13A 
and 1B-13B. Table 1 displays the pseudotrue values of 
the parameters of the representative agent's utility func- 
tion for the experiments. In Experiments 1A-13A the 
curvature parameter y for per-period utility function 

u(c) = (1 - 2) 1c1-y (4.11) 

is .30, whereas in Experiments 1B-13B it is 1.30. Mehra 
and Prescott (1985) reviewed the literature on estimates 
of this parameter and concluded that "sensible" values 
for y should be less than 2.0; this conclusion motivates 
the choices here. For all experiments the subjective dis- 
count factor / is set to .97, which corresponds to a sub- 
jective discount rate of about .03. Although the exper- 
imental results are not invariant to the choice of /, 
extensive preliminary calculations indicated that the lower 
bound for the asymptotic standard deviations of the es- 
timated parameters are virtually unaffected by the choice 
of / over a very wide range of values (from .40 to .99), 
and hence this parameter is left fixed across all exper- 
iments. 

Table 1 also displays the experimental settings for the 
parameters of the data-generation process (4.1) for div- 
idend and consumption growth. Since the parameter 
settings are the same for the A and B groups, the letter 
suffix will be omitted in the subsequent discussion when- 
ever the distinction between the two groups of experi- 
ments is irrelevant. Experiments 1-8 are basically test 
cases in which the autoregressive matrix is diagonal, as 
is the covariance matrix of the innovations. Although 
the asset's dividend evolves independently of consump- 
tion in these cases, the rate of return on this asset is 
strongly correlated with consumption, as is clear from 
inspection of formula (3.1) for the asset's price. In these 
eight experiments the variance of the innovation co2 in 
the consumption growth equation is set to .01, whereas 
the variance of the innovation to dividend growth is set 
to .01 or .0001. The experimental results depend only 
on the ratio of these variances and not on their individual 
levels. Both consumption growth and dividend growth 
are negatively autocorrelated in these experiments, so 

the levels of each variable tend to regress toward zero 
after an innovation. In Experiments 1 and 2 the degree 
of autocorrelation is unrealistically strong (AR coeffi- 
cients of -.50). This choice of the AR coefficients gen- 
erates very small standard asymptotic standard errors 
for the coefficient estimates, because the magnitude of 
the standard errors is inversely related to the magnitude 
of the AR coefficients. In these two experiments the 
parameters can thereby be expected to be estimated 
precisely and the asymptotic approximations should be 
fairly good, thus providing a check on the validity of 
the overall calculations, including the coding of the rou- 
tines to evaluate the function and its derivatives, the 
nonlinear optimization package, and the random num- 
ber generator. In Experiments 3-8 the degree of au- 
tocorrelation in the two series becomes progressively 
weaker, with the values -.10 for the AR coefficients 
in Experiments 7 and 8 being much more realistic. 

The parameter settings for Experiment 9 were deter- 
mined on the basis of the following autoregression fitted 
with actual U.S. data on consumption and dividend 
growth: 

log(x) = .003 + .073 log(xt-l) 
(.013) (.115) 

+ .620 log(w,_ ), ' 6 = .0130 

(3.44) 

log(w) = .022 + .015 log(x,-l) 
(.005) (.040) 
- .122 log(w,- ), o\2 = .0016. 

(.119) (4.12) 

The residual correlation is .492. When the autoregres- 
sion was estimated in levels instead of first differences, 
the diagonals elements of the matrix of AR coefficients 
were very close to unity, indicating that a model with 
stationary first differences is an appropriate specifica- 
tion. The data set for the autoregression is similar to 
that used by Mehra and Prescott (1985), although the 
data were independently collected. The dividend series 
is from the Standard and Poors index. The consumption 
deflator was used to convert to constant dollars the div- 
idends and per-capita consumption series. The data are 
annual with the period of fit being 1980-1982. Annual 
data are used for model calibration here, because they 
make more plausible the assumption of a first-order 
autoregression for the state variables, and a first-order 
autoregression is needed to keep the number of states 
in the approximating Markov chain small enough to be 
computationally feasible. It is recognized that much of 
the work with the GMM procedure applied to financial 
market data uses quarterly or monthly data, so the con- 
clusions here need to be qualified accordingly. Never- 
theless, much can be learned about the properties of 
the procedure by studying its properties as applied to 
data generated by the aforementioned autoregression. 

Although the parameter settings for the AR model 
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in Experiment 9 are based on actual data and thus are 
arguably more "realistic" than those of Experiments 1- 
8, the results for this experiment are a confounding of 
the effects of three characteristics of Experiment 9 that 
are not present in Experiments 1-8. These character- 
istics are (a) the feedback from consumption growth to 
dividend growth, (b) the contemporaneous correlation 
between the innovations, and (c) the nonzero intercepts. 
Experiments 10-13 are designed to disentangle the sep- 
arate effects of these characteristics. Experiment 10 is 
the "base" case for this effort in which the autoregres- 
sive coefficients and the innovation variances are set to 
the diagonal elements of those for Experiment 9 after 
some inconsequential rounding. In Experiments 11-13 
each of these effects is introduced in turn. Experiment 
11 has feedback from consumption growth to dividend 
growth, Experiment 12 has contemporaneous correla- 
tion between the innovations, and Experiment 13 has a 
nonzero intercept in the consumption growth equation 
(note the very small and insignificant intercept in the 
dividend growth equation that is ignored in what fol- 
lows). 

4.2 Findings From the Sampling Experiments 

The following are some pertinent features of the ex- 
periments. There are 100 replications within each ex- 
periment using econometric sample sizes of 50 and 75. 
(The qualitative conclusions from the more important 
experiments 1, 7, and 9-13 were validated by repeating 
them with 500 and 1,000 replications, and no essential 
differences were uncovered.) For each sample size the 
parameter estimates and associated statistics were ob- 
tained using NLAG = 1 through NLAG = 4 to form 
the instrument vector (4.4) and using the "optimal" in- 
struments discussed in Section 2.2. These last instru- 
ments are based on knowledge of the underlying struc- 
ture and hence are not operational for applied work, 
although the results based on them do provide a bench- 
mark. In many instances, however, the objective func- 
tion was very ill-behaved when these instruments were 
used in conjunction with sample sizes of 50 or 75, and 
valid results were often not available (see Sec. 4.2.1). 
Finally, the experiments are "blocked" in the sense that 
for each econometric sample size within an experiment 
the estimation using the different lag lengths and the 
"optimal" instruments was over exactly the same data. 
This variance reduction technique induces a strong cor- 
relation across results with different lag lengths, so the 
effects of varying the lag lengths are estimated relatively 
precisely. Because of the extreme nonlinearity of the 
structural model generating the data and because of the 
nonlinearity of the estimation method, however, there 
is a lack of strong prior information, precluding use of 
other standard variance reduction techniques. Such in- 
formation is essential to achieve variance reduction (see 
Rubinstein 1981). 

The GMM method uses lagged endogenous variables 

as instruments, and there are strong nonlinearities in- 
herent in the structure and the estimation method. In 
addition, the restriction that the estimator must lie in a 
compact set, though common in theoretical work, is 
rarely operational in practice and is not imposed in the 
sampling experiments. It seems likely then that the Han- 
sen two-step estimator does not possess moments. Thus, 
in the reporting of the results, care will be taken to 
report statistics like medians and interquartile ranges 
that always exist whether or not the estimator has mo- 
ments. In addition, the natural moment-based statistics 
are also reported and, as it turns out, "infinite moment" 
problems generally are not apparent, which is consistent 
with Sargan (1982). 

4.2.1 General Characteristics of the Sampling Dis- 
tribution of y. Table 2 shows the lower bound on the 
asymptotic standard error and summary statistics on the 
sampling distribution of the estimate of the curvature 
parameter y. The lower bound was computed as the 
square root of (1/T) times the appropriate diagonal ele- 
ment of the lower bound on the asymptotic variance- 
covariance matrix given in (2.12). The lower bound and 
summary statistics are reported only for Experiments 1, 
7, and 9. The reason for selecting only 1 and 7 from the 
first eight for reporting in detail is that for the odd- 
numbered experiments in this group the experimental 
conditions are somewhat more stringent for the esti- 
mator, and thus more interesting, because of the larger 
innovation variance for dividend growth and because 
the general characteristics of the sampling distributions 
show a gradual progression between the extremes of 1- 
2 and 7-8 as the series become less autocorrelated. Ex- 
periments 10-13 will be discussed subsequently. 

Examination in Table 2 of the sampling distribution 
of y in Experiments 1A and 1B indicates that, under 
the rather favorable conditions of these experiments, 
the estimator performs reasonably well. The medians 
are quite close to the true values and the other quantiles 
are more or less symmetrically placed about the true 
parameter values. The lower bound for the asymptotic 
standard deviations for the estimator range between .173 
and .271, depending on the number of observations and 
the parameter settings of the experiments. Generally 
the interquartile ranges are right around their antici- 
pated values of 1.35 times this standard error. The right 
two columns of Table 2 contain the means and standard 
deviations of the estimates computed over the 100 rep- 
lications. The means are very close to the medians and 
the standard errors are close to the theoretical lower 
bound, indicating that full asymptotic efficiency is 
achieved using very short lag lengths under the condi- 
tions of these experiments. Although these conditions 
are perhaps too favorable to make it possible to draw 
firm conclusions about the estimator's performance in 
actual practice, the results do suggest that there are no 
fundamental deficiencies in the GMM procedure itself 
nor in the methods used here to study its properties. 
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Table 2. Characteristics of the Sampling Distribution of Estimated Gamma 

Parameters 

Exp. Nobs NLAG MSTD 

1A 50 1 .173 
50 2 .173 
50 3 .173 
50 4 .173 
50 * .173 

75 1 .141 
75 2 .141 
75 3 .141 
75 4 .141 
75 * .141 

1B 50 1 .271 
50 2 .271 
50 3 .271 
50 4 .271 
50 * .271 

75 1 .221 
75 2 .221 
75 3 .221 
75 4 .221 
75 * .221 

7A 50 1 1.134 
50 2 1.134 
50 3 1.134 
50 4 1.134 
50 * 1.134 

75 1 1.098 
75 2 1.098 
75 3 1.098 
75 4 1.098 
75 * 1.098 

7B 50 1 2.119 
50 2 2.119 
50 3 2.119 
50 4 2.119 
50 * 2.119 

75 1 1.730 
75 2 1.730 
75 3 1.730 
75 4 1.730 
75 1.730 

9A 50 1 4.257 
50 2 4.257 
50 3 4.257 
50 4 4.257 
50 * 4.257 

75 1 3.476 
75 2 3.476 
75 3 3.476 
75 4 3.476 
75 * 3.476 

9B 50 1 3.647 
50 2 3.647 
50 3 3.647 
50 4 3.647 
50 * 3.647 

75 1 2.978 
75 2 2.978 
75 3 2.978 
75 4 2.978 
75 2.978 

Quantiles Other Statistics 

Qo,0 Q05 Med. Q95 Q99 IQR Mean SD 

-.22 -.05 .26 .66 1.01 .232 .275 .215 
-.14 -.01 .25 .57 .97 .212 .259 .179 
-.15 -.02 .24 .50 .89 .211 .242 .170 
-.14 -.03 .22 .51 .86 .180 .226 .161 
-.21 -.04 .28 .73 1.15 .203 .287 .221 
-.11 .06 .29 .62 .86 .218 .309 .168 
-.14 .05 .26 .56 .75 .209 .283 .161 
-.14 .03 .25 .54 .76 .212 .267 .156 
-.08 .02 .24 .55 .78 .211 .258 .157 
- .07 .03 .30 .65 .82 .217 .319 .168 

.70 .93 1.25 1.87 2.33 .339 1.306 .289 

.45 .80 1.17 1.71 2.04 .301 1.192 .259 

.62 .75 1.09 1.52 1.76 .247 1.106 .219 

.41 .76 1.06 1.37 1.75 .282 1.050 .203 

.94 .99 1.32 1.99 6.72 .431 1.426 .628 

.92 1.00 1.26 1.81 3.21 .308 1.342 .310 

.83 .94 1.22 1.77 2.35 .259 1.262 .259 

.86 .90 1.17 1.53 2.09 .222 1.192 .196 

.71 .87 1.13 1.44 1.76 .210 1.140 .176 

.91 1.04 1.31 1.97 4.53 .321 1.393 .408 
-3.25 -1.70 .15 2.59 4.69 1.004 .238 1.187 
-1.52 -1.12 .06 1.15 1.89 .618 .106 .578 
-1.54 -.71 .07 .89 1.87 .578 .090 .502 
-1.63 -.65 .10 .66 1.00 .363 .049 .419 

NA 

-4.13 - 1.80 .09 1.38 2.38 .672 .056 .870 
-1.79 -.63 .10 1.13 2.50 .518 .101 .547 
-1.45 -.63 .06 .87 1.09 .447 .063 .418 
-.92 -.51 .08 .73 1.14 .432 .077 .369 
NA 

-3.07 -1.42 .60 3.47 6.76 1.141 .662 1.382 
-1.85 -.83 .32 1.79 3.14 .785 .332 .758 
-2.45 -.79 .28 1.28 2.11 .651 .231 .624 
-1.02 -.61 .26 .93 1.19 .426 .234 .420 

NA 

-2.34 -.79 .63 2.27 4.82 .858 .642 .911 
-1.23 -.42 .36 1.17 3.76 .685 .428 .596 
-.74 -.43 .35 1.19 1.83 .559 .361 .467 
- .87 -.25 .31 1.02 1.26 .465 .319 .405 
NA 

-12.73 -2.09 1.62 5.97 27.71 3.258 1.748 3.917 
-3.97 -.09 2.04 4.53 6.69 2.219 1.932 1.683 
-2.06 -.88 2.23 4.44 5.36 1.707 2.092 1.419 
-1.63 -.15 2.03 4.12 4.47 1.566 2.015 1.201 

NA 

-14.97 -8.20 1.37 5.91 10.19 2.997 .833 3.181 
-5.25 -1.47 1.72 4.40 10.78 2.354 1.684 2.049 
-2.11 -.67 1.88 4.34 5.14 1.696 1.921 1.393 
-1.41 -.38 1.83 3.88 6.10 1.356 1.884 1.208 

NA 

-24.82 -2.78 1.94 9.05 31.66 2.715 2.082 5.308 
-8.18 -.52 2.08 5.19 9.42 1.830 2.005 1.961 
-1.28 .21 2.01 4.03 8.73 1.599 2.069 1.356 
-.12 .14 2.07 3.88 7.62 1.326 2.129 1.255 
NA 

-9.63 -3.08 1.91 5.41 17.28 2.457 1.778 2.967 
-4.16 -.52 1.85 4.47 6.56 1.617 1.891 1.545 
-2.48 .05 2.19 3.90 6.11 1.565 1.990 1.222 

-.94 .37 1.97 3.64 5.65 1.294 2.023 1.034 
NA 

NOTE: Exp = experiment; Nobs = econometric sample size; NLAG = number of lags used to form instruments; MSTD = theoretical 
lower bound for asymptotic standard error; IQR = interquartile range; Mean = average of estimates over 100 replications; SD = standard 
deviation over 100 replications; NA = not available due to convergence problems. 

* 
Asymptotically optimal instruments. 
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The sampling distributions for Experiments 7 and 9 
in Table 2 are much more diffuse, which is to be ex- 
pected given the larger lower bounds on the estimator's 
standard deviations. The larger lower bounds are due 
primarily to the reduction in the degree of autocorre- 
lation in the consumption growth process [see Tauchen 
(1985c) for a more detailed discussion of the determi- 
nants of the magnitude of the asymptotic lower bound]. 
Because of the spreading of the distributions, the down- 
ward bias of the estimate that is present throughout 
Experiments 1-8 is more apparent in the results for 7A 
and 7B than in those for 1A and 1B. Interestingly, in 
Experiment 9, which is the one calibrated on the basis 
of actual data, the estimator is upward biased. The pri- 
mary difference between Experiments 9 and 1-8 is that 
in the former dividend and consumption growth are pos- 
itively correlated whereas in the latter they are inde- 
pendent, suggesting that positive association between 
consumption and dividend growth tends to counteract 
the downward bias and may produce upward bias. This 
conjecture will be explored more fully in Section 4.2.2. 

Because of convergence problems, Table 2 does not 
contain information on the sampling distribution of the 
"optimal" instrument quasi-estimator in Experiments 7 
and 9. In fact, for each of the experiments numbered 5 
or higher the estimation algorithm either failed to reach 
a minimum or reached a putative minimum with im- 
plausibly large estimates of the variance-covariance ma- 
trix due to a nearly rank-deficient derivative matrix in 
about half of the 100 replications. As a check on the 
experimental methods, some of the experiments were 
repeated using these instruments and econometric sam- 
ple sizes as large as 1,000 observations. With so many 
observations, the convergence problems were absent and 
the asymptotic approximations were very accurate. This 
suggests that the "optimal" instrument quasi-estimator 
might have very undesirable finite sample properties, 
except under special conditions or for unrealistically large 
sample sizes. It is interesting to note, however, that 
under the special conditions of Experiment 1, where 
reliable results are available for reporting in Table 2, 
the use of the optimal instruments tends to remove the 
bias and center the sampling distribution on the pseu- 
dotrue value. 

4.2.2 The Variance/Bias Trade-Off. All of the 
sampling distributions summarized in Table 2 indicate 
the presence of a strong variance/bias trade-off as the 
number of lags used for forming the instruments is in- 
creased from NLAG = 1 to NLAG = 4. As NLAG 
increases, the measures of dispersion decrease, and in 
many instances they decrease to values well below their 
asymptotic theoretical lower bounds. On the other hand, 
the magnitude of the bias almost uniformly increases 
with lag length. 

Table 3 contains the relevant statistics for assessing 
the characteristics of the variance/bias trade-off and for 
identifying the determinants of the sign and magnitude 

of the bias. The table shows two standardized measures 
of bias: bias? is the difference between the arithmetic 
average of the estimates and the true parameter value 
divided by the lower bound for the asymptotic standard 
deviation; biasO is the same except that the median is 
used in place of the average. The table also shows RMSE?, 
which is the root mean squared error about the true 
value divided by the lower bound on the standard de- 
viation, and MAD0, which is the median absolute de- 
viation about the true value divided by the same lower 
bound. One should note that the lower bound used for 
the standardization is not random, and thus the division 
does not introduce any additional noise into the Monte 
Carlo estimates of bias and estimation accuracy. Be- 
cause of the standardization, the anticipated value for 
the RMSE? is unity or slightly above that and the an- 
ticipated value for the MAD0 is (2/17)1/2 or just above 
that. 

Several conclusions about the variance/bias trade-off 
seem apparent from Table 3. For long lag lengths, either 
measure of bias can be up to 50% of the asymptotic 
standard error, and in a few instances it can be as large 
as 90% of the asymptotic standard error. On the other 
hand, for short lag lengths the bias is usually a much 
smaller fraction of the asymptotic standard error. This 
is the case in Experiments 1A and 1B, which are the 
"check" experiments with very favorable parameter set- 
tings, and it is also the case in the other experiments, 
where the conditions are much less favorable and more 
realistic. Generally speaking, under a strict mean squared 
error criterion the increase in the magnitude of the bias 
with lag length is associated with an improvement of the 
overall performance of the estimator as indicated by a 
reduction in RMSE?, although this is not the case with 
the MAD0. But nearly always the reduction in RMSE? 
beyond that achieved in moving from NLAG = 1 to 
NLAG = 2 is quite small. Of course the conclusions 
one would draw from these results depend on one's loss 
function. Nevertheless, it seems apparent that under any 
loss function that penalizes to some extent possible mis- 
leading inference due to a bias that is large in magnitude 
relative to the standard error, the general recommen- 
dation for applied work should be to keep the lag lengths 
short. The improvement in performance that is achieved 
from using longer lags would most likely be outweighed 
by the increased risk of incorrect inference. 

The results of Table 3 also help identify the deter- 
minants of the direction of the estimator's bias. As pre- 
viously noted, the estimator is downward biased in Ex- 
periments 1-8 whereas it is upward biased in Experiment 
9. Experiments 10-13 help isolate the various effects 
that are confounded in Experiment 9. Comparing the 
A experiments with the B experiments for 9-13 shows 
that, other things equal, a larger true y tends to move 
the bias downward, in the sense of making the negative 
biases more negative and reducing the positive biases. 
Comparing Experiment 10 with 11 and 12 indicates that 
the introduction of positive feedback from consumption 
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Table 3. Standardized Measures of Bias and Performance 

Exp. Nobs NLAG Bias? RMSE? Bias? MAD? 

1A 50 1 -.14 1.24 -.23 .69 
50 2 -.23 1.06 -.29 .57 
50 3 -.34 1.04 -.35 .73 
50 4 -.43 1.02 -.46 .62 
50 * -.08 1.27 -.11 .60 

75 1 .06 1.24 -.07 .78 
75 2 -.12 1.06 -.28 .79 
75 3 -.23 1.03 -.35 .79 
75 4 -.30 1.02 -.42 .85 
75 .13 1.27 .00 .70 

1B 50 1 .02 1.06 -.19 .66 
50 2 -.40 1.03 -.48 .72 
50 3 -.71 1.08 -.77 .83 
50 4 -.92 1.19 -.89 .90 
50 * .46 2.35 .07 .67 

75 1 .19 1.40 -.18 .70 
75 2 -.17 1.18 -.36 .69 
75 3 -.49 1.01 -.59 .72 
75 4 -.72 1.07 -.77 .83 
75 * .42 1.88 -.77 .64 

7A 50 1 -.05 .88 -.11 .41 
50 2 -.14 .45 -.18 .24 
50 3 -.16 .40 -.17 .22 
50 4 -.19 .36 -.15 .20 
75 1 -.22 .82 -.19 .36 
75 2 -.18 .53 -.18 .28 
75 3 -.22 .44 -.22 .29 
75 4 -.20 .39 -.20 .27 

7B 50 1 -.30 .72 -.33 .45 
50 2 -.46 .58 -.46 .47 
50 3 -.50 .58 -.48 .48 
50 4 -.50 .58 -.49 .49 

75 1 -.38 .65 -.33 .46 
75 2 -.50 .61 -.46 .54 
75 3 -.54 .60 -.48 .55 
75 4 -.56 .62 -.49 .56 

9A 50 1 .34 .98 .31 .42 
50 2 .38 .55 .41 .42 
50 3 .42 .54 .46 .46 
50 4 .40 .49 .41 .41 

75 1 .15 1.10 .31 .51 
75 2 .40 .70 .41 .46 
75 3 .47 .61 .45 .48 
75 4 .46 .58 .44 .45 

9B 50 1 .21 1.46 .18 .34 
50 2 .19 .57 .21 .31 
50 3 .21 .43 .19 .25 
50 4 .23 .41 .21 .25 

75 1 .16 1.00 .20 .48 
75 2 .20 .55 .18 .30 
75 3 .23 .47 .30 .37 
75 4 .24 .42 .22 .30 

1 OA 50 1 .08 .97 -.08 .44 
50 2 .02 .58 -.09 .24 
50 3 -.02 .41 -.06 .20 
50 4 -.07 .33 -.10 .20 
75 1 -.01 1.15 -.02 .49 
75 2 -.01 .69 -.09 .31 
75 3 -.02 .50 -.04 .25 
75 4 -.04 .38 -.03 .21 

Exp. Nobs NLAG Bias? RMSE? Bias? MAD? 

10B 50 1 -.10 .84 -.15 .41 
50 2 -.21 .54 -.18 .31 
50 3 -.28 .49 -.30 .34 
50 4 -.29 .40 -.27 .30 

75 
75 
75 
75 

11A 50 
50 
50 
50 

75 
75 
75 
75 

11B 50 
50 
50 
50 

75 
75 
75 
75 

12A 50 
50 
50 
50 

75 
75 
75 
75 

12B 50 
50 
50 
50 
75 
75 
75 
75 

13A 50 
50 
50 
50 
75 
75 
75 
75 

13B 50 
50 
50 
50 
75 
75 
75 
75 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 
1 
2 
3 
4 

1 
2 
3 
4 
1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 
1 
2 
3 
4 

-.39 1.28 -.28 .44 
-.35 .71 -.44 .54 
-.40 .55 -.42 .43 
-.40 .53 -.41 .41 

.20 .81 .11 .38 

.14 .57 .06 .27 

.10 .41 .11 .28 

.09 .34 .07 .23 

.09 .95 .16 .54 

.10 .63 .11 .38 

.17 .50 .15 .25 

.12 .43 .11 .24 

-.21 .76 -.22 .36 
-.24 .48 -.25 .34 
-.24 .40 -.23 .31 
-.23 .39 -.22 .26 

-.03 .80 -.08 .40 
-.22 .67 -.21 .38 
-.20 .49 -.22 .31 
-.18 .47 -.20 .28 

.32 .95 .34 .51 

.29 .57 .30 .40 

.31 .50 .28 .37 

.28 .44 .30 .32 

.31 1.30 .37 .54 

.39 .68 .43 .49 

.35 .61 .36 .42 

.34 .52 .38 .44 

-.12 .90 .04 .44 
-.04 .59 .02 .33 
-.03 .55 .03 .24 

.01 .36 .05 .21 

.08 1.31 -.04 .50 
-.02 .62 -.01 .35 
-.03 .49 .04 .29 
-.02 .40 -.03 .27 

.16 1.20 -.01 .39 
-.04 .52 -.02 .31 
-.03 .42 -.02 .22 
-.04 .33 -.08 .23 

-.09 1.17 -.09 .34 
-.08 .61 -.08 .34 
-.07 .44 -.13 .29 
-.09 .40 -.16 .27 

-.16 .83 -.26 .44 
-.31 .56 -.40 .43 
-.25 .50 -.32 .36 
-.27 .39 -.31 .35 

-.11 1.10 -.18 .45 
-.31 .61 -.23 .38 
-.35 .56 -.35 .36 
-.42 .55 -.39 .41 

NOTE: Nobs = econometric sample size; NLAG = number of lags used to form instruments; Bias9 = (average-true value)/(minimum 
asymptotic standard deviation); RMSE = (root MSE about true value)/(minimum asymptotic standard deviation); Biasa = (median-true 
value)/(minimum asymptotic standard deviation); MAD = (median absolute deviation about true value)/(minimum asymptotic standard 

deviation). 
* 

Asymptotically optimal instruments. 
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growth to dividend growth or the introduction of posi- 
tive correlation between the variables' innovations tends 
to raise the bias. On the other hand, comparing Ex- 
periment 10 with Experiment 13 shows that the nonzero 
intercept in the consumption growth equation has vir- 
tually no effect on the bias. Thus it is clearly the com- 
bined effects of the two sources of positive association 
between the dividend and consumption growth variables 
in the autoregression that produce the upward bias in 
Experiment 9, and the bias is less severe in 9B because 
of the countervailing influence of the larger underly- 
ing yo. 

A useful way to summarize the findings on the vari- 
ance/bias trade-off is to follow the recommendations of 
Hendry (1984) to report response surfaces fitted to the 
experimental results. The following display shows the 
relevant subsets of the coefficients from regressions of 
the standardized bias and the logarithm of the stan- 
dardized RMSE on the design variables of the experi- 
ments: 

bias? = -.096 - .173D2 
(.078) (.054) 

.279D3 - .361D4 
(.055) (.068) 

.150 + .372D2 p + .588D3 p + .729D4 p 
(.125) (.122) (.124) (.139) 

log(RMSE?) = -.683 - .242D2 - -315D3 - .338D4 
(.143) (.061) (.065) (.077) 

.655 - .648D2 p - .769D3 p 
(.199) (.111) (.125) 

.990D4 p 
(.165) 

where the Dj are dummy variables for NLAG = 2, 3, 
or 4, and p is the correlation between the consumption 
growth and dividend growth innovations. Each regres- 
sion is based on 208 observations and included as ex- 
planatory variables the other parameters of the under- 
lying AR model and the econometric sample size T, the 
coefficients of which are not reported. The standard 
errors in parenthesis are "generalized" standard errors 
(White 1984, chap. 6) that take into account hetero- 
scedasticity and error correlation due to the experimen- 
tal blocking. As is clear from these regressions, when p 
= 0 the bias becomes larger in magnitude (more neg- 
ative) at longer lag lengths and the variance decreases, 
with a net reduction in the RMSE. The interaction effect 
with p is also evident, since with positive p the bias 
increases with lag length and the reduction in the RMSE 
is exaggerated. 

4.2.3 Implications for Inference. One standard on 
which any estimation method should be evaluated is the 
reliability of the method's specification tests for the overall 
adequacy of the fitted model. For the GMM procedure, 
the restriction that the errors are uncorrelated with all 
variables that are measurable with respect to the infor- 
mation set It and in particular uncorrelated with the 
instruments used in the estimation is an overidentifying 
restriction that provides a means for performing an om- 
nibus test of the specification of the model. The test 
statistic is the (suitably scaled) minimized value of the 

objective function. Specifically, the statistic is TQ2(0), 
where the notation is given in Equation (4.9). The test 
rejects the specification when the statistic exceeds the 
critical chi-squared value with degrees of freedom equal 
to the number of orthogonality conditions used in the 
estimation-that is, the dimension of the vector gt(O) 
minus the number of estimated parameters. 

Table 4 displays the rejection rates for this specifi- 
cation test for some of the more interesting sampling 
experiments. The table shows the rejection rates at nom- 
inal significance levels of 10% and 5%. Since the model 
is correctly specified in all experiments, the anticipated 
value for each rejection rate is the corresponding sig- 
nificance level. The experimental results clearly indicate 
that under the conditions here the test performs quite 
well, as there are very few statistically significant de- 
viations from the anticipated values of the rejection rates. 
It is interesting to note that in most instances the re- 
jection rates are below the nominal rates. This is con- 
sistent with the analytical results of Shapiro (1986), who 
showed that in a different though related estimation 
situation the exact marginal significance level ap- 
proaches the nominal level from below as the sample 
size grows. (Shapiro showed specifically that the exact 
marginal significance level stays above the nominal level 
only finitely often as T-> ox.) The experimental evidence 
presented here in conjunction with Shapiro's results in- 
dicates that, if anything, the test is slightly biased toward 
accepting the specification of the model. This suggests 
that the preponderance of rejections with this test that 
are observed in actual practice (see Rotenberg 1984) 
may not be due to an inadequacy of the asymptotic 
approximations, but rather may be construed as evi- 
dence against the model's specification. 

Another standard for evaluating an estimation method 
is the reliability of its interval estimates of the param- 
eters. Table 4 also contains statistics relevant for deter- 
mining the accuracy of the confidence intervals con- 
structed with the GMM procedure. The table shows 
specifically the proportion of times in the 100 replica- 
tions that individual (one-dimensional) 95% confidence 
intervals for /f and y cover the underlying pseudotrue 
value. The confidence intervals were constructed using 
the standard errors implied by the estimate (4.10) for 
the estimator's asymptotic variance-covariance matrix. 
For short lag lengths, the intervals are evidently very 
reliable as the coverage rates are rarely statistically sig- 
nificantly different from the anticipated value of .95. 
For the longer lag lengths of NLAG = 3 or NLAG = 
4, however, the intervals are clearly inaccurate, because 
they include the pseudotrue parameter value far too 
infrequently, and this is much more the case for the 
intervals for the curvature parameter y. 

Figures 1-3 provide a graphical summary of the ac- 
curacy of the interval estimates of y and also further 
evidence on the characteristics of the variance/bias trade- 
off with lag length. The vertical height in each panel is 
the proportion of the replications that the 95% confi- 
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Table 4. Coverage Rates for 95% Confidence Intervals and Rejection Rates for the Test of the 
Overidentifying Restrictions 

Rates Rates 

Exp. Nobs NLAG Beta Gamma 10% 5% 

lA 50 1 .92 .93 .10 .02 
50 2 .94 .92 .08 .03 
50 3 .90 .93 .09 .03 
50 4 .87 .92 .14 .01 
75 1 .98 .90 .10 .03 
75 2 .95 .90* .12 .05 
75 3 .91 .88* .12 .05 
75 4 .94 .86* .09 .03 

lB 50 1 .95 .91 .11 .04 
50 2 .93 .85* .13 .07 
50 3 .87* .72* .10 .06 
50 4 .85* .61* .10 .01 
75 1 .96 .94 .11 .06 
75 2 .95 .87* .12 .07 
75 3 .91 .82* .11 .04 
75 4 .92 .76* .10 .04 

7A 50 1 .95 .97 .14 .02 
50 2 .90 .96 .08 .04 
50 3 .84* .93 .04 QQ0* 
50 4 .82* .85* .03 .02 
75 1 .99 1.-00* .07 .04 
75 2 .99 .95 .08 .04 
75 3 .98 .89* .04 .01 
75 4 .96 .86* .05 .03 

7B 50 
50 
50 
50 
75 
75 
75 
75 

2 
3 
4 

1 
2 
3 
4 

.97 

.92 

.92 

.92 

.94 

.92 

.92 

.93 

.77* .08 .04 

.49* .09 .03 
.31 * .03 .02 
.1 8* .08 .02 

.76* .06 .01 

.50* .09 .04 
-35* .07 .04 
.24* .06 .04 

9A 50 1 .86* .88* .06 .03 
50 2 .74* .71 * .07 .02 
50 3 .63* .54* .03 .02 
50 4 .57k .48* .04 .00* 
75 1 .94 .92 .07 .04 
75 2 .77* .80* .07 *QQ* 
75 3 .69* .63* .06 .04 
75 4 .63* -59* .06 QQ0* 

98 50 1 .92 .99 .05 .02 
50 2 .88* .96 .06 .03 
50 3 .80* .87* .06 .01 
50 4 .77k .82* .07 .02 
75 1 .99 .97 .11 .04 
75 2 .93 .96 .08 .04 
75 3 .87* .92 .07 QQ0* 
75 4 .84* .82* .04 .00* 

iQOA 50 1 .98 1.00* .04 .03 
50 2 .98 .99 .05 .01 
50 3 .96 .94 .05 QQO* 
50 4 .92 .97 .06 .01 
75 1 .93 1.00* .05 .04 
75 2 .93 1.00* .04 .04 
75 3 .93 1.00* .05 .02 
75 4 .92 .99 .06 .01 

NOTE: Exp =experiment; Nobs =econometric sample size; NLAG 
*Significantly different from expected value at the 95% level. 

Rates Rates 

Exp. Nobs NLAG Beta Gamma 10% 5% 

l OB 50 1 .96 .91 .08 .04 
50 2 .95 .85* .05 .03 
50 3 .94 .74* .07 .04 
50 4 .91 .76* .07 .03 
75 1 .97 .94 .05 .04 
75 2 .95 .86* .04 .02 
75 3 .92 .78* .07 .04 
75 4 .91 .66* .07 .03 

11A 50 1 .97 .99 .03 .01 
50 2 .92 .99 .04 .02 
50 3 .91 .98 .06 .03 
50 4 .86 .93 .10 .01 
75 1 .98 .99 .08 .03 
75 2 .98 .95 .08 .02 
75 3 .99 .91 .07 .03 
75 4 .94 .88* .07 .04 

11B 50 1 .99 .97 .15 .09 
50 2 .96 .93 .09 .04 
50 3 .95 .86* .08 .02 
50 4 .95 .83* .03 .01 
75 1 .97 .99 .07 .03 
75 2 .96 .93 .06 .03 
75 3 .95 .92 .06 .03 
75 4 .95 .88* .08 .03 

12A 50 1 .97 .96 .06 .01 
50 2 .94 .84* .07 .03 
50 3 *90* .71 * .06 .03 
50 4 .88* .69* .04 .02 
75 1 .97 .97 .03 *QQ* 
75 2 .96 .91 .02 .01 
75 3 .95 .84* .03 .01 
75 4 .92 .76* .07 .04 

12B 50 1 .96 .98 .04 .02 
50 2 .94 .97 .04 QQ0* 
50 3 .93 .99 .06 QQ0* 
50 4 .92 .94 .05 .02 
75 1 1.-00* .99 .08 .02 
75 2 .96 .98 .07 .02 
75 3 .96 .98 .03 .01 
75 4 .94 .95 .04 .00* 

13A 50 1 .98 1.-00* .07 .02 
50 2 .95 .98 .01 .01 
50 3 .95 .96 .04 .00* 
50 4 .95 .91 .04 .00* 
75 1 .99 .97 .04 .02 
75 2 .99 .97 .06 .03 
75 3 .98 .97 .05 .02 
75 4 .96 .96 .08 .01 

13B 50 1 .92 .95 .07 .03 
50 2 .85* .86* .04 .02 
50 3 .85* .80* .07 .01 
50 4 .82* .71* .04 .02 
75 1 .97 .95 .06 .03 
75 2 .91 .88* .05 .03 
75 3 .86* .82* .06 .03 
75 4 .76* .72* .09 .05 

= number of lags used to form instruments. 

r 
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!I 

-2.0 
0.3 

is also evident. Interestingly, the estimator is close to 
being unbiased in Experiment 9B with NLAG = 1, but 
this is really due to the approximate cancellation of two 
biases-one of which is the upward bias induced by the 
positive correlation between consumption and divi- 
dends, and the other is the larger pseudotrue yo. 

Concerning the variance/bias trade-off, note that with 
the longer lag length of NLAG = 4 the confidence 
intervals clearly tend to cluster more tightly around biased 
values. This is especially evident in Experiments 1B, 
7B, 9A, and 9B. If we consider in particular Experiment 
9A in Figure 3, then with NLAG = 1 the intervals are 
quite wide on average but the coverage rate at the pseu- 
dotrue value is close to .95; on the other hand, with 

2.0 
1.0 

Exp.lB 

i 2.0 
1.3 

Exp. 1B 

-2.0 132.0 

Figure 1. Coverage Rates of 95% Confidence Intervals for Lag 
Lengths of 1 and 4 in Experiments 1A and 1B. The height indicates 
the proportion of the replications that a 95% confidence interval 
covered the value of y along the horizontal axis. The scales of the 
horizontal axis are not the same for Experiments 1A and 1B. The 
solid vertical line extending outside the rectangle marks the pseu- 
dotrue value of the parameter y. The vertical height should be .95 
at the pseudotrue value if the confidence interval is unbiased. 

Exp. 7A 

1.0 

Exp. 7A 

1.0 

Exp. 7B 

NLAG I 

m 

-9.0 -3.0 0.3 3.0 9.0 y 

dence interval about y covered the corresponding value 
of y on the horizontal axis. Another interpretation of 
the figures is that each panel is a plot of the function 
h(y) = (1/NREP)EJ[y E kth confidence interval], where 
I[-] denotes the 0-1 indicator function, NREP is the 
number of replications equal to 100 in this case, and the 
index k for the summation runs over the replications. 
The function h should attain the value .95 at the pseu- 
dotrue values that are indicated in the figures. 

The downward bias in y in Experiments 1 and 7 is 
evident in Figures 1 and 2, and the bias becomes more 
severe at larger yo and at the small values for magnitudes 
of the diagonal elements of the AR matrix for the data 
generation process. The upward bias in Experiment 9 

Exp. 7B 

t I I 
-9.0 -3.0 1 .33 . 90 y 

Figure 2. Coverage Rates of 95% Confidence Intervals for Lag 
Lengths of 1 and 4 in Experiments 7A and 7B. The height indicates 
the proportion of the replications that a 95% confidence interval 
covered the value of y along the horizontal axis. The scales of the 
horizontal axis are not the same for experiments 7A and 7B. The 
solid vertical line extending outside the rectangle marks the pseu- 
dotrue value of the parameter y. The vertical height should be .95 
at the pseudotrue value if the confidence interval is unbiased. 

I I I I 

T4- 

-9.0 -3.0 1.3.0 9.0 
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Exp.9B 

-9.0 -3.0 3.0 
0.3 

9.0 

NLAG =1 

-On _ A 'I A 0 on 

1.0 
NLAG=4 

Exp. 9B 

I- -3.0 -9.0 -3.0 
1.3.0 9.0 y 

Figure 3. Coverage Rates of 95% Confidence Intervals for Lag 
Lengths of 1 and 4 in Experiments 9A and 9B. The height indicates 
the proportion of the replications that a 95% confidence interval 
covered the value of y along the horizontal axis. The scales of the 
horizontal axis are not the same for Experiments 9A and 9B. The 
solid vertical line extending outside the rectangle marks the pseu- 
dotrue value of the parameter y. The vertical height should be .95 
at the pseudotrue value if the confidence interval is unbiased. 

NLAG = 4 the intervals are much too optimistic and 
are centered on much too large a value of y. As pre- 
viously noted, increasing NLAG beyond 1 or 2 may 
bring about marginal reductions in the mean squared 
error (see Table 3). Nevertheless, it seems clear from 
this experiment and from the others depicted in the 
figures that this reduction is associated with a sharp 
increase in the likelihood of making misleading infer- 
ences about the curvature parameter y. The magnitude 
of this parameter is an important determinate of the size 
of risk premia in stochastic equilibrium models, and thus 
it is important to have a reliable interval estimate of it. 
Therefore, it seems inescapable to conclude that short 
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lag lengths are preferred to longer ones in applied work 
with the GMM procedure. 

5. CONCLUSIONS 

L The methodology and findings of this article suggest 
an interesting topic for future research-namely, boot- 
strapping GMM estimates. Specifically, it is practicable 
to use the methods like those set out in Sections 3 and 
4 to calibrate small-scale artificial economies using the 
estimated values of the structural parameters from a 
GMM estimation. By applying the GMM estimator to 
realizations of pseudodata from the model economy, 
one could get additional insight into the characteristics 
of the bias and variability of the GMM estimates that 

Y were obtained using the actual data. The bootstrap would 
require a modest amount of additional VAR estimation 
of the laws of motion of the predetermined variables, 
and one would have to recognize that these laws of 
motion are really low-dimensional approximations to 
the actual laws of motion. That is, the proposed boot- 
strap for the GMM estimator should be termed a "lim- 
ited information" or "approximate" bootstrap where 
the data-generating process (DGP) is acknowledged to 

* be an approximation of the actual DGP. Nonetheless, 
it is reasonable to conjecture that such a bootstrap could 

Y be very informative, although this needs to be explored 
further in future work. 
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