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Abstract The main goal of this paper is to prove inequalities on the reconstruction er-

ror for kernel principal component analysis. With respect to previous work on this topic,

our contribution is twofold: (1) we give bounds that explicitly take into account the em-

pirical centering step in this algorithm, and (2) we show that a “localized” approach al-

lows to obtain more accurate bounds. In particular, we show faster rates of convergence

towards the minimum reconstruction error; more precisely, we prove that the conver-

gence rate can typically be faster than n−1/2. We also obtain a new relative bound on the

error.

A secondary goal, for which we present similar contributions, is to obtain convergence

bounds for the partial sums of the biggest or smallest eigenvalues of the kernel Gram matrix

towards eigenvalues of the corresponding kernel operator. These quantities are naturally

linked to the KPCA procedure; furthermore these results can have applications to the study

of various other kernel algorithms.

The results are presented in a functional analytic framework, which is suited to deal

rigorously with reproducing kernel Hilbert spaces of infinite dimension.
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1 Introduction

1.1 Goals of this paper

The main focus of this work is principal component analysis (PCA), and its ‘kernelized’

variant, kernel PCA (KPCA). PCA is a linear projection method giving as an output a

sequence of nested linear subspaces which are adapted to the data at hand. This is a widely

used preprocessing method with diverse applications, ranging from dimensionality reduction

to denoising. Various extensions of PCA have been explored; applying PCA to a space of

functions rather than a space of vectors was first proposed by Besse (1979) (see also the

survey of Ramsay and Dalzell, 1991). Kernel PCA (Schölkopf et al., 1999) is an instance of

such a method which has boosted the interest in PCA, as it allows to overcome the limitations

of linear PCA in a very elegant manner by mapping the data to a high-dimensional feature

space.

For any fixed d , PCA finds a linear subspace of dimension d such that the data linearly

projected onto it have maximum variance. This is obtained by performing an eigendecom-

position of the empirical covariance matrix and considering the span of the eigenvectors

corresponding to the leading eigenvalues. This sets the eigendecomposition of the true co-

variance matrix as a natural ‘idealized’ goal of PCA and begs the question of the relationship

between this goal and what is obtained empirically. However, despite being a relatively old

and commonly used technique, little has been done on analyzing the statistical performance

of PCA. Most of the previous work has focused on the asymptotic behavior of empirical

covariance matrices of Gaussian vectors (e.g., Anderson, 1963). Asymptotic results for PCA

have been obtained by Dauxois and Pousse (1976), and Besse (1991) in the case of PCA in

a Hilbert space.

There is, furthermore, an intimate connection between the covariance operator and the

Gram matrix of the data, and in particular between their spectra. In the case of KPCA,

this is a crucial point at two different levels. From a practical point of view, this con-

nection allows to reduce the eigendecomposition of the (infinite dimensional) empirical

kernel covariance operator to the eigendecomposition of the kernel Gram matrix, which

makes the algorithm feasible. From a theoretical point of view, it provides a bridge between

the spectral properties of the kernel covariance and those of the so-called kernel integral
operator.

Therefore, theoretical insight on the properties of kernel PCA reaches beyond this partic-

ular algorithm alone: it has direct consequences for understanding the spectral properties of

the kernel matrix and the kernel operator. This makes a theoretical study of kernel PCA all

the more interesting: the kernel Gram matrix is a central object in all kernel-based methods

and its spectrum often plays an important role when studying various kernel algorithms;

this has been shown in particular in the case of support vector machines (Williamson et al.,

2001). Understanding the behavior of eigenvalues of kernel matrices, their stability and how

they relate to the eigenvalues of the corresponding kernel integral operator is thus crucial for

understanding the statistical properties of kernel-based algorithms.

Asymptotical convergence and central limit theorems for estimation of integral oper-

ator eigenspectrum by the spectrum of its empirical counterpart have been obtained by

Koltchinskii and Giné (2000). Recent work of Shawe-Taylor et al. (2002, 2005) (see also the

related work of Braun, 2005) has put forward a finite-sample analysis of the properties of the

eigenvalues of kernel matrices and related it to the statistical performance of kernel PCA.

Our goal in the present work is mainly to extend the latter results in two different directions:

Springer



Mach Learn (2007) 66:259–294 261� In practice, for PCA or KPCA, an (empirical) recentering of the data is generally performed.

This is because PCA is viewed as a technique to analyze the variance of the data; it is often

desirable to treat the mean independently as a preliminary step (although, arguably, it is

also feasible to perform PCA on uncentered data). This centering was not considered in the

cited previous work while we take this step into account explicitly and show that it leads

to comparable convergence properties.� to control the estimation error, Shawe-Taylor et al. (2002, 2005) use what we would call

a global approach which typically leads to convergence rates of order n−1/2. Numerous

recent theoretical works on M-estimation have shown that improved rates can be obtained

by using a so-called local approach, which very coarsely speaking consists in taking

the estimation error variance precisely into account. We refer the reader to the works of

Massart (2000), Bartlett et al. (2005, 2003), Koltchinskii (2004) (among others). Applying

this principle to the analysis of PCA, we show that it leads to improved bounds.

Note that we consider these two types of extension separately, not simultaneously. While we

believe it possible to combine these two results, in the framework of this paper we choose

to treat them independently to avoid additional technicalities. We therefore leave the local

approach in the recentered case as an open problem.

To state and prove our results we use an abstract Hilbert space formalism. Its main justi-

fication is that some of the most interesting positive definite kernels (e.g., the Gaussian RBF

kernel) generate an infinite dimensional reproducing kernel Hilbert space (the “feature space”

into which the data is mapped). This infinite dimensionality potentially raises a technical dif-

ficulty. In part of the literature on kernel methods, a matrix formalism of finite-dimensional

linear algebra is used for the feature space, and it is generally assumed more or less explicitly

that the results “carry over” to infinite dimension because (separable) Hilbert spaces have

good regularity properties. In the present work, we wanted to state rigorous results directly in

an infinite-dimensional space using the corresponding formalism of Hilbert-Schmidt opera-

tors and of random variables in Hilbert spaces. This formalism has been used in other recent

work related to ours (Mendelson and Pajor, 2005; Maurer, 2004). We hope the necessary

notational background which we introduce first will not tax the reader excessively and hope

to convince her that it leads to a more rigorous and elegant analysis.

One point we want to stress is that, surprisingly maybe, our results are essentially inde-

pendent of the “kernel” setting. Namely, they hold for any bounded variable taking values in

a Hilbert space, not necessarily a kernel space. This is why we voluntarily delay the intro-

duction of kernel spaces until Section 4, after stating our main theorems. We hope that this

choice, while possibly having the disadvantage of making the results more abstract at first,

will also allow the reader to distinguish more clearly between the mathematical framework

needed to prove the results and the additional structure brought forth by considering a kernel

space, which allows a richer interpretation of these results, in particular in terms of estima-

tion of eigenvalues of certain integral operators and their relationship to the spectrum of the

kernel Gram matrix. In a sense, we take here the exact counterpoint of Shawe-Taylor et al.

(2005) who started with studying of the eigenspectrum of the Gram matrix to conclude on

the reconstruction error of kernel PCA.

The paper is therefore organized as follows. Section 2 introduces the necessary background

on Hilbert spaces, Hilbert-Schmidt operators, and random variables in those spaces. Section 3

presents our main results on the reconstruction error of PCA applied to such variables. In

Section 4 show how these results are to be interpreted in the framework of a reproducing kernel

Hilbert space and the relation to the eigenspectrum of the kernel Gram matrix. In Section 5,
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we compute numerically the different bounds obtained on two ‘theoretical’ examples in an

effort to paint a general picture of their respective merits. Finally, we conclude in Section 6

with a discussion of various open issues.

1.2 Overview of the results

Let us give a quick non-technical overview of the results to come. Let Z be a random variable

taking values in a Hilbert space H . If we fix the target dimension d of the projected data, the

goal is to recover an optimal d-dimensional space Vd such that the average squared distance

between a datapoint Z and its projection on Vd is minimum. This quantity is called the

(true) reconstruction error and denoted R(Vd ). Using available data, this optimal subspace

is estimated by V̂d using the PCA procedure, which amounts to minimizing the empirical
reconstruction error. One of the quantities we are interested in is to upper bound the so-called

(true) excess error of V̂d as compared to the optimal Vd , that is, R(V̂d ) − R(Vd ) (which is

always nonnegative, by definition). Note that the bounds we obtain are only valid with high

probability, since R(V̂d ) is a random quantity.

Our reference point is an inequality, here dubbed “global bound”, obtained by Shawe-

Taylor et al. (2005), taking the form

R(V̂d ) − R(Vd ) �
√

d

n
tr C ′

2, (1)

where tr denotes the trace, and C ′
2 is a certain operator related to the fourth moments of

the variable. By the symbol � we mean that we are forgetting (for the purposes of this

section) about some terms considered lower-order, and that the inequality is true up to a

finite multiplicative constant. This inequality is recalled in Theorem 3.1, with some minor

improvements over the original bound of Shawe-Taylor et al. As a first improvement obtained

in Theorem 3.5, we prove that this bound also holds if the data is empirically recentered in

the PCA procedure (which is often the case, but was not taken into account in the above

bound).

Next, we prove two different inequalities improving on the bound (1). Both of them rely

on a certain quantity ρ(d, n), which depends on the decay of the eigenvalues of operator C ′
2,

and is always smaller than the right-hand side of (1). The first inequality, dubbed “excess

bound”, reads (Theorem 3.2)

R(V̂d ) − R(Vd ) � Bdρ(d, n) , (2)

where Bd � (R(Vd ) − R(Vd−1))−1. The second inequality, dubbed “relative bound”, reads

(Theorem 3.4)

R(V̂d ) − R(Vd ) �
√

R(Vd )ρ(d, n) + ρ(d, n). (3)

It is valid under the stronger assumption that the variable Z has a constant norm a.s. : this

is the case in particular for kernel PCA when a translation invariant kernel is used. Typically,

we expect that (2) exhibits a better behavior than (1) for fixed d when n grows large, while

the converse is true for (3) (it will be better than (1) for fixed n and large d). To illustrate what

amounts to a possibly confusing picture, we plotted these different bounds on two examples

(details are given in Section 5). The result appears in Fig. 1. The conclusion is that, at least

when n is large enough, the best bound between (2) and (3) always beats the original bound
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Fig. 1 Comparison of the different (log-) bounds on the excess error in different settings. Left: power decay
of eigenvalues. Right: exponential decay of eigenvalues. Top: n = 107, bottom: n = 1010. For details, see
Section 5 a final point

(1) (and this, by orders of magnitude). Finally, we show that all bounds except (2) have also

an empirical counterpart, by which we mean that we obtain bounds of a similar form using

purely empirical (hence accessible) quantities.

Finally, when the Hilbert space H is, additionally, assumed to be a kernel space with

reproducing kernel k, our results take a richer interpretation in terms of spectrum estimation

of a certain integral operator. Namely, it is known that R(Vd ) is exactly equal to the sum

of the eigenvalues of rank larger than d of the so-called kernel integral operator, while the

empirical reconstruction error Rn(V̂d ) is equal to a similar tail sum of the spectrum of the

kernel matrix of the data. This is explained in detail in Section 4.

2 Mathematical preliminaries

Our results revolve around orthogonal projections of a random variable taking values in a

Hilbert spaceH onto finite dimensional subspaces. Since the spaceH is infinite-dimensional,

the usual matrix notation used for finite dimensional linear algebra is inappropriate and the

most convenient way to deal rigorously with these objects is to use formalism from functional

analysis, and in particular to introduce the space of Hilbert-Schmidt operators on H endowed

with a suitable Hilbert structure. The present section is devoted to introducing the necessary

notation and basic properties that will be used repeatedly. We first start with generalities on

Hilbert-Schmidt operators on Hilbert spaces. We then define more precisely the probabilistic

framework used throughout the paper.
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2.1 The Hilbert space of Hilbert-Schmidt operators

This section is devoted to recalling some reference material concerning analysis on Hilbert

spaces (see, e.g., Dunford & Schwartz, 1963). Let H be a separable Hilbert space. A linear

operator L fromH toH is called Hilbert-Schmidt if
∑

i≥1 ‖Lei‖2
H = ∑

i, j≥1〈Lei , e j 〉2 < ∞,

where (ei )i≥1 is an orthonormal basis ofH. This sum is independent of the chosen orthonormal

basis and is the squared of the Hilbert-Schmidt norm of L when it is finite. The set of

all Hilbert-Schmidt operators on H is denoted by HS(H). Endowed with the following

inner product 〈L , N 〉HS(H) = ∑
i≥1〈Lei , Nei 〉 = ∑

i, j≥1〈Lei , e j 〉〈Nei , e j 〉, it is a separable

Hilbert space.

A Hilbert-Schmidt operator is compact, it has a countable spectrum and an eigenspace

associated to a non-zero eigenvalue is of finite dimension. A compact, self-adjoint oper-

ator on a Hilbert space can be diagonalized, i.e., there exists an orthonormal basis of H
made of eigenfunctions of this operator. If L is a compact, positive self-adjoint operator, we

will denote λ(L) = (λ1(L) ≥ λ2(L) ≥ . . .) the sequence of its positive eigenvalues sorted in

non-increasing order, repeated according to their multiplicities; this sequence is well-defined

and contains all nonzero eigenvalues since these are all nonnegative and the only possible

limit point of the spectrum is zero. Note that λ(L) may be a finite sequence. An operator L
is called trace-class if

∑
i≥1〈ei , Lei 〉 is a convergent series. In fact, the sum of this series is

independent of the chosen orthonormal basis and is called the trace of L , denoted by tr L .

Moreover, tr L = ∑
i≥1 λi (L) for a self-adjoint operator L .

We will keep switching fromH to HS(H) and treat their elements as vectors or as operators

depending on the context. At times, for more clarity we will index norms and dot products by

the space they are to be performed in, although this should always be clear from the objects

involved. The following summarizes some notation and identities that will be used in the

sequel.

Rank one operators. For f, g ∈ H\{0} we denote by f ⊗ g∗ the rank one operator defined

as f ⊗ g∗(h) = 〈g, h〉 f . The following properties are straightforward from the above defi-

nitions:

‖ f ⊗ g∗‖HS(H) = ‖ f ‖H ‖g‖H ; (4)

tr f ⊗ g∗ = 〈 f, g〉H; (5)

〈 f ⊗ g∗, A〉HS(H) = 〈Ag, f 〉H for any A ∈ HS(H) . (6)

Orthogonal projectors. We recall that an orthogonal projector in H is an operator U such

that U 2 = U = U ∗ (and hence positive). In particular one has

‖U (h)‖2
H = 〈h, Uh〉H ≤ ‖h‖2

H ;

〈 f ⊗ g∗, U 〉HS(H) = 〈U f, Ug〉H.

U has rank d < ∞ (i.e., it is a projection on a finite dimensional subspace), if and only if it

is Hilbert-Schmidt with

‖U‖HS(H) =
√

d, (7)

tr U = d. (8)
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In that case it can be decomposed as U = ∑d
i=1 φi ⊗ φ∗

i , where (φi )
d
i=1 is an orthonormal

basis of the image of U .

If V denotes a closed subspace of H, we denote by �V the unique orthogonal projector

having range V and null space V ⊥. When V is of finite dimension,�V ⊥ is not Hilbert-Schmidt,

but we will denote (with some abuse of notation), for a trace-class operator A,

〈�V ⊥ , A〉 := tr A − 〈�V , A〉 . (9)

2.2 Random variables in a Hilbert space

Our main results relate to a bounded variable Z taking values in a (separable) Hilbert space

H. In the application we have in mind, kernel PCA, H is actually a reproducing kernel

Hilbert space and Z is the kernel mapping of an input space X into H. However, we want to

point out that these particulars—although of course of primary importance in practice, since

the reproducing property allows the computation of all relevant quantities—are essentially

irrelevant to the nature of our results. This is why we rather consider this abstract framework.

Expectation and covariance operators in a Hilbert space. We recall basic facts about random

variables in Hilbert spaces. A random variable Z in a separable Hilbert space is well-defined iff

every continuous linear form 〈e, Z〉, e ∈ H is measurable. It has an expectation e ∈ H when-

ever E ‖Z‖ < ∞ and e is then the unique vector satisfying 〈e, f 〉H = E〈Z , f 〉H, ∀ f ∈ H.

We now introduce the (non-centered) covariance operator through this theorem and definition

(a shortened proof can be found in the Appendix):

Theorem 2.1. If E ‖Z‖2 < ∞, there exists a unique operator C : H → H such that

〈 f, Cg〉H = E [〈 f, Z〉H〈g, Z〉H] , ∀ f, g ∈ H .

This operator is self-adjoint, positive, trace-class with tr C = E ‖Z‖2 , and satisfies

C = E [Z ⊗ Z∗].

We call C the non-centered covariance operator of Z .

Let P denote the probability distribution of Z . We assume Z1, . . . , Zn are sampled i.i.d.

according to P and we will denote by Pn the empirical measure associated to this sample,

i.e., Pn = 1
n

∑
δZi . With some abuse, for an integrable function f : H → R, we will at times

use the notation P f := E [ f (Z )] and Pn f := 1
n

∑n
i=1 f (Zi ).

Let us from now on assume that E
[‖Z‖4

]
< ∞. For z ∈ H, we denote Cz = z ⊗ z∗ ∈

HS(H) . Now, let us denote C1 : H → H , respectively C2 : HS(H) → HS(H) , the non-

centered covariance operator associated to the random element Z in H , respectively to

CZ = Z ⊗ Z∗ in HS(H) . By a direct consequence of Theorem 2.1 we obtain that C1 is

the expectation in HS(H) of CZ = Z ⊗ Z∗ while C2 is the expectation in HS(HS(H)) of

CZ ⊗ C∗
Z .

In the following we will study empirical counterparts of the above quantities and in-

troduce the corresponding notation: C1,n = 1
n

∑n
i=1 Zi ⊗ Z∗

i denotes the empirical covari-

ance operator while C2,n = 1
n

∑n
i=1 CZi ⊗ C∗

Zi
. It is straightforward to check that tr C1,n =

1
n

∑n
i=1 ‖Zi‖2 and tr C2,n = 1

n

∑n
i=1 ‖Zi‖4.
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3 Main results

3.1 Framework for PCA in a hilbert space

For all of the results to come, we assume that we are dealing with a bounded random variable

Z taking values in H, i.e. ‖Z‖2 ≤ M a.s. This ensures that E‖Z‖4 < ∞ and hence the

existence of operators C1 and C2. This is actually, of course, a much stronger hypothesis

than the mere existence of a fourth moment, but we will need it to make use of various

concentration theorems.

In this section we first recall the result obtained by Shawe-Taylor et al. (2002, 2005) for

which we give a proof for the sake of completeness. This is what we refer to as the “global

approach in the uncentered case”. We then present our two new contributions: (1) Faster rates

of convergence via the local approach in the uncentered case and (2) Study of the empirically

recentered case (global approach only).

In the case of “uncentered PCA”, the goal is to reconstruct the signal using principal

directions of the non-centered covariance operator. Remember we assume that the number d of

PCA directions kept for projecting the observations has been fixed a priori. We wish to find the

linear space of dimension d that conserves the maximal norm, i.e., which minimizes the error

(measured through the averaged squared Hilbert norm) of approximating the data by their

projections. We will adopt the following notation for the true and empirical reconstruction
error of a subspace V :

Rn(V ) = 1

n

n∑
j=1

‖Z j − �V (Z j )‖2 = Pn〈�V ⊥ , CZ 〉 = 〈�V ⊥ , C1,n〉 ,

and

R(V ) = E[‖Z − �V (Z )‖2] = P〈�V ⊥ , CZ 〉 = 〈�V ⊥ , C1〉 .

Let us denote Vd the set of all vector subspaces of dimension d of Hk . It is well known that

the d-dimensional space Vd attaining the best reconstruction error, that is,

Vd = Arg Min
V ∈Vd

R(V ),

is obtained as the span of the first d eigenvectors of operator C1. This definition is actually

abusive if the above Arg Min is not reduced to a single element, i.e. the eigenvalue λd (C1) is

multiple. In this case, unless said otherwise any arbitrary choice of the minimizer is fine. Its

empirical counterpart, the space V̂d minimizing the empirical error,

V̂d = Arg Min
V ∈Vd

Rn(V ) , (10)

is the vector space spanned by the first d eigenfunctions of the empirical covariance operator

C1,n . Finally, it holds that Rn(V̂d ) = ∑
i>d λi (C1,n) and R(Vd ) = ∑

i>d λi (C1).
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3.2 The global approach in the uncentered case

We first essentially reformulate a theorem proved by Shawe-Taylor et al. (2005), while adding

some minor refinements. The proof will allow us to introduce the main important quantities

that will be used in the results to come in the next sections.

Theorem 3.1. Assume ‖Z‖2 ≤ M a.s. and that Z ⊗ Z∗ belongs a.s. to a set of HS(H) with
bounded diameter L. Then for any n ≥ 2, with probability at least 1 − 3e−ξ ,

|R(V̂d ) − Rn(V̂d )| ≤
√

d

n − 1
tr C ′

2,n + (M ∧ L)

√
ξ

2n
+ L

√
dξ

1
4

n
3
4

. (11)

Also, with probability at least 1 − 2e−ξ ,

0 ≤ R(V̂d ) − R(Vd ) ≤
√

d

n
tr C ′

2 + 2(M ∧ L)

√
ξ

2n
, (12)

where C ′
2 = C2 − C1 ⊗ C∗

1 and C ′
2,n = C2,n − C1,n ⊗ C∗

1,n .

Comments. (1) It should be clear from the proof that the right-hand side members of the two

above inequalities are essentially interchangeable between the two bounds (up to changes

of the constant in front of the deviation term). We picked this particular formulation choice

in the above theorem with the following thought in mind: we interpret inequality (11) as

a confidence interval on the true reconstruction error that can be computed from purely

empirical data. On the other hand, inequality (12) concerns the excess error of V̂d with re-

spect to the optimal Vd . The optimal error is not available in practice, which means that

this inequality is essentially useful to study from a theoretical point of view the conver-

gence properties of V̂d to Vd (in the sense of reconstruction error). In this case we would

typically be more interested to relate this convergence to intrinsic properties of P , not

Pn .

(2) With respect to Shawe-Taylor et al. (2005), we introduce the following minor

improvements: (a) the main term involves C ′
2 = C2 − C1 ⊗ C∗

1 instead of C2 (note that

tr(C1 ⊗ C∗
1 ) = ‖C1‖2, but we chose the former—if perhaps less direct—formulation for

an easier comparison to Theorems 3.2 and 3.4, to come in the next section); (b) the

factor in front of the main term is 1 instead of
√

2 ; (c) we can take into account ad-

ditional information on the diameter L (note that L ≤ 2M always holds) of the sup-

port of CZ if it is available. For example, if the Hilbert space is a kernel space with

kernel k on a input space X (see Section 4 for details), then L2 = supx,y∈X (k2(x, x) +
k2(y, y) − 2k2(x, y)) ; in the case of a Gaussian kernel with bandwidth σ over a input

space of diameter D, this gives L2 = 2(1 − exp(−D2/σ 2)) which can be smaller than

M = 1 .

Proof: We have

R(V̂d ) − Rn(V̂d ) = (P − Pn)
〈
�V̂ ⊥

d
, CZ

〉 ≤ sup
V ∈Vd

(P − Pn)〈�V ⊥ , CZ 〉 . (13)
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For any finite dimensional subspace V , we have by definition

〈�V ⊥ , Cz〉 = tr Cz − 〈�V , z ⊗ z∗〉 = ‖z‖2 − ‖�V (z)‖2 = ‖�V ⊥ (z)‖2 , (14)

which implies in turn that 〈�V ⊥ , CZ 〉 ∈ [0, M] a.s.

However, another inequality is also available from the assumption about the support

of CZ . Namely, let z, z′ belong to the support of the variable Z ; and let z⊥, z′⊥ denote

their orthogonal projections on V ⊥. Then z⊥ ⊗ z∗
⊥ is the orthogonal projection of z ⊗ z∗

on V ⊥ ⊗ V ⊥∗. By the contractivity property of an orthogonal projection, we therefore

have

‖z ⊗ z∗ − z′ ⊗ z′∗‖ ≥ ‖z⊥ ⊗ z∗
⊥ − z′⊥ ⊗ z′∗

⊥‖
≥ |‖z⊥ ⊗ z∗

⊥‖ − ‖z′⊥ ⊗ z′∗
⊥‖|

= |‖z⊥‖2 − ‖z′⊥‖2|
= |〈�V ⊥ , z ⊗ z∗ − z′ ⊗ z′∗〉| ,

so that we get in the end

|〈�V ⊥ , Cz − Cz′ 〉| ≤ ‖Cz − Cz′ ‖ ≤ L ,

by assumption on the diameter of the support of CZ . Finally, we have |〈�V ⊥ , Cz − Cz′ 〉| ≤
L ∧ M . We can therefore apply the bounded difference concentration inequality (Theorem

B.1 recalled in the Appendix) to the variable supV ∈Vd
(Pn − P)〈�V , CZ 〉, yielding that with

probability 1 − e−ξ ,

sup
V ∈Vd

(Pn − P)〈�V ⊥ , CZ 〉 ≤ E
[

sup
V ∈Vd

(Pn − P)〈�V ⊥ , CZ 〉
]

+ (M ∧ L)

√
ξ

2n
. (15)

Naturally, the same bound holds when replacing (Pn − P) by (P − Pn).

We now bound the above expectation term:

E
[

sup
V ∈Vd

(Pn − P)〈�V ⊥ , CZ 〉
]

= E

[
sup
V ∈Vd

〈
�V ,

1

n

∑
i

CZi − E [CZ ′ ]

〉]

≤
√

d E

[∥∥∥∥ 1

n

∑
i

CZi − E [CZ ′ ]

∥∥∥∥
]

≤
√

d E

[∥∥∥∥ 1

n

∑
i

CZi − E [CZ ′ ]

∥∥∥∥2
] 1

2

=
√

d

n

√
E[‖CZ − E[CZ ′ ]‖2] ,

where we have used first Cauchy-Schwarz’s inequality and the fact that ‖�V ‖ = √
d, then

Jensen’s inequality. It holds that E[‖CZ − E[CZ ′ ]‖2] = 1
2
E[‖CZ − CZ ′ ‖2] , where Z ′ is an

independent copy of Z . Therefore, we can apply Hoeffding’s inequality (Theorem B.2 of the
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Appendix, used with parameter r = 2) to obtain that with probability at least 1 − e−ξ , the

following bound holds:

E[‖CZ − E [CZ ′ ]‖2] ≤ 1

2n(n − 1)

∑
i �= j

∥∥CZi − CZ j

∥∥2 + L2

√
ξ

n
;

finally it can be checked that

1

n2

∑
i �= j

∥∥CZi − CZ j

∥∥2 = 2 tr(C2,n − C1,n ⊗ C∗
1,n) ,

which leads to the first part of the theorem after applying the inequality
√

a + b ≤ √
a + √

b .

For the second part, the definition of V̂d implies that

0 ≤ R(V̂d ) − R(Vd ) ≤ (R(V̂d ) − Rn(V̂d )) − (R(Vd ) − Rn(Vd )).

The first term is controlled as above, except that we don’t apply Hoeffding’s inequality but

write directly instead

E[‖CZ − E [CZ ′ ] ‖2] = tr (C2 − C1 ⊗ C∗
1 ) .

We obtain a lower bound for the second term using Hoeffding’s inequality (Theorem B.2 this

time with r = 1). This concludes the proof. �

3.3 Localized approach I: Fast rates

The so-called localized approach gives typically more accurate results than the global ap-

proach by taking into account the variance of the empirical processes involved. When the

variance can in turn be upper-bounded by some multiple of the expectation, this generally

gives rise to more precise bounds.

Interestingly, it turns out that we can obtain different inequalities depending on the function

class to which we apply the “localization” technique. In this first section we will apply it

to the excess loss class; in the next section we will obtain a different result by applying the

technique to the loss class itself.

A similar key quantity appears in these two different applications and we will define it

here beforehand:

ρ(A, d, n) = inf
h≥0

{
A

h

n
+

√
d

n

∑
j>h

λ j (C ′
2)

}
, (16)

where we recall that C ′
2 = C2 − C1 ⊗ C∗

1 . As this quantity will appear in the main terms of

the bounds in several results to come, is it relevant to notice already that it is always smaller

than the quantity
√

d
n tr C ′

2 appearing in Theorem 3.1. In fact, depending on the behavior of

the eigenvalues of c′
2, the behavior of ρ as a power of n can vary from n− 1

2 to n−1 (when C ′
2

is finite dimensional). We give some examples in Section 5.

In the first application, we will obtain a result showing an improved convergence rate (as

a function of n, and for fixed d) of the reconstruction error of V̂d to the optimal one, that is,
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a bound improving on (12). This however comes at the price of an additional factor related

to the size of the gap between two successive distinct eigenvalues.

Here is the main result of this section:

Theorem 3.2. Assume ‖Z‖2 ≤ M a.s. Let (λi ) denote the ordered eigenvalues with multi-
plicity of C1, resp. (μi ) the ordered distinct eigenvalues. Let d̃ be such that λd = μd̃ . Define

γd =
{

μd̃ − μd̃+1 if d̃ = 1 or λd > λd+1,

min (μd̃−1 − μd̃ , μd̃ − μd̃+1) otherwise ;
(17)

and Bd = (
E〈Z , Z ′〉4

) 1
2 γ −1

d (where Z ′ is an independent copy of Z).
Then for all d, for all ξ > 0, with probability at least 1 − e−ξ the following holds:

R(V̂d ) − R(Vd ) ≤ 24ρ(Bd , d, n) + ξ (11M + 7Bd )

n
. (18)

Comments. As a consequence of the earlier remarks about ρ, the complexity term obtained

in Theorem 3.2 has a faster (or equal) decay rate, as a function of the sample size n, than the

one of Theorem 3.1; this rate depends on the decay behavior of the eigenvalues.

Note that in contrast to the other theorems, we do not state an empirical version of the

bound (that would use only empirical quantities). It is possible (up to worse multiplicative

constants) to replace the operator C ′
2 appearing in ρ by the empirical C ′

2,n (see Theorem 3.4

below for an example of how this plays out). However, to have a fully empirical quantity,

the constant Bd would also have to be empirically estimated. We leave this point as an open

problem here, although we suspect simple convergence result of the empirical eigenvalues

to the true ones (as proved for example by Koltchinskii and Giné, 2000) may be sufficient to

obtain a fully empirical result.

At the core of the proof of the theorem we use general results due to Bartlett et al. (2005)

using localized Rademacher complexities. We recall a succinct version of these results here.

We first need the following notation: let X be a measurable space and X1, . . . , Xn a n-uple

of points in X ; for a class of functions F from X to R, we denote

RnF = sup
f ∈F

1

n

n∑
i=1

εi f (Xi ) ,

where (εi )i=1...n are i.i.d. Rademacher variables. The star-shaped hull of a class of functions

F is defined as

star(F) = {λ f | f ∈ F , λ ∈ [0, 1]} .

Finally, a function ψ : R+ → R+ is called sub-root if it is nonnegative, nondecreasing, and

such that ψ(r )/
√

r is nonincreasing. It can be shown that the fixed point equation ψ(r ) = r
has a unique positive solution (except for the trivial case ψ ≡ 0).

Theorem 3.3 (Bartlett, Bousquet and Mendelson). Let X be a measurable space, P be a
probability distribution on X and X1, . . . , Xn an i.i.d. sample from P. Let F be a class of
functions on X ranging in [−1, 1] and assume that there exists some constant B > 0 such
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that for every f ∈ F , P f 2 ≤ B P f . Let ψ be a sub-root function and r∗ be the fixed point
of ψ . If ψ satisfies

ψ(r ) ≥ BEX,εRn{ f ∈ star(F) | P f 2 ≤ r} ,

then for any K > 1 and x > 0, with probability at least 1 − e−x ,

∀ f ∈ F , P f ≤ K

K − 1
Pn f + 6K

B
r∗ + x(11 + 5 BK)

n
; (19)

also, with probability at least 1 − e−x ,

∀ f ∈ F , Pn f ≤ K + 1

K
P f + 6K

B
r∗ + x(11 + 5BK )

n
. (20)

Furthermore, if ψ̂n is a data-dependent sub-root function with fixed point r̂∗ such that

ψ̂n(r ) ≥ 2(10 ∨ B)EεRn{ f ∈ star(F) | Pn f 2 ≤ 2r} + (2(10 ∨ B) + 11)x

n
, (21)

then with probability 1 − 2e−x , it holds that r̂∗ ≥ r∗; as a consequence, with probability
1 − 3e−x , inequality (19) holds with r∗ replaced by r̂∗; similarly for inequality (20).

Proof of Theorem 3.2. The main idea of the proof is to apply Theorem 3.3 to the class

of excess losses f (z) = 〈�V ⊥ − �V ⊥
d
, Cz〉, V ∈ Vd . However, at this point already we find

ourselves in a quagmire from the fact that Vd , the optimal d-dimensional space, is actually

not always uniquely defined in the case the eigenvalue λd (C1) has multiplicity greater than

1. Up until now, in this situation we have let the actual choice of Vd ∈ Arg MinV ∈Vd
R(V )

unspecified since it did not alter the results. However, for the present proof this choice does

matter, because although the choice of Vd has no influence on the expectation P f of the above

functions, it changes the value of P f 2, which is of primary importance in the assumptions

of Theorem 3.3: more precisely we need to ensure that P f 2 ≤ B P f for some constant B.

It turns out that in order to have this property satisfied, we need to pick a minimizer of

the true loss, HV ∈ Arg MinV ′∈Vd
R(V ′) depending on V . More precisely, for each V ∈ Vd it

is possible to find an element HV ∈ Vd such that:

R(HV ) = min
H∈Vd

R(H ) = R(Vd ), (22)

and

E
[〈�V ⊥ − �H⊥

V
, CZ 〉2

] ≤ 2Bd E
[〈�V ⊥ − �H⊥

V
, CZ 〉], (23)

where Bd is defined in the statement of the theorem. This property is proved in Lemma A.1

in the Appendix.

We now consider the class of functions

Fd = {
fV : x �→ 〈�V ⊥ − �H⊥

V
, Cx 〉

∣∣ V ∈ Vd
}
,
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where for each V ∈ Vd , HV is obtained via the above. We will apply Theorem 3.3 to the

class M−1Fd . For any f ∈ M−1Fd , it holds that f ∈ [−1, 1] ; furthermore, inequality (23)

entails that P f 2 ≤ M−1 Bd P f .

We now need to upper bound the local Rademacher complexities of the star-shaped hull of

Fd . We first note that �V ⊥ − �H⊥
V

= �HV − �V and ‖�V − �HV ‖2 ≤ 4d , where we have

used the triangle inequality and the fact that ‖�V ‖2 = dim(V ). Therefore,

Fd ⊂ {x �→ 〈�, Cx 〉 | � ∈ HS(H), ‖�‖2 ≤ 4d}.

Since the latter set is convex and contains the origin, it therefore also contains star(Fd ).

On the other hand, for a function of the form f (x) = 〈�, Cx 〉, it holds true that P f 2 =
E [〈�, CX 〉2] = 〈�, C2�〉 by definition of operator C2. Hence, we have

{g ∈ star(M−1Fd ) | Pg2 ≤ r} = M−1{g ∈ star(Fd ) | Pg2 ≤ M2r}
⊂ M−1{x �→ 〈�, Cx 〉 | ‖�‖2 ≤ 4d, 〈�, C2�〉 ≤ M2r} := Sr .

The goal is now to upper bound EEεRnSr . For this we first decompose each function in this

set as 〈�, Cx 〉 = 〈�, Cx − C1〉 + 〈�, C1〉, so that

EEεRnSr ≤ EEεRnS1,r + EEεRnS2,r ,

defining the set of constant functions

S1,r = M−1{x �→ 〈�, C1〉 | 〈�, C2�〉 ≤ M2r} ;

and the set of centered functions

S2,r = M−1{x �→ 〈�, Cx − C1〉 | ‖�‖2 ≤ 4d, 〈�, (C2 − C1 ⊗ C∗
1 )�〉 ≤ M2r} ,

note that in these set definitions we have relaxed some conditions on the functions in the

initial set Sr , keeping only what we need to obtain the desired bound: for Sr,1 we dropped

the condition on ‖�‖ and for Sr,2 we replaced C2 by C ′
2 = C2 − C1 ⊗ C∗

1 . Remark that this

last operator is still positive, since by definition

〈�, C2�〉 = E [〈CZ , �〉2] ≥ E [〈CZ , �〉]2 = 〈�, C1〉2 = 〈�,
(
C1 ⊗ C∗

1

)
�〉. (24)

Bounding the Rademacher complexity of S1,r is relatively straightforward since it only

contains constant functions, and one can check easily that for a set of scalars A ⊂ R,

E

[
sup
a∈A

(
a

n∑
i=1

εi

)]
= 1

2
(sup A − inf A) E

[∣∣∣∣∣ n∑
i=1

εi

∣∣∣∣∣
]

≤ 1

2
(sup A − inf A)

√
n,

leading to

EEεRnS1,r ≤ M−1n− 1
2 sup{〈�, C1〉 | 〈�, C2�〉 ≤ M2r} ≤

√
r

n
,
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where we have used (24). To deal with the Rademacher complexity of S2,r , we introduce an

orthonormal basis (
i ) of eigenvectors of operator C ′
2. Let � be any element of HS(H) such

that

‖�‖2 =
∑

i

〈�, 
i 〉2 ≤ 4d, and 〈�, C ′
2�〉 =

∑
i

λi (C
′
2)〈�, 
i 〉2 ≤ M2r.

Now, for any integer h ≤ Rank(C ′
2) ,

n∑
i=1

εi 〈�, CZi − C1〉

=
h∑

j=1

〈�, 
 j 〉
〈

 j ,

n∑
i=1

εi
(
CZi − C1

)〉 +
∑
j>h

〈�, 
 j 〉
〈

 j ,

n∑
i=1

εi
(
CZi − C1

)〉

≤ M

(
r

h∑
i=1

1

λi (C ′
2)

〈
n∑

j=1

ε j
(
CZ j − C1

)
, 
i

〉2)1/2

+ 2

(
d

∑
i≥h+1

〈
n∑

j=1

ε j
(
CZ j − C1

)
, 
i

〉2)1/2

, (25)

where we used the Cauchy-Schwarz inequality for both terms. We now integrate over (εi )

and (Zi ) ; using Jensen’s inequality the square roots are pulled outside of the expectation;

and we have, for each i ≥ 1,

EEε

〈
n∑

j=1

ε j
(
CZ j − C1

)
, 
i

〉2

= E
n∑

j=1

〈CZ j − C1, 
i 〉2 = nE〈
i ,
(
C2,n − C1 ⊗ C∗

1

)

i 〉 = n〈
i , C ′

2
i 〉 = nλi (C
′
2).

Because (25) is valid for any h ≤ Rank(C ′
2), we finally obtain the following inequality:

EEεRnS2,r ≤ 1√
n

inf
h≥0

⎛⎝√
rh + 2M−1

√
d

∑
j≥h+1

λ j (C ′
2)

⎞⎠ := ψ0(r ),

(where the extension of the infimum to h > Rank(C ′
2) is straightforward). It is easy to see

any infimum of sub-root functions is sub-root, hence ψ0 is sub-root. To conclude, we need

to upper bound the fixed point of the sub-root function ψ(r ) = M−1 Bd (ψ0(r ) + √
r/n).

To obtain a bound, we solve r∗ ≤ 2M−1 Bd√
n

{(h 1
2 + 1)

√
r∗ + 2M−1

√
d

∑
j≥h+1 λ j } for each

h ≥ 0 (by using the fact that x ≤ A
√

x + B implies x ≤ A2 + 2B), and take the infimum

over h, which leads to

r∗ ≤ 8M−2

(
inf
h≥0

{
B2

d h

n
+ Bd

√
d

n

∑
j≥h+1

λ j (C ′
2)

}
+ B2

d

n

)
.
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We can now apply Theorem 3.3 at last, obtaining that for any K > 1 and every ξ > 0, with

probability at least 1 − e−ξ :

∀V ∈ Vd , P fV ≤ K

K − 1
Pn fV + 24Kρ(Bd , d, n) + ξ (11M + 7Bd K )

n
. (26)

We now choose V = V̂d in the above inequality; we have R(HV̂d
) = R(Vd ) and the definition

(10) of V̂d entails Pn fV̂d
≤ 0. Letting K → 1, we have a family of increasing sets whose

probability is bounded by e−ξ , so that this also holds for the limiting set K = 1: this leads to

the announced result. �

3.4 Localized approach II: relative bound

We now apply the localization technique directly to the initial loss class. This gives rise to

a relative bound, where the bounding quantity also depends on the value of the loss itself:

the smaller the loss, the tighter the bound. Unfortunately, we were only able to prove this

result under the stronger assumption that the variable Z has a constant norm a.s. (instead of,

previously, a bounded norm). Here is the result of this section:

Theorem 3.4. Assume Z takes values on the sphere of radius
√

M, i.e. ‖Z‖2 = M a.s.
Then for all d, n ≥ 2, ξ > 0, with probability at least 1 − 4e−ξ the following holds:

|R(V̂d ) − Rn(V̂d )|

≤ c

(√
Rn(V̂d )

(
ρn(M, d, n) + M

(ξ + log n)

n

)
+ ρn(d, n) + M(ξ + log n)

n

)
,(27)

where c is a universal constant (c ≤ 1.2 × 105). Also, with probability at least 1 − 2e−ξ ,

R(V̂d ) − R(Vd ) ≤ c

(√
R(Vd )

(
ρ(M, d, n) + M

ξ

n

)
+ ρ(d, n) + M

ξ

n

)
, (28)

where c is a universal constant (c ≤ 80), the quantity ρ is defined by (16), and ρn is defined
similarly by (16) where the operator C ′

2 is replaced by its empirical counterpart C ′
2,n.

Comments. In contrast to Theorem 3.2, the behavior of the above inequalities for fixed d and

n tending do infinity is actually worse than the original global bound of Theorem 3.1. (The

order ρ(M, d, n)
1
2 as a function of n is typically between n− 1

2 and n− 1
4 : some more specific

examples are given in Section 5.) On the other hand, the behavior for fixed n and varying d is

now of greater interest, since R(V̂d ) goes to zero as d increases. If R(V̂d ) decreases quickly

enough, the bound is actually decreasing as a function of d (at least for values of d such that

the first term is dominant). This is the only bound which exhibits this behavior.

Proof: In this proof, c will denote a real constant whose exact value can be different from

line to line. We start by proving the second part of the theorem. We will apply Theorem 3.3

to the class of functions M−1Gd , where Gd is the loss class

Gd = {gV : x �→ 〈�V ⊥ , Cx 〉 | V ∈ Vd} .
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From Eq. (14), we know that ∀g ∈ M−1Gd , g(x) ∈ [0, 1] , and therefore Pg2 ≤ Pg, hence

the first assumptions of Theorem 3.3 are satisfied with B = 1.

Hence, we have

{g ∈ star(M−1Gd ) | Pg2 ≤ r}
= {g : x �→ λM−1(‖x‖2 − 〈�V , Cx 〉) | V ∈ Vd , Pg2 ≤ r, λ ∈ [0, 1]} := Lr .

The goal is now to upper bound EEεRnLr . For this we first decompose each function in

this set as

M−1λ(‖x‖2 − 〈�V , Cx 〉) = M−1λ(‖x‖2 − 〈�V , C1〉) + M−1〈λ�V , C1 − Cx 〉.

Notice that, since we assumed that ‖x‖2 = M a.s., the first above term is a.s. a positive

constant equal to λ(1 − M−1〈�V , C1〉). Furthermore, the L2 norm of any g ∈ Lr can be

rewritten as

Pg2 = M−2λ2 P(‖x‖2 − 〈�V , Cx 〉2
)

= λ2(1 − 2M−1〈�V , C1〉) + M−2〈�V , C2�V 〉
= (λ

(
1 − M−1〈�V , C1〉

)
)2 + M−2〈λ�V , (C2 − C1 ⊗ C∗

1 )λ�V 〉.

From the two last displays, we can write

EEεRnLr ≤ EEεRnL1,r + EEεRnL2,r ,

defining the set of constant functions

L1,r = {x �→ c | 0 ≤ c ≤ √
r} ,

and the set of centered functions

L2,r = {x �→ M−1〈�, C1 − Cx 〉 | ‖�‖2 ≤ d, 〈�, (C2 − C1 ⊗ C∗
1 )�〉 ≤ M2r}.

We can now apply the same device as in the proof of Theorem 3.2 to obtain that

EEεRnL1,r ≤
√

r

n
,

and

EEεRnL2,r ≤ 1√
n

inf
h≥0

⎛⎝√
rh + M−1

√
d

∑
j≥h+1

λ j (C ′
2)

⎞⎠ ;
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again following the proof of Theorem 3.2, we obtain by application of Theorem 3.3 that for

any K > 1 and every ξ > 0, with probability at least 1 − e−ξ :

∀V ∈ Vd , R(V ) ≤ K

K − 1
Rn(V ) + 12Kρ(M, d, n) + ξ M(11 + 7K )

n
, (29)

and similarly with probability at least 1 − e−ξ :

∀V ∈ Vd , Rn(V ) ≤ K + 1

K
R(V ) + 12Kρ(M, d, n) + ξ M(11 + 7K )

n
. (30)

We now apply (29) to V̂d and (30) to Vd to conclude, using Rn(V̂d ) ≤ Rn(Vd ), that with

probability at least 1 − 2e−ξ , for any K > 2 :

R(V̂d ) − R(Vd ) ≤ 36

(
1

K
R(Vd ) + K

(
ρ(M, d, n) + M

ξ

n

))
,

We now choose K = max(2, (ρ(M, d, n) + M ξ

n )−
1
2 R(Vd )

1
2 ) ; this leads to the conclusion of

the last part of the theorem.

For the first part of the theorem, we basically follow the same steps, except that we

additionally use (21) of Theorem (3.3) to obtain empirical quantities. It can be checked that

if ψ is a sub-root function with fixed point r∗ and ψ1 = αψ(r ) + β for nonnegative α, β then

the fixed point r∗
1 of ψ1 satisfies r∗

1 ≤ 4(α2r∗ + β), see for example Lemma 4.10 of Bousquet

(2002). So, we can unroll the same reasoning as in the first part of the present proof, except

that the covariance operators are replaced by their empirical counterparts and we consider

directly the empirical Rademacher complexities without expectation over the sample. Finally

we conclude that for any K > 2, with probability at least 1 − 4e−ξ ,

∀V ∈ Vd , |R(V ) − Rn(V )| ≤ c

(
1

K
Rn(V ) + K M

(
ρn(d, n) + ξ

n

))
.

Using the union bound, we can make this bound uniform over positive integer values of K
in the range [2 . . . n] at the price of replacing ξ by ξ + log n. We then apply this inequality

to V̂d and pick K = max(2, �(ρn(M, d, n) + M (ξ+log n)
n )−

1
2 R(Vd )

1
2 �), which, for any n ≥ 3,

is an integer belonging to the integer interval [2 . . .
√

n] since Rn(V̂d ) ≤ M . This leads to the

first inequality of the theorem. �

3.5 Recentered case

In this section we extend the results of Theorem 3.1 in a different direction. Namely, we want

to prove that a bound of the same order is available if we include empirical re-centering in

the procedure, which is commonly done in practice.

For this we first need to introduce additional notation:

Z̄ = Z − E [Z ] ∈ Hk,

C̄Z = Z̄ ⊗ Z̄∗ ∈ HS(H) ;
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Similarly, let us denote C̄1 the covariance operator associated to Z̄ ; therefore, C̄1 is the

expectation in HS(H) of C̄Z and satisfies C̄1 = C1 − E [Z ] ⊗ E [Z ]∗ .

The quantities Z̄ , C̄z already depend on P through the centering, so that we will define

the corresponding quantities for Pn corresponding to an empirical recentering:

Ẑ = Z − 1

n

n∑
i=1

Zi ,

C̄Z ,n = Ẑ ⊗ Ẑ∗,

C1,n = 1

n − 1

n∑
i=1

C̄Zi ,n = C1,n − 1

n(n − 1)

∑
i �= j

Zi ⊗ Z∗
j .

Note that the specific normalization for C̄1,n is chosen so that it is an unbiased estimator of

C̄1, that is, E
[
C̄1,n

] = C̄1.

In this case the PCA algorithm finds the d-dimensional space minimizing the empirical

reconstruction error of the empirically recentered data:

Ŵd = Arg Min
V ∈Vd

1

n

n∑
j=1

‖Ẑ j − �V (Ẑ j )‖2,

and Ŵd is the vector space spanned by the first d eigenfunctions of C̄1,n . We also denote by

Wd the space spanned by the first d eigenfunctions of C̄1, which minimizes the true average

reconstruction error of the truly recentered data:

Wd = Arg Min
V ∈Vd

E‖Z̄ − �V (Z̄ )‖2.

We will adopt the following notation for the reconstruction errors, true and empirical:

R̄n(V ) = 1

n − 1

n∑
j=1

‖Ẑ j − �V (Ẑ j )‖2 = 〈�V ⊥ , C̄1,n〉.

R̄(V ) = E‖Z̄ − �V (Z̄ )‖2 = 〈�V ⊥ , C̄1〉.

Again, the reason for the specific normalization of R̄n(V ) is to make it an unbiased estimator

of R̄(V ).

In this situation we have the following theorem similar to Theorem 3.1:

Theorem 3.5. Assume that ‖Z‖2 ≤ M a.s. Then for any ξ > 1 and n ≥ 10, with probability
greater than 1 − 5e−ξ , the following inequality holds:

|R̄(Ŵd ) − R̄n(Ŵd )| ≤
√

d

n
tr(C2,n − C1,n ⊗ C∗

1,n) + 14M

√
ξ

2n
+ 2M

√
dξ

1
4

n
3
4

;
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also, with probability at least 1 − 3e−ξ ,

0 ≤ R̄(Ŵd ) − R̄(Wd ) ≤
√

d

n
tr

(
C2 − C1 ⊗ C∗

1

) + 17M

√
ξ

n

The proof of this theorem follows the same structure as for Theorem 3.1, but some addi-

tional ingredients are needed to control U-processes arising from the empirical recentering.

Note that the leading complexity term is the same as in Theorem 3.1: hence recentering in

kernel PCA essentially does not introduce additional complexity to the procedure. A minor

downside with respect to Theorem 3.1 is that we lose the refinement introduced by considering

the diameter of the support of CZ .

Proof: We have

|R̄(Ŵd ) − R̄n(Ŵd )| = |〈Ŵd , C̄1 − C̄1,n〉| ≤ sup
V ∈Vd

|〈�V ⊥ , C̄1 − C̄1,n〉|.

Denoting μ = E [Z ], recall the following identities:

C̄1 = C1 − μ ⊗ μ∗ and C̄1,n = C1,n − 1

n(n − 1)

n∑
i �= j

Zi ⊗ Z∗
j , (31)

from which we obtain

sup
V ∈Vd

|〈�V ⊥ , C̄1,n − C̄1〉| ≤ sup
V ∈Vd

|〈�V ⊥ , C1,n − C1〉|

+ sup
V ∈Vd

∣∣∣∣∣
〈
�V ⊥ , μ ⊗ μ∗ − 1

n(n − 1)

∑
i �= j

Zi ⊗ Z∗
j

〉∣∣∣∣∣. (32)

It was shown in the proof of Theorem 3.1 that the following holds with probability greater

than 1 − 3e−ξ :

sup
V ∈Vd

|〈�V ⊥ , C1,n − C1〉| ≤
√

d

n

√
tr

(
C2,n − C1,n ⊗ C∗

1,n

) + M

√
ξ

2n
+ 2M

√
dξ

1
4

n
3
4

,

so we now focus on the second term of (32). If we denote

G(z1, . . . , zn) = 〈�V ⊥ , μ ⊗ μ∗ − 1
n(n−1)

∑
i �= j zi ⊗ z∗

j 〉, then we have for any i0 :

∣∣G(z1, . . . , zn) − G
(
z1, . . . , zi0−1, z′

i0
, zi0+1, . . . , zn

)∣∣
≤ 1

n(n − 1)

∥∥∥∥∥ ∑
j �=i0

((
zi0

− z′
i0

) ⊗ z∗
j + z j ⊗ (

z∗
i0

− z′∗
i0

))∥∥∥∥∥
≤ 2

n(n − 1)

∑
j �=i0

∥∥z′
i0

− zi0

∥∥∥∥z j

∥∥ ≤ 4M

n
.
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Therefore we can apply the bounded difference inequality (Theorem B.1) to G, so that with

probability greater than 1 − e−ξ ,

sup
V ∈Vd

〈
�V ⊥ , μ ⊗ μ∗ − 1

n(n − 1)

∑
i �= j

Zi ⊗ Z∗
j

〉

≤ E

[
sup
V ∈Vd

〈
�V ⊥ , μ ⊗ μ∗ − 1

n(n − 1)

∑
i �= j

Zi ⊗ Z∗
j

〉]
+ 4M

√
ξ

2n
.

To deal with the above expectation, we consider Hoeffding’s decomposition (see de la Peña

and Giné, 1999, p. 137) for U-processes. To this end, we define the following quantities:

Sd = sup
V ∈Vd

2

n

n∑
j=1

(〈�V ⊥ , μ ⊗ μ∗〉 − 〈�V ⊥ (Z j ), μ〉)

Rd = sup
V ∈Vd

− 1

n(n − 1)

∑
i �= j

(〈�V ⊥ , Zi ⊗ Z∗
j 〉 − 〈�V ⊥ (Z j ), μ〉

− 〈�V ⊥ (Zi ), μ〉 + 〈�V ⊥ , μ ⊗ μ∗〉).

It can easily be seen that

E

[
sup
V ∈Vd

〈
�V ⊥ , μ ⊗ μ∗ − 1

n(n − 1)

∑
i �= j

Zi ⊗ Z∗
j

〉]
≤ E [Sd ] + E [Rd ] .

Gathering the different inequalities up to now, we have with probability greater than 1 − 5e−ξ :

sup
V ∈Vd

|〈�V ⊥ , C̄1,n − C̄1〉| ≤
√

d

n

√
tr (C2,n − C1,n ⊗ C∗

1,n) + 5M

√
ξ

2n
+ 2M

√
dξ

1
4

n
3
4

+ E[Sd ] + E[Rd ].

We now bound from above the expectation of Sd and Rd using Lemmas 3.6 and 3.7 below,

which leads to

E [Sd ] ≤ 4
E‖Z‖2

√
n

≤ 6M

√
ξ

2n
,

and

E [Rd ] ≤ 6

n − 1
E ‖Z‖2 ≤ 3M

√
ξ

2n
,

where we have used the assumptions ξ > 1 and n ≥ 10. This leads to the first inequality of

the theorem.

For the second part of the theorem, the definition of Ŵd implies that

0 ≤ R̄(Ŵd ) − R̄(Wd ) ≤ (
R̄(Ŵd ) − R̄n(Ŵd )

) − (
R̄(Wd ) − R̄n(Wd )

)
.
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For the first term, we proceed as above except we consider only one-sided bounds and, for

the main term, use instead the proof of the second part of Theorem 3.1. We thus obtain that

with probability at least 1 − 2e−ξ ,

R̄(Ŵd ) − R̄n(Ŵd ) ≤
√

d

n
tr

(
C2 − C1 ⊗ C∗

1

) + 15M

√
ξ

n
.

As for the second term,

R̄(Wd ) − R̄n(Wd ) = E
[〈
�W ⊥

d
, C̄1,n〉

] − 〈
�W ⊥

d
, C̄1,n

〉
;

and we can write

〈�W ⊥
d
, C̄1,n〉 = 1

n(n − 1)

∑
i �= j

g(Zi , Z j ),

with

g(z1, z2) = 1

2

〈
z1 − z2, �W ⊥

d
(z1 − z2)

〉
.

whenever ‖z1‖2 and ‖z2‖2 are bounded by M , we have g(z1, z2) ∈ [0, M], therefore we can

apply Hoeffding’s inequality (Theorem B.2 with r = 2) to conclude that with probability at

least 1 − e−ξ ,

R̄n(Wd ) − R̄(Wd ) ≤ M

√
ξ

n
.

�

Lemma 3.6. The random variable Sd defined above satisfies the following inequality:

E [Sd ] ≤ 4
E‖Z‖2

√
n

.

Proof: A standard symmetrization argument leads to

E[Sd ] ≤ EEε sup
V ∈Vd

4

n

n∑
j=1

ε j 〈�V ⊥ (Z j ), μ〉

≤ 4

n
EEε

∥∥∥∥∥�V ⊥

(
n∑

j=1

ε j Z j

)∥∥∥∥∥ ‖μ‖

≤ 4

n
EEε

∥∥∥∥∥ n∑
j=1

ε j Z j

∥∥∥∥∥ ‖μ‖

≤ 4√
n

E
√

tr C1,n ‖μ‖ ,
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where we successively applied the Cauchy-Schwarz inequality, the contractivity of an or-

thogonal projector, and Jensen’s inequality. Applying Jensen’s inequality again, and the fact

that ‖μ‖2 = ‖E [Z ]‖2 ≤ E‖Z‖2 yields the conclusion.
�

Lemma 3.7. The random variable Rd defined above satisfies the following inequality:

ERd ≤ 6

n − 1
E ‖Z‖2 .

Remark. The proof uses techniques developed by de la Peña and Giné (1999). Actually, we

could directly apply Theorems 3.5.3 and 3.5.1 of this reference, getting a factor 2560 instead

of 6. We give here a self-contained proof tailored for our particular case for the sake of

completeness and for the improved constant.

Proof: Let us denote (Z ′
i ) an independent copy of (Zi ). Since �V ⊥ is a symmetric operator,

using Jensen’s inequality ,

E [Rd ] ≤ 1

n(n − 1)
E

[
sup
V ∈Vd

∑
i �= j

fV (Zi , Zi ′ , Z j , Z j ′ )

]
,

where

fV (Zi , Zi ′ , Z j , Z j ′ ) = 〈�V ⊥ , Zi ⊗ Z∗
j − Zi ′ ⊗ Z∗

j − Zi ⊗ Z∗
j ′ + Zi ′ ⊗ Z∗

j ′ 〉.
Since fV (Zi , Zi ′ , Z j , Z j ′ ) = − fV (Zi ′ , Zi , Z j , Z j ′ ) and fV (Zi , Zi ′ , Z j , Z j ′ ) = − fV (Zi , Zi ′ ,

Z j ′ , Z j ), following the proof of the standard symmetrization, we get:

E [Rd ] ≤ 1

n(n − 1)
E

[
sup
V ∈Vd

∑
i �= j

εiε j fV (Zi , Zi ′ , Z j , Z j ′ )

]

Therefore,

E[Rd ] ≤ 2

n(n − 1)

(
E

[
sup
V ∈Vd

∑
i �= j

εiε j 〈�V ⊥ , Zi ⊗ Z∗
j 〉

]

+E

[
sup
V ∈Vd

−
∑
i �= j

εiε j 〈�V ⊥ , Zi ⊗ Z∗
j ′ 〉

] )
= 2

n(n − 1)
(A + B) ;

for the first term above we have

A ≤ E

[
sup
V ∈Vd

∑
i, j

εiε j
〈
�V ⊥ , Zi ⊗ Z∗

j

〉] = C,

while for the second we use

B ≤ E

[
sup
V ∈Vd

−
∑
i, j

εiε j
〈
�V ⊥ , Zi ⊗ Z∗

j ′
〉] + E

[
sup
V ∈Vd

∑
i

〈
�V ⊥ , Zi ⊗ Z∗

i ′
〉]

= D + E .
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We bound terms C, D, E by the following similar chains of inequalities where we succes-

sively use the Cauchy-Schwarz inequality, the contractivity of an orthogonal projector and a

standard computation on sums of weighted Rademacher:

C ≤ EZ Eε sup
V ∈Vd

∥∥∥∥∥∑
i

εi Zi

∥∥∥∥∥
∥∥∥∥∥∑

j

ε j�V ⊥ (Z j )

∥∥∥∥∥ ≤ EZ Eε

∥∥∥∥∥∑
i

εi Zi

∥∥∥∥∥
2

= nE ‖Z‖2 ;

D ≤ EZ ,Z ′Eε sup
V ∈Vd

∥∥∥∥∥∑
i

εi Zi

∥∥∥∥∥
∥∥∥∥∥∑

j

ε j�V ⊥ (Z j ′ )

∥∥∥∥∥
≤ EZ ,Z ′Eε

∥∥∥∥∥∑
i

εi Zi

∥∥∥∥∥
∥∥∥∥∥∑

j

ε j Z j ′

∥∥∥∥∥
≤

√√√√EZ ,Z ′Eε

∥∥∥∥∥∑
i

εi Zi

∥∥∥∥∥
2

Eε

∥∥∥∥∥∑
j

ε j Z j ′

∥∥∥∥∥
2

= nE ‖Z‖2 ;

E ≤ EZ ,Z ′ sup
V ∈Vd

∑
i

‖�V ⊥ (Zi ′ )‖ ‖Zi‖ ≤
∑

i

EZ ,Z ′ ‖Zi ′ ‖ ∥∥Z j

∥∥ ≤ nE ‖Z‖2 .

Gathering the previous inequalities, we obtain the conclusion. �

4 Kernel PCA and eigenvalues of integral operators

4.1 Kernel PCA

In this section we review briefly how our results are interpreted in the case where the Hilbert

space H is a reproducing kernel Hilbert space (RKHS) with kernel function k. This is the

standard framework of kernel PCA. The reason why we mention it only at this point on the

paper is to emphasize that our previous results are, actually, largely independent of the RKHS

setting and could be expressed for any bounded random variable in an abstract Hilbert space.

In this framework the input space X is an arbitrary measurable space and X is a random

variable on X with probability distribution P . Let k be a positive definite function on X and

Hk the associated RKHS. We recall (see, e.g., Aronszajn, 1950) that Hk is a Hilbert space of

real functions on X , containing functions k(x, ·) for all x ∈ Hk and such that the following

reproducing property is satisfied:

∀ f ∈ Hk ∀x ∈ X 〈 f, k(x, .)〉 = f (x), (33)

and in particular

∀x, y ∈ X 〈k(x, ·), k(y, ·)〉 = k(x, y).

The space X can be mapped into Hk via the so-called feature mapping x ∈ X �→ 
(x) =
k(x, ·) ∈ Hk . The reproducing property entails that 〈
(x), 
(y)〉 = k(x, y) so that we can

basically compute all dot products involving images of points of X in Hk (and linear com-

binations thereof) using the kernel k. The kernel PCA procedure then consists in applying

PCA to the variable Z = 
(X ).
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We make the following assumptions on the RKHS, which will allow to apply our previous

results:

(A1) Hk is separable.
(A2) For all x ∈ X , k(x, .) is P-measurable.
(A3) There exists M > 0 such that k(X, X ) ≤ M P-almost surely.

Assumption (A1) is necessary in order to apply the theory we developed previously.

Typically, a sufficient condition ensuring (A1) is that X is compact and k is a continuous

function. Assumption (A2) ensures the measureability of all functions in Hk since they are

obtained by linear combinations and pointwise limits of functions k(x, ·) ; it also ensures the

measureability of Z . It holds in particular in the case where k is continuous. Finally, assump-

tion (A3) ensures that the variable Z is bounded a.s. since ‖Z‖2 = ‖
(X )‖2 = k(X, X ).

Note that we also required the stronger assumption of ‖Z‖2 = k(X, X ) = M a.s. for The-

orem 3.2. Although this clearly is a strong assumption, it still covers at least the important

class of translation invariant kernels of the form k(x, y) = k(x − y) (where X is in this

case assumed to be a Euclidean space), the most prominent of which is the Gaussian kernel

k(x, y) = exp
(− ‖x − y‖2 /(2σ 2)

)
.

For the computations in HS(Hk), the following equalities are available:

tr C
(x) = ∥∥C
(x)

∥∥
HS(Hk )

= k(x, x), (34)

〈C
(x), C
(y)〉HS(Hk ) = k2(x, y), (35)

〈 f, C
(x)g〉Hk = 〈C
(x), f ⊗ g∗〉HS(Hk ) = f (x)g(x). (36)

Note incidentally that (35) implies that HS(Hk) is actually a natural representation of the

RKHS with kernel k2(x, y) . Namely to an operator A ∈ HS(Hk) we can associate the function

f A(x) = 〈
A, C
(x)

〉
HS(Hk )

= 〈A · 
(x), 
(x)〉Hk = (A · 
(x))(x) ;

with this notation, we have fC
(x)
= k2(x, ·) , and one can check that (33) is satisfied in

HS(Hk) with the kernel k2(x, y) when identifying an operator to its associated function.

Finally, the trace of operators C2, C1 ⊗ C∗
1 and C2,n, C1,n ⊗ C∗

1,n appearing in Theorems

3.1 and 3.5 satisfy the following identities:

tr C2 = tr E
[
C
(X ) ⊗ C∗


(X )

] = E
[∥∥C
(X )

∥∥2 ] = E[k2(X, X )];

tr C2,n = 1

n

n∑
i=1

k2(Xi , Xi );

tr
(
C1 ⊗ C∗

1

) = ‖C1‖2 = E
[
k2(X, Y )

]
(where Y is an independent copy of X ),

tr
(
C1,n ⊗ C∗

1,n

) = 1

n2

n∑
i=1

k2(Xi , X j ).

4.2 Eigenvalues of integral operators

We now review the relation of Kernel PCA to eigenvalues and eigenfunctions of the kernel

integral operator. Again, this relation is well-known and is actually central to the KPCA

procedure; we now expose it here to explicitly show how to formulate it in our abstract
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setting and how our results can be interpreted in that interesting light, although their initial

formulation was independent of it.

The intimate relationship of the covariance operator with another relevant integral operator

is summarized in the next theorem. This property was stated in a similar but more restrictive

context (finite dimensional) by Shawe-Taylor et al. (2002, 2005).

Theorem 4.1. Let (X , P) be a probability space, H be a separable Hilbert space, X be a
X -valued random variable and 
 be a map from X to H such that for all h ∈ H, 〈h, 
(.)〉
is measurable and E ‖
(X )‖2 < ∞. Let C
 be the covariance operator associated to 
(X )

and K
 : L2(P) → L2(P) be the integral operator defined as

(K
 f )(t) = E [ f (X )〈
(X ), 
(t)〉] =
∫

f (x)〈
(x), 
(t)〉d P(x).

Then K is a Hilbert-Schmidt, positive self-adjoint operator, and

λ(K
) = λ(C
).

In particular, K
 is a trace-class operator and tr(K
) = E ‖
(X )‖2 = ∑
i≥1 λi (K
).

This result is proved in the appendix. Note that we actually have 〈
(x), 
(y)〉 = k(x, y) ,

so that K
 is really the integral operator with kernel k. We chose the above formulation in

the theorem to emphasize that the reproducing property is not essential to the result.

Furthermore, as should appear from the proof, the theorem can be easily extended to

find an explicit correspondence between the eigenvectors of C
 and the eigenfunctions

of K
. This is an essential point for kernel PCA, as it allows to reduce the problem of

finding the eigenvectors of the “abstract” operator C1,n to finding the eigenfunctions the

kernel integral operator K1,n defined as above, with P taken as the empirical measure; K1,n

can then be identified (as in Koltchinskii and Giné, 2000) to the normalized kernel Gram

matrix of size n × n, K1,n ≡ (k(Xi , X j )/n)i, j=1,...,n . This comes from the fact that L2(Pn)

is a finite-dimensional space so that any function f ∈ L2(Pn) can be identified to the n-

uple ( f (Xi ))i=1,...,n ; this way the Hilbert structure of L2(Pn) is isometrically mapped into

Rn embedded with the standard Euclidean norm rescaled by n−1. (Note that this mapping

may not be onto in the case where two datapoints are identical, but this does not cause a

problem.)

A further consequence of Theorem 4.1 and of the above remarks is the following identi-

fication of (positive part of) spectra:

λ(C1) = λ(K1) ;

λ(C1,n) = λ(K1,n) ;

λ(C2,n) = λ(K2,n) ;

λ(C ′
2) = λ(K ′

2) ;

λ(C ′
2,n) := λ(C2,n − C1,n ⊗ C∗

1,n) = λ

((
In − 1

n
1
)

K2,n

(
In − 1

n
1
))

=: λ(K ′
2,n),

where K1 denotes the kernel integral operator with kernel k and the true proba-

bility distribution P ; K1,n, K2,n are identified to the matrices (k(Xi , X j )/n)i, j=1,...,n ,
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(k2(Xi , X j )/n)i, j=1,...,n, respectively; In denotes the identity matrix of order n ; 1 de-

notes the square n × n matrix whose entries are all ones; and K ′
2 is the kernel oper-

ator with kernel k̄2(x, y) = k2(x, y) − EX [k2(X, y)] − EY [k2(x, Y )] + EX,Y [k2(X, Y )]. To

understand the two last identities of the above display, first note that C2 − C1 ⊗ C∗
1 =

E
[
(CZ − E [CZ ]) ⊗ (CZ − E [CZ ])∗

]
is the covariance operator for the variable C̄Z =

CZ − E [CZ ]. The identities follow by (a) applying Theorem 4.1 to this variable (when P
is the true distribution or the empirical measure, respectively) and (b) some simple algebra,

omitted here, to identify the the corresponding operators (this is similar to Kernel PCA with

recentering, see, e.g., Schölkopf et al., 1999).

These identities have two interesting consequences:� all quantities involving empirical operators appearing in the bounds of Theorems 3.1, 3.2,

3.5 can be computed from the finite-dimensional kernel matrices K1,n, K2,n . In the last

section we had already obtained the expressions for the traces by elementary calculations;

further, the above spectra identities allow to identify also partial sums of eigenvalues

appearing in the bounds.� The optimal reconstruction error R(Vd ) coincides with the tail sum of eigenvalues
∑

i>d λi

of the integral operator K1, while the empirical construction error Rn(V̂d ) coincides with the

tail sum of eigenvalues of the kernel Gram matrix K1,n . Therefore, our results also allow to

bound the error made when estimating eigenvalues of K1 by the eigenvalues of its empirical

counterpart K1,n . More precisely, minor modifications of the proofs of Theorems 3.1, 3.4,

3.5 result in bounds on the difference between these tail sums: global bound, relative bound

and global bound for the recentered operators, respectively. (However, note that Theorem

3.2 has no direct interpretation in this framework: it only focuses on convergence of the

reconstruction error.) Similar techniques apply also for dealing with partial sums
∑

i≤d λi .

Approximating the integral operator K1 by its empirical counterpart K1,n is known as the

Nyström method (see, e.g., Williams and Seeger, 2000). We collect the resulting inequalities

in the following theorem.

Theorem 4.2. Assume (A1), (A2) are satisfied. Let X0 be the support of distribution P
on X ; assume supx∈X0

k(x, x) ≤ M and supx,y∈X0

(
k2(x, x) + k2(y, y) − 2k2(x, y)

) ≤ L2.

Denote R(d) = ∑
i>d λd (K1) and Rn(d) = ∑

i>d λd (K1,n).Then for any n ≥ 2, either of the
following inequalitites holds with probability at least 1 − e−ξ :

R(d) − Rn(d) ≤
√

d

n
tr K ′

2 + (M ∧ L)

√
ξ

2n
; (37)

R(d) − Rn(d) ≤
√

d

n − 1
tr K ′

2,n + (M ∧ L)

√
ξ

2n
+ L

√
dξ

1
4

n
3
4

; (38)

R(d) − Rn(d) ≥ −
√

2ξ

n
(M ∧ L)R(d) − (M ∧ L)

ξ

3n
; (39)

R(d) − Rn(d) ≥ −
√

2ξ

n
(M ∧ L)

(
Rn(d) − (M ∧ L)

ξ

3n

)
+

− (M ∧ L)
ξ

3n
. (40)

Under the stronger condition k(x, x) = M for all x ∈ X0, either of the following inequalities
holds with probability at least 1 − e−ξ :

R(d) − Rn(d) ≤ c

(√
R(d)

(
ρ(M, d, n) + M

ξ

n

)
+ ρ(d, n) + Mξ

n

)
; (41)
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R(d) − Rn(d) ≤ c

(√
Rn(d)

(
ρn(M, d, n) + M

(ξ + log n)

n

)
+ρn(d, n)+ M(ξ + log n)

n

)
.

(42)

Comments. A consequence of this theorem worth noticing is that by combining (42) and (40)

applied to d, d + 1 respectively (or vice-versa), we obtain a (fully empirical) relative bound

for estimating single eigenvalues. However the relative factor in the main term of the bound

is the tail sum of eigenvalues rather than the single eigenvalue itself. Also, similar bounds are

available for the partial sums
∑

i≤d λi ; however in that case the relative bounds lose most of

their interest since the “relative” factor appearing in the bound is then typically not close to

zero.

Finally, using Theorem 3.5 inequalities similar to (37) and (38) can be proved for bounding

the difference between the sum of eigenvalues of the “recentered” integral operator K̄1

with kernel k̄(x, y) = k(x, y) − EX [k(X, y)] − EY [k(x, Y )] + EX,Y [k(X, Y )] and the sum of

eigenvalues of the recentered kernel matrix K̄1,n = (In − 1
n 1)K1,n(In − 1

n 1). The principle

is exactly similar to the above and we omit the exact statements.

Proof: Bounds (37), (38) are almost direct consequences of Theorem 3.1, and (41), (42) of

Theorem 3.2, respectively. More precisely, we know that R(d) = R(Vd ) and Rn(d) = Rn(V̂d ).

Theorems 3.1, 3.2 provide upper bounds for R(V̂d ) − Rn(V̂d ) (here we need only one-sided

bounds, hence the inequalities are valid with slightly higher probability), and we furthemore

have R(Vd ) ≤ R(V̂d ) by definition.

Concerning the “relative” lower bounds (39) and (40), we start with the following fact:

R(d) − Rn(d) = R(Vd ) − Rn(V̂d ) ≥ R(Vd ) − Rn(Vd ) = (Pn − P)
〈
�Vd , CZ

〉
;

Consider now the function f : z → 〈�Vd , Cz〉. Using the same arguments as in the beginning

of the proof of Theorem 3.1, we conclude that a.s. f (Z ) ∈ [a, b] for some interval [a, b] with

a ≥ 0 and |a − b| ≤ M ∧ L . We now apply Bernstein’s inequality (Theorem B.3) to the

function ( f − a) ∈ [0, M ∧ L], obtaining that with probability at least 1 − e−ξ , we have

(Pn − P)〈�Vd , CZ 〉 ≥ −
√

2ξ P( f − a)2

n
− (M ∧ L)

ξ

3n
.

Now, note that

P( f − a)2 ≤ (M ∧ L)(P f − a) ≤ (M ∧ L)P f.

This proves (39). Inequality (40) follows by using the fact that x ≥ 0 and x2 + ax + b ≥ 0

with a ≥ 0 implies x2 ≥ −b − a
√−(b ∧ 0) (here applied to x = √

R(d) and the correspond-

ing terms coming from (39). �

5 Comparison of the bounds

Of interest is to understand how the different bounds obtained here compare to each other. In

this short section we will present two different simplified example benchmark settings where

we assume that the true distribution, and in particular the eigenvalues of C1 and C2, are known,
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and visualize the different bounds. We do not consider here the bound for the recentered case

(Theorem 3.5) as it is, up to worse multiplicative constants, essentially equivalent to the

non-centered case of Theorem 3.1, as far as the bounding quantity is concerned.

We therefore focus on Theorems 3.1, 3.2, 3.4, more precisely on the excess error inequal-

ities bounding R(V̂d ) − R(Vd ). (Since Theorem 3.2 only deals with this quantity, this is the

one we must consider if we want to compare the different theorems.) In general, we expect

the following general picture:

(1) The global bound of Theorem 3.1 results in a bound of order
√

d
n .

(2) The excess bound of Theorem 3.2 will result in a bound that decays faster than the

global bound as a function of n for fixed d, but has a worse behavior as a function of

d for fixed n, because of the factor Bd which will grow rapidly as d increases.

(3) The relative bound of Theorem 3.4 will result in a bound that decays slower than the

global bound as a function of n, but we expect a better behavior as a function of d
for fixed n, because the risk R(Vd ) enters as a factor into the main term of the bound.

Actually, we expect that this bound is the only one to be decreasing as a function of

d , at least for values of d such that the other terms in the bound are not dominant.

Example 1. For this first case we consider a case where the eigenvalues of C1 and C2 decay

as a power of n. More precisely, suppose that M = 1, R(Vd ) = ∑
i>d λi (C1) = ad−γ and∑

i>d λi (C2) = a′d−α (with α, γ ≥ 0 and 2γ ≥ α − 1). In this case, we have ρ(A, d, n) �
(A

−α
2+α d

1
2+α n− 1+α

2+α ) ∧ d
1
2 n− 1

2 , while Bd = O(d2+γ ).

Example 2. In this case we assume an exponential decay of the eigenvalues: M = 1, R(Vd ) =∑
i>d λi (C1) = ae−γ d and

∑
i>d λi (C2) = a′e−αd (with the same constraints on γ, α as in

the first example). In this case, we have ρ(A, d, n) � (An−1(1 ∨ log(A−1d
1
2 n

1
2 ))) ∧ d

1
2 n− 1

2 ,

while Bd = O(eγ d ).

We display the (log-)bounds for R(V̂d ) − R(Vd ) for these two examples in Fig. 1, with

the choices α = γ = 4 for example 1, and α = γ = 0.7 for example 2; we picked a =
1, a′ = 0.5, ξ = 3 , n ∈ {107, 1010} for both cases. The bounds are plotted as given in the

text including the multiplicative constants; for the relative bound of Theorem 3.4 we strived to

pick the best multiplicative constant c that was still compatible with a rigorous mathematical

proof. We included in the figure a plot of the (log-)optimal reconstruction error itself R(Vd ),

which allows to compare the magnitude of the bounds to the magnitude of the target quantity

(or, speaking with some abuse, the magnitude of the “bias” and of the bound on the “estimation

error”).

Note that our goal here is merely to visualize the behavior of the bounds, so that we do not

claim that the above choice of parameters correspond to any “realistic” situation (in particular

we had to choose a unrealistically high values for n to try to exhibit the trend behavior of

the bounds for large n despite the loose multiplicative constants involved). However, the two

above general behaviors of the eigenvalues can be exhibited for the Gaussian kernel and some

choices of the generating distribution on the real line, as reported for example by Bach and

Jordan (2002), so that we trust these examples are somewhat representative.

In both cases we observe, as expected from the above remarks, that the excess bound of

Theorem 3.2 gives a much more accurate result when d is small. Quickly however, as d
increases, this bound becomes essentially uninformative due to its bad scaling as a function

of d , while the relative bound of Theorem 3.4 becomes better. Finally, we can observe a

small region on the d-range where the initial global bound is better. This is mainly due
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to the worse multiplicative constants arising when applying the localized approach. As n
increases, the influence of these constants becomes less important and this region eventually

vanishes.

6 Conclusion and discussion

Comparison with previous work. Dauxois and Pousse (1976) studied asymptotic convergence

of PCA and proved almost sure convergence in operator norm of the empirical covariance

operator to the population one. These results were further extended to PCA in a Hilbert space

by Besse (1991). However, no finite sample bounds were presented. Moreover, the centering

of the data was not considered.

Compared to the work of Koltchinskii and Giné (2000), we are interested in non-asymptotic

(i.e., finite sample sizes) results; furthermore our emphasis is on reconstruction error for PCA

while these authors were focusing only on eigenspectra estimation. It is however noteworthy

that the recentered fourth moment operator C ′
2 appearing in our finite sample bounds also

surfaces naturally as the covariance operator of the limiting Gaussian process appearing in

the central limit theorem proved by the above authors.

Comparing with Shawe-Taylor et al. (2002, 2005), we overcome the difficulties coming

from infinite dimensional feature spaces as well as those of dealing with kernel operators

(of infinite rank). They also start from results on the operator eigenvalues on a RKHS to

conclude on the properties of kernel PCA. Here we used a more direct approach, extended

their results to the recentered case and proved refined bounds and possible faster convergence

rates for the uncentered case. In particular we show that there is a tight relation between how

the (true or empirical) eigenvalues decay and the rate of convergence of the reconstruction

error.

Asymptotic vs. non-asymptotic. A point of controversy that might be raised is the follow-

ing: what is the interest in non-asymptotic bounds if they give informative results only for

unreasonably high values of n, as is the case in our examples of Section 5? In this case,

why not consider directly the asymptotic results (e.g., central limit theorems) cited above,

which surely should be more accurate in the limit? The answer to this is that ideally, our goal

would be to understand the behavior of PCA (or of the eigenspectrum of the Gram matrix)

for a fixed (although, for the time, possibly large) value of n and across values of d . This

could, for example, help answering the question of how to choose the projection dimension

d in a suitable way (we discuss this issue below). As far as we know, central limit theorems,

even concerning the eigenspectrum as a whole, are not precise enough to capture this type of

behavior. This is illustrated at the very least in the fact that for any value of n, all empirical

eigenvalues of rank d > n are zero, which of course is always far from the “asymptotic

gaussian” behavior given by the CLT. In all honesty, as will appear more clearly below, our

bounds are also quite inaccurate for the “very high dimension” regime where d is of same

order as n, but might be interesting for intermediate regimes (e.g., d growing as a root power

of n). While we are still far from a full understanding of possible regimes across values of

(n, d), we hope to have shown that our results present interesting contributions in this general

direction.

The nagging problem of the choice of dimension in PCA. Even if we had a full, exact picture

of how the estimation error behaves for arbitrary (n, d), the choice of the projection dimen-

sion in PCA poses problems of its own. It is tempting to see the reconstruction error R(V )
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as an objective criterion to minimize and interpret Theorems 3.1 or 3.4 as a classical statis-

tical tradeoff between empirical ’model’ error Rn(V̂d ) (here the ’model’ is the set of linear

subspaces of dimension d) and estimation error (R(V̂d ) − R(Vd )), for which explicit bounds

are provided by the theorems. The sum Sn,d of these two contributions is a bound on R(V̂d ),

which would suggest to select the dimension d minimizing Sn,d as the best possible guess for

the choice of the dimension. However, even if the bound Sn,d presents a minimum at a certain

d0(n), this whole view is an illusion: it is clear that, in this case, the true reconstruction error

R(V̂d ) of the subspace selected empirically is a decreasing function of d (since V̂d ⊂ V̂d+1).

This emphasizes that the (true) reconstruction error is by itself not a good criterion to select

the dimension: as far as reconstruction error is concerned, the best choice would be not to

project the data at all but to keep the whole space; there is no “overfitting regime” for that

matter. This also shows, incidentally, that for d > d0(n), bounding R(V̂d ) by Sn,d is totally

off mark, since Sn,d ≥ Sn,d0(n) ≥ R(V̂d0(n)) ≥ R(V̂d ). In other words, for d > d0(n) the bound

fails to capture any information additional to that obtained for d = d0(n) (this was also noted

by Shawe-Taylor et al., 2005).

Hence, an alternative and sensible criterion has to be found to define in a well-founded way

what the optimal dimension should be. Up to some point, the nature of the optimal choice

depends on what kind of processing is performed next on the data after applying PCA.

The further processing might suggest its own specific tradeoff between projection dimension

(which might result in some complexity penalty) and allowed error. Another, more “agnostic”

possibility, is to choose the dimension for which the “approximation error” R(Vd ) and the

“estimation error” R(V̂d ) − R(Vd ) are approximately of the same order. (We expect in general

that the approximation error is dominating for low dimensions, while the converse holds for

high dimensions.) If we trust the relative bound of Theorem 3.4, a possible (empirical)

criterion would then be to choose d such that Rn(V̂d ) is of the same order as ρn(M, d, n).

These different possibilities illustrate at any rate the interest of understanding correctly the

behavior of the estimation error across d for a given n.

Finally, additional open problems include obtaining relative convergence rates for the

estimation of single eigenvalues, and nonasymptotic bounds for eigenspace estimation.

Appendix A: Additional proofs

A.1 Proof of Theorem 2.1.

For the existence of operator C and its basic properties, see, e.g., Baxendale (1976). We

proceed to prove the last part of the theorem. First, we have E‖Z ⊗ Z∗‖ = E‖Z‖2 < ∞, so

that E [Z ⊗ Z∗] is well-defined. Now, for any f, g ∈ H the following holds by the definition

of C and of the expectation operator in a Hilbert space:

〈 f, E
[
Z ⊗ Z∗] g〉 = E

[〈Z ⊗ Z∗, f ⊗ g∗〉] = E [〈Z , f 〉〈Z , g〉] = 〈 f, Cg〉 ;

this concludes the proof.

A.2 Additional proof for Section 3

A key property necessary for the proof of Theorem 3.2 is established in the following

Lemma:
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Lemma A.1. Let and γd be defined as in Eq. (17). For any V ∈ Vd , there exists HV ∈ Vd

such that

R(HV ) = min
H∈Vd

R(H ), (43)

and

E
[〈
�V ⊥ − �H⊥

V
, CZ

〉2] ≤ 2γ −1
d

√
EZ ,Z ′ [〈Z , Z ′〉4]E

[〈
�V ⊥ − �H⊥

V
, CZ

〉]
,

where Z ′ is an independent copy of Z.

Proof: Recall the following notation: let (λi ) denote the ordered eigenvalues with multiplicity

of C1, resp. (μi ) the ordered distinct eigenvalues, and let d̃ be the integer such that λd = μd̃ .

Let us denote Wi the eigenspace associated to eigenvalue μi and W̄ j = ⊕ j
i=1 Wi . We

first assume d̃ > 1 and denote k, � the fixed integers such that λd−� = μd̃−1, λd−�+1 = . . . =
λd = . . . = λd+k = μd̃ and λd+k+1 = μd̃+1.

Step 1: construction of HV . Let (φ1, . . . , φd−�) be an orthonormal basis of W̄d̃−1. Let V (1)

denote the orthogonal projection of W̄d̃−1 on V ; in other words, the space spanned by the pro-

jections of (φi )i≤d−� on V . The space V (1) is of dimension d − �′ ≤ d − � ; let ( f1, . . . , fd−�′ )

denote an orthonormal basis of V (1). We complete this basis arbitrarily to an orthonormal basis

( fi )i≤d of V .

Denote now V (2) = span { fd−�+1, . . . , fd}. Note that by construction, V (2) ⊥ W̄d̃−1. Let

W (2)

d̃
be the orthogonal projection of V (2) on Wd̃ . The space W (2)

d̃
is of dimension �′′ ≤ � ;

let (φd−�+1, . . . , φd+�′′−�) be an orthogonal basis of W (2)

d̃
. We finally complete this basis

arbitrarily to an orthonormal basis (φi )d−�+1≤i≤d+k of Wd̃ . Note that by construction, in

particular V (2) ⊥ span {φd+1, . . . , φd+k}.
We now define HV = span {φi , 1 ≤ i ≤ d}. Obviously HV is a minimizer of the re-

construction error over subspaces of dimension d. We have, using the definition C2 =
E[CZ ⊗ C∗

Z ]:

E
[〈�V ⊥ − �H⊥

V
, CZ 〉2

] = 〈
�HV − �V , C2�HV − �V

〉
HS(H)

≤ ‖C2‖HS(HS(H))‖�HV − �V ‖2
HS(H)

= 2‖C2‖HS(HS(H))(d − 〈�V , �HV 〉HS(H))

= 2 ‖C2‖HS(HS(H))

(
d −

d∑
i, j=1

〈 fi , φ j 〉2

)
;

and on the other hand, using the definition C1 = ECZ :

E
[〈�V ⊥ − �H⊥

V
, CZ 〉] = 〈�HV − �V , C1〉 =

d∑
i=1

(λi − 〈 fi , C1 fi 〉) .

We will decompose the last sum into two terms, for indices i smaller or greater than d − �,

and bound these separately.
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Step 2a: indices i ≤ d − �. In this case we decompose fi = ∑
j≤d−�〈 fi , φ j 〉φ j + gi , with

gi ∈ W̄ ⊥
d̃−1

. We have

〈gi , C1gi 〉 ≤ μd̃ ‖gi‖2 = μd̃

(
1 −

∑
j≤d−�

〈 fi , φ j 〉2

)
,

and

d−�∑
i=1

(λi − 〈 fi , C1 fi 〉) ≥
d−�∑
i=1

λi

(
1 −

d−�∑
j=1

〈 fi , φ j 〉2

)
−

d−�∑
i=1

μd̃

(
1 −

∑
j≤d−�

〈 fi , φ j 〉2

)

≥ (μd̃−1 − μd̃ )

(
d − � −

d−�∑
i, j=1

〈 fi , φ j 〉2

)
.

Step 2b: indices i > d − �. In this case remember that fi ⊥ φ j for 1 ≤ j ≤ d − � and

d + 1 ≤ j ≤ d + k. We can therefore decompose fi = ∑d
j=d−�+1〈 fi , φ j 〉φ j + g′

i with g′
i ∈

W̄ ⊥
d̃

. We have

〈g′
i , C1g′

i 〉 ≤ μd̃+1‖g′
i‖2 = μd̃+1

(
1 −

d∑
j=d−�+1

〈 fi , φ j 〉2

)
,

and

d∑
i=d−�+1

(λi − 〈 fi , C1 fi 〉) = μd̃

(
� −

d∑
i, j=d−�+1

〈 fi , φ j 〉2

)
−

d∑
i=d−�+1

〈g′
i , C1g′

i 〉

≥ (μd̃ − μd̃+1)

(
� −

d∑
i, j=d−�+1

〈 fi , φ j 〉2

)
.

Finally collecting the results of steps 2a-b we obtain

〈
�HV − �V , C1

〉 ≥ min(μd̃−1 − μd̃ , μd̃ − μd̃+1)

(
d −

d−�∑
i, j=1

〈 fi , φ j 〉2 −
d∑

i, j=d−�+1

〈 fi , φ j 〉2

)

≥ min
(
μd̃−1 − μd̃ , μd̃ − μd̃+1

)
(2 ‖C2‖)−1 E

[〈�V ⊥ − �H⊥
V
, CX 〉2

]
.

Finally, it holds that

‖C2‖2
HS(HS(H)) = EZ ,Z ′

[〈CZ ⊗ C∗
Z , CZ ′ ⊗ C∗

Z ′ 〉HS(HS(H))

]
= EZ ,Z ′

[〈CZ , CZ ′ 〉2
HS(H)

]
= EZ ,Z ′

[〈Z , Z ′〉4
H

]
.
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This concludes the proof of the Lemma when d̃ > 1. If d̃ = 1, the proof can be adapted with

minor modifications, essentially removing step (2a), so that in the final inequality only the

second term of the minimum appears. �

A.3 Proof of Theorem 4.1

It is a well-known fact that an integral kernel operator such as Kφ is Hilbert-Schmidt if

and only if the kernel k(x, y) (here equal to 〈
(x), 
(y)〉 ) is an element of L2(X × X )

(endowed with the product measure). This is the case here since k(x, y) ≤ ‖
(x)‖ ‖
(y)‖
and E‖
(X )‖2 < ∞ by assumption. We now characterize this operator more precisely.

Since E‖
(X )‖ < ∞, 
(X ) has an expectation which we denote by E [
(X )] ∈ H.

Consider the linear operator T : H → L2(P) defined as (T h)(x) = 〈h, 
(x)〉H. By the

Cauchy-Schwarz inequality, E〈h, 
(X )〉2 ≤ ‖h‖2E‖
(X )‖2. This shows that T is well-

defined and continuous; therefore it has a continuous adjoint T ∗. Let f ∈ L2(P), then he

variable f (X )
(X ) ∈ H has a well-defined expectation since f and ‖
‖ are in L2(P).

But for all g ∈ H, 〈T ∗ f, g〉H = 〈 f, T g〉L2(P) = E [〈g, f (X )
(X )〉H] which shows that

T ∗( f ) = E [
(X ) f (X )] .

We now show that C
 = T ∗T and K
 = T T ∗. By definition, for all h, h′ ∈
H, 〈h, T ∗T h′〉 = 〈T h, T h′〉 = E

[〈h, 
(X )〉〈h′, 
(X )〉]. Thus, by the uniqueness of

the covariance operator, we get C
 = T ∗T . Similarly, (T T ∗ f )(x) = 〈T ∗ f, 
(x)〉 =
E [〈 f (X )
(X ), 
(x)〉] = ∫

f (y)〈
(y), 
(x)〉d P(y) so that K
 = T T ∗. This also implies

that K
 is self-adjoint and positive.

We finally show that the nonzero eigenvalues of T T ∗ and T ∗T coincide by a standard

argument. Let Eμ(A) = {x, Ax = μx} be the eigenspace of the operator A associated with

μ. Moreover, let λ > 0 be a positive eigenvalue of K
 = T T ∗ and f an associated eigen-

vector. Then (T ∗T )T ∗ f = T ∗(T T ∗) f = λT ∗ f . This shows that T ∗ Eλ(T T ∗) ⊂ Eλ(T ∗T ) ;

similarly, T Eλ(T ∗T ) ⊂ Eλ(T T ∗). Applying T ∗ to both terms of the last inclusion im-

plies T ∗T Eλ(T ∗T ) = Eλ(T ∗T ) ⊂ T ∗ Eλ(T T ∗) (the first equality holds because λ �= 0). By

the same token, Eλ(T T ∗) ⊂ T Eλ(T ∗T ). Thus, Eλ(T ∗T ) = T ∗ Eλ(T T ∗) and Eλ(T T ∗) =
T Eλ(T ∗T ) ; this finally implies dim(Eλ(T∗T)) = dim(Eλ(TT∗)). This shows that λ is also an

eigenvalue for C
 with the same multiplicity and concludes the proof.

Appendix B: Concentration inequalities

Some concentration inequalities used all along the paper are recalled here for the sake of

completeness.

Theorem B.1 (McDiarmid, 1989). Let X1, . . . , Xn be n independent random variables tak-
ing values in X and let Z = f (X1, . . . , Xn) where f is such that:

sup
x1,...,xn ,x ′

i ∈X
| f (x1, . . . , xn) − f (x1, . . . , x ′

i , . . . , xn)| ≤ ci , ∀ 1 ≤ i ≤ n,

then

P[Z − E [Z ] ≥ ξ ] ≤ e−2ξ 2/(c2
1+...+c2

n ),
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and

P[E [Z ] − Z ≥ ξ ] ≤ e−2ξ 2/(c2
1+...+c2

n ).

Theorem B.2 (Hoeffding, 1963). Let 1 ≤ r ≤ n and X1, . . . , Xn be n independent random
variables. Denote

U = 1

n(n − 1) . . . (n − r + 1)

∑
i1 �=...�=ir

g(Xi1
, . . . , Xir ).

If g has range in [a, b] then

P[U − EU [≥] t] ≤ e−2�n/r�t2/(b−a)2

,

and

P[EU [−] U ≥ t] ≤ e−2�n/r�t2/(b−a)2

.

Theorem B.3 (Bernstein’s inequality). Let f be a bounded function. With probability at
least 1 − e−ξ ,

(P − Pn)( f ) ≤
√

2ξ P f 2

n
+ ‖ f ‖∞ξ

3n
, (44)

and with probability at least 1 − e−ξ ,

(Pn − P)( f ) ≤
√

2ξ P f 2

n
+ ‖ f ‖∞ξ

3n
. (45)
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Sciences de Toulouse, IX, 245–303.
Maurer, A. (2004) Concentration of Hilbert-Schmidt operators and applications to feature learning. Manuscript.
McDiarmid, C. (1989). On the method of bounded differences. Surveys in combinatorics (pp. 148–188).

Cambridge University Press.
Mendelson, S., & Pajor, A. (2005). Ellipsoid approximation with random vectors. In P. Auer, & R. Meir, (Eds.),

Proceedings of the 18th annual conference on learning theory (COLT 05) of lecture notes in computer
science, vol. 3559 (pp. 429–433). Springer.

Ramsay, J. O., & Dalzell, C. J. (1991). Some tools for functional data analysis. Journal of the Royal Statistical
Society, Series B, 53(3), 539–572.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1999) Kernel principal component analysis. In B. Schölkopf,
C. J. C. Burges, & A. J. Smola, (Eds.), Advances in kernel methods—Support vector learning (pp. 327–
352). Cambridge, MA: MIT Press. Short version appeared in Neural Computation, 10, 1299–1319, 1998.

Shawe-Taylor, J., Williams, C., Cristianini, N., & Kandola, J. (2002). Eigenspectrum of the Gram matrix
and its relationship to the operator eigenspectrum. In Algorithmic Learning Theory: 13th International
Conference, ALT 2002 of lecture notes in computer science, vol. 2533 (pp. 23–40). Springer-Verlag.

Shawe-Taylor, J., Williams, C., Cristianini, N., & Kandola, J. (2005). On the eigenspectrum of the Gram
matrix and the generalisation error of kernel PCA. IEEE Transactions on Information Theory 51, (7),
2510–2522.

Williams, C. K. I., & Seeger, M. (2000). The effect of the input density distribution on kernel-based classifiers.
In P. Langley, editor, Proceedings of the 17th international conference on machine learning (pp. 1159–
1166), San Francisco, California: Morgan Kaufmann.

Williamson, R. C., Smola, A. J., & Schölkopf, B. (2001). Generalization performance of regularization net-
works and support vector machines via entropy numbers of compact operators. IEEE Transactions on
Information Theory, 47(6), 2516–2532.

Springer


