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Abstract. In our previous paper Markov partitions for some classes of
dispersed billiards were constructed. Using these partitions we estimate the
decay of velocity auto-correlation function and prove the central limit theorem
of probability theory and Donsker’s Invariance Principle for Lorentz Gas with
periodic configuration of scatterers.

1. Introduction

We consider in this paper the dynamical system which corresponds to the motion
of a single particle between fixed scatterers on the plane R? Outside all scat-
terers the particle moves with the constant velocity and at the moments of
reflections it changes its velocity according to the usual law of elastic collisions.

We assume that scatterers are disks of arbitrary diameters and the configura-
tion of scatterers is invariant under a discrete subgroup I with a compact
fundamental domain of the group of all translations of the plane. The fundamental
domain of I' can be chosen as a semi-open set the closure of which is a rectangular.
We shall denote it by

H={4=(Q1,q2)10§q1<31, 0§Q2<B2}'

Another assumption concerns the existence of a constant 4 such that the length of
any straight segment which avoids all scatterers cannot be more than 4. Some-
times the last property is called as the property to have a finite horizon (see [1]).

The phase space .# of our dynamical system consists of points x ={qg, v), where
qg=(q',¢* are coordinates, v=(v,v?) is velocity of the particle. Without any loss
of generality we can restrict ourselves by the case |v]| = |/(v')* + (v*)* =1. The flow
corresponding to our dynamical system will be denoted by {S*}. In Theorem 1 we
constder a natural special representation of the flow {S'}. Namely let .#, be the
space of points x=(g,v) such that g belongs to the boundary of one of the scat-
terers and v is directed inside the scatterers. We denote by T, the transformation of
~#, into itself which arises when the point xe .#; moves along its trajectory till the
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next reflection from a scatterer and T,x=(q,,v,), where g, € R* is the point where
the next reflection takes place and v, is the velocity in the moment after the
reflection. If ¢ is a point on the boundary of a scatterer then n(g) is the unit normal

7I< <3n h
5 0} 2,Were

(-,-) denotes the scalar product. Thus for every scatterer &; we can introduce
natural coordinates r, ¢ on the set &,C.#, of points x=(q,v), ge &}, where r is a
cyclic coordinate along the boundary &! and ¢ measures the angle between n(q)

and v. Let du, be the differential of the measure on the set 277= [} ;' such
2:;cll

vector directed outwards the scatterer and cos g =(n(g),v), +

that its restriction to 2, is proportional to |cos¢|drde.

Theorem 1. There exists a constant y, 0<y =<1, such that for all sufficiently large n
[E(v(n), v(0))| Sexp(—n).

Here for x=(q,v)e 27" we denote v(0)=v, Tyx=(q(n),v(n)) and expectation is
taken with respect to the measure p,.

The proof of the Theorem 1 is contained in the Sect. 2. Let u be a probability
measure concentrated on the set . n(ITxS*) which is absolutely continuous with
respect to the Lebesque measure on .# and its density p(x)e C'. We consider x as a
random variable distributed according to the measure p. If S'x = x(t)=(qg(t), v(t))
then ¢(t), v(¢) are also random variables.

Theorem 2. There exists a non-degenerate two-dimensional gaussian probability
distribution with the density g such that
: q(t)
lim g {x e C} = [ g(q*,q*)dq"dg*.
= Ve C
Here C is a bounded open subset of the plane, the boundary of which has the
area equal to zero. The next theorem is a stronger version of Theorem 2. For every

1
t we put g(s)=—=qlst), 0=s=1. The measure p induces the probability
t

distribution on the set of all possible trajectories ¢,(s), 0 =s= 1, which are points of
the space Cp, 1](R?‘) of continuous functions defined on the segment [0, 1] with
values in R?. We shall denote this measure by u,

Theorem 3. The measures i, converge weakly to a Wiener measure.

Theorems 1-3 are derived from the properties of the Markov partition 5
constructed in our previous paper [2]. The Markov partition # is a countable
partition of the phase space 2. Its elements are denoted by A4, , w;e W where
W is the set indices.

Let T be the transformation of the set %#*" induced by periodic boundary
conditions. We shall list the properties of the symbolic representation of T
established in [2]. Let Q be the space of sequences w={w,}*, where w, takes
values in W. We consider the mapping ¢ : 27" —Q where ¢(x)=w if T"x€ 4, ,

1 The notation &, CII means that the centrum of Z; belongs to II
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—w<n<oo. For every 4, one can define its +-ranks which are denoted by
ri(A4,), r-(4,). We shall write r_(w,), r_(w,) instead of r (4,,), r.(4,,). The
measure ¢*u, is defined on the natural g-algebra of subsets © and is invariant
under the shift. It will be convenient to denote ¢*u, by i, In all cases it will be
clear whether we consider the measure on 2% or on €.

Lemma 1. (see [2, Sect. 6]). There exists A, 0< A, <1, such that for all sufficiently
large k

ol T () ZR)S A, poloir_(wo) ZK) =AY

Let us introduce one-sided conditional probabilities
Holwolw_ (05, sy, )
which exist with p,-probability 1. Many important properties of our dynamical
system follow from the possibility of approximation of uy(wglw_,...,w_,, ...) by
conditional probabilities with finite memory py{welw._,...,w_,). We shall de-

scribe the character of approximation which is valid in our case (see [2]). For any
constants A,o, 4yg, Ayss Azg<Azz 0<Asg, 451, 42, <1 we introduce the sets:

U, = {x:dist(x,09%" < A5}, m=123, ..
V,={x:T*x¢U,, m=[n*"], |k|<n; T'x¢ U, for |i{>n},
Z,={x:po(V,| C;- (x)) > 1= 2"}

Here { is the partition of £ which appears when we fix all w;, — 0 <i=0, C;-(x)
is the element of {~ containing ¢(x).
It is easy to see that

tolU,) <435, Ho(f/n) = 2”’1%21] + A50/(1=434),

- 2 (A, \
Z 220 .
‘UO( ”)< 1—120 <}’22>

Lemma 2. Let C;-, C/- correspond 10 g, @ _ 1, ..., 0 _, 1, @ &0y, ..., and o,
4 '
WO_ gy ey O _ypqs O

L @1, ... respectively and Ci-, C/- e p(Z,). Then one can
choose Ay, Ayys Ay, and Ly, 0< Ay <1 in such a way that

Llo(0,] Cr-) = poleo | CLHI S 237

The last property is an analogy of the famous Doeblin’s condition in the theory
of usual countable Markov chains (see [3]). Let us consider conditional
probabilities

T3 15 o0 s D) = oD p 15 -0 WOy g, oo, 000),

Tp(@ss 15005 Q) = Ho(W3, 1 15 s OOy 45 s 05).

We have the probability distributions =, 7, on the space of words w;,, ;,...,®,
under different conditions w'_,, , ..., wy and @, ,, ..., 5.

n
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Lemma 3. Suppose that v {(w}), v (0])Sn, 1Sisn. There exists a constant A,
0< Ay <1 such that for all large enough n

Var(m;, m))=3 ) 7 ( @34 15+ s D) = (O34 15 o5 )| 245

Only the properties of u, which are presented in Lemmas 1-3 will be used
during the proof of our Theorems.

2. Proof of Theorem 1

Let h(ew) be a function defined on @ such that (h(w)| < C, where C, is a constant
and there exists a constant A, O</14< 1, such that for all sufficiently large n one
can find functions h,(w)=hfw_,, ...,®,), [hdu,=0, depending only on coor-
dinates w,, |i| £n and sup {h{ew)—h (w)[ <)pz We denote also by T, the shift in the
space 2.

Lemma 4. Let the measure p, satisfy the assertions of Lemmas 1-3. If Eh=0 then
[EW(T§o)h(w)| Sexp(—n") for all sufficiently large n and some constant y, 0 <y<1.

Proof. Let n and n, <n be chosen. We have
[EW(Tgw)- Ww) — Eh, (Tgwh, (o)l = C, 4%,
where C, is a positive constant. We can write

h, (Tgw)h, (w) = Z h(w_y o )h, (@0, e @Oy D@, ).

Now we shall transform the probability distribution yq(w
be the set of words (w
and

e Wiy ) Let A
) such that rg, (w,)<2n, +1, ——n<1<n—l—n1

—nyo " n+n1

poVy @y o)) 2 (1 — /‘o(an) Ho(wy - )
where ¥, =M—V,, ~n <k, I<n+n,. An easy application of Chebyshev’s
inequality shows that py(4,)21—n?|/ ue(¥,).

Lemma 4.1. For (w_,, ...0,.,)EA,
1/ n ni\—n U (w-n1"'wn nl)
Y TP )< Oy O
pol®_p, - 0,) H Polodm;_ g oo 5, 1)

i=nyg+1

S — Y po(V, )"

for some A,, 0< i, <1.
Proof. We have

n+ng

oy ooy )=pole_, o) TT polodo,_y oo, ).
i=ny+1

We shall estimate the fraction

Ho(@ @y - 5y, )

I =
polofa; g .. o_,)

i
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We can consider also the fraction

JO = BolV, O@yf; _q ;5 )
oV, najlo; . oo,)

For words (w_,,, ... @,,, )€ 4, we have

1—¢/MJKJV§I@:L§(L—VMAKJYZ.
Therefore it is sufficient to estimate I{¥. We can write

0= [ 1oV, n| Copie s - )y
j#o mwi'CTi'lgv)dv(2)’

where vY(v\?) is the induced probability distribution on the space of

Corioip- Q@ gy oo, @, NCimrg- TUD gy oo 05 1))
Let us fix
CQ- P! (PSRN RN L (0 NI NP

and rewrite I'? as follows
Hola; NV, 1Cp- i)

dvt!)
() - po(@ NV, ICF- 1) .
' jﬂo(wi“Vm!CT*" i) Fe)
tolw;N Y, ‘C(Oi)'lc-)

The sets (w;NV, )mCT, - and (o;nV, JnCP- ., are canonically isomorphic for
arbitrary Cp.- -, ci. i~ (see [2]). The absolute value of the difference between
the corresponding density and 1 is not more than A3 for some 4,, O0<i, <1.
Therefore

ol NV, |Co- 1) _1'
(e, NV, |CE )

and (14+43) 72 9 <(1 + A7) Now we have

Oy Oy, nen =
ﬂo£+n1 ) = H Ii-—<_(1—l/.u0(Vn,)) 2 1—[150)

lu“O(w~n1"' H ,LLO((UI(}J 1 12n;—1) e

i=n1+1
S+ =Y ue(V, )"

In an analogous way one can get easily a similar estimation from below. Q.E.D.
It follows easily from the Lemma 4.1 that the problem is reduced to the
investigation of the expression

Yholo o, (@, 0, o, . o,)

n+ny
H ,uo((l)‘a)l 1 l 2n1~1)
i=ng+1
The numbers
ntng
1
@y 0, )=t o) TT polodo; oo, )

i=ni+1
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define the probability distribution on the space of all words w_, ... @, ,, whichis
homogeneous Markov chain with the memory 2n, + 1. Its stationary probabilities
are equal to ugw_,, ..., ) while the transition probabilities have the form
ol ... 0;_,, 1) The space of states of the Markov chain consists of all
words {(w_, ..., ). Let us introduce the subset &,, of the space of states which is
defined via the conditions:

1. rg+(w)<2n +1 —nlSz<n1 ;

2 pollw-y, ... 2(1= uo,) uo(ww e @)
3. a transition (u)_ . a) w0 g0, ) W111 be called admissible if

Uol(@_p, o 0y IOV ) Z (= oV Dol o 05,1 D)5

by definition for all states (w_,, ...w, )eé,, the conditional probability of ad-

missible transitions is not less than |/ uy(V,,).
We introduce the subset %, of all words (w_
;1 , )€€, 0=Si<n, and all transitions

.W,y,,) for which

ny
((OT

(wi—m wi+n1)‘_’(wi+1~n1 a)i+1+n1)

are admissible. We define a new probability distribution " on the space %, by

putting for (w_,, ... w,,, )EB,
n+ny
1 -1
( )(w-nl "'w711+n):Z Au()(a)—m . H MO(w 'wl 1 1 2n1'1)
i=n;+1
where Z is a partition function,
n+ny
Z= Z polwr_,, ..., ) H Holewlo;_ RPN B
Wenyees Ontny i=ni+1

An easy application of Chebyshev’s inequality shows that
Ho(B)Z1=2(n+2n, + 1) [/ uo(V, ) — (20, +n+ 1AZm*1,

It follows from Lemma 4.1.

~sn< :u(()l)(w “wn+n1)

lu’O(w~nl T COn—Hu)

Se

for

(w_, . 0,5, )EA,NB,, enznln(l+i’;‘)—2nln(1-u0(l_/nl))‘

ny

As a result we get an estimation Z = (¥, Jexp(—z¢,) which shows that the
probability distributions u{ and p, are very close to each other on the set A,NB,.
It shows also that it is sufficient for our aims to consider the expression

b,=Y u Oy g M (0w, D (0, 0,1 ,)
= zu(ol)(w_m o, (@, . o,)

1
(@0, Oy |0y @, Wy (@0 @y, )
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The probability distribution " is a non-homogeneous Markov chain of the
memory 2n, + 1. Its transition probabilities have the form

(1)(60 oy g oo ;5 — 1)
n+ng

Bolojlev; 1 o5, 1) Z H ﬂowlw w;_ 2n1—1)
100 jTi+1
ntng

Z ﬂ tolojlw; y.ow; 5, )

@ Optny JEI

In both cases the sums are taken over such words that (w;_,, ...w,)eé, and all
transitions are admissible. It follows casily from the properties of &, that these
sums are very close to one. Namely, the absolute values of their differences from 1
are not more than (1— |/ uo(V, )" * 1. Thus

1
Iﬂ( (oo, - O‘)l—2n1~1 <1_(]/ )20 2t 1)

‘,“o (fw;_ - wl-zm—;)

The same arguments show that for any m the variation

1 (1) ’
22'!‘0 (w3(2n1+1)+m+1 -~w4(2r.1+1)+m|C‘Lnl -0,
"

(1) "
— 15 (@30m, + 1y 4+ 1 o Daany + Hrml Oy - @)

differs from the analogous variation for z, to a number whose absolute value is
not more than 2|1 — (1 — |/ (¥, ))*?"* ] Now from Lemma 3 we get that the last
sum is not more than A3 where 0 <45 <1 and does not depend on n. Therefore
from the usual ergodic theorem for Markov chains

1 1
ZLU’( ) n ny ** n+n1lw/ . nl) IuO ( n*nl "'O‘)n+n1|0‘)//—n1 Cl);:l)|
n

= Const(4;)3@m+ 1

Let us fix 0% ... We have

b= 1 w_, .., ), (0, ...a)m))Zhnl(wn_"1 e Wyiy)

U,y < O [0, 0fD)

+ Z:“(Ol)(w—n o (o_, ...o,)

'(Zhnl(wn—nl = n+n1)(ﬂ(1)(wn—n1 "'wn+n1,w—n1 ~~wn1)
L (O [0 L SR ) B

n
The absolute value of the second term is less than const(43)32n+D,

Concerning the first term we can write

Yus o oo, (0, ..o,
=> (uPw_,, ..o, )—polw_,, ..o, Dh, (@_, .. 0,)

(1)
o w_, ...0,)
= ZHO(O‘)‘M e (Unl) (m — 1) hnl(a)_m e (Dnl) .
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The absolute value of the last expression is not more than

[1—(1— /(¥ )™+ > * D] max b, |. Q.ED.

Theorem 1 follows immediately from Lemma 4.
It follows easily from Theorem 1 that for considered h E ( Y h(Tix)>2
~constk as k— oo, where const depends only on h.

Theorem 1. For the same class of functions h

E ( Y h(Tix))4 ~const k2.

0Zisk

Proof. Let n, =[n*] where o, is small enough. It is sufficient to estimate

Y h, (Tx) ) =Y Eh, (T"x)h, (T?x)h, (Tx)h, (T"x).

<O<z<k

We shall estimate expectations
Eh, (T"x)h, (Tx)h, (T*x)h, (T“x)
assuming that i, <i, <i, <i,. Also we can assume that
m=max ((i,~i,),(i;—i,), (i, —i))=[n "], a,>0

because the total number of terms not satisfying this conditions is less than
constp! *30t*ed <52 if o is small enough. The next approximation consists of
replacing p, by pi" and considering

EWh, (T x)h, (T?x)h, (T?x)h, (T™x)
=D ha @y, 0 (@0 0 R (0 0 ,)
O (T wi4+n1)u(01)(w—n1 e Wy
because the error also is sufficiently small. Now we consider three cases.

L. m=i,—i,. In this case we estimate the conditional expectations of h, (T"x)
under fixed w_, , ..., w;, , . The same arguments as above show that its absolute
value is not more than const(A;)”". Therefore the absolute value of the whole
expectation is not more const(4;)"" and the total amount of such terms is not
more than constam?. Thus the absolute value of the sum over such terms js not

more than constn Y mA(A)"" ~0(n?) for n—co.

mgn1(1+o¢2)

2. m=iy—i, In this case we fix w_, ... and consider the conditional
expectation of h, (T®x)h, (T"x).

The absolute value of the difference between it and the unconditional one is
less than const(4,)™"', From the other side we have shown during the proof of
Lemma 4 that the unconditional expectation of h, (T"x)h, (T*x) with respect to
) decays very quickly and in particular is less than const(i,—i,)" % The

summation of all estimates gives the desired result.

ia+ng

3. m=i,—1i,. This case can be treated in the same way as 2. Q.E.D.
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3. Proof of Theorem 2

We start with proving a central limit theorem of probability theory for a function
h{w) satisfying to the same conditions as in the beginning of Sect. 2. From
Theorem 1 it follows that

Z E(Tgh-h)| < o0
and consequently

a(h)= 2 E(Tth-h)<

where the expectation E is taken with respect to the measure u,. Suppose that
a(h)>0.

Lemma 5. Let E(h)=0. Then for every a,b,a<<b we have

1 n—1 1 b z/{2
i h(T"w)<b>=—— exp<—~)du.
/ an kzo I/ 2 i 2
Proof. The statement of lemma means that the probability distribution of the
n—1
> h(T*w) converges weakly to the standard gaussian
oM k=0
probability distribution. The machinery of proving such theorems is now suf-
ficiently far developed and we shall use one of the usual ways.
Let us introduce a characteristic function

/1 n—1
WT* .
e 3 o)

A
In order to prove lemma we must show that ¢ (A)—exp ( — 7) when A takes values

lim ,u0<a):a<

RO

normed sums

co,,(z):Eexp(i

from any compact set and n— co. Let us decompose the whole interval [0,n—1]
onto non-overlapping subintervals

— ADUAD G AD G AD 2) (1)
A=AV AV A AT oA oA

in such a way that the length |4{"] of each 4{" except the last one is equal to [n’*]
while the length of each 4{* is equal to [n“] where y,,7,>0, 3+7,<y, <1 and
|4 <[r71]. We can write now

¢,(A)=Eexp (i

$ Oy h(T’fw)+pi1 Y h(T"a))D.

O Lls=1 ked() s=1 ked®

We have

p—1

h(T"w)‘ <constp-n>Zconstn "7t 2,
s=1 ked®

From our assumptions concerning y,, v, it follows that
p—1

supl— >, > WT*w)| -0

N s=1 ked{®
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when n— oo and the limit behaviour of ¢,(4) is just the same as the limit behaviour
of

14

W, (A)=Eexp {i y h(T"cu)} .

A
2
o s=1 kel

We shall show that y{"(4) is close to

14
[E expi h(T*w)

'y
[/ opn kedo

ie. p(1) is close to the characteristic function of the normed sum of p

independent random variables distributed as the random variable ) (T w).
yreh

We choose 0<y; <y, and n; =[n"] and the function A, () (see the beginning of

Sect. 2). We have

r

o3 (T "a))—h,“(T"a)))> <constn?13'.

s=1 ked{d

Therefore we can replace p{M(1) by

PN =Eexp]i { hnl(T"w)} .

)‘ P
% DY
Oyl s=1 kedth)

p
exp {l—/l— Yoy hnl(T"w)} depend only on variables
l/O'h—n s=1 ked{?
W_ s -ens Wy, Let us restrict ourselves in the integral which gives (1) only by
sequences for which r  (w,)<2n, +1=n,.
According to Lemma 1 the probability of these sequences is not less than
(1 —(n+n,)A}?). Therefore we can consider

A 4
WA= ' h, (T* } - :
( ) W —ny .anwu P {l ‘/Gh_l’l sgl ke%l) nl( CO) #O(w m w"‘*'nx)

The next step is to replace the probability distribution p, by the Markov
probability distribution u{" constructed in Sect. 2 and to consider

}v P
YW1 ex { hn(T"co)}/u(l)(w_n W)
MRl 7 R R

It follows easily from Sect. 2 that the absolute value [p{(4)—pP(A4)|—0 as n—co
uniformly in 1. Now we can write for m=n~—{n""]—[n"?]

A
YW = Zexp{ — ; k%‘éi)hnl(Tkw)}

The function

p—1

1
#E) )(w—m "‘wn1+n1)' z
on—[n]Yt-—mEjsn+n
) .
-expii Y h, (Tw)
l/ o, n keAQH)
1
I’L(O)( n {(n¥1]—ng * " n+n1|wm n1"'wm+n1)'
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The same arguments as in Sect. 2 show that the last conditional probabilities
depend very weakly on conditions. More precisely,

A
i h, (T*
Zexp{z — ke;}) il w)}

D)
Ho (wn—[nV1]—n1 COn-frllla)m—m wn1+m)

—Zexp{i Y hm(T"w)},txﬁ)l’((x),hw,,]_n1 Oy y)

A
Vo)1 kel

QI nug(7,).

Also the absolute value of the difference

. A
Zexp{l Y h (TEo) s (0, (g, - Oy,
/G, 1 kAP

. A
_ZGXp{l Vorm > h,,l(T"w)} 1o (D — =y -+ Oy,

O, N kedgh

is sufficiently small. We get as a result that the difference

14
YY) — [] Eexp {i

r=1

A
h k
Vo, n ke;w T w)}{

tends to zero uniformly in A.

It is easy to see that the variance E ( Y hm(T"a))>2 ~ o' and
ked(v

r 2
E(Z > hnl(Tkw)) ~Op Ry PGy
s=1 kel

for n—co. Thus in order to show the desired limit relation we must check the
Lindeberg’s condition (see [4]). In view of Chebyshev’s inequality it is sufficient to

estimate
E( z hm(T"a)))4
ke gD

= Y E(h, (TH w)h, (TEw)h, (TRw)h, (TH0),

ki, k2, k3, kqe 46

which can be estimated by const|4") in view of Theorem 1. Q.E.D.
Now we can formulate a natural extension of Lemma 5.

Lemma 6. Suppose that we have r functions {h,, ..., h,} =h with the same properties
as in the beginning of Sect. 2 and Eh;=0 for all i=1,...,r. Suppose also that the
series o

S E(i(T")- hw)=0,h)

n=0

are such that the matrix o, = |, ,(h)| is the positively-definite matrix. Then

Y h(Tto)

. ) k=0 o
lim po\w:a;< W <b, 1<i<r —iga(ul,...,u,)du,
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where A={u:a,<u,<b, 1Zi<r}CR’, g, is the density of the gaussian probability
distribution with the covariance matrix equal to o,.

The proof of Lemma 6 goes in the same way as the proof of Lemma 5.
Therefore we omit the details.

Now we shall derive a weaker version of Theorem 2. Let us take x,e.4,
x;=Txo and put hy(xg)=q"Ax;)— g (xo), hylxe)=gx,)— ¢ P(xo). It is easy to
see that Eh, = Eh,=0 and h_, h, satisfy the properties described in the beginning
of Sect. 2. Thus in order to apply Lemma 6 we must check whether the matrix o,
h=(h,, h,) is non-degenerate.

Suppose that this is wrong. It means that one can find real numbers a,, a, and
a function H(x) on the phase space .#, of the billiard problem under consideration
for which

ah(x)+a,h,{x)=H(Tx)— H(x). (1)
From this equality we have for arbitrary n
n—1
> (ayh,(T*x)+ a,h,(T*x))= H(T"x)— H(x). 2
k=0

We shall denote by II(k) a connected rectangular of the plane R* consisting on k?
rectangulars i.e.

H(k)={9=(4;.9,)0=q, =kB,, 0=q,<kB,}.

Let us consider now a billiard in (IT(k)x x S*)n.#. It follows from the equality (2)
that for every >0 there exists a constant C, not depending on k such that for an
arbitrary » the inequality

Ialq(l)(T’”x)+a2q(2)(T”x)|§C4 (3)

holds with probability (calculated with the help of measure u,) more than 1—e.
But from the theory of dispersed billiards it follows that for any k the billiard
dynamical system in II{k) is ergodic. It means that for any »n the measure y, of the
set consisting of all points x satisfying the inequality (3) tends to zero as k— o
where u, is the invariant measure for billiard in JI(k) which is absolutely
continuous with respect to Lebesque measure. From this we obtain that
uo-measure of the set of points x satisfying (3) also tends to zero as k—oo.
Consequently we get a contradiction with the assumption that inequality (3) holds
with big probability. Thus the matrix g, is non-degenerate. Q.E.D.
Now from Lemma 6 we derive immediately.

Theorem 2'. Let ¢{"(x), ¢\*(x) be coordinates of the moving point on the plane R*
after k reflections from the scatterers. Then

(1) (2) dy da
Ho (X:blé 9 () =d;, b= % 1) §d2> - j j goluy, uy)dudu,
k—o0,

where g, is a two-dimensional non-degenerate gaussian probability density.
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Now we proceed to the proof of Theorem 2. Let xe .4, and F(x) be equal to the
time of the motion of this point till the next collision. Then again the function
F(op™ Y(w)) satisfies the conditions of the beginning of Sect. 2.

Let us denote by ¢~ for every xe.# and every t>0 the largest non-positive
number, for which x~ =8, =xe.#,; and t* >1 be the last number, for which S,. x

t .
=x%eH,. Let ky= {— and k, be such that x* = T*x. We can write

EF

.kl;iol hl(Tix—)+ 0 (%> .

. 1
The same formula is true for —=g?(S,x). It follows from the usual Birkhoff’s
t

. 1 ko—1 ) )
ergodic theorem that " Y. F(T'x™) converges in probability to 1. Therefore
i=0

Lq“’(StX): —le_ koil hy(T'x7)
Ve '/ Y F(Tix™) °
i=0
e Yy (T ) +,),
Y F(Tx) '

i=0

where o,(x) converges in probability to zero when t— oo and 2’ is taken over i lying
between k, and k,. We shall show that

| .
e Y 1, (T'x")

Y F(T'x)
i=0
converges in probability to zero. Let us fix ¢ >0 and choose 4 = A(g) in such a way

that py(lk,—k,|= A}/ ko) <e. It can be done in view of Lemma 5. Now the desired
result will follow from the assertion that both

hl(fo*)'

ko<i<l+ko

1
max gy
tsisavis |/k,
and

max

1 R
i h (Tlx*)’
LAV [/Eko—zgigko '
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converge in probability to zero. Because T is measure preserving we can consider

(T'x
1<l<A1/— I/ O<z<l )

and

1 )
max T 'x).
112 AVko |/ 1<I<Z;i\/7c— ( )

The convergence in probability of last expression to zero is an easy consequence of
Birkhoff’s ergodic Theorem. Thus we see that the limit of

Ho (x b = Ll/.q(l)(S x)sd;, b, = (2)(Stx)§d2>

[/
is the same as the limit of
t koot
= z h(T'x7)=d,,
Y F(T'x™) 7°

i=0

A

Ho (x7 1by

1 ko—1

2= s T Z hy(T'x7)=d,)
I/ Y, F(Tix7) 7°

which in view of Lemma 6 is equal to

A

b

dy da

j" j go(uy, uy)dudu,

b1 by

where g, is the corresponding gaussian density. Q.E.D.
Now we can formulate a direct generalization of Theorem 2.

Theorem 2", Let be chosen 0 <s, <s, < ... <s,=1. For every t >0 consider random
1 2 ¥

1
variables q(s;t) =@ (s;1), ¢?(s;2)), 1 Li<r, and the normed ones —=q(s;t). Then for

Vi

arbitrary pairs of real numbers b, d,b,<d,, 1 <i<r,

Y Yy

1
lim po | x b, < —=q(s;t) £d,, 1§i§r)

s

c}xdz df (uu) u(l)) (uf)~u‘1“ u&”—u%”)
g
buby b [/_ f ]/52—51 ’ ]/sz»~s1 7

(u(') uf =t u — u“*”) h ﬁ du?.
l/S — S, - 1/5 —S i=1 j=
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4. Proof of Theorem 3
1

Vi
={q"(s1),¢*(st)}, 0=<s=1, induced by the probability measure y,. In view of
Theorem 2” and Theorem 8.1 from [5] it is sufficient to show that P, is a tight
family of probability measures on the metric space Cp 1](RZ) of continuous
functions q(s), 0<s<1, q(s)e R? (see [5]). To do this we shall use Prohorov’s
theorem [67, [5] which gives the necessary and sufficient condition of tightness of
a family of probability distributions. Namely, for every e>0 there must exist a
compact set K in the space Cpg, 1](RZ) such that P(K,)>1—¢ for all t.

Using Theorem 8.3 from [5] [more precisely, formula (8.12)] it is sufficient to
show that for arbitrary ¢>0, >0 there exist §, 0<d <1, and t, such that for all
t=t,and all 5, 0<s=1,

5’11’:{361 sup  q(5")— g5 28} =1. (4)

SEs <5+

Let P, be a probability distribution on trajectories q,(s)=—=q(st), q(st)

Thus we fix ¢, 7 and put § ¢7/*. The value of t, will be chosen during the proof.
We decompose the whole segment [0,1] on subintervals by points 0=s,<s,
< ...<s,=1wheres;;;—s;~5t" "% and |s;, , —s]<1:77'% For each s, s’, 0<s,
s'=1 we take s; , s, which are the closest points to s, s" and
lla(s) = a s = llgids; ) —ads )l
+1qds;,) — ad) + gis;,) — ads)

é%g + H q:(sjl) - qt(sjz) “ .
Here we have used
la.s1) — as3)] = % 465, als,0)]

_ &
SV ts,—s, i 112< 3

if ¢ is large enough. Now in (4) we can consider s, s, instead of 5, s and estimate
the probabilities

&
Pz{x emax lads)—ads;)l = 3}-

t-s;
For every s; we put k;= i F?;C ) and consider the norm of the difference

Lokgt
—— ) WTx)
t i=0

qds j)
l/

:O(j(t)

where

h(x) = (V) K2(x)) = (D Tx) ~ (%), ¢ (Tx) — D)) .
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Lemma 7. Jnax o9 converges in probability to zero as t—co.
=Jj=r

Proof of Lemma 7 will be given slightly later. We have now for arbitrary s, s;

h(T"x)

kjngk

® 4
+cxj +oag)

la(s)—ads; )= —~ l/

If ¢ is large enough, then P,-probabilities of the inequalities oc(‘)f 3 o< — 3 ° will

be more than 1—3§-5. Therefore we must estimate only

P,=P,{x:max Y h(Tx) gfl/i},

Ji Wkysisk, 6
TR ot

where j<j, Sj+ EFGY)’

The last probability does not depend on k; because T is measure-preserving.
Thus it is sufficient to estimate

P{ max

O =k=<dt/EF

hm(Tix)t 2%]/2}

h<2>(fo)! > % VE}.

0=izk

+P{ max

0=k=ot/EF |0 <i<k

Our arguments will be of the same nature as in the proof of the classical
Kolmogorov’s inequality in the theory of probabilities. We shall consider only the
first term. Let be

Sk={x:

The subsets S, do not intersect and we are interested in P= P(S,). We
0 =<k<ot/EF

Y hY(Tx) '<—]/]<kand

0sis)

Y A T‘x)l }

0<isk

have

~
=]
=
2
=1

1,2, T,
S

| 0Si<k

124 . 4.124
h(l)(Tlx) 4d#0 o4 Z j

k Si (0

[ y h‘“(’[“x)}

<izk

x{ Y h(l’(T"x)rduo 441324;” Y hY(T'x) }{ Y h(l’(Tix)}duO

k<i<ot/EF 0<isk k<i<Ot/EF

124 . 4.124 .
= Tfj[ Z KT )| d, — AT Z j [ ) h(l)(Tlx)]
k Sk

0 <ix<8t/EF 0<isk

. h(“(T"x)rduo—%—z;Zj[ YR T HTdu.

k<i<ot/EF k Sp|0Zisk k<iZOt/EF
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The first term is not more than conste™*~25%t2 =§ const ¢~ *5. Suppose that & is
chosen in such a way that conste™*3 <#. Then the first term is not more than éy.
Thus we must estimate

4tsz { ) hm(Tix)H > h(”(T"x)}duo

k Skl0Ligk k<i<8t/EF
1

=-zu > T

i
e Y Selosizk

Y h(“(Tix)rduo.

k<i<8t/EF

We approximate h'" by A\ where n, =[n"] and « is small enough. The error is of
order const t*t exp { —t*?}, o, o, >0 and therefore sufficiently small in order to be
neglected. Thus we shall consider

ZZI[ > (T H )3 hf.ll)(T"x)}dMo.

k Selogisk k<i<8t/EF

For xeS§, we have

y h(”(Tix)'3 Zconste’t¥?. The expectation EA)=0.
0<izk
The same arguments as in Sect. 3 show that the conditional expectation of h(1 (T‘ )

forizk+n?, a,>1when w;, —n; £jSk+n,, are fixed is less than (4, )C°“S‘ The
part of the sum correspondmg to i, kSi<k+n}, can be estimated simply by
constnj Thus we get

i
{I'\| £ —= ) conste’t?/?
ety

[ X Hrdug

Sx L <i<ot/EF

constn? P
T o)/t

—0 as r—oo. In the same way one can estimate {I,|. We have

The factor 1
eyt
[1;14+11,] £ P-y(t) where y(t)—0 as t—o0.

t .
Now we have P < E;—)‘%;E ( Y h(T‘x))4. In view of Theorem 1’ (see Sect. 2)

O Zi<Ht/EF
the last expression is not more than conste~#62=4-conste*- 6. If § is so small that

conste*é <n then we get the desired estimation.

Proof of Lemma 7. We shall estimate the probability

P{x:l}z >8}
kj—1

Let j be fixed and 1 (x)= z F(T'x). For every a>0 from Chebyshev’s inequality

~rfs

ki—1

g¢™(s ;) — Z hD(Tix)

and Theorem 1’
P{x:|t{x)—s]>a}
k,—1

‘ const k?
P F(T‘x)—EF-kji>a} < L

a4
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We take a=1*". The right-hand term is not more than constt™'*°*k,. Therefore

K3x) ) Kj(x) + 1
Y F(Tx)Sst< Z F(T'x).

i=0
The next remark is that if |t/(x)—s;t|<a then |kj(x)—k; <consta. Therefore we
can write

kiji—1

“’(s )~ Z h(Tix)

il

const
<— >  HY(Tx )}
w Ky (x) SiSk;
The last problem consists in estimating
P{ max Y HY(Tix) >b} =P
i:jfi—kj] Sconsta J=kjx)

for bzel/f. Again our arguments will be of the same nature as in the proof of
Kolmogorov’s classical inequality in probability theory. Let S,, k=0 be a subset
consisting of such x for which

ki ' K,k
Y h(Thxy b, i<k; Y hy(Tix)|>b.
=3 i<k,

consta
The events S, are pairwisely disjoint and we shall estimate P,= ) P(S,). An
k=0
analogous sum of P(S,) with k<0 can be estimated in the same way. From the
definition of S, we have

PI:ZP(S,()_ Z j{ Y. BO(Tx)*dug
k Silk;Sisk,+k
Sl T o,
kj<i<kj+a
4 . :
e P o D R G L
k Si|kjfiZk;+k kj+k<jsk,+consta
142 ” T R(Tix) y h<”(T"x)rduo.
k SklkjgLisk;+k kj+tk<jskj+consta

The first term is not more than const a®b™*=const t*3h™* (see Theorem 1’). In
order to estimate the last sums we approximate h'" by the function A where

=[] and « is small enough. The error is of order const t** exp { — *2} where o,
o, >0 and therefore very small. We must estimate only

Z H, 2 i Tof

k Silk,Sik;+k

Y ENTX)|dp,.

k;+k<igkj+consta
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The first remark is that| > h{(T %) <(b+const)® in view of the definition

kiSisk,+k

S, In particular (b+const)® <constb® for b>1. The expectation Eh{}=0. The
same arguments as in §3 show that the conditional expectation of h{(T'x) for
izk;+k+n3, a,>11s very small and can be neglected. The estimation of the rest
part of the last sum is constd™ 'n%P,. Similar arguments can be applied to the
expression

L I{Z hﬁ(T"x)H > W(T'x)Pdp, .

kj+k<i<k;+consta

Here we must estimate conditional expectations of

hO(TRI(T2)R(TRx),  k+ k<) <iy Sy

o

These expectations are very small if i, —i, =n’2 The total amount of other
terms is less than const an%>. Therefore the absolute value of the whole sum is not
more than const b~ >a*n’?P,. Finally we get for sufficiently small o, and sufficiently
large t

when w_, ..oy iy, are fixed.

P, <constt*'38*p"*=constg~ ¢ 35/84

The whole estimation of P takes an analogous form
P<constg™ 4t 53/84

The final result follows from the last estimation because the total number N of j
is not more than const¢”/*? and therefore
= ?}

<N-P=constt” 2 4t 358% =conste *t~ V1450

ast—oo. Q.ED.

P {max max

j  itlk;—i| Sconsta

L Y hY(T'x)
t
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