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Multivariate distance matrix regression (MDMR) analysis is a statistical technique that

allows researchers to relate P variables to an additional M factors collected on N individu-

als, where P ≫ N. The technique can be applied to a number of research settings involving

high-dimensional data types such as DNA sequence data, gene expression microarray data,

and imaging data. MDMR analysis involves computing the distance between all pairs of

individuals with respect to P variables of interest and constructing an N × N matrix whose

elements reflect these distances. Permutation tests can be used to test linear hypothe-

ses that consider whether or not the M additional factors collected on the individuals

can explain variation in the observed distances between and among the N individuals as

reflected in the matrix. Despite its appeal and utility, properties of the statistics used in

MDMR analysis have not been explored in detail. In this paper we consider the level accu-

racy and power of MDMR analysis assuming different distance measures and analysis

settings. We also describe the utility of MDMR analysis in assessing hypotheses about the

appropriate number of clusters arising from a cluster analysis.
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INTRODUCTION

Contemporary biological research has become increasingly data

and information intensive. Technologies such as high-throughput

DNA sequencing and genotyping platforms, gene expression

microarrays, imaging technologies, and continuous clinical moni-

toring devices provide researchers with an unprecedented amount

of data for individual investigations. As a result, appropriate mul-

tivariate data analysis methods are necessary in order to test

specific hypotheses or extract meaningful patterns from the data

generated by these technologies. Unfortunately, many traditional

data analysis procedures are not immediately applicable to high-

dimensional data sets. The reasons for this are somewhat obvi-

ous in that most traditional statistical methods were designed

to test very specific hypotheses in settings for which the sam-

ple size, N, is much greater than the number of variables, P,

collected on the individuals used to test the relevant hypothe-

ses (i.e., N ≫ P ; Donoho, 2000; Johnstone and Titterington,

2009).

DNA sequencing, microarray, imaging, and related studies typ-

ically generate huge amounts of data that, due to their expense

and sophistication, are often collected on a relatively small num-

ber of individuals. Thus, it is typically the case that P ( N in these

studies. In these settings, standard univariate data analysis strate-

gies that focus on a specific hypothesis test involving each variable

are inappropriate, and their naïve application could potentially

generate an enormous number of false positive findings. As an

alternative to classical univariate procedures – as well as multivari-

ate procedures designed for use with a small number of variables

(such as MANOVA and multivariate regression analysis) – many

researchers have resorted to analysis strategies that consider some

form of data reduction, such as cluster analysis and factor analysis

(Alter et al., 2000; Quackenbush, 2001).

Although data reduction strategies have yielded important

insights and have continually been refined, they do suffer from

at least four problems. First, there are a myriad of different strate-

gies for cluster analysis [such as hierarchical clustering (Eisen et al.,

1998), k-means clustering (Tavazoie et al., 1999), self-organizing

maps (Tamayo et al., 1999), etc.], and related strategies, making

it difficult to know which approach might be the most appropri-

ate for a given situation. Second, it is often difficult to determine,

with some confidence, just how many clusters, eigenvalues, prin-

cipal components, latent factors, etc., underlie or best represent

any given data set. Third, the generalizability of the, e.g., clusters

or principal components identified from a data set, as well as their

ultimate biological meaning, is often in doubt. Lastly, many data

reduction procedures focus on the initial“reduction”of the dimen-

sions of the data into a few clusters, principal components, or latent

factors, and do not necessarily provide a means for drawing proba-

bilistic inferences about the relationships of the high-dimensional

data to ancillary variables of interest which, in fact, may have moti-

vated the study in the first place. Thus, for example, one may be

interested in relating tumor gene expressions patterns gathered

on a set of patients to their survival or other clinical outcomes.

Although one could identify clusters of patients based on their

tumor gene expression profiles and test to see if the patients in

those clusters exhibited different survival rates, such approaches

tend to be ad hoc and raise additional issues.

We have been developing an alternative and complementary

data analysis approach to data reduction procedures that does

not rely on – but could still exploit aspects of – data reduction
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strategies. This approach, termed Multivariate Distance Matrix

Regression (MDMR) analysis, is rooted in traditional linear mod-

els and was first briefly proposed in the literature by McArdle

and Anderson (2001) and Anderson (2001). MDMR provides a

method for testing the association between a set of ancillary or

“independent”variables, such as a clinical outcome in a tumor gene

expression study, and high-dimensional data of the type produced

by modern high-throughput biological assays. MDMR considers

the data arising from a high-dimensional assay as providing a mul-

tivariate profile of each individual in the study. The similarity and

differences in these profiles are then used to construct a distance or

dissimilarity matrix whose elements are tested for association with

ancillary (independent) variables of interest. Thus, MDMR is not

unlike many data reduction strategies in that it requires a distance

matrix. However, unlike data reduction strategies, MDMR tests the

association between the elements of the distance or dissimilarity

matrix directly with the ancillary variables and therefore does not

require the problematic data reduction step. MDMR can be used

with all the variables resulting from a high-throughput biological

assay or some subset, making it a flexible and attractive tool for

identifying meaningful patterns in high-dimensional data sets.

We have described applications of MDMR to actual biological

data analysis settings involving genotype data (Wessel and Schork,

2006) and gene expression data (Zapala and Schork, 2006). How-

ever, to date there has not been a study investigating the properties

of the MDMR procedure, including relevant test statistic distribu-

tions, the power of MDMR, and the robustness of the procedure.

In the following, we examine the properties of the test statistics

used in MDMR analysis in a wide variety of settings. We find that

the MDMR test statistics and the procedure as a whole have some

very desirable properties, such as an intuitive number of degrees

of freedom for use in assessing the distribution of appropriate test

statistics, an excellent test level accuracy, good power, and a flex-

ibility that will make it an excellent adjunct or alternative to data

reduction-based multivariate analysis strategies.

MATERIALS AND METHODS

We describe the MDMR analysis procedure by considering dif-

ferent aspects of its formulation and properties. We note that

although graphical displays of distance matrices are not an essen-

tial ingredient of MDMR analysis, we include a discussion of

graphical representations because they are used routinely in

contexts for which MDMR analysis is appropriate.

COMPUTING A DISTANCE MATRIX

The formation of an appropriate distance (or dissimilarity) matrix

is an essential ingredient in MDMR analysis. However, there are

a large number of potential distance measures one could use to

construct this matrix (Webb, 2002) and unfortunately there is very

little published material that can be used to guide a researcher as

to which distance measure is the most appropriate for a given sit-

uation. For example, although the Euclidean distance measure is

used routinely in traditional cluster analysis settings, functions of

the correlation coefficient are the most widely used distance mea-

sures in high-dimensional gene expression analyses (D’Haeseleer,

2005). We note that distance measures with either metric or non-

metric properties can be used in the MDMR analyses (Gower and

Krzanowski, 1999). Assuming that one has identified an appropri-

ate distance measure, an N × N distance matrix is constructed.

Let this distance matrix and its elements be denoted by D = dij (i,

j = 1, . . ., N ) where dij reflects the distance between profiles i and j.

MDMR TEST STATISTIC DERIVATION

Once one has computed a distance matrix, D, the relationship

between M additional factors (i.e.,“ancillary,”“independent,”“pre-

dictor,” or “regressor” variables) collected on the individuals (e.g.,

diagnosis, age, gender, blood pressure level, etc.) and variation in

the distances between and among the N individuals represented in

D can be explored. Let X be an N × M matrix harboring informa-

tion on the M factors which will be modeled as the independent or

regressor variables whose relationships to the values in the distance

matrix are of interest. Compute the standard projection matrix,

H = X(X ′X)−1X ′, typically used to estimate coefficients relating

predictor variables to outcome variables in multiple regression

contexts. Next, compute the matrix A = (aij) = (−[1/2])d2
ij and

center this matrix using the transformation discussed by Gower

(1966) and denote this matrix G:

G =

(

I −
1

N
11′

)

A

(

I −
1

N
11′

)

(1)

where 1 is an N -dimensional vector of 1’s. An F-statistic can be

constructed to test the hypothesis that the M regressor variables

have no relationship to variation in the distance or dissimilarity

of the N subjects reflected in the N × N distance/dissimilarity

matrix as (McArdle and Anderson, 2001):

F =
tr (HGH )

tr [(I − H ) G (I − H )]
(2)

If the Euclidean distance is used to construct the distance matrix

on a single quantitative variable (i.e., P = 1, as in a univariate

analysis of that variable) and appropriate numerator and denom-

inator degrees of freedom are accommodated in the test statistics,

the F-statistic above is equivalent to the standard ANOVA F-

statistic (McArdle and Anderson, 2001). The appropriate number

and degrees of freedom to use in assessing significance of the

test statistic in situations involving multiple variables (P > 1) and

non-Euclidean distances measures is one of the main items to be

explored in the studies described in the Section “Results” below.

COLLINEARITY

A fundamental problem with all multiple regression based analy-

sis techniques is collinearity or strong dependencies (i.e., cor-

relations) among the regressor variables. Collinearity can cre-

ate problems in the computation of the projection matrix

H = X(X ′X)−1X′ as well as result in unstable parameter esti-

mates. Although there are procedures that can be used to overcome

this problem, such as ridge regression and principal components

regression (Mason and Perreault, 1991), we have taken advantage

of orthogonal-triangular decomposition (Gunst, 1983) to form

the projection matrix and have found that this works well within

the context of MDMR analysis.
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PERMUTATION TESTS

The distributional properties of the F-statistic would be com-

plicated to derive analytically for different non-Euclidean-based

distance measures, especially when these distance measures are

computed across more than one variable. Simulation-based tests,

such as permutation tests, can then be used to assess statistical

significance of the pseudo F-statistic as alternatives to the use

of tests based on the asymptotic distribution of the F-statistic

(Jockel, 1986; Edgington, 1995; Manly, 1997; Good, 2000). Per-

mutation tests can be pursued by permuting the independent or

predictor variables, recomputing the MDMR statistic, repeating

this process, and tallying the number of times the statistics com-

puted with the permuted data are larger than the statistic generated

with the actual data. Despite the appeal of permutation tests, we

have pursued an investigation of the utility of the F-distribution

in assessing the significance of the proposed pseudo F test in con-

trast to permutation-based tests, as discussed in depth below. In

addition, for large N permutation tests might be computationally

inefficient with MDMR. We also note that the M regressor vari-

ables assessed in an MDMR analysis can be tested individually or

in a step-wise manner (McArdle and Anderson, 2001; Zapala and

Schork, 2006).

GRAPHICAL DISPLAY OF SIMILARITY MATRICES

Distance matrices of the type to be used in MDMR analysis can be

represented graphically in a number of ways and these graphical

techniques can facilitate interpretation of the results of MDMR

analysis. Two of the most widely used graphical representations

include “heatmaps” and coded “trees” or dendrograms (Hughes

et al., 2004; Kibbey and Calvet, 2005; Trooskens et al., 2005).

Heatmaps simply color code the elements of a similarity matrix

that is derived from a distance matrix, such that higher similarity

values are represented as “hotter” or more red colors and lower

similarity values are represented as “colder” or more blue colors. If

the matrix is ordered such that individuals with similar values of

one of the M potential regressor variables in an MDMR analysis

are next to each other, then neighboring cells along the diagonal

of the matrix (representing individuals with similar regressor val-

ues) will present patches of red, indicating a relationship between

a regressor variable and similarity. Trees are constructed such that

individuals with greater similarity (i.e., less distance) are placed

next to each other (i.e., they are represented as adjacent branches

of the tree) and less similar individuals are represented as branches

some distance away from each other. By color coding the individ-

ual branches based on the values of a regressor variable possessed

by the individuals they represent, one can see if there are patches

of a certain color on neighboring branches, which would indicate

that the regressor variable clusters along with similarity. Similar-

ity matrices can be easily derived from distance matrices using

appropriate transformations, such as dividing each entry in the

distance matrix by the empirical or theoretical maximum distance

and subtracting this value from 1.0.

CLUSTER ANALYSES INVOLVING DISTANCE MATRICES

Many forms of cluster analyses involve the use of distance matrices,

such as hierarchical clustering techniques (Krzanowski, 1990). As

noted in the Section “Introduction,” one particularly thorny issue

in cluster analysis is the determination of the optimal or most rep-

resentative number of clusters in a data set. The MDMR analysis

technique has utility either as an alternative to cluster analysis or

as a method for determining the optimal number of clusters. To

determine an optimal number of clusters using MDMR, one could

fit some number of clusters to a data set using a specific technique

(such as k-means clustering; Webb, 2002), then assign individu-

als to specific clusters assuming this number of clusters and, using

dummy codes for cluster membership, treat cluster membership as

regressor variables in an MDMR analysis. One can then compare

the test statistics resulting from the MDMR analyses for different

number of clusters and choose as the optimal number of clus-

ters that number of clusters for which the addition of clusters do

not add significantly to the improvement in, e.g., percentage of

variation explained, based on the MDMR analysis. Although our

motivation for assessing the properties of the MDMR method is

rooted in our belief that MDMR is an important alternative to

cluster analysis, we have also considered studies that assess the

utility of the MDMR as a way of determining the optimal number

of clusters in a cluster analysis.

RESULTS

TEST LEVEL ACCURACY

The test level accuracy for the permutation test-derived p-values

as a function of sample size was assessed with simulated data. Test

level accuracy reflects how well the test controls the type I error

rate. Thus, if a type I error rate of 0.05 is assumed in an analysis, a

test with appropriate level accuracy would reject the null hypoth-

esis 5% of the time. Hundred samples (N = 100) were generated

each with 10 random variables (P = 10) following a standard nor-

mal distribution with a mean of 0 and a variance of 1. Fifty samples

were assigned to a control group (0) and 50 samples were assigned

to an experimental group (1). Thousand simulations were gener-

ated in this setting, which thus involved a single regressor variable

(M = 1) representing group membership (i.e., coded as 0 = not in

a specific group or 1 = in a specific group) that was not associated

with the 10 variables used to construct the distance matrix. We

reduced the sample size from 100 incrementally and performed

additional simulation studies to explore the level accuracy of the

test as a function of sample size. Table 1 describes the results and

suggests that as the sample size decreases, the permutation test

level accuracy declines, which is expected to occur.

The level accuracy is slightly improved when continuous vari-

ables are considered as regressor variables. We generated 100

Table 1 | Level accuracy of a permutation test as a function of

decreasing sample size over 1000 simulations for a single

dichotomous (categorical) predictor variable.

(%) N = 100 N = 50 N = 20 N = 10 N = 4

1 1.4 1.2 1.0 0.5 0.0

5 5.8 6.4 5.1 4.9 0.3

10 10.7 11.0 9.3 11.2 2.0

25 25.1 24.7 29.0 25.8 10.9

50 51.4 47.5 53.4 51.0 39.3

75 75.8 75.1 74.8 78.4 69.5
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samples that had 10 random variables following a standard nor-

mal distribution with a mean of 0 and a variance of 1, as in the

previous setting. A random variable with mean of 0 and variance

of 1 was generated for each sample and used as a single continuous

regressor variable (M = 1). Thousand simulations in this setting

were conducted. Table 2 describes the results and suggests that

permutation tests involving a single continuous regressor variable

tend to have better level accuracy than those involving a single

dichotomous regressor variable (compare Tables 1 and 2). We

note that test level accuracy assuming different distance metrics

was addressed in previously published work and suggests that dif-

ferent distance matrices do not have an appreciable effect on the

behavior of permutation tests (Zapala and Schork, 2006). In addi-

tion, we have tested the level accuracy with bimodal distributions

and log normal distributions (results available as Appendix) and

obtain similar results to the normal distribution test level accuracy.

COMPARISON WITH F -STATISTIC AND F -DISTRIBUTION

The pseudo F-statistic defined in Eq. 2 has a clear relationship to

the F-distribution that is based on the number of quantitative vari-

ables that go into the construction of the distance matrix as well as

the sample size. For a Euclidean-based distance matrix involving

a single variable, the appropriate degrees of freedom are related to

both the sample size and the number of variables used to create

the distance matrix, as noted. This can be generalized such that if

one has N subjects for which there are P quantitative variables that

will be used to create the distance , the numerator, and denomi-

nator degrees of freedom for the pseudo F-statistic will be P and

(P × N ) – 2 respectively, which reduces to the appropriate degrees

of freedom for the standard ANOVA. We expanded the simula-

tion studies of the type discussed in Section “Test Level Accuracy”

(i.e., 100 samples, 10 variables) to compare p-values resulting from

permutation tests to those derived from the F-distribution with P

and (P × N ) – 2 degrees of freedom. Figures 1 and 2 provide two

different ways of depicting the relationship between permutation-

based p-values and the F-statistic-derived p-values and show a

clear relationship between the pseudo F-statistic, the permutation

test-derived p-values and the F-distribution derived p-values. This

suggests that the F-statistic provides a reliable and level-accurate

hypothesis testing for MDMR analyses in certain settings.

We also investigated the correspondence of the permutation

test-derived p-values and the F-distribution derived p-values for

small sample sizes. Figure 3 and Table 3 provide the results of

these investigations and clearly show that permutation test and

F-distribution derived p-values do not agree well with samples of

Table 2 | Level accuracy of permutations as a function of decreasing

sample size over 1000 simulations for continuous variables.

(%) N = 100 N = 50 N = 20 N = 10 N = 4

1 1.4 1.5 1.2 1.6 0.0

5 5.5 5.4 5.4 5.7 3.5

10 10.3 11.2 11.1 12.2 7.3

25 24.0 26.7 25.0 24.7 21.2

50 46.6 51.3 51.3 50.7 48.1

75 72.6 74.7 76 74.9 73.5
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FIGURE 1 | Plot of permutation test-derived p-values as a function of

the F -statistic in gray, the corresponding p-values derived from the

F -distribution are overlaid in black for 100 samples and 10 random

variables following a normal distribution with a mean of 0 and a

variance of 1 simulated 1000 times. Fifty samples were coded as control

(0) and 50 samples were coded as experiment (1).
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FIGURE 2 | Scatter plot of p-values from Figure 1 generated from

permutation tests vs. those derived from the F -distribution (Pearson

correlation coefficient = 0.99).

size 10 as opposed to 100 (Figure 1). Thus, the size of the matrix,

which is related to the number of subjects, affects the accuracy of

the permutation test and related F-distribution-based test.

Table 3 suggests that for samples of size 10 or less the accuracy

of the F-distribution based p-values suffer; however, it is consid-

erably more accurate than the permutation test-derived p-values

(compare Table 1). Figure 4 provides a scatter plot comparing p-

values obtained from permutation tests vs. p-values obtained from
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FIGURE 3 | Plot of permutation test-derived p-values as a function of

the F -statistic in gray, the corresponding p-values derived from the

F -distribution are overlaid in black for 10 samples (N = 10) and 10

random variables (P = 10) following a normal distribution with a mean

of 0 and a variance of 1 simulated 1000 times. Five samples were coded

as control (0) and five samples were coded as experiment (1).

Table 3 | Level accuracy of F -distribution p-values as a function of

decreasing sample size over 1000 simulations for a single

dichotomous (categorical) predictor variable.

(%) N = 100 N = 50 N = 20 N = 10 N = 4

1 1.5 0.8 1.5 1.3 2.3

5 5.5 6.2 5.2 5.7 8.0

10 10.5 11.3 10.4 11.0 12.8

25 25.2 24.6 28.9 25.9 26.6

50 51.5 46.8 53.3 52.1 52.4

75 76.2 74.9 75.0 77.6 75.1

the F-distribution for samples with sizes between 4 and 100 sam-

ples and a random number of variables ranging from 1 to 100 for

MDMR analysis settings involving a single continuous regressor

variable. Figure 4 clearly shows that smaller sample sizes (N ≤ 8)

show marked differences between the permutation test-derived

p-values and the F-distribution derived p-values.

POWER

We also pursued simulation studies to explore the power of the

MDMR procedure in a variety of settings. Our initial power stud-

ies considered 30 samples (N = 30) with 100 variables (P = 100),

where these 100 variables were generated as standard normal vari-

ates. We then added a value, in increments of 0.001, to the means

of the variables for 15 of the 30 subjects and tested the associa-

tion between a single dichotomous categorical regressor variable

(coded as 0 for the first 15 subjects and 1 for the second 15 sub-

jects) and the distance matrix computed from the 100 variables

for each subject via the Euclidean distance measure. Figure 5 dis-

plays the results for settings in which different proportions of the

0
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Permuted P-value

F
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u
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o
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-v
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FIGURE 4 | Scatter plot of p-values obtained from the F -distribution

vs. permutation tests for random samples sizes varying between 4

and 100 (i.e., 4 ≤ N ≤ 100) and random variables size from 1 to 100 (i.e.,

1 ≤ P ≤ 100) with a single continuous regressor variable (M = 1)

simulated 1000 times. Outlying observations represented as black squares

lying away from the trend line have sample sizes less than or equal to eight.

100 variables had increments of 0.001 added to them for the sec-

ond 15 subjects. As can be seen, when all the variables have their

means adjusted for the second 15 subjects, MDMR can detect

a mean difference of 0.24 standard deviation units 80% of the

time, whereas Bonferroni corrected Student’s t -tests pursued on

each of the P variables individually can detect a mean difference

in one of the variables of 0.62 standard deviation units 80% of

the time. We also pursued power studies where the variables fol-

lowed a bimodal distribution (and found that power is the same

as a single mode normal distribution), log normal distributions

(using a mean value of 0.17) as well as multivariate normal distri-

butions (using a correlation among the variables of 0.06). These

simulation studies (available as Appendix) demonstrated that the

MDMR procedure has similar power to detect differences in these

settings and thus suggests that the MDMR procedure is robust

and can detect subtle differences in groups over a range of condi-

tions. We also considered the power of the MDMR procedure as a

function of sample size. Figure 6 depicts the results for increasing

sample size assuming different mean differences between the 100

normally distributed variables in two groups. It can be seen that

samples sizes greater than 40 are able to identify mean differences

of 0.2 or greater 80% of the time.

Finally, we studied the power of the MDMR procedure with

continuous regressor variables. We induced relationships between

the continuous regressor variables and the P variables assigned to

each subject used to construct the matrix by assuming that the

regressor variable was correlated at some level with either each of

these P = 100 variables or some fraction of them. Figure 7 depicts

the results and shows that the MDMR procedure can identify rela-

tionships among data points when 15% of variables are correlated
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FIGURE 5 | Power of the MDMR procedure as a function of

signal-to-noise ratio obtained from 1000 simulated data sets for a

wide variety of settings. Simulated data for 30 (N = 30) samples and 100

variables (P = 100) were generated with 15 samples assigned to a control

group (independent variable = 0) and 15 samples assigned to an

experimental group (independent variable = 1). Random data in the control

group were generated as standard normal variates with a mean of 0 and

variance 1. Random data in the experimental group were generated as

standard normal variates with variance = 1 and means that took on values

of 0–1.5 in increments of 0.001. The power of the permutation-based

statistical test is presented. We generated different simulated data sets for

which 100, 50, 25, 10, or 5% of the variables used in the construction of the

distance matrix had means adjusted from 0 (in the appropriate increments)

in the experimental group. The gray line shows the power of a Bonferroni

corrected P -value for the Student’s t -tests performed on each of the 100

variables in univariate t -tests which were corrected for the hundred

statistical tests pursued.

with the regressor variables at a strength of 0.2. Higher correlations

allow a smaller percentage of the variables to be correlated with the

regressor before the relationships are detectable with MDMR. For

situations in which one may have multiple variables (i.e., P > 1) we

note that MDMR is flexible enough to be used in a univariate man-

ner to analyze each variable independently (P = 1) and identify a

subset of variables for which the regressor has the strongest asso-

ciation with variation in the distance matrix as a whole. MDMR

can then be used in a multivariate manner to determine if the

overall effect of the regressor is increased by looking at these data

points together. In this way, MDMR can reduce the possibility of

over-fitting data and identify optimal subsets of variables related

to a set of additional factors or regressor variables.

DETERMINING THE OPTIMAL NUMBER OF GROUPS IN A CLUSTER

ANALYSIS

As noted throughout this paper, MDMR analysis provides an

alternative to many standard multivariate analysis techniques,

including cluster analysis techniques. Cluster analysis has been

a common strategy used to identify patterns in high-dimensional,

P ≫ N, data sets. However, given the vast array of cluster analysis

strategies that have been proposed, it is often unclear which clus-

ter analysis method is most appropriate for a particular setting.
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FIGURE 6 | Power of the MDMR procedure as a function of increasing

sample size. Half of the samples for each sample size were assigned to a

control (coded as 0) and half to an experimental group (coded as 1). For

each sample 100 random variables were generated following a normal

distribution with a mean of 0 and a variance of 1 for the control group and

an assigned mean difference of 0.1, 0.2, or 0.3 and a variance of 1 for the

experimental group.
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FIGURE 7 | Power of the proposed MDMR procedure as a function of

the correlation of continuous regressor variables for a samples size of

N = 100 with P = 100 variables. The x -axis displays the percentage of

variables that have a correlation to the regressor variable. Four different

correlation strengths are shown ranging from 0.1 to 0.4. P = 100 random

variables were generated following a normal distribution with a mean of 0

and a variance of 1.

Furthermore, cluster analysis techniques rarely provide formal sta-

tistical tests to relate predictor or regressor variables to the clusters

arising from an analysis and often provide ambiguous answers to
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questions concerning the optimal number of clusters present in

a dataset. We have compared the common UPGMA (Unweighted

Pair Group Method with Arithmetic mean) hierarchical clustering

technique to the MDMR procedure in a single analysis setting to

showcase the potential MDMR has to complement cluster analy-

sis strategies. We generated data for two groups of subjects of

size N = 30, where each subject was assigned P = 100 variables

as standard normal variates. Then, for the second group of sub-

jects, we added a value to the means of each of the 100 variables.

We then pursued cluster analysis on the resulting data sets and

tested to see if the number of groups identified from the clus-

ter analysis was consistent with the number of groups producing

the highest and most significant (in terms of P-value) F-statistic

from the MDMR analysis (as described in section), where predic-

tor variables were created reflecting cluster analysis-derived group

membership and tested for association with the distance matrix.

We found that for mean differences less than or equal to 0.75 stan-

dard deviation units, UPGMA clustering has difficulty identifying

two distinct groups for a sample size of 60. MDMR was shown

to accurately identify mean differences of greater than 0.2 for a

sample size of 60 (see Figure 6). Figure 8 provides an example of

the phenomenon where UPGMA clustering suggested that there

were five groups with some misclassified observations, although

the MDMR analysis suggested two groups were the most likely.

Thus, MDMR analysis can be used to create tests for the optimal

number of groups in a cluster analysis. We are exploring this theme

further in additional work.

DISCUSSION

Our studies suggest that the MDMR analysis procedure has excep-

tional promise as an adjunct or alternative to standard multivariate

analysis methods for use with modern high-throughput biolog-

ical assays. The MDMR procedure is ideally suited for settings

in which P ≫ N, and where a researcher is ultimately interested

in analyzing multivariate data collected on a group of individ-

uals as though those data were providing multivariate “profiles”

of the individuals, rather than as data reflecting a distinct set

of variables requiring independent attention. Such settings are

the rule, rather than the exception, in many modern biological

experiments. For example, gene expression studies are typically

pursued to address questions about the “state” of a cell or tis-

sue type at a particular time or after a particular intervention.

Although there is great interest in finding particular genes whose

expression levels differ the most between times or interventions,

there is also great interest in determining if the overall expression

profiles of the genes have been altered or if particular groups of

genes, defined by biochemical pathways or networks, have been

changed. By constructing multivariate gene expression profiles of

all (or subsets) of the genes whose similarities and differences

can be interrogated, one can test hypotheses about the overall

state of the cell or tissue. For example, we have previously shown

that genes involved in Pharm-GKB derived ACE-inhibitor pathway

show altered multivariate gene expression patterns in the kidneys

of patients with renal disease which is consistent with their levels

of tubular atrophy/interstitial fibrosis (Zapala and Schork, 2006).

FIGURE 8 | Comparison of the UPGMA hierarchical cluster algorithm

to the matrix regression technique. Simulated data for N = 60 samples

and P = 100 variables were generated with 30 samples assigned to the

control group (independent variable = 0) and 30 samples assigned to the

experimental group (independent variable = 1). Random data in the control

group were generated as standard normal variates with a mean of 0 and

variance of 1. At mean differences below 0.75, hierarchical clustering using

the unweighted average distance (UPGMA) does not clearly differentiate

two groups with different means. Shown above are five clusters for what

visually appears to be two groups. The red asterisks (*) signify simulated

data that has been misclassified. Two samples whose means were at 0.5

were grouped with samples whose means where 0 (bottom two

asterisks). The matrix regression technique shows that the correct

grouping of two separate groups gives the highest F -statistic of 5.32,

while the UPGMA clustering technique of five distinct groups only

provides an F -statistic of 5.28.
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This analysis formally tested a well-established hypothesis, that the

renin-angiotensin-aldosterone system (RAAS) plays a role in renal

fibrosis (Lewis et al., 2001). This type of hypothesis could not have

been tested using traditional univariate or clustering approaches.

We emphasize, however, that this type of analysis is in no way lim-

ited to this particular pathway-based hypothesis, but rather can be

extended to other sets of genes.

As another example, consider modern high-throughput DNA

sequence data. Such data are often generated to address ques-

tions about the evolutionary relationships between species or the

divergence of individuals within a species based on events such

as migration, isolation, drift, and/or phenotypic divergence (Wes-

sel and Schork, 2006; Nievergelt et al., 2007). A fundamental step

in the analysis of DNA sequence data to address such questions

is the derivation and use of a measure of DNA sequence simi-

larity (Clark, 2006; Phillips, 2006). Once one has quantified just

how similar or different various DNA sequences are, hypotheses

about the factors that may be associated with the differences can

be framed. MDMR analysis would be an ideal tool for testing these

hypotheses, especially since one would not likely be interested in

testing hypotheses about differences at each nucleotide, but rather

the DNA sequence as a whole or a profile.

Our studies also show that the properties of test statistics

for pursuing MDMR analysis are quite good, in that they are

well-behaved, exhibit an excellent level accuracy, and have good

power to detect a wide-range of multivariate phenomena. In

addition, by confirming that the F-statistic used to test associ-

ations within the MDMR framework follows an F-distribution

with an intuitive number of degrees of freedom, there is a

computationally efficient alternative to permutation-based tests.

This computational efficiency can be of great value if MDMR

analyses are to be pursued in settings where repeated tests

are to be performed, such as in testing associations between

hundreds of thousands of DNA sequence variations and mul-

tivariate phenotypes within a genome-wide association study

(GWAS).

There are a number of issues with MDMR analysis that need

further attention. For example, the choice of an appropriate

distance measure may be problematic. Although our experience

suggests that different distance measures provide roughly the same

inferences (Zapala and Schork, 2006), greater research into this

issue should be pursued. In addition, the handling of missing data

in both the construction of the distance matrix and in relating the

regressor variables to the variation in the distance matrix is prob-

lematic. Handling missing data in the construction of the distance

matrix may not be a huge problem if, for any pair of individuals in

the sample P is large and they are only missing a few value between

them. In this case, one could compute the distance measure with

only the non-missing values. However, studies investigating the

“critical level” of missing data that can be tolerated in this setting

are needed.

What would be of greatest interest, however, is a comparison of

MDMR analysis with other analysis methods that could be applied

to similar types of data sets. For example, for small P in settings

involving group comparisons, one could compare MDMR with

standard MANOVA or multivariate regression analyses (as done,

for example, by Waters and Cohen, 2006). More interesting com-

parisons might involve MDMR analyses in settings where P is large

and cluster analysis, principal components, and related data reduc-

tion analysis techniques might be appropriate. Regardless of the

outcomes of these proposed studies, MDMR analysis has a place in

multivariate analysis as one of the few approaches to directly relate

variation in a large set of variables to a set of potential explanatory

variables.

The source code for this statistical method is written in Python

and is freely available at the Biopython script central page1

and is being incorporated into the Biopython library. Also, the

source code and a user friendly web application are available on

the Schork Laboratory website2 Implementations of the MDMR

technique are also available in R3.
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APPENDIX

Table A1 | Level accuracy of permutations as a function of decreasing

sample size over 1000 Simulations for log normal distribution.

(%) N = 100 N = 50 N = 20 N = 10 N = 4

1 1 1.5 1 1 0

5 4.5 4.9 4.4 4.6 0.5

10 8.5 10.5 9 9.7 2.5

25 25.5 25 23.1 24.9 10.2

50 49.8 50.2 49.4 52.5 38.7

75 74.9 73.5 75.7 76.5 69.2

Table A2 | Level accuracy of permutations as a function of decreasing

sample size over 1000 Simulations for bimodal distribution.

(%) N = 100 N = 50 N = 20 N = 10 N = 4

1 0.9 0.9 1.5 0.4 0

5 4.7 4.7 5.6 5.1 0.2

10 10.4 10 11.1 10.5 2

25 27.2 25.7 26.1 24.8 9.3

50 52.3 48.5 51.4 50.7 39.6

75 76.7 76.2 74.2 75.1 67.8

FIGURE A1 | Power of the MDMR procedure as a function of

non-normal population distributions. The black line shows power as

calculated before for two populations with normal distributions. The green

line displays power for populations with log normal distributions. The pink

line shows power for power for populations with bimodal distributions

(equivalent for a normal distribution with 100% of the data having means

altered) and the blue line shows power when only one mode of a bimodal

population is different (equivalent for a normal distribution with 50% of the

data having means altered). The red line shows the power of a Bonferroni

corrected p-value for the Student’s t -tests performed on each of the 100

variables in univariate t -tests which were corrected for the 100 statistical

tests pursued.

FIGURE A2 | Histogram of two log normal distribution. The solid line has

a mean of 1 and the dotted line has a mean of 1.225 where the difference in

the means yields ∼100% power for MDMR with a two log normal

population distributions.

FIGURE A3 | Histogram of two bimodal distributions. The solid line has

two modes with a mean of 1 and a mean of 4 and the dotted line has two

modes with a mean of 1.36 and a mean of 4.36 where the difference in the

distributions yields ∼100% power for MDMR.
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