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StatisticaJ properties of binary phase system with semi-macroscopic random interfaces are studied. 
Singularity and symmetry of the correlation function are discussed in the case of smooth interface. 
Characteristic length scales,are defined by using the interface statistics. The existence of the equivalent 
sphere system is shown for the non-spherical irregular droplet. The irregularity of simple droplets is 
characterized by an inequality related to the topological invariant. It is shown that statistically self
complementary, smooth system is mutually percolating. As a statistical foundation of the random 
interface problem, the relations to the theory of excursion set of random field are discussed. The 
expression of area density of the boundary set is obtained for the Gaussian field in Euclidean space with 
arbitrary dimension d. The cross-over phenomena in the spinodal decomposition process is also discussed 
using the statistical analyses on the interface. 

§ 1. Introduction 

It has been shown that at the late stage of phase separation process, e.g., in the 
spinodal decomposition, the semi-macroscopic interface picture is useful, since the essen
tial part of non-linearity is incorporated in the theory efficiently by assuming sharp 
interfaces. I

)-3) This is the reason that the phenomenological droplet theory by Lifshitz 
and Slyozov4

) is successful in explaining the problem with small volume fraction. Here 
the meaning of semi-macroscopic interface is that all characteristic length scales of it, e.g., 
the mean radius of curvature, are sufficiently larger than the thickness ~ of the interface 
which is of the same order as the correlation length of the order parameter fluctuations, 
but are not macroscopic yet. That is, we have a finite area density of interface defined 
by 

A= jda/V, (1) 

where da is the area element and V the volume of the system. Note that A has a 
dimension of inverse of length, and is a quantity proportional to the non-equilibrium, 
excess free energy density in our system. In this stage interfaces are randomly distribut
ed in the system. Here 'random' is used in very loose meaning such as homogeneous, 
isotropic distributions. For example, it includes a randomly distributed sphere system. 

The purpose of the present paper is to find some statistical properties of this random 
interface system apart from the dynamical natures of phase separation. Then the results 
are applicable to other problems of pattern formation. We restrict the problem only in 
the smooth interface case, i.e., assume that singularities such as corner, edge, intersection 
and contact do not exist in the system, or are negligible. The fractal surfaceS) is also 
excluded. That is, finite curvatures, are uniquely defined at every point on the interface. 
This restriction does not narrow our problems. In the problem of phase separation, these 
singularities can be expected to disappear immediately by evaporation and coalescence. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/482/1915419 by guest on 16 August 2022
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Fig. 1. Typical singularities of non-smooth inter
face. (a) comer (or edge), (b) intersection, 
(c) contact and (d) fractal surfaces. 

The fractal surface with an infinite area 
density cannot be realized because the 
excess free energy should be finite in our 
system. 

In the smooth system we find singular
ities only in the sharp profile of interface. 
Let us first investigate what kind of sin
gularity and symmetry we may find in the 
correlation function of such system in § 2. 
Characteristic length scales are introduced 
and related to the statistical quantities of 
the interface in § 3. Three typical sys
tems are discussed in § 4. A simple propo
sition on the percolation problem in the 
interface system, which has been revealed 
little compared with that in the lattice 
system, is given also in § 4. We need 

statistical foundations of the random interface to make more rigorous analyses on it. As 
an example the relation to the theory of excursion set of random field6

) is discussed in § 5. 
In § 6, the cross-over phenomena7

)-9) in the spinodal decomposition is discussed. 

§ 2. Singularity and symmetry of the correlation function 

Let the order parameter field p ( r) be 

p(r) =g in minority phase, 

in majority phase, 

and define the volume fraction by 

(2) 

(3) 

where V is the volume of the system and dr the d-dimensional volume element. A 
statistically important quantity is the correlation function of this field defined by 

g(r)= ~fdrlP(rl)p(rl+r)-(p)2, 

=(p(O)p(r)-(p)2, (4) 

where homogeneous distribution of the interface is assumed. Here let us assume isotropy 
condition g ( r) = g ( r) besides it. 

For the purpose of getting an explicit form of g ( r) with the use of the interface 
statistics, it is advantageous to use 

gl(r)=(l7p(O)·l7p(r) , 

=-17 2g(r) , (5) 
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(a) 

Fig. 2. Geometry of interface correlation function for (a) d=2 and (b) d=3. 

instead of g(r) itself, because J7 p has non-zero value only just on the interface in the 
present system: The new field variable J7 p(r) may be written as 

J7 p(r) =n(r)o( u(r» , (6) 

where n(r) is the normal unit vector at r on the interface and u(r) a normal coordinate 
in this direction with conditions u = 0 and I J7 ul = 1 at the interface.10

} 

The explicit form of gl ( r) for d = 2 and 3 can be obtained by elementary geometry 
shown in Fig. 2: For d=2 one may find 

2lCrgl (r) dr = fd{) L!' nl . n2ds2 , (7) 

where V is the area of the system, dSl the i~tegralline element of the interface, and nl, 
n2 the normal vectors at rl and r2 respectively. The summation L!' is taken over all 
interface segments dS2 between two circles with common center at rl and radii rand 
r+dr. Here directional averaging is adopted instead of assuming isotropy. By using 
the angle a2 between r (= r2 - rl) and n2 one may write the final form as 

2 ( )_fdsl..,."nl·n2 lCrgl r - V £..J. , sma2 
(8) 

where the relation Ir+ds21=r+dr, or dS2 sin a2=dr is used. Note that the right-hand 
side of Eq. (8) is symmetric with respect to suffixes 1 and 2. This can be shown by 
changing the integration element dS 1 to dS 2 with a condition Ir+ds2-dsll=r, which 
results in the symmetric relation 

(9) 

Analogously one may find for d = 3 

4lCr2g1(r)dr= fdt1 f'nl.n2 da2, (10) 

where dal and da2 are area elements of the interface at rl and r2 and the integration J' is 
taken over the zone of the interfaGe between two spheres with common center at rl and 
radii rand r + dr. As is shown in Fig. 2 (b), let us take dS2 in the (n2, r) plane, dsz' in 
n2 X r direction so as to get n2da2 = dS2 X dsz'. Then da2 is given by da2 = dS2' dr/ sina2, 
where dS 2 sina2= dr is used. With the use of it the final form is written as 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/482/1915419 by guest on 16 August 2022



Statistical Properties of Random Interface System 485 

4 2 ( ) -fdal J nl· n2 d ' J[r gl r - -V -.-- S2 , 
C(r) slna2 

(11) 

where C(r) denotes the intersection curve between the interface and the sphere centered 
at rl with radius r. Let us show the right-hand side of Eq. (11) is anti-symmetric with 
respect to suffixes 1 and 2: Take dSl in the (r, nl) plane and dSl' in nl X (- r) direction 
so as to get nIdal = dSl' X ds l. One may find the same relation as Eq. (9) if one changes 
the integration variable from dSl to dS2 with the condition Ir+ds2-dsll=r. The anti
symmetric property is easily seen in the notation of exterior products of differentialsll) for 
the triple integral element as follows: 

ds/ l\~sll\ds2' --t ds{ l\~s2I\dsl' 
sma2 (1-2) smal 

dS2' I\dsll\ds l' 

sina2 

Using the above considerations one may write 

ds/l\dsll\ds2' 
sina2 

(12) 

where Yd=4/J[ and 1 for d=2 and 3 respectively, and A is the interface area density 
defined in § 1. This is the typical form of gl ( r) = - P 2 9 ( r); gl ( r Hs proportional to the 
interface density A, and the singularity caused by the sharp profile of the interface results 
in the factor r- l. The consequent quotient is the normaIlzed, interface correlation 
function Gl (r) which is a non-singular, even function of r and then of r. The expres
sions of Gl ( r) are given by 

(d=2) 

(d=3) 
(13) 

where Gl(O) =1. 
The original correlation function g( r) can be given by integrating the equation 

p2g(r)=-gl(r) and written in the same manner, > 

g(r)=¢;(l-¢;)- ~d ArG(r) , (14) 

where G( r) is also an even function of r which satisfies G(O) = 1 and G'(O) =0. The 
integration constant is determined by the condition 

(15) 

As a conclusion the singularity of the sharp profile of interface and the smoothness 
condition are simply expressed by an equation 

(16) 

No other singularities in small r range can be expected so far as the smooth interface is 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/482/1915419 by guest on 16 August 2022
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assumed. 
Define the structure function by 

(17) 

which is normalized by the sum-rule 

(18) 

Corresponding to the singularity in g( r) there appears a kind of long tail, i.e., the Porod 
taiP 2

) in S(q) given by 

(19) 

where /3d = 2 and 2J[ for d = 2 and 3. Whenever this limit exists, the smoothness condition 
(16) gives another sum-ruleI3

) 

(20) 

An exception is the mono-dispersive sphere system: As is shown in the next section, one 
finds an undumped oscillation in qd+lS(q) in this case, the right-hand side of Eq. (19) being 
merely the mean level of it. 

§ 3. Characteristic length scales 

The short range expansion of gl (r) and g ( r) has been obtained for arbitrary dimen
sion d. 13

) The results are summarized as 

g ( r) = (d-l)Yd A {1- d+l L+ ... } 
1 4 r 8 Rm2 , (21) 

g(r)=¢(I-¢)- ~d Ar{l-d~1 ;~2+ ... }' 
where Yd=4r(d/2)/(d-l)5r((d--.l)/2) (=4/J[ and 1 for d=2, 3). Rm is related to a 
kind of mean curvature at each point on the interface as 

(22) 

where R(a)-2 is the mean square of Euler's normal curvature averaged over the direction 
around the normal vector at each point. The explicit form of it with the use of the 
principal curvatures {Ri- 1

} is given by 

(23) 

Note that the lower order terms in the expansions should be determined only by the 
radius of curvature, which is the unique local scale in the smooth system. The first order 
term of it does not appear l2

) because of the symmetry given in § 2. In other words, this 
is Babinet's reciprocity principle on the complementary system; when the values of the 
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order parameter are reversed, i.e., from p to 1 - p, the correlation function g ( r) 

changed, while the sign of curvature is changed. 
The asymptotic expansion of S(q) is given by 

(3dA { d
2
-1 1 } 

S(q)= qd+l 1+--S-Rm2q2+'" , 

where (3d=2d~I7[(d~2)/2r(d/2) (=2, 27[ for d=2, 3). 

4S7 

is not 

(24) 

Apparently Rm , a kind of mean radius of curvature, gives a characteristic length scale: 

Divided by /(d 2 -1)/S, it may be used as a criterion for the Porod tail as is easily seen 
in Eq. (24). 

One may define another scale which characterize the dominant part of S(q) as 
follows: Define a wave-number where the sum-rule (IS) is fulfilled upto some proportion 
of order unity, say upto 1/2. With the use of Eq. (24) the corresponding length scale is 
approximated by 

D=7[¢(1- ¢)/ 2A . (25) 

The same definition has been used as a coherence range in the spin system. 14
).15) In the 

present system D gives a mean size of droplets (or particles) if the system is composed of 
separated droplets. Note that these two, i.e., Rm and D are assumed to be semi
macroscopic, i.e., sufficiently larger than the thickness of the interface ~. 

One more characteristic length in our system is the long-ranged correlation length L, 
the inverse of which characterizes the small q part of S (q). It is impossible to get 
explicit form of L like those of Rm and D because L is non-local quantity, but L should 
be distinguished from D in general. For example, in a well-separated droplets system L 
is the droplet-droplet correlation length, while D is a mean size of droplets. On the 
contrary, both become undistinguishable and may be of the same order of magnitude in a 
ramified interface system. Note that the radius of gyration, i.e., the Guinier length defined 
by the small q expansion of S(q) loses its original meaning if the interference between 
droplets or between parts of interface cannot be neglected. 

§ 4. Typical systems 

(A) Spherical droplet system 

This is the typical case for ¢~1. Using the indicator function defined by 

e(R- r) ={1 for Irl~R, 
, 0 for Irl>R, (26) 

the correlation function is written as 

g( r) = 2:, n(R) v(R) y(R; r) - 2:,2:, n(R') v(R') n(R") v(R") 
R R'R" 

x jdr' jdr" e(R'; r') e(R"; r")[I- W(2)(R', R"; r+ r' - r")] , (27) 

where v(R) and n(R) are the volume and the number density of spheres with radius R, 
Y(R; r) the single sphere correlation function defined by 
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488 H. Tomita 

y(R; r) = v(~) fdr' 8(R; r') 8(R; r' + r) , 

(28) 

with normalization y(R; 0)=1. W(Z)(R', R"; r) denotes the pair distribution function of 
droplets with radii R' and R" normalized as W(Z)( 00) = 1. Because of the coalescence 
effect W(Z) can be expected to have an exclusive region in some extent around the 
absorptive core of radius R' + R". Then the interference tenus do not contribute the 
short range expansion of g(r), and it is straightforward to get the expansion, if nCR) is 
not a singular function. For d=3 we find 

(29) 

where 

are used. Using rp 4:.. 1, the characteristic scale D is given by 

(30) 

which is the Porod radius except for a numerical factor .. Thus Rm and D are independent 
of rp and can be expected to be of the same order if nCR) is an ordinary function, though 
we have an inequality <R3>z;:;;<Rz>3. On the other hand, the last scale L depends on rp and 
L-:?> D, Rm: An intuitive definition of L is the mean distance between spheres/6) i.e., 

(31) 

Other results L~rp-I/z have been obtained by introducing the screening effect in the 
theory.3),17) 

The corresponding structure function Seq) is given by using 

1[f( Q) = v(ll) fdr e iQ
' r 8(1; r) 

_ r(d/ 2+ 1) 
- (Q/2)d/Z fdl2(Q) , (32) 

where f,Ax) is the Bessel function. Using the asymptotic form of it, the most dominant 
part of S (q) for large q is given by 

2d
Jrd-1 {( d + 1 )} Seq) ~ qd+l 2}n(R)R d

-
1 1 +cos 2qR--

2
-Jr • (33) 

This results in the Porod law if the oscillating terms are smeared out by continuous 
spectrum nCR). A simple exception is the mono-dispersive sphere system.16) 

(B) Irregular droplet system 

As is shown in Appendix A, the spherical droplet picture becomes improper, at least 
above some critical fraction rpc. Then the next type to be considered is the separated, 
non-spherical droplet system. Evidently, in this system the mean size D and the mean 
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radius of curvature Rm are independent notions, 
though L'2>D, Rm is assumed here. The case D'2>Rm 
can be expected for the droplet with complicated 
surface as is illustrated in Fig. 3. 

Fig. 3. Complicated droplet with D~Rm. 

The correlation function can be written in the 
same form as Eq. (27), if R is interpreted as the suffix 
to distinguish different shapes of droplets. In Appen
dix B it is shown that the normalized, single droplet 
correlation function r( r) averaged over all orienta
tions is represented by an equivalent sphere system, 
Le., 

1 r(r)=-'2;.n(R)v(R)r(R; r), 
V R 

where v is the volume of a droplet concerned. Equation (34) is expanded as 

( ) r d S { d - 1 r2 } r r =l---r 1-----2 + .... 
4 v ' 24 Rm 

(34)*) 

(35) 

Here S is the surface area of the single droplet and Rm -2 the same as Eq. (22) averaged 
over single surface S. These are given by n(R) in the same manner as Eq. (29). It is 
interesting to note that the total number n='2;.n(R) for d=3 is rewritten as 

n=S/ 47fRm
2 = ida/ 47fR(a)2, 

where 

R-( )-2_ 1 +3( 1 1)2 
a - RIR2 8\ "R:-R; . (36) 

Then we find n ~ 1, ,at least if S is an oriented, closed surface of simply connected droplet 
(not a simply connected surface), because we have a topological invariant 

(37) 

for such surface by Gauss and Bonnet's theorem. Here n = 1 is satisfied only by spheres. 
It can be shown that n is divergent in the case of non-smooth surface like that of convex 
lens, though Rl = R2 everywhere is satisfied. The corresponding inequality for d = 2 is 
written as 

(38) 

for an arbitrary simple closed curve C, Le., the Jordan curve on d=2 plane, where Lc is 
the length of it and the invariant related to the curvature R-1 

(39) 

is used. These inequalities can be used to characterize the irregularity of simple droplets. 

*) The same expansion for the correlation function g( r) of the total system is possible, but the meaning of 

,n(R) becomes rather ambiguous. 
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Such a universal inequality, however, has not been found for general surfaces (curves) 
with more complicated topology. 

It can be said that the irregularity assures the rapid convergence to the Porod tail of 
S(q), because the irregularity averaged over various types of droplets can be equivalent 
to a continuously poly-dispersive spectrum. However, this equivalence itself prevents us 
from finding a distinction between the irregular droplet system and poly-dispersive sphere 
system by any scattering experiment. 

(C) Percolating system 

At larger ¢ ( ;;:; ¢c) droplets coalesce one another and become connected from infinity 
to infinity when ¢;:::::: 1/ 2. Here let such a state be called percolating. Evidently, it is 
impossible to distinguish the correlation length L and the mean size scale D in the system 
like this, while the mean radius of curvature Rm keeps its own meaning. Note that 
¢;:::::: 1/2 is not necessary. Usually percolation is expected to occur at the smaller value, 
say at ¢ ~ 1/ 2d, by analogy with that in the lattice system.S

) On the contrary, it is 
possible to fulfil the system up to the random packing limit18

) with separated, mono
dispersive spheres, and in principle, up to 99.99% with poly-dispersive spheres, at least if 
spheres are repulsive. Thus the percolation problem in the interface system has not been 
clarified yet. 

An interesting system which seems tractable is one consisting of statistically equiva
lent binary phases, e.g., the 50% ~50% symmetric alloy, or the Ising system without 
external field. Such system may be called a statistically self-complementary system. 
That is, the complementary system given by inverting the order pararr.eter from p to 1 - p 

is statistically equivalent to itself. For example, curvatures with opposite signs should be 
distributed with symmetric weight. Let us close this section by making the following 
propositions related to this syst.em: 
(I) At least one of the two phases, say the backgroun:i phase, is percolating, whenever the 

interface is smooth everywhere. 
(II) Then, the (statistically) self-complementary system with smooth interfaces is mutu

ally percolating, i.e., both phases are percolating. 

Fig. 4. (a) Self-complementary but not smooth, 
(b) smooth but not self-complementary, (c) 
smooth and self-complementary. 

Here we need only the absence of 
intt~rsection and contact among the 
smoothness conditions in § 1. In such sys
tem in d = 2 the interface lines do not cross 
each other and are all Jordan's closed 
curves or open curves extended from 
infinity to infinity. If we have at least one 
open curve, both phases are percolating 
along it. Evidently, if all are Jordan's 
closed curves separated from each other, 
the exterior region of them, say the back
ground phase is not disconnected, i.e., is 
percolating. Here, even if there is a 
closed curve which encloses other closed 
curve(s) in it, (e.g., hole(s), island(s) and 
so on), this statement is satisfied by taking 
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into consideration only the outmost curve. In this context we should restrict the system 
within the bounded systems to avoid an infinite nesting of such structures. Note that the 
conditions of smoothness and self-complementarity are both important in the proposition 
as is shown in Fig. 4. For d = 3 we may use the notion of oriented closed surface in the 
above statements instead of Jordan's curve. Now it is straightforward by definition to 
show (II). 

It should be noted that (II) is merely a sufficient condition for percolation. It is 
always possible to transform a percolating, self-complementary system continuously to 
asymmetric one with ¢ < 1/ 2 (or ¢ > 1/2) conserving its topology of percolation. 

§ 5. Statistical model for random interface 

Let us discuss the statistical foundations of the random interface problem. We may 
use the theory of excursion set of random field6

) for this purpose. Let X ( r) be a scalar 
random field in d-dimensional Euclidean space, and define the excursion set by 

v( u) = {rIX(r) ~ u} . (40) 

Then the boundary set, i.e., the level crossings defined by 

av( u) = {rIX(r) = u} , (41) 

can be used as a statistically tractable model for random interface, if the statistics of X (r) 
is defined. An important example is the Gaussian field, because it seems to include a wide 
variety of linearized or quasi-linearized theories19

)-21) applied to the order parameter field 
problems. The definition of excursion set (40) with u=O just corresponds to ti.le non
linear transformation3

),19) . 

s(r) =sign(X(r» , (42) 

where s = 1 - 2p is used here. 
Let X(r) be a Gaussian random field with zero-mean, unit-variance and covariance 

{o-ij = <X (r;) X (Tj) >}, where < ... > denotes the statistical expectation here, and define the 
indicator function for crossing level u by 

s(r) =sign(X(r) - u) . (43) 

Note that this is completely equivalent to the problem of zero-level crossings in a Gaussian 
field with mean - u. The expectations <s(r» and <s(rl)s(r2» are given by 

<s(r»= -Hlu e- t2
/
2dt (44) 

and 

(45) 

where 

. ( ) -1' 1+= ;l iAx d;l SIgn x - 1m 12+ 2e -.-, 
<-0 -= II € ZJ[ 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/482/1915419 by guest on 16 August 2022



492 H Tomita 

is used. The simple result for u=O in Eq. (45),22) i.e., 

<s(r1)s(r2»=(2/Jl")Arcsin 612, 

has been used in the present problem by Kawasaki et al.19) and by Ohta.3) 
For the homogeneous, isotropic system with 

(46) 

(47) 

one may interpret the expectation < ... > as the spatial average. In this case the mean 
volume fraction of the excursion set V (u) is given by 

1;=-1-1'" e- t2/2 dt. 
f2i[ u 

(48) 

The correlation function g(r) defined by Eq.(4) is given by 

g(r)=1;(l-1;)-! '[<s(O)s(r»-l]. (49) 

Then expanding Eq. (45) with respect to r we find 

A=[(d-l)r( d~l )/2hir( ~)Je-U2/2/16"(0)1 (50) 

and 

(51) 

Here the covariance 6(r) is assumed to be even function of r, which is the condition for 
the smooth interface in this problem. The same result for A with u=O is obtained by 
Ohta.3) 

Global geometry of this system, however, has not been revealed except for a few 
properties, e.g., the boundary surfaces become convex everywhere with probability unity 
when u-"oo (or 1;-"0).6) That is, the oval droplet'picture is proper in the system with 

. small volume fraction. 

§ 6. Discussion 

It has been revealed theoretically23),24) and experimentally25) that a kind of scaling law 
exists at the late stage of spinodal decompositions. That is, the characteristic length 
scale l(t) obeys a power law l(t) ~ t a and the structure function is well approximated by 
a scaled form as 5 (q) = 1 (t) d S U (t) q). The exponent a and the scaling function S ( Q) 

are, however, not always universal, e.g., a cross-over phenomena is observed.9) 
Here let us discuss it: At small 1;, the spherical droplet picture is proper and the 

relevant length scale is D( ~ Rm). The dominant growth mechanism of droplets is 
Lifshitz and Slyozov's evaporation-condensation process, where D ~ t 1/3 is known.4) The 
Brownian motion of droplet can be neglected in the solid mixture, since the diffusion 
constant is very small in this case. At larger 1; where L~ D, however, the Brownian 
coalescence is no more negligible. The earlier stage of droplet growth may be dominated 
by it, where D~ t 1/6 is expected.26),27) In this stageD~ Rm still holds and then S (Q) ~ Q-4. 

N ext, percolation occurs, perhaps in a little while. After percolation the dominant 
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growth process is smoothening of the complicated surface by evaporation-condensation 
process, where Rm(t) ~ t 1/3 is proposed by Kawasaki and Ohta.1

) In this stage it may be 
supposed that DJ> Rm, i.e., the Porod tail region goes far away from the dominant region, 
and then S (Q) becomes dominated by the next pQwer Q-6. 

In this paper only a simple, sufficient condition is proposed with respect to the 
percolation problem in the semi-macroscopic random interface system. The significant 
property supposed in the proposition in § 4 is the symmetric distribution of curvature in 
the system. Though it is not the necessary condition, it is very suggestive for the future 
investigations on the statistical mechanics of random interface. 
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Appendix A 
-- Critical Volume Fraction for Absorptive Sphere System--

In the coalescing sphere system the sphere density should be decreased in some extent 
around the absorptive core, i.e., we may assume that 

W(2)(R, R'; r;£R+ R') =0, 

W(2)(R, R'; r);£ W(2)(R, R'; 00) =1, 

and then 

jdr[l- W(2)(R, R'; r)]~ v(R+ R') . (A -I) 

This cannot be necessarily satisfied if we have a region where W(2) (r) > 1, as is usually 
seen in the equilibrium state of the hard core system. Compared to it, our system may be 
called absorptive sphere system, though the equilibrium state cannot exist. Here 
Eq. (A -I) is expected to be valid in the non-equilibrium state starting from an un
correlated, uniform initial distribution. 

On the other hand, the structure function should be positive definite for all q -by 
definition, and at least at q = 0 we have 

(A-2) 

Evidently, it is impossible to find a solution for W(2) (r) at least if 

L:n(R) V(R)2- L:L:n(R) v(R) n(R') v(R') v(R+ R') ~O , 
R R, R' 

(A-3) 

is not satisfied. This leads to a necessary condition 1>;£ 1>c for the absorptive sphere 
model to be applicable, where 
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{
1/ 2[1 + <R3>2 / <R 4><R2>] , 

¢c = 1/2[1 + 3<R5><R4> / <R6><R3>] . 

(d=2) 

(d=3) 

It can be shown that 

where the lower bound corresponds to the mono-dispersive system. 

Appendix B 
--An Equivalent Sphere System for Irregular Droplets--

(A·4) 

Assume that the normalized, single droplet correlation function r( r) is written as 

11= r( r) =- dR n(R) v(R) r(R; r) , 
v 0 

(B·l) 

where n(R) is normalized by 

1= dR n(R) v(R) = v . 

Then let us show that it is always possible to find an explicit representation for n(R) when 
r( r) .is given. This can be attained by the Mellin transformation of Eq. (B ·1) as follows: 
Using the definition of r(R; r), i.e., Eq.(28) in the text, one finds 

B(l d+l) 
1 {=R (R) (R)RS-1d'D- s 2' 2 {= ( ) s-ld 
l)Jo n v .It-¥ B( s+1 d+l)Jo r r r r, 

2 ' 2 

where the Beta function representations 

(lx s(1-X 2)(d-l)/2dx=lB( s+1 d+l) 
Jo 2 2' 2 

and 

(
1 d+l) rd=4/dB 2' -2- , 

(B·2) 

are used. The coefficient on the right-hand side of Eq. (B·2) for d=2, 3 is rewritten as 

B(l d+l) 
s 2' 2 

B( s+1 d+l) 
2 ' 2 

{ 

~S'(S+21B(~, n, 
3s(s+ l)(s+2) , 

(d=2) 

(d=3) (B·3) 

respectively. By using the inverse transformation the final expressions are given by 

(d=2) 

(d=3) 
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Note that the result for d=3 can be directly obtained from Eq. (B·n with the use of 

r;;;;'2R, 

r>2R. 

As is easily seen in this result, n(R) is singular at R=O when the surface is not smooth, 
i.e., y"(O) *0. 
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