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a b s t r a c t

The article investigates the large sample properties of the quantile normalization method by Bolstad et al.
(2003) [4] which has become one of the most popular methods to align density curves in microarray data
analysis. We prove consistency of this method which is viewed as a particular case of the structural
expectation procedure for curve alignment, which corresponds to a notion of barycenter of measures
in the Wasserstein space. Moreover, we show that, this method fails in some case of mixtures, and we
propose a new methodology to cope with this issue.

1. Introduction

We consider a density estimation problem in the particular sit-
uation where the data are samples of density curves, observed with
some variations which are not directly correlated to the studied
phenomenon. This situation occurs often in biology, for example
when considering gene expression data obtained from microarray
technologies, which is used to measure genome wide expression
levels of genes in a given organism. A microarray may contain
thousands of spots, each one containing a few million copies of
identical DNA molecules that uniquely correspond to a gene. From
each spot, a measure is obtained and then one of the most popular
applications is to compare gene expression levels on different con-
ditions, which leads to millions of measures of gene expression lev-
els on technical and biological samples. However, before
performing any statistical analysis on such data, it is necessary to
process raw data in order to remove any systematic bias inhering
to the microarray technology: differential efficiency of the two
fluorescent dyes, different amounts of starting mRNA material,
background noise, hybridization reactions and conditions. A natu-
ral way to handle this phenomena is to try remove these variations
in order to align the measured densities, which proves difficult
since the densities are unknown. In bioinformatics and computa-

tional biology, a method to reduce this kind of variability is known
as normalization.

Among the normalization methods, the quantile normalization
proposed by Bolstad et al. [4] has received a considerable interest.
The procedure consists in assuming that there exists an underlying
common distribution followed by the measures. Then, for
i ¼ 1; . . . ;m samples of j ¼ 1; . . . ;n i.i.d random variables Xi;j, the
mean distribution is achieved by projecting the jth empirical vector
of sample quantiles, q̂j ¼ ðq̂1;j; . . . ; q̂m;jÞ>, onto the vector
d ¼ ð1=

ffiffiffiffiffi

m
p

; . . . ;1=
ffiffiffiffiffi

m
p

Þ>. This gives projdq̂j ¼ ðmÿ1
Pm

i¼1q̂i;j;

. . . ;mÿ1
Pm

i¼1q̂i;jÞ>, which is such that if all m data vectors
Xi; i ¼ 1; . . . ;m, share the same distribution, then the plot of the
quantiles gives a straight line along the line d. We refer to [4,12]
for some applications of this method. An example of this method
is given in Fig. 1, where the densities of a sample of 18 two-color
microarrays are plotted after normalization of the expression log-
ratios within two-color arrays (see [24]). The dot-dashed and solid
lines through densities corresponds to cross-sectional mean and
quantile normalization of the log intensities across the arrays,
respectively. The quantile normalization method has the advanta-
ges to be simple and quick with respect to others normalization
procedures and yet providing very good estimation results. How-
ever its statistical properties have not been derived yet up to our
knowledge.

Actually, normalization of density samples may be seen as the
empirical version of a warping problem between distribution func-
tions. This issue has received a growing attention in the last decade
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where many authors tackle the problem of recovering an unknown
curve observed with both amplitude (variation in the y-axis) or
phase (variation in the x-axis) variations, which prevent any direct
extraction of classical statistics such as the mean or the median. In-
deed the classical cross-sectional mean does not provide a consis-
tent estimate of the function of interest when the phase variations
are ignored since it fails to capture the characteristics of the sample
of curves as quoted in [18]. Therefore curve registration (also called
curve alignment, structural averaging, and time warping) methods
have been proposed in the statistical literature, among themwe re-
fer, for example, to [14,20,11,28,29,18,17,10,13,15,9] and refer-
ences therein.

Hence, in this paper we point out that the quantile normaliza-
tion can be seen as a particular case of the structural mean proce-
dure, described in [9], which corresponds to a notion of barycenter
of measures in the Wasserstein space as described in Boissard et al.
[3]. We study the large sample properties of the quantile normali-
zation method. In addition, when this procedure fails, using the
analogy with warping issues, we propose a variation of this meth-
od to still recover a mean density and thus improving one pointed
drawback of the quantile normalization method.

The outline of this article is as follows. In Section 2, we describe
a nonparametric warping functional model which will be used to
relate with the quantile normalization method. In Section 3 we
present the quantile estimation and derive the asymptotic proper-
ties of the quantile normalization. Section 4 presents the relation-
ship between normalization and distribution function alignment,
which enables to improve quantile normalization method. Simula-
tions are shown in Section 5. In Section 6, we apply the methods to
normalize two-channel spotted microarray densities and evaluate
its utility to identify differentially expressed genes. Finally, some
conclusions are given in Section 7. All the proofs are gathered in
Appendix A.

2. Statistical model for density warping

Let Xi;j; i ¼ 1; . . . ;m; j ¼ 1; . . . ;ni be a sample of m independent
real valued random variables of size ni with density function
fi : R ! 0;þ1½ Þ and distribution function F i : R ! ½0;1�. We as-
sume without loss of generality that ni ¼ n for all units
i ¼ 1; . . . ;m . The random variables are assumed to model the same
phenomena with a variation effect modeled as follows.

Each distribution function F i is obtained by warping a common
distribution function F : R ! ½0;1� by an invertible and differentia-
ble warping function Hi, of the following manner:

F iðtÞ ¼ PrðXi;j 6 tÞ ¼ F � Hÿ1
i ðtÞ ð1Þ

where Hi is random, in the sense that H1; . . . ;Hmð Þ is an i.i.d random
sample from a (non parametric) warping stochastic process
H : X ! CðRÞ defined on an unknown probability space ðX;A;PÞ,
while CðRÞ denotes the space of all continuous functions defined
on R. Define / its mean and let # be its variance which is assumed
to be finite. This model is also considered in [10,9].

Since the model (1) to estimate the function f is not identifiable
(see [9]), we consider the structural expectation (SE) of the quantile
function to overcome this problem as

qSEðaÞ :¼ Fÿ1
SE ðaÞ ¼ / � Fÿ1ðaÞ; 0 6 a 6 1: ð2Þ

Inverting Eq. (1) leads to

qiðaÞ ¼ Fÿ1
i ðaÞ ¼ Hi � Fÿ1ðaÞ; 0 6 a 6 1; ð3Þ

where qiðaÞ is the population quantile function (the left continuous
generalized inverse of F i), F

ÿ1
i : ½0;1� ! R, given by

qiðaÞ ¼ Fÿ1
i ðaÞ ¼ inf xij 2 R : F iðxijÞP a

� 	

; 0 6 a 6 1:

Hence the natural estimator of the structural expectation (2) is gi-
ven by

qmðaÞ ¼
1
m

X

m

i¼1

qiðaÞ; 0 6 a 6 1: ð4Þ

In order to get the asymptotic behavior of the estimator, the fol-
lowing assumptions on the warping process H and on the distribu-
tion function F are considered:

A1. There exists a constant C1 > 0 such that for all ða; bÞ 2 ½0;1�2,
we have

E HðaÞ ÿ EHðaÞ ÿ HðbÞ ÿ EHðbÞð Þj j2
h i

6 C1 aÿ bj j2:

A2. There exists a constant C2 > 0 such that, for all ða; bÞ 2 ½0;1�2,
we have

E Fÿ1ðaÞ ÿ Fÿ1ðbÞ
�

�

�

�

�

�

2
� �

6 C2 aÿ bj j2:

The following theorem deals with the asymptotic behavior of
the estimator (3).

Theorem 1. The estimator qmðaÞ is consistent is the sense that

qmðaÞ ÿ E qmðaÞ
� �











1
¼ qmðaÞ ÿ qSEðaÞ












1
!a:s:

m!1
0:

Moreover, under Assumptions A1 and A2, the estimator is asymptoti-

cally Gaussian, for any K 2 N and fixed ða1; . . . ;aKÞ 2 ½0;1�K ,

ffiffiffiffiffi

m
p

qmða1Þ ÿ qSEða1Þ
..
.

qmðaKÞ ÿ qSEðaKÞ

2

6

6

4

3

7

7

5

!D
m!1

N K 0;Rð Þ

where R is the asymptotic variance–covariance matrix whose ðk; k0Þ-
element is given by Rk;k0 ¼ # qðakÞ; qðak0 Þð Þ for all ðak;ak0 Þ 2 ½0;1�2 with

ak < ak0 .

3. Quantile estimation and the quantile normalization method

The distribution function is not observed and only random sam-
ples Xi;1; . . . ;Xi;n from F iðxÞ for i ¼ 1; . . . ;m are observed. The ith
empirical quantile function is a natural estimator of Fÿ1

i when
there is not any information on the underlying distribution func-
tion F i. Consider the order statistics Xi;1:n 6 Xi;2:n 6 � � � 6 Xi;n:n, hence
the estimation of the quantile functions, qiðaÞ, is obtained by
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Fig. 1. Densities for individual-channel intensities for two-color microarray data
after normalization within arrays. Dotted and solid gray lines correspond to the
‘‘green’’ and ‘‘red’’ color arrays, respectively.



q̂i;nðaÞ ¼ F
ÿ1
i;n ðaÞ ¼ inf xij 2 R : Fi;nðxijÞP a

� 	

¼ Xi;j:n

for
jÿ 1
n

< a 6
j

n
; j ¼ 1; . . . ;n;

where F
ÿ1
i;n is the ith empirical quantile function.

Finally, the estimator of the structural quantile is given by

q̂j ¼
1
m

X

m

i¼1

q̂i;j ¼
1
m

X

m

i¼1

Xi;j:n; j ¼ 1; . . . ;n: ð5Þ

Note that, this procedure corresponds to the so-called quantile nor-
malization method proposed by Bolstad et al. [4].

Based on sample quantiles we can obtain a ‘‘mean’’ distribution
by mean the projection of the empirical quantile vector of the jth
sample quantiles, q̂j ¼ ðq̂1;j; . . . ; q̂m;jÞ>, onto the m-vector
d ¼ ð1=

ffiffiffiffiffi

m
p

; . . . ;1=
ffiffiffiffiffi

m
p

Þ>, given by projdq̂j ¼ ðmÿ1
Pm

i¼1q̂i;j; . . . ;

mÿ1
Pm

i¼1q̂i;jÞ>. The quantile normalization method can be under-
stood as a quantile–quantile plot extended to m dimensions such
that if all m data vectors share the same distribution, then the plot
of the quantiles gives a straight line along the line d.

The asymptotic behavior of the quantile normalization estima-
tor (5) is established by the next theorem.

Theorem 2. The quantile normalization estimator q̂j is strongly

consistent, q̂j !a:s
m;n!1

qSEðajÞ; j ¼ 1; . . . ;n. Also, under the assumptions

of compactly central data, Xi;j:n ÿ E Xi;j:n

ÿ ��

�

�

� 6 L < 1 for all i and j, and
ffiffiffiffiffi

m
p

=n ! 0, it is asymptotically Gaussian. Actually, for any K 2 N and

fixed ða1; . . . ;aKÞ 2 ½0;1�K ,

ffiffiffiffiffi

m
p

q̂j1 ÿ qSEða1Þ
..
.

q̂jK ÿ qSEðaKÞ

2

6

6

4

3

7

7

5

!D
m;n!1

N K 0;Rð Þ;

where R is the asymptotic variance–covariance matrix whose ðk; k0Þ-
element is given by Rk;k0 ¼ # qðakÞ; qðak0 Þð Þ for all ðak;ak0 Þ 2 ½0;1�2 with

ak < ak0 .

This theorem relies on the asymptotic behavior of the quantile
estimator, q̂i;nðaÞ, given by the following proposition.

Proposition 1. Assume Fi is continuously differentiable at the ath
population quantile qiðaÞ which is the unique solution of

F iðqiðaÞÿÞ 6 a 6 F iðqiðaÞÞ, and fi qiðaÞð Þ > 0 for a fixed 0 < a < 1.
Also assume nÿ1=2ðj=nÿ aÞ ¼ oð1Þ. Then, for i ¼ 1; . . . ;m, the estima-

tor q̂i;nðaÞ is strongly consistent, q̂i;nðaÞ !a:s:
n!1

qiðaÞ; and asymptotically

Gaussian

ffiffiffi

n
p

Xi;j:n ÿ Hi � qðaÞ
ÿ �

!D
n!1

N 0;
að1ÿ aÞ

f � Hÿ1
i Hi � qðaÞð Þ � Hÿ1

i

� �0
Hi � qðaÞð Þ

� �2

0

B

@

1

C

A
;

where Hÿ1
i

� �0
ðzÞ ¼ dH

ÿ1
i ðzÞ=dz ¼ H0

i � H
ÿ1
i ðzÞ

n oÿ1
.

4. Density alignment as a registration problem

As we have seen in the previous sections, quantile normaliza-
tion amounts to finding a mean distribution that fits the data den-
sity. Indeed, if the distribution function were known, hence, given
respectively F i’s the distribution functions and li’s the distribu-
tions of the i.i.d sample Xi;j; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n, the problem
consists in finding a distribution function F and a probability l
which plays the role of a mean function but close enough to the
data. This corresponds to the usual registration problem of the
F i’s function restricted to the set of distribution functions.

One of the major issue in registration problem is to find the fit-
ting criterion which enables to give a sense to the notion of mean

of a sample of points. A natural criterion is in this framework given
by the Wasserstein distance and this problem can be rewritten as
finding a measure l which minimizes

l#
1
m

X

m

i¼1

W2
2ðl;liÞ; ð6Þ

where W2
2 stands for the 2-Wasserstein distance

W2
2ðl;liÞ ¼

Z

Fÿ1
i ðaÞ ÿ Fÿ1ðaÞ

�

�

�

�

�

�

2
da:

The existence and the uniqueness of such a minimizer is a dif-
ficult task in a general framework, which has been proved very re-
cently under some technical conditions on the li’s in [1]. However,
for 1 dimensional distributions, an explicit solution can be given,
which corresponds to the structural expectation defined in [9]. Here,
the F i’s and the li’s are not observed and only their empirical ver-
sion are available. The estimation counterpart is considered in
Section 3.

As pointed here, Wasserstein distance appears as a natural way
to model distance between distribution functions which are
warped one from another. Nevertheless, other criterion than (6)
can be investigated. Indeed, for any distance d on the inverse of dis-
tribution functions, we can define a criterion to be minimized

F #
1
m

X

m

i¼1

d Fÿ1; Fÿ1
i

� �

:

Each choice of d implies different properties for the minimizers.
Recall that the choice of the L2 loss corresponds to the Wasserstein
distance between the distributions. Another choice, when dealing
with warping problems, is to consider that the functional data be-
long to a non euclidean set, and to look for the most suitable cor-
responding distance. Hence, a natural framework is given by
considering that the functions belong to a manifold using a mani-
fold embedding and, in this context, the geodesic distance provides
a natural way to compare two objects. This point of view has been
developed in [7] where d̂g , an approximation of the geodesic dis-
tance, is provided using an Isomap-type graph approximation, fol-
lowing [25]. This gives rise to the criterion

F #
1
m

X

m

i¼1

d̂g Fÿ1; Fÿ1
i

� �

:

Only the approximation of the distribution function remains.
A theoretical study of this framework is difficult, mainly due to

the problems of both choosing a good manifold embedding and
then approximating the geodesic distance.

Many authors have considered this issue but results on the con-
sistency of minimizers of such criterion are very scarce. Hence, we
provide here a feasible algorithm to compute it and compare the
performances of the corresponding estimator. For this, recall that
we observe Xi;j; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n random variables. In or-
der to mimic the geodesic distance between the inverse of the dis-
tribution functions, we will directly estimate Fÿ1

i ðaÞ, for
jÿ 1=n < a 6 j=n by the corresponding order statistics Xi;j:n. Hence,
we sort the observations for each sample i, and denote by XðiÞ: the
sorted vector Xi;1:n; . . . ;Xi;n:n and thus we obtain an array of sorted
observations ðXð1Þ:; . . . ;XðmÞ:Þ. We then consider d̂g an approxima-
tion of the geodesic distance between the vectors XðiÞ: and define
the corresponding geodesic mean as the minimizer over all the
observation vectors x 2 fXðiÞ:; i ¼ 1; . . . ;mg of the criterion

x#
1
m

X

m

i¼1

d̂g x;XðiÞ:
ÿ �

:



Even if the theoretical properties of this estimate are
hard to understand due to the difficulties inherent to the
graph-type geodesic approximation, its practical properties
for density normalization will be studied in the next sec-
tion. The software used for this estimation is available
upon request.

5. Simulation study

In this section, we illustrate by mean of simulated data the
cases in which the quantile normalization method by Bolstad
et al. [4] works and the situation in which it has problems to rep-
resent properly the behavior of the sample of density curves.
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Fig. 2. Simulated density (left side) and distribution (right side) functions. Quantile (bold solid) and manifold (dash) normalizations. Cases 1–4 from the top to bottom.



We simulated a sample of m mixture density functions as linear
combinations of three Gaussian probability density functions
/ilðx;lil;rilÞ; l ¼ 1;2;3,

fiðxÞ ¼
X

3

l¼1

xil/ilðx;lil;rilÞ; i ¼ 1; . . . ;m;

where xil 2 0;1½ � are probability weights which satisfy
P3

l¼1xil ¼ 1; i ¼ 1; . . . ;m.
The simulated sample of mixture density functions were gener-

ated following the next procedure:

1. For each i ¼ 1; . . . ;m three samples of size n of random observa-
tions are drawn from a Gaussian distribution.

2. A sampling (with replacement) of size n is carried out on the
three samples based on the probability weights for obtaining
the elements for each i.

3. Finally, for each i a kernel density estimate is obtained.

The values assumed to the location parameters were
li1 ¼ 1; li2 ¼ 4 and li3 ¼ 7; to the scale parameters
ri1 ¼ 0:7; ri2 ¼ 0:8, and ri3 ¼ 0:9; and to the probability weights
xi1 ¼ 0:4; xi2 ¼ 0:3, and xi3 ¼ 0:3. The number of simulated
curves and observations assumed were m ¼ 50 and n ¼ 1000
respectively. The variability for the sample of curves was generated
according to the next cases:

Case 1 (Location variations).

Uðlil ÿ 0:15;lil þ 0:15Þ for l ¼ 1;2;3.

Case 2 (Scale variations).

Uðril ÿ 0:35;ril þ 0:35Þ for l ¼ 1;2, and Uðri3 ÿ 0:5;ri3 þ 0:5Þ for
l ¼ 3.

Case 3 (Location and scale variations).

Cases 1 and 2 together.

Case 4 (Probability weight variations).

For l ¼ 1;2; Uðxil ÿ 0:1;xil þ 0:1Þ.

where U is a uniformly distributed random variable.
Fig. 2 shows the simulated density and distribution functions

for each case. The estimated ‘‘mean’’ density and distribution func-
tions using the quantile and manifold normalization methods cor-
responds to the solid and dash lines, respectively. From the graphs,
we can see that the quantile normalization estimate represents the
variability among the density curves for the Cases 1–3, i.e when the
probability weights do not vary among the densities,
xil ¼ xi0 l; l ¼ 1;2;3 for i; i

0 ¼ 1; . . . ;m. In Case 4, on the contrary,
there are large differences between quantile and manifold normal-
ization methods, where the based quantile method does not cap-
ture the structural characteristics across the set of densities.

To overcome the drawback corresponding to Case 4, we propose
to apply the manifold embedding approach to estimate the struc-
tural mean pattern f based on an approximation of the induced
geodesic distance on an unknown connected and geodesically
complete Riemannian manifold M � R

n by [7]. As we can see in
Fig. 2, the estimation of the ‘‘mean’’ density f through the manifold
normalization improves the normalization of the sample of densi-
ties for the case of variations in probability weights (Case 4) cap-
turing properly the structural mean behavior of sample of curves.

6. Application to identification of differentially expressed genes

In this section, we apply the quantile and manifold methods to
normalize two-channel (two-color) spotted microarrays in order to
remove, from the expression measures, the systematic variations
which arise from the microarray technology rather than from the
differences between the probes, retaining the biological signals.
For a description on two-channel spotted microarrays see
[32,30]. We also evaluate the new manifold normalization method
with respect to its ability to identify differentially expressed genes.
For this we use two data sets of Tomato and Swirl experiments.

6.1. Tomato data set

The two-channel spotted microarray expression data comes
from an experiment carried out by Wang et al. [27] in the Génomi-
que et Biotechnologie des Fruits (GBF) laboratory at the Institut
National Polytechnique-Ecole Nationale Superieure Agronomique
de Toulouse (INP-ENSAT), which studies the underlying molecular
mechanisms of the process of fruit set (i.e. the transition from
flower-to-fruit) of tomato plants (Solanum lycopersicum). The data
are provided by the experiment E-MEXP-1617 downloaded from
the ArrayExpress database of functional genomic experiments at
the European Bioinformatics Institute (EBI).

The data set contains 11,860 spots (probes) and 18 arrays. The
Bioconductor limma package (http://www.bioconductor.org/)
based on the R programming language was used to read and carry
out the quality assessment of the intensity data [24,22]. Fig. 3
shows the density plots for individual-channel intensities of two-
color microarrays. Dotted and solid lines correspond to densities
of ‘‘green’’ and ‘‘red’’ color intensities for each array, respectively.

We normalize the two-channel microarray data applying the
single-channel normalization method by Yang and Thorne [32],
which removes the systematic intensity bias from the red and
green channels separately, both within and between arrays. The
method proceeds in two stages: a within-array normalization fol-
lowed by a between-array (between all channels from multiple ar-
rays) normalization. The first stage normalizes the expression log-
ratios (M-values, M ¼ log2ðR=GÞ, where R and G are the red and
green intensities, respectively) from two-color arrays such that
these average to zero within each array separately. The advantage
of using the log-ratios for measuring relative gene expression with-
in two samples on the same slide rather than log-intensity values is
due to these are considered to be more stable than the absolute
intensities across slides [32]. The second stage normalizes the log
intensities across arrays ensuring that these have the same empir-
ical distribution across arrays and across channels. Procedures for
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Fig. 3. Densities for individual-channel intensities for two-color microarray data.
Dotted and solid lines correspond to the ‘‘green’’ and ‘‘red’’ color arrays,
respectively.



within-array and between-array normalizations are implemented
in the normalizeWithinArrays and normalizeBetweenAr-

rays functions from the limma package, respectively.
The log-ratios within arrays were normalized using the loess

method (see [24,30]). Fig. 4 plots the densities for each array after
loess normalization. The normalization between arrays applying
the quantile and manifold normalization are plotted in the same
figure in solid and dashed lines. As we can see, the manifold nor-
malization captures better the structural characteristics of the den-
sities, in particular those that corresponding to the inflection
points present in the individual arrays.

Now we evaluate the usefulness of the manifold normalization
to identify differentially expressed genes. One of the aims of the to-
mato experiment in [27] is to identify gene expression in the
(MicroTom) tomato lines downregulated in the expression of the
Indole Acetic Acid 9 gene (AS-IAA9) and the wild type at three
developmental stages during fruit set: flower bud, anthesis (i.e.
the period during which the flower is fully open and functional),
and post-anthesis. Thus, there are three experiments of identifica-
tion of genes taking each tomato fruit stage separately. Hence, the
experimental designs were based on six arrays for each corre-
sponding stage, in two dye-swap pairs.

The statistical tool used for the identification of differentially
expression genes in designed microarray experiments was the pro-
cedure based on the fit of gene-wise linear models and the applica-
tion of empirical Bayes methods developed by Smyth [21]. The
method relies on the ‘‘moderated’’ t-statistic across genes, a classi-
cal t-statistic improved by moderation of the standard errors, i.e.,
posterior estimators that shrunk the standard errors towards a
common prior value using a Bayesian model (see [21,23] for de-
tails). The tables for each stage show the top 30 differentially
expression genes identified using the expression intensities nor-
malized with the quantile and manifold normalizations methods,
respectively. In the subsequent tables (Table 2–10 are included,
for each identified gene, the M-value, the moderate t-statistic,
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Fig. 4. Densities for individual-channel intensities for two-color microarray data
after loess normalization within arrays. Solid and dashed lines correspond the
normalization between arrays applying the quantile and manifold normalization,
respectively.

Table 1

Number of differentially expressed genes identified for each stage of tomato fruit
assuming an adjusted p-value less than 0.05.

Tomato stage

Bud Anthesis Post-anthesis

Quantile 93 1291 262
Manifold 68 1274 254
Quantile \Manifold 68 1250 252
QuantileÿManifold 25 41 10
Manifoldÿ Quantile 0 24 2

Aÿ B denotes the difference set between sets A and B.
A \ B denotes the intersection between sets A and B.

Table 2

Bud stage: top 30 differentially expressed genes identified from Tomato data
(quantile normalization).

Gene M-value Moderated t Adj. p-value B

3733 2.860 29.874 0.0001 7.958
9737 2.484 13.668 0.0110 5.246
12795 ÿ0.897 ÿ11.891 0.0172 4.533
10960 0.896 11.437 0.0172 4.324
10905 0.876 11.270 0.0172 4.244
5812 0.910 10.270 0.0227 3.725
8334 1.046 10.211 0.0227 3.692
6768 0.881 10.118 0.0227 3.640
8712 0.906 9.849 0.0244 3.485
6848 0.903 9.387 0.0305 3.205
9173 0.765 9.010 0.0308 2.964
7338 0.665 8.783 0.0308 2.811
2266 0.706 8.700 0.0308 2.755
12214 ÿ0.814 ÿ8.611 0.0308 2.693
2489 0.775 8.600 0.0308 2.686
3786 0.786 8.584 0.0308 2.674
4603 0.669 8.525 0.0308 2.633
3426 ÿ0.752 ÿ8.509 0.0308 2.622
7180 1.040 8.498 0.0308 2.614
4646 0.627 8.302 0.0308 2.473
12787 1.358 8.265 0.0308 2.447
4192 0.863 8.250 0.0308 2.435
7859 ÿ0.842 ÿ8.077 0.0308 2.308
7948 0.770 8.044 0.0308 2.283
6826 0.632 7.995 0.0308 2.245
2432 0.586 7.992 0.0308 2.243
11454 0.639 7.929 0.0308 2.195
6474 0.591 7.822 0.0308 2.113
87 0.691 7.822 0.0308 2.112
11019 ÿ0.630 ÿ7.796 0.0308 2.092

Table 3

Bud stage: top 30 differentially expressed genes identified from Tomato data
(manifold normalization).

Gene M-value Moderated t Adj. p-value B

3733 2.854 18.769 0.0024 6.488
9737 2.371 13.394 0.0133 5.056
12795 ÿ0.866 ÿ11.721 0.0227 4.382
10905 0.815 10.681 0.0272 3.883
8334 0.989 10.566 0.0272 3.823
10960 0.860 10.336 0.0272 3.701
3786 0.769 9.184 0.0342 3.028
6768 0.828 9.166 0.0342 3.017
7338 0.662 8.999 0.0342 2.909
8712 0.878 8.933 0.0342 2.867
7859 ÿ0.847 ÿ8.846 0.0342 2.809
7180 1.057 8.748 0.0342 2.744
2266 0.678 8.742 0.0342 2.740
4646 0.622 8.547 0.0342 2.607
12214 ÿ0.790 ÿ8.542 0.0342 2.604
4603 0.649 8.517 0.0342 2.587
5812 0.886 8.401 0.0342 2.505
12787 1.317 8.387 0.0342 2.495
7948 0.757 8.102 0.0342 2.289
2489 0.750 8.079 0.0342 2.273
6826 0.616 8.077 0.0342 2.270
3426 ÿ0.755 ÿ8.068 0.0342 2.264
4192 0.817 8.051 0.0342 2.252
2432 0.572 8.048 0.0342 2.249
8254 0.882 7.972 0.0342 2.192
12181 ÿ0.613 ÿ7.910 0.0342 2.146
6848 0.842 7.847 0.0342 2.098
87 0.676 7.844 0.0342 2.096
9173 0.731 7.831 0.0342 2.085
6474 0.562 7.743 0.0342 2.018



the adjusted p-value and the B-statistic (log-odds that the gene is
differentially expressed). The ranking of genes with significant dif-
ferential expression are reported in order of increasing B-values. To
adjust the p-values for multiple testing the Benjamini–Hochberg’s
method was used to control the expected false discovery rate (FDR)
(see [23]). The number of differentially expressed genes detected,
for each stage of the tomato fruit, by the use of normalized log-ra-
tios through the two normalization methods are reported in Ta-
ble 1, according to an assumed threshold value of 0.05 for
adjusted p-values. In the same table are also reported the number

of common genes shared by both methods, and the number of
genes identified with the quantile (manifold) normalization but
not with the manifold (quantile) method.

6.1.1. Bud stage

For the bud stage of tomato fruit, the number of differentially
expressed genes identified employing the normalized expression
log-ratios through quantile and manifold normalization methods
were 93 and 68, respectively, with a common number of genes
of 68. The top 30 of differentially expressed genes detected are
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Fig. 5. Graphical illustration of the differentially expressed genes identified for bud (top-left), anthesis (top-right) and post-anthesis (bottom) stages using the normalized
expressions with the quantile and manifold methods. Black points and pluses correspond to the detected genes with a assuming an adjusted p-value less than 0.05. The red
points (pluses) symbols correspond to the genes identified with the quantile (manifold) normalization but not with the manifold (quantile) method (see Table 1). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



shown in Tables 2 and 3. The ordering of genes of first 30 genes is
more or less parallel between both normalization methods. Some
common genes have a quite different position, e.g. genes 5812,

6848, 9173, 3786, 7180, 4646 and 7859. Mostly of these top genes
are common, except the genes 11,454 and 11,019 in the quantile
normalization, and genes 8254 and 12181 in the manifold method.

Table 4

Anthesis stage: top 30 differentially expressed genes identified from Tomato data
(quantile normalization).

Gene M-value Moderated t Adj. p-value B

9306 ÿ2.100 ÿ35.992 0.0000 11.171
10855 1.390 20.624 0.0004 8.521
4051 1.600 19.425 0.0004 8.169
7075 1.435 19.289 0.0004 8.127
7 ÿ1.488 ÿ18.515 0.0004 7.880
8180 ÿ1.474 ÿ17.630 0.0004 7.578
7825 ÿ2.703 ÿ17.582 0.0004 7.561
6884 1.124 17.529 0.0004 7.542
12861 1.178 17.365 0.0004 7.483
8334 1.172 17.304 0.0004 7.461
7904 1.004 17.185 0.0004 7.418
10617 1.193 16.704 0.0004 7.238
9963 1.537 16.465 0.0004 7.146
1127 ÿ1.801 ÿ16.448 0.0004 7.139
4040 ÿ2.265 ÿ16.429 0.0004 7.132
12795 ÿ2.985 ÿ15.828 0.0005 6.891
7686 ÿ0.972 ÿ15.777 0.0005 6.871
6218 ÿ0.992 ÿ15.596 0.0005 6.795
9582 1.177 15.176 0.0005 6.617
12911 ÿ1.804 ÿ15.118 0.0005 6.592
9457 0.970 15.052 0.0005 6.563
132 ÿ1.235 ÿ15.045 0.0005 6.560
4312 1.156 14.946 0.0005 6.516
11406 0.952 14.742 0.0005 6.425
3117 ÿ1.153 ÿ14.714 0.0005 6.412
7164 0.948 14.659 0.0005 6.387
7118 0.841 14.604 0.0005 6.363
8241 ÿ1.421 ÿ14.426 0.0005 6.281
9876 ÿ1.735 ÿ14.260 0.0006 6.204
2339 ÿ1.219 ÿ14.234 0.0006 6.192

Table 5

Anthesis stage: top 30 differentially expressed genes identified from Tomato data
(manifold normalization).

Gene M-value Moderated t Adj. p-value B

9306 ÿ2.137 ÿ34.987 0.0000 10.919
10855 1.334 21.035 0.0004 8.541
7075 1.383 19.027 0.0004 7.962
4051 1.537 18.535 0.0004 7.806
8180 ÿ1.423 ÿ17.529 0.0004 7.467
7 ÿ1.424 ÿ17.453 0.0004 7.440
6884 1.098 17.425 0.0004 7.430
7904 0.986 17.383 0.0004 7.415
12861 1.149 17.349 0.0004 7.403
8334 1.150 17.313 0.0004 7.390
10617 1.170 16.994 0.0004 7.275
7825 ÿ2.604 ÿ16.838 0.0004 7.217
9963 1.487 16.104 0.0006 6.936
4040 ÿ2.253 ÿ15.820 0.0006 6.822
12795 ÿ2.852 ÿ15.751 0.0006 6.794
7686 ÿ0.952 ÿ15.565 0.0006 6.718
6218 ÿ0.964 ÿ15.241 0.0006 6.582
4209 1.406 15.144 0.0006 6.541
7164 0.908 14.723 0.0006 6.357
11406 0.940 14.714 0.0006 6.353
1127 ÿ1.700 ÿ14.673 0.0006 6.335
9457 0.936 14.651 0.0006 6.325
7118 0.826 14.631 0.0006 6.316
3117 ÿ1.126 ÿ14.627 0.0006 6.314
12911 ÿ1.752 ÿ14.600 0.0006 6.302
8241 ÿ1.395 ÿ14.433 0.0006 6.226
2339 ÿ1.158 ÿ14.370 0.0006 6.198
132 ÿ1.193 ÿ14.346 0.0006 6.186
9876 ÿ1.694 ÿ14.251 0.0006 6.142
4312 1.118 14.241 0.0006 6.138

Table 6

Post-anthesis stage: top 30 differentially expressed genes identified from Tomato data
(quantile normalization).

Gene M-value Moderated t Adj. p-value B

3161 ÿ1.669 ÿ21.432 0.0013 7.380
7953 ÿ2.826 ÿ19.875 0.0013 7.073
5626 ÿ1.119 ÿ15.296 0.0051 5.851
8339 ÿ1.329 ÿ14.746 0.0051 5.662
980 ÿ1.439 ÿ14.143 0.0054 5.441
4789 ÿ0.850 ÿ13.435 0.0064 5.163
11217 ÿ1.455 ÿ12.734 0.0064 4.866
914 ÿ0.843 ÿ12.533 0.0064 4.776
8590 ÿ0.814 ÿ12.436 0.0064 4.732
6927 ÿ0.872 ÿ12.339 0.0064 4.688
9637 ÿ0.752 ÿ12.265 0.0064 4.653
8912 ÿ0.918 ÿ11.934 0.0064 4.496
3211 ÿ1.005 ÿ11.833 0.0064 4.447
6253 ÿ0.962 ÿ11.809 0.0064 4.435
7038 ÿ1.100 ÿ11.629 0.0064 4.346
4040 ÿ1.187 ÿ11.549 0.0064 4.306
5405 ÿ0.712 ÿ11.475 0.0064 4.269
985 ÿ0.723 ÿ11.407 0.0064 4.234
2649 ÿ0.753 ÿ11.245 0.0067 4.150
5672 0.813 11.005 0.0073 4.022
12787 1.850 10.709 0.0080 3.860
7342 ÿ0.808 ÿ10.449 0.0082 3.713
6785 1.816 12.964 0.0079 3.711
2282 ÿ0.800 ÿ10.405 0.0082 3.688
6992 0.607 10.361 0.0082 3.662
11474 ÿ0.799 ÿ10.290 0.0082 3.621
10032 ÿ1.138 ÿ10.265 0.0082 3.606
8456 ÿ0.838 ÿ10.228 0.0082 3.584
6234 ÿ0.965 ÿ10.199 0.0082 3.566
6806 ÿ0.805 ÿ10.176 0.0082 3.553

Table 7

Post-anthesis stage: top 30 differentially expressed genes identified from Tomato data
(manifold normalization).

Gene M-value Moderated t Adj. p-value B

3161 ÿ1.637 ÿ21.262 0.0012 7.305
7953 ÿ2.744 ÿ20.204 0.0012 7.099
5626 ÿ1.080 ÿ15.746 0.0045 5.961
8339 ÿ1.295 ÿ14.250 0.0054 5.447
980 ÿ1.399 ÿ14.218 0.0054 5.435
4789 ÿ0.822 ÿ13.017 0.0062 4.957
914 ÿ0.806 ÿ12.947 0.0062 4.927
11217 ÿ1.393 ÿ12.568 0.0062 4.761
8590 ÿ0.796 ÿ12.442 0.0062 4.704
7038 ÿ1.151 ÿ12.424 0.0062 4.696
6927 ÿ0.841 ÿ12.081 0.0062 4.537
9637 ÿ0.733 ÿ12.062 0.0062 4.528
3211 ÿ0.986 ÿ11.957 0.0062 4.477
6253 ÿ0.934 ÿ11.726 0.0063 4.365
8912 ÿ0.880 ÿ11.601 0.0063 4.304
985 ÿ0.705 ÿ11.536 0.0063 4.271
4040 ÿ1.149 ÿ11.394 0.0063 4.199
5405 ÿ0.684 ÿ11.337 0.0063 4.169
6785 1.731 14.589 0.0062 4.164
2649 ÿ0.742 ÿ11.270 0.0063 4.134
12787 1.796 11.231 0.0063 4.114
6234 ÿ0.921 ÿ10.715 0.0081 3.836
5672 0.764 10.585 0.0081 3.764
10240 0.572 10.413 0.0081 3.666
7342 ÿ0.766 ÿ10.407 0.0081 3.662
6806 ÿ0.781 ÿ10.350 0.0081 3.629
6992 0.580 10.311 0.0081 3.607
10032 ÿ1.091 ÿ10.311 0.0081 3.607
2282 ÿ0.783 ÿ10.300 0.0081 3.601
6497 ÿ0.745 ÿ10.187 0.0084 3.534



Important features on genes can be found by means of the scat-
terplot between the average of log2 fold changes against the aver-
age of log-intensity A ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffi

R� G
p

for each probe over all arrays in
the experiment (MA-plot). There are other plots over which the
identification can be contrasted, e.g., scatterplots between the
moderated t-statistics and the average of log-intensity A, between
the B-statistics against average of log2 fold changes (volcano plot),
and quantile–quantile plots of moderated t-statistics [31].
Although we choose the MA-plots to save space, the results were
practically the same for these graphs. The MA-plot for the respec-
tive normalization method are in Fig. 5. The black symbols corre-
spond to differentially expressed genes with adjusted p-value
less than 0.05. From the MA-plots is clear that these symbols are
well separated from the clouds such that the corresponding genes
are likely to be differentially expressed [31]. The genes detected
with the normalized expressions by the quantile normalization
that are not identified with the manifold method are signed in

red points for the manifold MA-plot (on the bottom) for compari-
son. The number of theses genes are reported in Table 1.

6.1.2. Anthesis stage

The number of differentially expressed genes detected in the
anthesis stage with the expression intensities normalized with
the quantile and manifold methods were 1291 and 1274, respec-
tively, with 1250 genes in common. As is illustrated in Tables 4
and 5, the first 30 genes identified with both normalization meth-
ods are almost the same, except the gene 9582 for the quantile nor-
malization and the gene 4209 for the manifold normalization. As in
the bud stage, the position of genes in this ranking is fairly parallel
for both methods, where only the position of genes 7825, 1127,
132, 4312 and 7164 is slightly different.

Although there are not big differences in the MA-plots between
both normalization methods shown in Fig. 5, the identification

Table 8

Validation by qRT-PCR of Tomato experiment.

Gene Bud Anthesis Post-anthesis

Bolstad Manifold qRT-PCR Bolstad Manifold qRT-PCR Bolstad Manifold qRT-PCR

10318 no no yes yes (88) yes (96) yes
10617 yes (12) yes (11) yes
10960 yes (4) yes (6) no
12580 no no yes yes (51) yes (51) yes
12722 no no yes
2266 yes (13) yes (13) yes yes (103) yes (77) yes
6848
3733 yes (1) yes (1) yes yes (145) yes (137) yes yes (48) yes (45) yes
9737 yes (2) yes (2) yes
9876 yes (29) yes (29) yes
11243 yes (275) yes (268) yes
12861 yes (9) yes (9) yes
7468 yes (85) yes (75) yes
7392 yes (303) yes (299) yes
6299 no no yes no no yes
3161 yes (1) yes (1) yes
2 no no no yes (147) yes (171) yes
2020 yes (81) yes (79) yes
5626 yes (3) yes (3) no
2238 yes (158) yes (155) yes
12413 no no yes yes (161) yes (172) yes
10258 yes (44) yes (40) yes yes (83) yes (74) yes
3043 yes (33) yes (31) yes yes (83) yes (80) yes yes (36) yes (36) yes
11189 yes (138) yes (134) yes
2402 yes (109) yes (103) yes
8241 yes (28) yes (26) no
12911 yes (20) yes (25) yes yes (35) yes (39) yes
10032 yes (115) yes (110) yes yes (27) yes (28) yes
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Fig. 6. Densities for individual-channel intensities for two-color microarray data.
Dotted and solid lines correspond to the ‘‘green’’ and ‘‘red’’ color arrays,
respectively.
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Fig. 7. Densities for individual-channel intensities for two-color microarray data
after print-tip loess normalization within arrays. Solid and dashed lines correspond
the normalization between arrays applying the quantile and manifold normaliza-
tion, respectively.



with the normalized intensities with the manifold method is a lit-
tle bit sparser with respect to the quantile method, identifying 17
genes less. In the plots, the genes detected with the quantile nor-
malization that are not identified with the manifold method are
signed in red points for the manifold MA-plot (on the bottom),
and the genes identified with the manifold normalization but not
detected by the quantile method are represented by red pluses
for the quantile MA-plot (on the top).

6.1.3. Post-anthesis stage

For the post-anthesis stage, 262 and 254 differentially ex-
pressed genes were identified with the quantile and manifold nor-
malization, respectively, where the number of genes shared by
both methods was 252. The top 30 genes are reported in Tables 6
and 7. As in the two previous stages, the position of these genes
in both tables is parallel, especially for the top 10 genes. After,
the position changes a little, specially for genes 7038, 6785,
2282, 6234 and 6806. There exist only four no common genes in
the first 30 identified genes in both tables (gene 11,474 and 8456
for the quantile method and 10,240 and 6497 for the manifold nor-
malization). The MA-plots for both methods are shown in Fig. 5. As
in the bud and anthesis stages, mostly of detected genes are rela-
tively far from the to zero line on the M-axis.

6.1.4. Validation by qRT-PCR data

Finally, in order to validate the microarray analysis of tomato
data set in terms of the accuracy to detect differentially expressed
genes during the fruit set using the normalized log ratios thought
the quantile and manifold normalization methods, the results of
a quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
analysis over 28 genes carried out by Wang et al. [27] were em-
ployed. In Table 8, the qRT-PCR column, for each of developmental
stage of fruit set, indicates whether the corresponding analyzed
gene was validated (categorized as ‘‘yes’’) or not in the analysis
by Wang et al. [27]. The columns of the quantile and manifold
methods indicates whether the respective gene was detected as
differentially expressed in each stage. On the same Table, the num-
bers within parenthesis indicate the position of the identified gene
in the ranking of genes.

The comparison between the identification results with the nor-
malization methods and the validation results by the qRT-PCR
shows that the detection of genes using normalized expressions
with both of normalization methods have a good accuracy. In gen-
eral, for all stages of fruit set, there is a proportion of 75.5% of
favorable cases (i.e. identified gene matching with validated gene
or not identified gene matching with not validated gene). Addition-
ally, the manifold method seems to have a higher significance,
identifying first the validated gene with respect to the quantile
method; 33 cases of validated genes are identified fist by the man-
ifold normalization (82.5%).

6.2. Swirl zebrafish data set

The same exercise of identification of differentially expressed
genes was carried out with the popular Swirl data set, which can
be downloaded from http://bioinf.wehi.edu.au/limmaGUI/Data-
Sets.html. This experiment was conducted using zebrafish (Brac-
hydanio rerio) as a model organism to study early development
in vertebrates. Swirl is a point mutation in the BMP2 gene that af-
fects the dorsal–ventral body axis. Ventral fates such as blood are
reduced, whereas dorsal structures such as somites and the noto-
chord are expanded. One of the goals of the experiment is to iden-
tify genes with altered expression in the swirl mutant compared to
wild-type zebrafish. See [8,31,21] for detailed information about
this experiment. A total of four arrays were performed in two
dye-swap pairs with 8448 probes. Smyth [21] normalized the

expression of log-ratios within-arrays using the print-tip loess nor-
malization with a window span of 0.3 and three robustifying iter-
ations. We follow his method, but instead of between arrays scale
normalization of log intensities, here, of course, the quantile and
manifold normalization are applied to compare both methods.
The Figs. 6 and 7 show the densities of unnormalized individual-
channel intensities for two-color microarrays and its correspond-
ing print-tip loess normalization within arrays, respectively. The
solid and dashed lines in Fig. 7 correspond to the densities after
normalization between arrays applying the quantile and manifold
normalization, respectively.

The top 30 differentially expressed genes based on the quantile
and manifold normalizations are reported in Tables 9 and 10,
respectively. With a threshold value of 0.05 for adjusted p-values,
the number of differentially expressed genes identified with the
quantile and manifold methods were 168 and 150, respectively.
The 150 genes detected using the manifold method are also iden-
tified with the quantile normalization. The additional 18 genes de-
tected with the quantile method are signed in the MA-plot for the
manifold case in red points. As in the Tomato data, comparing with
the quantile normalization, the detection of differential expressed
genes based on the intensities normalized with the manifold meth-
od restricts a bit more the number of genes, being a more conser-
vative (sparse) method. The MA-plots are shown in Fig. 8.

Unfortunately, for the swirl zebrafish experiment there is not
exist qRT-PCR data to validate the results of identification of differ-
entially expressed genes founded when the expression intensities
normalized with the quantile and manifold normalizations meth-
ods are used.

7. Conclusions

Motivated by the density estimation problem when the data are
a sample of density curves and by the popularity of the quantile
normalization method by Bolstad et al. [4], we relate both issues

Table 9

Top 30 differentially expressed genes identified from Swirl data (quantile
normalization).

Gene M-value Moderated t Adj. p-value B

2961 ÿ2.633 ÿ17.198 0.0020 6.966
3723 ÿ2.185 ÿ16.415 0.0020 6.713
1611 ÿ2.186 ÿ15.736 0.0020 6.479
3721 ÿ2.198 ÿ14.329 0.0024 5.939
1609 ÿ2.325 ÿ13.710 0.0024 5.677
7602 1.210 13.121 0.0024 5.412
8295 1.306 13.070 0.0024 5.388
319 ÿ1.265 ÿ13.050 0.0024 5.378
515 1.308 12.835 0.0024 5.277

5075 1.373 12.795 0.0024 5.258
3790 1.187 12.356 0.0024 5.042
157 ÿ1.792 ÿ12.301 0.0024 5.014

7307 1.228 12.253 0.0024 4.989
7036 1.376 12.018 0.0024 4.869
2276 1.253 11.978 0.0024 4.848
7491 1.353 11.907 0.0024 4.810
3726 ÿ1.280 ÿ11.873 0.0024 4.792
5931 ÿ1.091 ÿ11.857 0.0024 4.784
683 1.350 11.657 0.0026 4.676

1697 1.119 11.534 0.0026 4.609
4380 1.265 11.415 0.0027 4.543
7542 1.141 11.287 0.0028 4.471
4032 1.341 10.884 0.0034 4.239
4188 ÿ1.220 ÿ10.827 0.0034 4.205
5084 ÿ1.072 ÿ10.731 0.0035 4.147
6903 ÿ1.251 ÿ10.585 0.0036 4.059
6023 1.012 10.238 0.0044 3.843
3695 1.057 10.167 0.0045 3.798
4546 1.269 10.012 0.0048 3.697
2679 ÿ1.233 ÿ9.750 0.0052 3.524



considering the quantile normalization as a particular case of the
structural mean estimation procedure based on a non parametric
warping model for functional data by Dupuy et al. [9]. The asymp-
totic statistical properties of quantile normalization are established
based on this connection. In addition, a new normalization proce-

dure, using a manifold embedding framework, is proposed to im-
prove the situation where the quantile method does not capture
the structural features across the sample of density curves as
pointed out by a simulation study. Both normalization approaches
are applied on two data sets of two-channel spotted microarrays,
and their utility in terms of detection of differentially expressed
genes is studied. Both methods have similar results for identifying
differential expressed genes, with the slight difference that the
identification using the intensities normalized with the manifold
method, is a little bit sparser with respect to the quantile normal-
ization. Therefore, our manifold method is an alternative method-
ology for normalization. It achieves the same performance than the
usual quantile normalization method in many cases as was shown
for the studied real data sets. Moreover when the expression data
densities have a large variability as illustrated in case four in the
simulations, the proposed estimate density is more accurate than
the estimator considered using the quantile normalization.
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Appendix A

Proof. Proof of Theorem 1. To prove the almost sure convergence
the next corollary by [16] is needed.

Corollary 1 [16, Corollary 7.10].
Let W be a Borel random variable with values in a separable

Banach space B. Then Sm=m ! 0 strongly as m ! 1 if and only if

EkWk < 1 and EW ¼ 0.

First note from Eq. (3) that

E qiðaÞð Þ ¼ E Fÿ1
i ðaÞ

� �

¼ E Hi � Fÿ1ðaÞ
� �

¼ EðHiÞ � Fÿ1ðaÞ

¼ / � Fÿ1ðaÞ ¼ Fÿ1
SE ðaÞ ¼ / � qðaÞ ¼ qSEðaÞ;

where qðaÞ ¼ Fÿ1ðaÞ ¼ inf x 2 R : FðxÞP af g; 0 6 a 6 1, thus we
have

qmðaÞ ÿ E qmðaÞ
� �

¼ 1
m

X

m

i¼1

Hi � Fÿ1ðaÞ ÿ / � Fÿ1ðaÞ

¼ 1
m

X

m

i¼1

ðHi ÿ /Þ � Fÿ1ðaÞ ¼ 1
m

X

m

i¼1

ðHi ÿ /Þ � qðaÞ:

Setting Sm ¼
Pm

i¼1W i whereW i ¼ ðHi ÿ /Þ � qðaÞ is a sequence of
independent and identically distributed random variables in a sep-
arable Banach space B ¼ Cð½0;1�Þ, and applying the above Corollary,
the almost sure convergence of qmðaÞ is guaranteed.

The asymptotic normality of qmðaÞ is now obtained applying the
multivariate central limit theorem. For any K 2 N, and fixed
ða1; . . . ;aKÞ 2 ½0;1�K ,

ffiffiffiffiffi

m
p

qmða1ÞÿEqmða1Þ
..
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qmðaKÞÿEqmðaKÞ
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¼
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1
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2

6

6

6

6

6

6

6
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7

7

7

7

7

7

5

!D
m!1

N K 0;Rð Þ;

where R is the asymptotic variance–covariance matrix whose
ðk; k0Þ-element is given by Rk;k0 ¼ # qðakÞ; qðak0 Þð Þ for all
ðak;ak0 Þ 2 ½0;1�2 with ak < ak0 , which is obtained as

Table 10

Top 30 differentially expressed genes identified from Swirl data (manifold
normalization).

Gene M-value Moderated t Adj. p-value B

2961 ÿ2.553 ÿ16.684 0.0033 6.415
3723 ÿ2.072 ÿ15.647 0.0033 6.079
1611 ÿ2.082 ÿ15.471 0.0033 6.018
3721 ÿ2.133 ÿ14.282 0.0038 5.580
1609 ÿ2.233 ÿ14.008 0.0038 5.472
8295 1.291 13.442 0.0038 5.237
319 ÿ1.243 ÿ13.275 0.0038 5.165
515 1.246 13.080 0.0038 5.080

7602 1.124 12.738 0.0039 4.925
3790 1.168 12.598 0.0039 4.860
157 ÿ1.701 ÿ12.216 0.0039 4.678

5931 ÿ1.066 ÿ12.105 0.0039 4.624
7307 1.147 11.987 0.0039 4.565
7491 1.282 11.740 0.0039 4.440
1697 1.057 11.726 0.0039 4.433
3726 ÿ1.238 ÿ11.698 0.0039 4.419
683 1.290 11.608 0.0039 4.372

7036 1.295 11.549 0.0039 4.341
5084 ÿ1.049 ÿ11.118 0.0044 4.110
5075 1.223 11.110 0.0044 4.106
4188 ÿ1.206 ÿ11.044 0.0044 4.069
4380 1.181 10.965 0.0044 4.025
7542 1.072 10.890 0.0044 3.983
2276 1.104 10.861 0.0044 3.967
4032 1.206 10.808 0.0044 3.937
6903 ÿ1.185 ÿ10.436 0.0053 3.720
4017 ÿ1.042 ÿ10.202 0.0059 3.579
6023 0.933 10.100 0.0061 3.516
3695 0.998 10.031 0.0062 3.474
4546 1.189 9.744 0.0071 3.292
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Fig. 8. Graphical illustration of differentially expressed genes identified using the
normalized expressions with the quantile and manifold methods. The red symbols
correspond to the genes identified with the quantile normalization but not with the
manifold method. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



Cov qmðakÞ; qmðak0 Þ
� �

¼ Cov
1
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qiðakÞ;
1
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where # qðakÞ; qðak0 Þð Þ is the autocovariance function of
Hi; i ¼ 1; . . . ;m.

Following [26], the tightness moment condition to weak
convergence is given by
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if the Assumptions A1 and A2 are satisfied. h

Proof. Proof of Proposition 1.
The proof is a direct application of the following theorems of

strong consistency and asymptotic normality for quantile estima-
tors. See [19,6] for its proofs.

Theorem. (Strong consistency of quantile estimator)
If the ath population quantile, qðaÞ, is the unique solution of

FðxÿÞ 6 a 6 FðxÞ, then q̂nðaÞ !a:s:
n!1

qðaÞ.
Therefore q̂i;nðaÞ !a:s:

n!1
qiðaÞ for i ¼ 1; . . . ;m.

Theorem. (Asymptotic normality of order statistics) For a fixed

0 < a < 1, assume F is continuously differentiable at the ath popu-

lation quantile, qðaÞ; f qðaÞð Þ > 0, and nÿ1=2ðj=nÿ aÞ ¼ oð1Þ. Then
ffiffiffi

n
p

Xj:n ÿ qðaÞ
ÿ �

!D
n!1

N 0;að1ÿ aÞ=f 2ðqðaÞÞ
ÿ �

, where Xj:n ¼ X½an�þ1 is

the jth sample quantile, and ½an� denotes the greatest integer less or

equal than an.

In consequence for i ¼ 1; . . . ;m we have

ffiffiffi

n
p

Xi;j:n ÿ qiðaÞ
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!D
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N 0;
að1ÿ aÞ
f 2i qiðaÞð Þ
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;

that conditioned to a fixed Hi implies

ffiffiffi

n
p

Xi;j:nÿHi �qðaÞ
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!D
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where Hÿ1
i

� �0
ðzÞ ¼ dH

ÿ1
i ðzÞ=dz ¼ H0

i � H
ÿ1
i ðzÞ

n oÿ1
. h

The moments of order statistics are hard to compute for many dis-
tributions so these can be approximated reasonably using a linear
Taylor series expansion of the relation Xi;j:n ¼d Fÿ1

i ðUi;j:nÞ around the
point EðUi;j:nÞ ¼ aj ¼ j=ðnþ 1Þ, where Ui;j:n denotes the jth order sta-
tistic in a sample of size n from the uniform ð0;1Þ distribution. The
approximated means, variances and covariances of order statistics
for i ¼ 1; . . . ;m are given by (see, for example, [6,2])

E Xi;j:njHi

ÿ �

¼ qi;j þ
ajð1ÿ ajÞ
2ðnþ 2Þ q00

i;j
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where, since aj ¼ F iðqi;jÞ, we have

q0
i;j ¼

dqi;j

daj

¼ 1
fiðqi;jÞ

< 1;

q00
i;j ¼ ÿ

f 0i ðqi;jÞ
f 2i ðqi;jÞ

¼ ÿ
dfiðqi;jÞ
dqi;j

1
f 3i ðqi;jÞ

< 1 and so on;

where fiðqi;jÞ > C, with C > 0 is the density-quantile function of X
evaluated at qi;j ¼ qiðajÞ ¼ Hi � Fÿ1ðajÞ with aj ¼ j=ðnþ 1Þ; j ¼
1; . . . ; n. f 0i

�

�

�

� < M; f 00i
�

�

�

� < M, and f 000i

�

�

�

� < M.
This approximation method is due to David and Johnson [5]

where they derived approximations of order ðnþ 2Þÿ3. Addition-
ally, note that the asymptotic means, variances, and covariances
correspond to the first terms of Eqs. (A.1)–(A.3), respectively
[6].

Using the approximation in Eq. (A.1), the mean of q̂j is calcu-
lated as
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;

where dfiðqi;jÞ=dqi;j

�

�

�

� < M and f 3i ðqi;jÞ > C.
While through Eq. (A.3), the covariance between of q̂jk and q̂jk0

for k– k
0
k ¼ 1; . . . ;K is given by
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for all ðak;ak0 Þ 2 ½0;1�2 with ak < ak0 .
From above equations we have that

E q̂j

� �

!
n!1

qSEðajÞ ðA:4Þ

and

Cov q̂jk ; q̂jk0

� �

!
n!1

1
m

# qðajk Þ; qðajk0
Þ

� �

: ðA:5Þ

Proof. Proof of Theorem 2.
The almost sure convergence of q̂j is established applying the

results of strong consistency of qmðaÞ and q̂i;nðaÞ from Theorem 1
and Proposition 1, respectively.

The asymptotic normality of q̂j is obtained as follows
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=n ! 0 we obtain, by the Lindeberg–Feller’s central limit theo-
rem for independent but not identically distributed random vari-
ables to the independent random variables X1;j:n; . . . ;Xm;j:n, that
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that in multivariate terms is expressed as
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where ða1; . . . ;aKÞ 2 ½0;1�K and the ðk; k0Þ-element of R is given by

Rk;k0 ¼ # qðajk Þ; qðajk0
Þ
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.

The Lindeberg–Feller’s central limit theorem holds if the
Lyapunov’s condition
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Therefore the Lyapunov’s condition is satisfied. h
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