
RESEARCH Open Access

Statistical protein quantification and significance
analysis in label-free LC-MS experiments with
complex designs
Timothy Clough1, Safia Thaminy2,3, Susanne Ragg4, Ruedi Aebersold2,5, Olga Vitek1,6*

Abstract

Background: Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is widely used for

quantitative proteomic investigations. The typical output of such studies is a list of identified and quantified

peptides. The biological and clinical interest is, however, usually focused on quantitative conclusions at the protein

level. Furthermore, many investigations ask complex biological questions by studying multiple interrelated

experimental conditions. Therefore, there is a need in the field for generic statistical models to quantify protein

levels even in complex study designs.

Results: We propose a general statistical modeling approach for protein quantification in arbitrary complex

experimental designs, such as time course studies, or those involving multiple experimental factors. The approach

summarizes the quantitative experimental information from all the features and all the conditions that pertain to a

protein. It enables both protein significance analysis between conditions, and protein quantification in individual

samples or conditions. We implement the approach in an open-source R-based software package MSstats

suitable for researchers with a limited statistics and programming background.

Conclusions: We demonstrate, using as examples two experimental investigations with complex designs, that a

simultaneous statistical modeling of all the relevant features and conditions yields a higher sensitivity of protein

significance analysis and a higher accuracy of protein quantification as compared to commonly employed

alternatives. The software is available at http://www.stat.purdue.edu/~ovitek/Software.html.

Background
Liquid chromatography coupled with tandem mass spec-

trometry (LC-MS/MS) is widely used for relative protein

quantification in complex biological mixtures. Several

quantification strategies have been described that can

broadly be grouped as those using stable isotope labeling

and label-free methods [1-3]. Label-free methods can be

further differentiated into methods based on spectral

counting [4] and methods that infer analyte quantities

from the ion current of the respective molecular ions.

The latter method has been implemented under the term

label-free LC-MS. It consists of the enzymatic digestion

of proteins into a mixture of peptides, the separation of

the peptides by capillary liquid chromatography, the ioni-

zation of the peptides, and the further separation of the

molecular ions by the mass spectrometer according to

their ratio of mass to charge. One instrument run yields

a two-dimensional LC-MS profile, where peaks corre-

spond to peptide ions, and the intensities of the peaks are

related to the abundances of the peptides. The molecular

ions representing specific LC-MS peaks can be further

fragmented in the mass spectrometer by collision acti-

vated dissociation to generate fragment ion spectra (MS/

MS), which are informative of the amino acid sequences

of the peptides. The label-free shotgun LC-MS/MS work-

flow [5,6] is popular because it requires minimal sample

processing and is relatively inexpensive. A variety of com-

putational tools are now available to detect, quantify, and

align LC-MS peaks across multiple samples and runs,

and to annotate them when possible with peptide and

protein identities [7].

The output of the LC-MS/MS workflow is a list of

features formed by identified, quantified, and aligned
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LC-MS peaks. Multiple features can represent a protein

when we observe differentially charged ions of the same

peptide, or several peptides of the protein. In many

investigations, specifically in systems biology [8] and in

the discovery of biomarkers of disease [9,10], it is neces-

sary and appropriate to summarize all the features into

protein-level conclusions. Such summarization has two

goals. First, protein significance analysis combines the

measurements for a protein across peptides, charge

states, and technical replicates across samples and con-

ditions, and detects proteins that change in abundance

between conditions more systematically than can be

expected by random chance. Second, protein quantifica-

tion combines the measurements for a protein within a

particular biological sample and estimates the abun-

dance of the protein in the sample, e.g., for use in clus-

tering or classification. Thus, the accuracy of both

protein significance analysis and protein quantification

has important implications for the biological or clinical

conclusions.

Many technologies other than LC-MS/MS require mea-

surement summarization, and the solution often involves

some form of averaging. E.g., in Affymetrix oligonucleotide

microarrays a gene is represented by 11-16 oligonucleo-

tides [11], and the expression of the respective gene is

quantified with Tukey median polish, implemented as part

of the robust multi-array averaging (RMA) normalization

and summarization [12,13]. Unfortunately, a similar such

summarization of the (log-)intensities of features mapped

to a protein fails to produce accurate results in label-free

LC-MS/MS, and it undermines the quality of the result

[14]. Unlike in microarrays where the probes are designed

and optimized, the LC-MS/MS workflow has little control

over the observed features. It yields proteins with features

that vary in number, have many interferences due to co-

eluting, mis-identified or mis-quantified peptides, and

have frequently missing intensities of peaks. Furthermore,

the peptide ions derived from a specific protein vary in

their ionization efficiency.

Measurement summarization in label-free LC-MS/MS

is improved by a probabilistic modeling, which explicitly

characterizes all the sources of variation. Such models

have been increasingly introduced into quantitative pro-

teomics and proven superior to averaging in both accu-

racy and sensitivity [14-19]. However, most of these

models are applicable to restricted experiment types,

e.g., the comparison of protein abundances between a

limited number of conditions. To compensate for the

variation and for the missing values, these models

require a fairly large number of biological replicates.

In this work, we argue that the accuracy of protein

significance analysis and protein quantification can be

enhanced by simultaneously studying a larger number of

experimental conditions, even when the number of repli-

cates in each condition is relatively small. Increasing the

number of conditions is advantageous biologically,

because a deeper insight can be obtained by considering

multiple inter-related conditions of the same model

organism, or by acquiring repeated measurements on

the same biological subject. It is also advantageous sta-

tistically, as it improves the accuracy of protein signifi-

cance analysis and protein quantification.

In previous work, we introduced the linear mixed effects

modeling framework for protein significance analysis and

protein quantification in label-free LC-MS/MS experi-

ments with simple, comparative designs [14]. The contri-

bution of the current manuscript is to extend this work to

arbitrary complex experimental designs, support the

proposed framework with a software solution, and demon-

strate the advantage of a joint modeling of multiple experi-

mental conditions to practitioners with a limited statistical

background. The open-source R [20]-based software pack-

age MSstats automatically recognizes the design of the

experiment, and can be used for both protein significance

analysis and protein quantification. We show that the fra-

mework provides meaningful results even with a moderate

number of biological replicates, and in experiments with

noisy and missing LC-MS peaks.

Methods
Dataset 1: A 3-way factorial study of breast cancer

cell lines

The study aimed at determining the effect of low oxygen

level (hypoxia) as compared to the normal oxygen level

(normoxia) on protein abundance in two breast cancer

cell lines, low-invasive MCF7 and high-invasive Hs578T.

Two cultures (biological replicates) of each cell line were

treated for either 6 or 24 hours in a normoxic or hypoxic

condition. The study had a complex design in that three

factors of interest, invasive potential (low, high), treatment

(hypoxia, normoxia), and time (6 h, 24 h), were examined

simultaneously (Figure 1). We refer to each of the eight

possible combinations of the factors as a condition. Since

separate cultures were grown in each condition, the

experiment had a 3-way factorial design.

Independent extraction procedures [21] were performed

on each culture (i.e., biological replicate), the order of the

samples was randomized, and three separate mass spectro-

metry runs (i.e., technical replicates) were acquired for

each sample on a hybrid LTQ-Orbitrap mass spectrometer

(ThermoFischer Scientific, San Jose, CA, USA), producing

48 runs. LC-MS features were quantified, aligned, and

annotated with peptide and protein identities using the

OpenMS software [22]. The feature intensities were log-

transformed and subjected to constant normalization [23].

The signal processing identified 278 proteins groups with
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two to 19 unambiguously mapped LC-MS features per

group, and with up to 40 missing peak intensities per

feature.

Additional details on the dataset are available in Sup-

plementary Section 1.

Dataset 2: A time course study of subjects with

osteosarcoma

The study was conducted at the Indiana University School

of Medicine in Indianapolis. It involved 14 subjects with

childhood osteosarcoma, for which serum samples were

collected at multiple time points during the course of

treatment, at the end of the treatment, and off-treatment

(Figure 2). During the course of the study, chemotherapy

and surgery were performed according to the Children’s

Oncology Group protocol P9754. In addition to the sub-

jects with osteosarcoma, the study involved 29 healthy

subjects for which blood samples were collected at a single

time point. The institutional review board at Indiana Uni-

versity approved the study protocol, and written informed

consent was obtained from all subjects before enrollment.

The study had a complex design in that it had two factors

of interest, disease (osteosarcoma, control) and time, and

multiple measurements on the disease subjects but not on

the controls. Therefore, the study had a combination of a

time course and a group comparison design. Due to the dif-

ficulty of obtaining samples from subjects in longitudinal

studies in a clinical setting, many subjects had missing

time points.

Albumin was depleted prior to tryptic digest, the order

of the samples was randomized, and each sample was

analyzed in single replicate runs using Thermo-Finnigan

linear ion-trap mass spectrometry, producing 130 runs.

LC-MS features were quantified, aligned, and annotated

with peptide and protein identities as previously described

[24]. When a peak was not detected in a run the workflow

reported the background noise, and therefore the dataset

had no missing peak intensities. The intensities were log-

transformed and subjected to quantile normalization [23].

To reduce the number of peptides with ambiguous map-

pings to protein isoforms, each peptide was mapped to the

underlying Entrez gene ID, and the signal processing iden-

tified 121 gene groups with two to 295 peptides per group.

For simplicity, we refer to the gene groups as proteins.

Proposed significance analysis

We define protein significance analysis as a sequence of

four steps: (1) statement of the problem, i.e., definition

of the comparisons of interest and of the scope of con-

clusions before collecting the data, (2) exploratory data

analysis, i.e., visualization of protein-specific features for

quality control, (3) model-based analysis, i.e., representa-

tion of the quantitative measurements in a probabilistic

model, and determination of proteins that change in

abundance between conditions, while controlling the

False Discovery Rate (FDR), and (4) statistical design of

the follow-up experiments. The four steps are common

to many experiments that study differences in analyte

abundance, and are described, e.g., in Chang et al. [25].

In this manuscript we emphasize the details that are

specific to label-free LC-MS/MS experiments with com-

plex designs.

Figure 1 Study of breast cancer cell lines. Two cultures from two breast cancer cell lines (low-invasive MCF7 and high-invasive Hs578T) were

treated with two oxygen levels (normoxia, hypoxia) for two periods of time (6 and 24 hours). We refer to each combination of these treatments

as condition. Separate cultures were grown in each condition, and therefore the experiment had a 3-way factorial experimental design.

Figure 2 Study of subjects with osteosarcoma. Chemotherapy treatment was administered according to the Children’s Oncology Group

protocol P9754. Blood samples were collected at the weeks indicated by colored boxes before chemotherapy was administered. The study had

a combination of a time course and a group comparison design.
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Step 1: Statement of the problem

Experiments with complex designs simultaneously

answer multiple related questions. In the study of breast

cancer cell lines we can compare, e.g., the abundance of

proteins between oxygen treatments in the high invasive

line, at a specific time point such as six hours of treat-

ment. Multiple other, similar questions could be asked

from the dataset. Although such comparisons can be per-

formed by separately analyzing the runs within the

respective conditions and ignoring the rest of the data,

we show in Section 3 that the joint modeling of all the

available conditions increases our ability to detect

changes that are relevant for the specific question asked.

As an illustration, here we compare the protein abun-

dance after six hours of normoxia in the low invasive ver-

sus the high invasive cell lines, on average over the

biological replicates. In the study of subjects with osteo-

sarcoma we compare protein abundance prior to surgery

(week 10) and post-surgery (week 13). The Step 3 below

enables arbitrary complex comparisons of this kind.

Statement of the problem also specifies the scope of the

conclusions, i.e., the interpretation that we attribute to the

biological and technical replication. The reduced scope of

biological replication means that we restrict our conclu-

sions to the subjects in the study, e.g., to the 43 subjects in

the study of osteosarcoma. This is appropriate for early-

stage screening experiments. The expanded scope of biolo-

gical replication means that we would like our conclusions

to hold beyond the selected subjects, and for the underly-

ing populations. E.g., in the study of subjects of osteosar-

coma this means that we expand our conclusions beyond

the selected 43 subjects, and to the entire population that

these subjects represent. This is necessary for experiments

at the validation stage. The choice of the scope is required

for all statistical models and all experimental designs

[25,26] and Step 3 below enables this choice. Section 3

illustrates that in addition to the important differences in

interpretation, the scope of biological replication impacts

the sensitivity and the specificity of the results. Therefore,

the scope of replication should be specified according to

the goals of the experiment, prior to collecting the data.

Step 2: Exploratory data analysis

Experiments with complex designs are more likely to

induce heterogeneous stochastic variation due to the

joint effects of multiple conditions on protein abun-

dance. Therefore, MSstats implements visualization

plots that assess the quality of the data and that can

help to guide the downstream analysis. A profile plot

such as in Figure 3(a) emphasizes quality control. The

plot helps a user to detect mis-identified features with

inconsistent quantitative profiles, or to remove features

with excessive quantitative interferences or missing

values. A trellis display [27] such as in Figure 3(b) visua-

lizes feature-level comparisons. It helps assess whether

the variation is homogenous across features and condi-

tions, and whether changes between conditions can

be due to the biological signal or to a technical artifact.

Figure 3(c) is an additional trellis display for time course

experiments, where each panel represents a subject. The

display allows us to evaluate the consistency of both

within-subject and between-subject changes in abundance.

The plots are generated automatically for all proteins

in MSstats with a one-line command. The proteins

selected in Figure 3 show only minor interferences in

feature intensities, and the large changes between condi-

tions appear systematic. An example of a protein with

interferences is given in Supplementary Section 1.2.

Step 3: Model-based analysis

The conclusions regarding changes in protein abun-

dance are formalized using statistical modeling and

inference. To represent a complex experimental design

we introduce a unique identifier for each condition, i.e.,

for each combination of the available experimental fac-

tors. For example, in the experiment of breast cancer

cell lines each combination of cell line type, oxygen

treatment, and exposure time forms one condition. In

the study of subjects with osteosarcoma, each combina-

tion of disease status and time forms one condition. We

further introduce a unique identifier for each subject,

i.e., for each biological replicate.

The proposed linear mixed effects model for the case of

factorial experiments is shown in Figure 4. The model

decomposes feature intensities of a protein into the con-

tributions of conditions (i.e., the differences in protein

abundance due to the factors of interest), LC-MS features

(i.e., the differences in average signal intensities between

the features), and biological replicates (i.e., the natural

biological differences in protein abundance between the

subjects). The model accounts for interferences in the

quantitative profiles of features across conditions with

the statistical interaction feature × condition. For time

course experiments the model is modified to account for

the between-subject heterogeneity of changes in protein

abundance in time (Figure 4). The model is designed for

a protein quantified by at least two features, but the

implementation in MSstats allows for proteins repre-

sented by a single feature by specifying a model without

the feature and feature × condition terms.

The model expresses the reduced scope of biological

replication by viewing the between-subject changes in

abundance as fixed values. Alternatively, it expresses the

expanded scope of biological replication by viewing these

changes as randomly sampled from the underlying popu-

lation. In practice a model with one of the two forms is

chosen based on the desired scope of conclusions, and is

specified for every protein quantified in the investigation.

We show in Section 3 that the reduced scope of replica-

tion leads to higher sensitivity of detecting changes in
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abundance as compared to the expanded scope of repli-

cation, but that this comes at the cost of a lower

specificity.

A property of label-free LC-MS/MS is that, in the

absence of technical replication, biological variation is

confounded with technical variation. Therefore, conclu-

sions from the model with reduced scope of biological

replication are also restricted to the performed mass

spectrometry runs, unless the experiment also incorpo-

rates technical replication.

The technical variation in the log-intensities of LC-MS

peaks is approximated relatively well by the Normal distri-

bution. However, the extent of this variation is not neces-

sarily constant across all features and conditions.

Specifying a separate variance parameter σ 2
Error,ijk for each

feature, condition, and subject in experiments with com-

plex designs leads to a prohibitively large number of para-

meters and overfits the data. Instead, MSstats

implements the iterative least squares modeling procedure

[28]. Residual plots such as in Figure 5(a) visualize the

relationship between the predicted log-abundance and the

unexplained technical variation. The relationship is mod-

eled in a flexible loess fit [29] (Figure 5(b), Supplementary

Section 1.3), and LC-MS peaks with larger variances have

smaller weights in the resulting model-based conclusions.

A challenge in experiments with complex designs is in

deriving the comparisons in Step 1 from this compre-

hensive model. In the proposed approach this is

Figure 4 Linear mixed effects model for a factorial experiment. i = 1, ..., I is the index of a feature, j = 1, ..., J the index of a condition, k = 1, ..., K

the index of a biological replicate, and l = 1, ..., L of a technical replicate. Notation S(C)k(j) is read as “biological replicate within a condition”, and is

the unique identifier of each biological replicate. σ 2
Error,ijk is the variance of the measurement error and σ 2

S
the between-subject variance in the

underlying population. μ111 is the expected log-intensity of the arbitrary chosen first feature, first condition, and first biological replicate. (a) and (b)

are two alternative interpretations of the term subject, which distinguish reduced and expanded scopes of biological replication. A separate such

model is specified for each protein.

Figure 3 Exploratory data analysis in MSstats. Y-axis: Log-intensities, lines link log-intensities of LC-MS features, averaged over all replicates.

(a) Quality control: profile plot of the protein SLC44A2 in the study of breast cancer cell lines. X-axis: all conditions. (b) Feature-level

comparisons: trellis display of the protein SLC44A2 in the study of breast cancer cell lines. X-axis: one factor (time). Each panel: the combination

of the other factors. (c) Feature-level comparisons for time course experiments: trellis display of the Entrez ID 28299 of the study of subjects with

osteosarcoma. Each panel: a subject. X-axis: time.
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achieved by (1) translating each comparison into a

model-based quantity of interest, (2) expressing the

quantity as a linear combination of the model para-

meters, and (3) estimating this linear combination and

the associated standard error from the data, separately

for each protein. Figure 6 illustrates this for the factorial

study of breast cancer cell lines, and Figure 5 for the

study of subjects with osteosarcoma. In all investiga-

tions, a larger number of replicates provides a more

accurate estimation of the quantities.

The most difficult aspect of these steps is in determin-

ing the coefficients of the linear combination. The coef-

ficients depend on the comparison of interest, type,

number, and layout of the experimental factors, on the

numbers of features mapped to the protein, and on

whether we reduce or expand the scope of biological

replication. The implementation in MSstats automati-

cally derives all such expressions from the input dataset

and streamlines the testing for users with a limited sta-

tistics background. Finally, MSstats follows the stan-

dard testing procedure and calculates the ratio of the

estimated differences and theirs standard error (in statis-

tical terminology, the test statistic) for each protein, com-

pares the test statistics to the Student distribution with

the appropriate degrees of freedom to obtain p-values,

and adjusts the p-values for multiple comparisons to con-

trol the False Discovery Rate in the list of differentially

abundant proteins [30].

Step 4: Design of follow-up experiments

Sample size (i.e., the number of biological and technical

replicates per condition required to detect a fold change)

can be used to compare experimental strategies. In

experiments with complex designs it can indicate

whether the inclusion of additional conditions or time

points will help detect biologically significant changes

given the constraints of sample availability and cost. Sam-

ple size calculations based on linear models have been

described numerous times in general [31,32] and for pro-

tein significance analysis in particular [33,34]. They take

as input (1) q, the desired FDR in the protein list, (2) b,

the allowed probability of not detecting a change in

abundance on average over all the proteins (i.e., average

Type II error), (3) δ, the minimal fold change in protein

abundance that one would like to detect, (4) m0/m0 + m1,

the anticipated proportion of truly differentially abundant

proteins in the comparison, and (5) σ 2
Error, the anticipated

technical variation (and also σ 2
S , the anticipated biological

variation, for models with expanded scope of biological

replication). While (1)-(3) have generally accepted values,

(4)-(5) depend on the specific experiment and on its bio-

logical and technical variation. MSstats derives (4) and

(5) based on the current dataset, and calculates the sam-

ple size for a future investigation with a user-specified

number of features, conditions, and technical replicates

per condition, as described in reference [28] (see Supple-

mentary Section 1.3.6 for illustration). We use the special

Figure 5 Residual plots. Residual plots for protein CDH13 in the study of breast cancer cell lines. The protein has 16 features, residuals from the same

feature have the same color. (a) Residuals versus predicted peak log-abundance. (b) Absolute residuals versus predicted mean peak abundance are

modeled by a loess curve. Values on the curve predicted for each LC-MS peak are used as weights in the iterative least squares model fit.
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case of balanced datasets (i.e., datasets with the same

number of LC-MS runs in each condition and no missing

peaks) and a representative (e.g., median) variance over

all the proteins, for which the test statistic has a relatively

simple form (e.g., for the study of breast cancer cell lines

in Figure 6 and Supplementary Figure 3 with reduced

and expanded scope of biological replication, and Supple-

mentary Figures 5 and 6 for the time course study). Using

the comparison in Figure 6 as an example, a lower bound

on the fold change δ one can detect in a future investiga-

tion with reduced scope of biological replication is given

by

δ2 ≥
σ̂ 2

Error

IKL
· (t1−β, df + t1−α/2, df )

2,

where α = (1 − β) ·
q

1 + (1 − q) · m0/m1
,

(1)

and t1-b, df and t1-a/2, df are the 100(1 - b)th and the

100(1 - a/2)th percentiles, respectively, of the t-distribu-

tion with df = IJK (L - 1) + (I - 1) J (K - 1) degrees of

freedom. From the formulae, given a fixed number of

features I, and a fixed number of biological replicates K

and technical replicates L per condition, increasing the

number of related conditions J increases the degrees of

freedom, which has the effect of decreasing the lower

bound of the detectable fold change. We show this

empirically in Section 3.

Proposed protein quantification

A distinct goal of label-free LC-MS/MS investigations is

protein quantification, i.e., the estimation of protein abun-

dance in a biological replicate, or in one condition on

average over all the replicates. In experiments with com-

plex designs these estimates are of a particular interest, as

they serve as input to machine learning tools to generate

new biological knowledge from the complex datasets. For

example, in the study of breast cancer cell lines we can

cluster the profiles of protein abundance across conditions

to find functionally related proteins. In the study of sub-

jects with osteosarcoma the profiles can be used to predict

the subject’s therapy response. Such estimates of abun-

dance differ from absolute protein quantification [35] in

that they are only comparable for a same protein across

conditions and runs, but not between proteins.

Here we argue that the accuracy of relative protein

quantification is enhanced by using the same probabilistic

Figure 6 Model-based comparison. Model-based comparison of protein abundance between cell line types after six hours of normoxia, with

reduced scope of biological replication. All notation is as in Figure 4. µ̄[high, nm ,6]. is the expected log-abundance of the protein in the high-

invasive line under normoxia, after 6 hours of exposure, on average in all the observed replicates. Other conditions are denoted similarly. “^”

indicates that the terms are estimated from the data.
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framework as in Section 2.3. Similarly to the testing, pro-

tein abundance in a sample or condition can be expressed

as a linear combination of the model parameters, and esti-

mated from the data together with its standard error.

Figure 7 illustrates the estimation of protein abundance

for the condition given by six hours of normoxia treat-

ment in the high invasive cell line in the factorial study of

breast cancer cell lines. Figure 7 illustrates a similar esti-

mation for the study of subjects with osteosarcoma. Figure

8 displays the quantifications and the associated confi-

dence intervals for one proteins in each study, which are

the same proteins as in Figure 3.

MSstats automatically derives the estimates and

streamlines the estimation. In Section 3, we show that

the accuracy and the precision of such protein quantifi-

cation is improved when simultaneously analyzing all

the available conditions.

Proposed treatment of missing LC-MS peaks

Experiments with complex designs are particularly sus-

ceptible to missing values, as they combine intertwined

effects of multiple conditions and a small sample size. An

advantage of linear mixed effects models is that they tol-

erate missing LC-MS peaks if each feature has at least

one intensity in each condition [14]. In the presence of

missing data the model-based estimates of abundance

differ from average log-intensities, and reflect more accu-

rately the available information. The estimates of varia-

tion are also adjusted. E.g., the confidence intervals in

Figure 8(a) vary in width due to the missing feature

intensities in the study of breast cancer cell lines, and in

Figure 8(b) due to missing time points in the study of

subjects with osteosarcoma.

When a feature is missing entirely in one condition,

this can be due to the low abundance, but also to other

reasons unrelated to abundance, e.g., post-translational

modifications, or even due to technical reasons. The

extent of missing values is influenced by the experimental

settings. There is currently no consensus on how to best

account for the missing data in this case. Some authors

advocate imputing missing intensities using the estimates

of background noise [24,36] or by using a classification

technique such as K-nearest neighbor [37]. Others argue

against imputation, and transform the peak intensities to

binary present/absent values [38], treat the missing inten-

sities as censored values as in survival analysis models

[18,39], or advocate testing a peptide for whether its

missing intensities occur more frequently in some experi-

mental groups than expected at random, in which case

the peptide is viewed as differentially abundant [40].

Since the goal of MSstats is to flexibly represent any

experimental situation, it does not enforce a one-size-

fits-all treatment of missing peaks. Instead it allows the

user to choose one of three options, based on prior bio-

logical expectations and on the exploratory data analysis

plots. First, the user can assume that the intensities

in the specific condition are missing due to low ion

abundance, and impute the missing values in this condi-

tion with the average minimum log-intensity across

runs. The analysis will reflect the interference in feature

intensities, but can violate the assumptions of Normality.

Second, the user can make no assumptions regarding the

reason for the missing values. This will require an alter-

native assumption that the features have no interference

(in other words, the model will not have the feature ×

condition statistical interaction in Figure 4). Model-based

estimates will account for the missing data, but signifi-

cance analysis may lose sensitivity. The third option is to

assume that this is a generally poor quality feature, and

remove it entirely from the dataset. In Section 3, we

show that the three treatments of the missing values have

only a small effect on the detection of differentially abun-

dant proteins.

Proposed open-source software implementation

MSstats is implemented in the open-source and open-

development environment R [20]. Although the models

for the factorial and the time course experiments are

Figure 7 Model-based quantification. Model-based quantification of the expected abundance of a protein in the high invasive cell line under

six hours of normoxia, on average over replicates of the condition. “^” indicates that the model-based quantities are estimated from the data.

Clough et al. BMC Bioinformatics 2012, 13(Suppl 16):S6
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different, their specification in MSstats is identical.

The software requires a unique identifier for each biolo-

gical replicate, and uses the identities to detect the pre-

sence of repeated measurements and to internally

choose the correct model.

MSstats is a series of wrappers around the generic

methods lm in the library base and lmer in the library

lme4 [41]. lm fits linear models where all factors are

fixed, and estimates model parameters using ordinary

least squares [28,42]. MSstats uses this function for

models with reduced scope of biological replication.

lmer fits linear mixed effects models with an arbitrary

number of random effects, can handle large and unba-

lanced datasets, and estimates model parameters using

restricted maximum likelihood [43]. MSstats uses this

method for models with expanded scope of biological

replication.

The use of lm and lmer is adapted to the specifics of

LC-MS/MS. First, since each protein can have a differ-

ent number of features, a different number of model

terms (i.e., a different design matrix) is implemented for

each protein. Second, options are implemented to han-

dle heterogeneous variance and missing values. Finally,

MSstats automatically derives model-based summaries

for protein significance analysis and protein quantifica-

tion, such that the biological comparison is the only

input required from the user. Occasionally, it can be of

interest to perform an analysis at the feature level

instead of at the protein level, and MSstats also sup-

ports this option. Supplementary Information contains

R-based code for steps of the analysis. The software and

the documentation are publicly available at http://www.

stat.purdue.edu/~ovitek/Software.html.

Results
We illustrate the performance of the proposed framework

in the two case studies. As an example, for the study of

breast cancer cell lines, we compare protein abundances

between cell line types after six hours of normoxia (i.e.,

the comparison in Figure 6). In all the results, for features

with peak intensities missing in an entire condition the

values were imputed with the average minimum log-inten-

sity across all runs of the experiment (as implemented in

MSstats) unless stated otherwise. For the study of sub-

jects with osteosarcoma, we compare protein abundances

prior to surgery (week 10) and post-surgery (week 13), as

illustrated in Supplementary Section 2.2. The results for

both datasets were obtained with reduced scope of biologi-

cal replication unless stated otherwise.

Result 1: Joint modeling of all conditions improves the

sensitivity of protein significance analysis

Figure 9 illustrates the sensitivity of protein significance

analysis by using three approaches: (1) the proposed

Figure 8 Quantification of protein abundance in each condition. Quantification of protein abundance in each condition, on a relative scale

that is comparable between conditions of a protein but not between proteins. (a) Study of breast cancer cell lines, protein SLC44A2. (b) Study

of subjects with osteosarcoma, Entrez ID 28299. X-axis: condition. Y-axis: model-based estimate of protein log-intensity. Vertical lines are the 95%

confidence intervals. The selected proteins are the same as in Figure 3.
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analysis, i.e., the proposed joint modeling of all condi-

tions, (2) a pairwise analysis, i.e., a linear mixed effects

model that only represents the conditions in the compar-

ison, and (3) a naïve analysis, which averages feature

intensities in each replicate, retains the averages of repli-

cates corresponding to the conditions in the comparison,

and uses a t-test for protein significance analysis. The

pairwise analysis and the naïve analysis both only con-

sider measurements from conditions in the comparison

of interest. For the study of breast cancer cell lines, this

amounts to ignoring all the measurements on the cell

lines under the hypoxia treatment. For the study of sub-

jects with osteosarcoma, this amounts to retaining only

the measurements on subjects prior to surgery (week 10)

and post-surgery (week 13), and ignoring the rest.

The figure shows, for each analysis, the number of

proteins with an FDR-adjusted p-value below various

p-value cut-offs. The results indicate an increased sensi-

tivity of joint modeling over the pairwise analysis and the

naïve analysis in both case studies. While one can expect,

in general, a greater improvement in sensitivity by joint

modeling over the alternative analyses when fewer condi-

tions are considered in a comparison, the extent of the

sensitivity gain varies between experiments, and typically

increases with the sensitivity of the mass spectrometer,

and decreases with technical variation in the log-intensi-

ties and with the complexity of biological samples.

Result 2: Joint modeling of all conditions reduces the

required sample size

Figure 10 shows that a joint modeling of all conditions

requires a smaller number of biological replicates to detect

a given fold change than the alternative approaches, which

only use measurements from the particular conditions in

the comparison of interest. This is due to (1) the relation-

ship described in Step 4 of Section 2.3, i.e., increasing the

number of related conditions increases the available degrees

of freedom and reduces the lower bound of the detectable

standardized fold change, and (2) the fact that, although we

are only interested in a subset of the conditions, the entire

dataset is used to characterize the underlying variation, and

yields a more accurate estimate of the variation. The differ-

ence is particularly apparent for small fold changes.

In addition to the factors outlined in Section 2.3, the

sample size is strongly affected by the experimental

design. A time course design, such as in the study of sub-

jects with osteosarcoma, separates the within-subject and

the between-subject variation. Therefore, a comparison

of conditions (or time points) on the same subjects often

leads to a smaller required sample size. This is illustrated

by the smaller number of biological replicates in the time

course study of osteosarcoma in Figure 10(b) as com-

pared to the factorial design of breast cancer cell lines in

Figure 10(a). As before, the extent of such differences

depends on the specifics of the study.

Figure 9 Sensitivity of comparing protein abundance between conditions. Sensitivity of comparing protein abundance between conditions

as described at the beginning of Section 3. (a) Study of breast cancer cell lines. (b) Study of subjects with osteosarcoma. X-axis: p-values adjusted

to control for the FDR using the approach by Benjamini and Hochberg. Y-axis: number of significant proteins. Solid black line: the proposed joint

modeling of all conditions. Dashed red line: a linear mixed effects model that represents the conditions of interest, and ignores the rest of the data.

Dashed green line: a naïve analysis, which averages feature intensities in each replicate and uses a t-test for significance analysis.

Clough et al. BMC Bioinformatics 2012, 13(Suppl 16):S6

http://www.biomedcentral.com/1471-2105/13/S16/S6

Page 10 of 17



Result 3: Reduced scope of biological replication

increases the sensitivity at the expense of specificity

Figure 11 illustrates the sensitivity of the models in both

case studies. The figure shows that the reduced scope of

biological replication leads to a higher sensitivity of detect-

ing changes in abundance than the expanded scope. How-

ever, it has been previously demonstrated by simulation or

in experiments with known sample composition that the

sensitivity of the reduced scope of biological replication

comes at the expense of lower specificity of the compari-

sons [14,25,44].

Figure 12 illustrates the specificity of the models in the

study of breast cancer cell lines. For the purpose of illus-

tration, for each cell line we combined the exposure time

of the biological replicates under normoxia, and randomly

assigned them to two artificial groups. We compared pro-

tein abundances between these two artificial groups using

both reduced and expanded scope of biological replication,

and recorded the number of proteins with an FDR-

adjusted p-value below various p-value cut-offs. A model

that identifies fewer changes has higher specificity. Figure

12 illustrates the reduction in specificity in models with

reduced scope of biological replication as compared to

models with expanded scope of biological replication,

which successfully prohibit the discovery of any changes

in both cell lines. The trade-off of sensitivity and specificity

is a general and well-known property of reduced and

expanded scopes of conclusions; it extends to all model

types, and to all experimental designs.

Result 4: Joint modeling of all conditions improves the

precision and the accuracy of protein quantification

Figure 13 displays protein quantifications from the pro-

posed joint modeling of all conditions to those from the

naïve analysis, which are estimated by the averages of

log-intensities in each replicate. Error bars for each quan-

tification correspond to 95% confidence intervals, reflect-

ing the variability in the estimates. For the proposed joint

modeling, the variability is quantified as shown in Figure

7. For the naïve analysis, the variability is quantified by

the standard deviation of the averages. A majority of the

confidence intervals from the joint analysis are narrower

than those from the naïve analysis, indicating a higher

precision in the quantifications.

For the study of breast cancer cell lines, Figure 14

further investigates the accuracy of the two approaches

by comparing their standardized log-fold changes, i.e.,

test statistics, of the comparison of interest. The figure

illustrates that the joint modeling of the LC-MS/MS

intensities yields a fuller range of standardized log-fold

Figure 10 Sample size for comparing protein abundance between conditions. Sample size for comparing protein abundance between

conditions for a representative protein, in a future experiment with the same experimental structure. (a) Study of breast cancer cell lines. (b)

Study of subjects with osteosarcoma. X-axis: minimal fold change that we’d like to detect. Y-axis: the number of biological replicates per group.

Solid black line: the proposed joint modeling of all conditions. Dashed red line: a linear mixed effects model that represents the conditions of

interest, and ignores the rest of the data. Dashed green line: a naïve analysis, which averages feature intensities in each replicate and uses a

t-test for significance analysis. The anticipated proportion of differentially abundant proteins, the number of conditions and the number of

technical replicates are as in the current experiments. The number of features per protein and the error variance are set to the median values.
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Figure 12 Specificity of the proposed model with reduced versus expanded scope of biological replication. Specificity of the proposed

model with reduced versus expanded scope of biological replication in the study of breast cancer cell lines. Results from comparing protein

abundances between two artificial groups of replicates within (a) the low invasive cell line under normoxia and (b) the high invasive cell line

under normoxia. X-axis: p-values adjusted to control for the FDR using the approach by Benjamini and Hochberg. Y-axis: number of significant

proteins. Solid black line: reduced scope of biological replication. Dashed red line: expanded scope of biological replication.

Figure 11 Sensitivity of the proposed model with reduced versus expanded scope of biological replication. Sensitivity of the proposed

model with reduced versus expanded scope of biological replication for comparing protein abundances between conditions as described at the

beginning of Section 3. (a) Study of breast cancer cell lines. (b) Study of subjects with osteosarcoma. X-axis: p-values adjusted to control for the

FDR using the approach by Benjamini and Hochberg. Y-axis: number of significant proteins. Solid black line: reduced scope of biological

replication. Dashed red line: expanded scope of biological replication.
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changes, stemming from a more accurate representation

of the underlying variation in the log-intensities.

Result 5: Joint modeling of all conditions is relatively

robust to the choice of treatment of missing values

Due to different steps taken in data pre-processing, the

dataset of breast cancer cell lines, unlike the dataset of

subjects with osteosarcoma, contained numerous missing

peaks. Therefore, we used this study to investigate the

effect on the number of detected changes in abundance of

the three treatments of proteins where at least one feature

is missing entirely in at least one condition. We restricted

the list of proteins in the dataset to a subset of 140 pro-

teins with such missing values. Figure 15 shows the num-

ber of differentially abundant proteins obtained after (1)

imputation of the missing condition(s) with the estimate

of background intensity, (2) assuming no feature interfer-

ences, and (3) removing the feature from the dataset.

Panel (a) illustrates the results for the comparison used

throughout this section (low versus high invasive cell line

under normoxia, with 6 hours of exposure), and panel (b)

illustrates the same comparison, but on average over 6

and 24 hours of exposure times. The panels illustrate that

the majority of differentially abundant proteins were iden-

tified with all three approaches. Moreover, under nor-

moxia, the comparison in (b) has the same biological

interpretation as in (a), but it doubles the number of

biological replicates. As can be seen, the robustness of the

conclusions to the treatment of missing values increases

with the number of biological replicates.

Discussion
Our results show that in situations where measurements

are available from multiple related conditions, the pro-

posed joint probabilistic modeling and summarization of

all the LC-MS/MS runs leads to more sensitive protein

significance analysis and more accurate and precise pro-

tein quantification than when separately analyzing subsets

of conditions. The gain is due to a more efficient use of

the data, and to a more accurate understanding of the sys-

tematic and random variation.

A distinctive feature of linear mixed effects models is the

ability to distinguish two interpretations that we attribute

to biological replication. The expanded scope of biological

replication means that we expect to reproduce the results

in a new set of biological replicates that are randomly

selected from the underlying population. Significance test-

ing based on the expanded scope is conservative, and is

appropriate for confirmatory investigations. On the other

hand, a model specifying the reduced scope of conclusions

only expects to reproduce the results in a replicate mass

spectrometry analysis of the same biological samples.

Protein significance in these models may or may not be

reproduced in another set of biological replicates. Such

Figure 13 Precision of relative protein quantifications. (a) Study of breast cancer cell lines, protein SLC44A2. (b) Study of subjects with

osteosarcoma, Entrez ID 28299. X-axis: condition. Y-axis: model-based estimate of log-abundance. Vertical lines are the 95% confidence intervals.

Solid black lines: protein quantification based on the proposed joint modeling of all conditions. Dashed green lines: protein quantification based

on the naïve analysis, which averages feature intensities in each replicate. The proteins are the same as in Figure 3.
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models are appropriate for small-size screening experi-

ments. The distinction between the scopes of biological

replication is a property of all biological experiments, and

the advantage of linear mixed effects models is that they

make this distinction explicit, and allow practitioners to

make an informed choice. In all cases, the scope of conclu-

sions should be clearly specified prior to collecting the

data, the limits of generalizability should be clearly stated

when reporting the results, and the conclusions should be

followed by a thorough experimental validation.

Developing linear mixed effects models for experiments

with complex designs and making model-based conclu-

sions presents technical challenges for users with a limited

statistics background. The implementation in MSstats

automates these tasks and circumvents the challenges.

Table 1 summarizes the proposed analysis workflow,

Supplementary Table 2 annotates the steps of the work-

flow with R-based commands, and Supplementary Infor-

mation contains extensive code for implementing the

workflow in the two case studies. The analysis time of the

workflow increases with the dimensionality of the dataset

(i.e., with the number of quantified proteins, and the num-

ber of features per protein) and with the complexity of the

experiment (e.g., the model-based analysis for the time

course study of osteosarcoma requires a longer analysis

time than the factorial study of breast cancer), but even

for large-scale datasets from complex designs each step of

the workflow can typically be executed within minutes.

The proposed framework, and the software implemen-

tation, should not be confused with that of the recently

introduced software SRMstats for protein significance

analysis in label-based selected reaction monitoring

(SRM) workflows [25]. While also based on the linear

mixed effects modeling framework, the class of models

employed in SRMstats are designed to optimize perfor-

mance in datasets specific to the SRM workflow. SRM

datasets contain extra information from heavy-labeled

reference peptides, which facilitates several aspects of an

analysis, including normalization to remove systematic

between-run variation, separation of true biological

Figure 14 Accuracy of protein quantifications in the study of breast cancer cell lines. X-axis: standardized log-fold change, for the

comparison described at the beginning of Section 3, from the naïve analysis, which averages feature intensities in each replicate and uses a

two-group t-test. Y-axis: standardized log-fold change from the proposed joint modeling of all conditions. Dashed line: a 45° line.
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variation from non-systematic between-run variation,

and a more straightforward handling of missing values

within the linear mixed effects modeling framework. The

framework introduced in this work is designed

specifically for label-free LC-MS/MS investigations,

which are characterized by a confounding of variation

from multiple convoluted sources, heterogeneous sto-

chastic variation, frequent missing data, and greater

Table 1 An overview of the proposed data analysis workflow.

Steps Detailed tasks Comments

Statement of the
problem

• Specify comparisons of interest • Express comparisons as statistical hypotheses

• Define scope of biological replication • Restricted scope suitable for screening; expanded scope required for
validation

Exploratory data
analysis

• Detect mis-identified features • Remove obvious outliers

• Detect features with missing values • Choose imputation strategy

Model-based analysis • Fit linear mixed model per protein • Reduced scope of biological replication = fixed subjects; expanded
scope = random subjects

• Check qq-plots plots for Normality • If deviations, conclusions are approximate only

• Check residual plots for equal variance • If deviations, use iterative least squares

• Test comparisons of interest • Adjust p-values per comparison to control FDR

• Quantify protein abundance in conditions or
samples of interest

• Use as input with downstream clustering or classification

Design follow-up
experiments

• Evaluate power and sample size • Find minimal sample size for a fold change

• Find minimal fold change for a sample size

Supplementary Table 2 shows MSstats commands for each step.

Figure 15 Comparison of strategies for missing data. Effect of the treatment of missing LC-MS peaks on protein significance analysis in the

study of breast cancer cell lines, for the subset of 140 proteins where at least one feature is missing entirely in at least one condition. (a) Results

of comparing protein abundances between cell line types after six hours of normoxia. (b) Results of comparing protein abundances between cell

line types under normoxia, on average over the two exposure times. Each circle shows the number of differentially abundant proteins detected

with three treatments of features with peak intensities missing in an entire condition: (1) imputation of the background intensity, (2) assuming

no feature interferences, and (3) removing the feature from the dataset. The two comparisons have the same biological interpretation, but (b)

doubles the number of biological replicates.
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uncertainty in the conclusions. The implementation in

MSstats is designed to utilize experiments with com-

plex designs in order to better quantify the sources of

variation and reduce uncertainty.

The proposed approach has several limitations, most

of which are simplifications that reduce the complexity

and the analysis time of large-scale datasets. First,

MSstats requires the same treatment of missing peak

intensities to all proteins with excessive missings. A

user-specified protein-specific treatment, motivated by

the quality control plots, will likely be implemented in a

future version of the software. Second, MSstats applies

the same class of models to all proteins in the dataset.

While per-protein refinements, such as removing unne-

cessary interaction terms, are possible they are often

impractical, slow the analysis, require adjustments for

multiple testing, and may lead to more conservative

tests and overfitting. Another potential problem is the

assumption of Normally distributed random terms.

Although this assumption is rarely satisfied exactly, in

our experience the deviations from Normality on the

log-intensity scale are quite minor, and linear models

are known to be robust to such small deviations. Resi-

dual plots help diagnose features with major deviations,

which can then be manually excluded from the analysis.

The final limitation of the proposed approach is the

assumption that the LC-MS features in the dataset are

correctly identified, correctly mapped to protein groups,

and are informative of protein abundance (e.g., are

within the limits of the dynamic range). An incorrectly

mapped feature, a feature close to the edge of the signal

range, or a feature with a profile distorted by a post-

translational modification can undermine the quality of

the results. The quality control plots currently help par-

tially alleviate this issue.

Overall, the proposed approach balances accuracy and

practicality, and enables the analysis of complex experi-

ments in high throughput. Its open-source implementa-

tion is friendly to users with a limited statistics and

programming background. We hope that the proposed

approach will become a valuable tool for proteomic

investigations.

Additional material

Additional file 1: Supplementary information. Extensive experimental

and computational details and R code for MSstats are provided in

Supplementary information.
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