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We propose a statistical approach to the Quark bag model. Considering a hadron as the 
many-body system of the Quark and self-interacting scalar fields, we calculate the thermo
dynamical potential of the hadron in the one-loop approximation by the field theory at finite 
temperature and finite Quark density. 

We introduce the effective self-interactions between the Quark fields by the semi-classical 
method and estimate the surface energy of the bag and the spin-spin interaction energy. 

We apply our model to the calculations of the masses and other statical parameters of light 
hadrons. 

§ 1. Introduction 

The quark bag modeI1)-9) is an interesting approach to the hadron phenom

enology. In this approach the quark field is assumed to be confined in a small 
domain, i.e., the bag, and the stability of the hadron is ensured by the vacuum 
pressure B and the surface tension o. The energy of the bag is given by 

N E=x--+o-S+B- V R ' (1-1) 

where R is the bag's radius,S is the surface area, V is the volume, N is the 
quark number and x is a dimensionless constant of order 1. The mass of the 
hadron is calculated as follows: 

(1-2) 

In this paper, we propose a statistical approach to the quark bag model and derive 
the corresponding terms to each term of Eq. (1-1) on the basis of the many-body 
theory. 
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Statistical Quark Bag Model and Light Hadrons 1685 

As we have already studied in previous papers,IO),Il) we treat a hadron as the 
many-body system of the Quark and self-interacting scalar fields and assume that 
these fields are confined inside the bag. The vacuum pressure B is caused by the 
spontaneous symmetry breakdown of the scalar field. ll ) 

For both regions of the inside and outside of the bag, we consider the following 
effective Lagrangian density: 

(1·3) 

where ¢(x) is the scalar field, ¢a(X) is the Quark field with the flavor Quantum 
number a and fia is the chemical potential which ensures the Quark number 
conservation of the hadronic system.l2)~14) This scalar field ¢(x) may correspond 
to the color singlet tachyon in QCD.15)~l7) We assume that the value of the Quark 
number density Pa is constant inside the bag and zero outside the bag, i.e., the 
chemical potential fia has a finite value only inside the bag. The effective 
potentials inside and outside the bag are calculated in the one-loop approximation 
by the field theory at finite temperature and finite Quark density, where the 
classical field of ¢(x) is treated to be uniform in each space. We show that the 
symmetry of the scalar field is recovered inside the bag by high Quark density. 

As mentioned above, we assume that Pa has a constant value inside the bag 
and decreases to zero in the surface region. If this scheme works well, we can 
estimate the surface tension 15 which is proportional to Pa by the use of a rea
sonable effective Hamiltonian with the semiclassical method. 

From the above picture the thermodynamical potential Q of the hadron is 
written as follows: 

Q( V, T, fia) = [1\( T, fia)- }\] V + 15· 5 , (1·4) 

where A(Fv) is the minimum of the effective potential with respect to the 
classical field of ¢(x) inside (outside) the bag, T is the temperature of the 
hadron, and temperature and chemical potential are assumed to be zero outside 
the bag. Then the mass of a hadron is defined by 

with 

M= Q-~fia-{ oQ }l 
a Ofia a=J.ta',R=R, 

pressure: p= -oQ/OViJ.ta=J.ta',R=R,=O, 

Quark number: Na = - oQ/ofiaiJ.ta=J.ta',R=R, . 

(1·5) 

(1·6) 

(1.7) 
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1686 S. Kagiyama, S. Hirooka, H. Kikukawa and J Kikukawa 

We show that our statistical approach gives a mass formula very similar to 
that of the ordinary approach of the bag modeV) though the quark and scalar fields 
are treated as plane waves. 

The composition of this paper is as follows: 

§ 2. Thermodynamical potential of hadronic system 

§ 3. Surface energy 

§ 4. Spin-spin interaction and hadron mass shift 

§ 5. Calculation of hadron mass and other statical parameters 

§ 6. Discussion 

§ 2. Thermodynamical potential of hadronic system 

In ordinary many-body theory at finite temperature and density, it will be 
most convenient to start with the grand partition function: 

Z =exp( - Q/ T) = Tr[exp( - (H - L;, !laNa)/ T)], (2'1) 
a 

where Q is the thermodynamical potential, T the temperature, H the Hamil
tonian and Na the conserved quantum number of the system with the associated 
chemical potential !la. 

To study the phase transition, the grand partition function is generalized to 
the following generating functional: 

Z(J)=Tr{ [exp( -(H - ~ !laNa)/T)][ exp( - fd 4 x f(x )¢(x») JJ (2'2) 

with 

(2'3) 

where u is the imaginary time and the suffix + denotes that the time ordering has 
been performed. Here the thermal average of ¢(x) corresponds to the long range 
order parameter and f(x) is the conjugate external potential to ¢(x). According 
to Jackiw18) and Dolan and Jackiw,19) the path-integral representation for Z(n of 
the system, which is composed of the quark cf'(x) and the scalar particle ¢(x), is 
given by 

Here N is a normalization factor. In order to investigate the connected Green's 
functions, it is more convenient to define the connected generating functional 
W(n by Z(J)=exp( - W(J)/T). The effective action r(¢c) is obtained from 
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Statistical Quark Bag Model and Light Hadrons 1687 

W(J) by a Legendre transformation, 

r( CPc) = W(J)+ T f d 4xcpc(x )j(x), (2·5) 

where CPc(x) is the classical field defined by 

'" ( )=_-.l oW(J) 
'f'c x T oj (2·6) 

We expand the effective action in powers of the external momentum as20
) 

(2·7) 

Then the effective potential is defined by 

(2·8) 

where cP is a constant. The above definition shows that the effective potential 
is the generating functional for one-particle irreducible Green's functions of the 
scalar field at zero momentum. 

The minimum of P( ¢) with respect to ¢ is realized thermodynamically and 
corresponds to the thermodynamical potential density. Thus the thermodynamical 
potential of the system is given by 

(2·9) 

where V is the volume of the system and P( T, f1.a) is the minimum of P(¢). 

We will show that the symmetry of the scalar field is recovered inside the bag 
by high quark density even at zero temperature. To simplify our discussion we 
consider only one kind of massless quark. Then the effective Lagrangian density 
of Eq. (1· 3) is written as follows: 

J:eff = - rja( y. 0 + gaCP + f1.aY4)c/Ja- ~ (O"cp)2 

(2·10) 

The effective potential at finite temperature and finite quark density is calculated 
from Eqs. (2·2)~(2·8) in the one-loop approximation as follows: 1o

),11),19) 

P(¢, T, f1.a)= 2\ (mo2+om2)¢2 

(2·11) 
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1688 S. Kagiyama, S. Hirooka, H. Kikukawa and J Kikukawa 

(2·12) 

(2·13) 

where 

(2·14) 

We renormalize the effective potential at zero temperature and zero Quark 
density. The effective potential of EQ. (2·11) is calculated at zero temperature 
and zero Quark density as follows: 

Po(¢)=P(¢, T=jj=O) 

= 2\ (m02 + 8m2 )¢2 + 41! ()..o + 8)" )¢4 + Pb 1( ¢) + pf
1

( ¢), (2·15) 

(2·16) 

(2·17) 

where 

(2·18) 

Then we decide the counter terms by the following conditions :19) 

0
2 

Po I 2 
o¢/ [,=0= mo , (2·19) 

where m02 and)"o are the renormalized mass squared and coupling constant at zero 
temperature and zero Quark density respectively. Thus we can obtain the effec
tive potential at finite temperature and finite Quark density as follows: 
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Statistical Quark Bag Model and Light Hadrons 1689 

(2-20) 

where 

(2-21) 

(2-22) 

- f d
3
k Pf2(¢, T,/-t)=-2T (2Jr)3{ln[1+exp(-(Ef -,u)/T)] 

+ In[l +exp( - (Ef + ,u)/ T)]}. (2-23) 

Next, let us calculate the temperature and Quark density dependent renor
malized mass squared, which is defined bi 9

).21) 

where 

+2g
2 f(::~3 {Ef[exp( (E}- ,u)/T) + 1] + Ef [exp( (Ef ~ ,u)/ T)+ I]}' 

(2-24) 

(2-25) 

We take mo2 to be negative in order to give rise to the spontaneous breakdown of 
the scalar particle. At low temperature and low Quark density m2 is negative and 
we will show below that m 2 becomes positive at high temperature and/ or high 
Quark density. 

For Imo/TI~l and ,u=0, the equation (2-24) is expanded as follows: 

(2-26) 

The critical temperature Tc defined by the condition m2 = ° is given as follows: 

2 _ 24mo2 

Tc - - ilo+4g2 . (2 -27) 

Alternatively, for the limit T->O and ,u=\=0, the equation (2-24) is calculated as 
follows: 
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1690 S. Kagiyama, S. Hirooka, H. Kikukawa and]. Kikukawa 

2_ 2+ 1 2 2 
m - mo 27[2 g fJ. . (2'28) 

The above equation shows that the symmetry of the scalar field is recovered for 
a large value of /1 even at zero temperature. 

We may consider that the spontaneous breakdown of the scalar field cor
responds to Bose condensation. We refer the state with m 2 < 0 or m2 > 0 to the 
"super" or "normal" state hadron, respectively. It is interesting to consider the 
phase diagram. For simplicity, neglecting the terms of O(?!o mo T) we can rewrite 
the equation (2-24) as 

where 

Y = T ITo 

1.0 

0.5 

o 

Fig. 1. 

_ 2 (00 dt{ t + t } 
Jo exp( aU - x ) / y ) + 1 exp( aU + x ) / y ) + 1 ' (2-29) 

y= T/To, x =fJ./fJ.o, (2-30) 

(2-31) 

normal 

super 

0.5 1.0 
x = )..1..1#0 

Phase diagram. The curve of 

The phase diagram is shown in Fig. 1. We 
expect that the light hadrons are the "normal" 
states and exist on the domain x> 1 of the x
aXIS. When the quantum number is fixed, the 
quantum number density of the hadronic mat
ter (fire ball) with a large volume is dilute. 
Therefore the chemical potential can be neg
lected.ll) Thus the hadronic matters with the 
tempera ture T( T < Tc) are able to be the 
"super" state. 

Now we will calculate the thermodynami
cal potential of the light hadron, which is sur
rounded by the "super" vacuum. Outside the 

m' =0 is denoted by the solid line. bag the "vacuum" is characterized by zero 
Here we have fixed the value of temperature and zero quark density, so the 
(/~f-Io/To to be 3. thermodynamical potential density is obtained 

from Po( ¢) as follows: 

(2-32) 

where 

(2-33) 
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Statistical Quark Bag Model and Light Hadrons 1691 

On the other hand, the thermodynamical potential of the free Quark and scalar 
boson gas can be calculated from EQ. (2·4) as follows: 

(2·34) 

where the free term of the effective Lagrangian density is given by 

(2·35) 

The free energy of the scalar boson gas is zero at zero temperature because the 
chemical potential of the scalar boson gas is zero. Thus we consider only the 
contribution from the free Quark gas. The thermodynamical potential of free 
Quark gas at zero temperature is calculated as follows: 

(2·36) 

Now we get the thermodynamical potential of the "normal" free Quark gas 
surrounded by the "super" vacuum as follows: 

with 

Qo( V, fJa) = Qfree( V, fJa) - j\ V 

B= 3mo' 
2.,10 

§ 3. Surface energy 

(2· 37) 

(2·38) 

Now we estimate the surface tension (J by the semiclassical method. Let us 

consider the following effective surface Hamiltonian density: 

(3.1) 

with 
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1692 S. Kagiyama, S. Hirooka, H. Kikukawa and J Kikukawa 

f!.( r) 

o R r 

Fig. 2. Radial distribution of the quark num-
ber density Par y). Pa is the value of the 
quark number density inside the bag. 

(3'2) 

where f is a dimensionless constant. 
The potential function U ( ([Ja 2) is as· 
sumed to change the value from Mc 2 to 
zero in the surface region. Denoting by 
D the thickness of the surface shell in 
which the Quark density Pa is assumed to 
fall from the constant value Pa to zero as 
shown in Fig. 2, we estimate the surface 
energy density: 

where ([Ja( r) is assumed to be spherically symmetric. Minimizing cs with respect 
to D, we find a surface thickness as follows: 

ocsloD=O, (3'4) 

so that we obtain the surface tension which is defined by the minimum value of 
cs with respect to D, 

(3'5) 

Friedberg and Lee5
) showed that the result of EQ. (3'5) is independent of even the 

interaction form itself from an analogy of classical mechanics. Furthermore, the 
SLAC group3) showed that the same form for 15 can be obtained analytically from 
the ([J4 interaction. 

We have so far not considered the color Quantum numbers. However the 
binding mechanism given by EQ. (3.1) does not distinguish the color-singlet state 
from the nonsinglet states such as the diQuark state, so that we must introduce 
an additional mechanism which excludes the undesired states. Such a mecha
nism was introduced originally by N ambu. 22

) A vector interaction between the 
color spins is utilized by analogy with isospin interaction, and it is shown that the 
strongest attractive interaction occurs for the color-singlet state. The effective 
Hamiltonian density with respect to the Quark density Pa is written from 
EQs. (3.1) and (3'2) as follows: 

j(~ff = ~[ 16~:pa ( V Pa)2 + flcPa ~ ! f· U(j2 Pal flc )(Pal flc) J. (3·6) 

where 
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Statistical Quark Bag Model and Light Hadrons 1693 

fJc = f . Mcl2 . (3.7) 

The first, second and third terms represent the kinetic, color chemical potential 
and interaction energy densities, respectively. Now we imagine that the interac
tion is caused by the vector interaction between the color spins as follows: 

9(knt
= ~( ~ ~).a·).p(Pa/fJc)(PP/fJc), (3·8) 

a<p 

The color spin matrices ).a have the following kinematical relation, 

2 ~ ).a·).P = (~ ).a)2 - ~ )./ . (3·9) 
a,p a a 
a<p 

Thus the strongest attractive interaction is obtained in the case of the color 
singlet state. In that case the effective interaction energy density of Eq. (3·8) is 
consistent with the third form of Eq. (3·6). If the color chemical potential fJc 

tends to infinity, there is a possibility of the finite energy only for the color singlet 
state. Then the color chemical potential fJc corresponds to the gap energy be
tween the color singlet and the non-singlet states. 

§ 4. Spin-spin interaction and hadron mass shift 

According to the effective interaction of Eq. (3·8) in the previous section, we 
introduce the following effective spin-spin interaction density:23) 

where Sa is the spin matrix of the quark (or anti-quark) a. The spin matrices 
have the following kinematical relations, 

_ 1 {( )2 2 2} Sa·Sp-Z Sa+Sp -Sa -Sp 

(4·2) 

Thus the 0-, 1- mesons and the 3/2+ baryons have the following values, 

so- s, ~ 1 
3 for 0-
4 

, 
(4·3) 

1 for 
3+ 1- ---

4 ' 2 
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1694 S. Kagiyama, S. Hirooka, H. Kikukawa and]. Kikukawa 

Next let us consider the case of the 1/2+ baryons. Now, 11 and}; are made 
of an s quark and a pair of quarks ("diquark") with flavor u or d. Taking the 
quantum number 1 for s quark, Eq. (4' 1) is written as follows: 

(4'4) 

where we assume that 

f.L2 = f.L3= f.Lq . (4'5) 

From the spin-isospin symmetry we can get (82 + 83)2 = ° or 1 for 11 or }; respec
tively. Hence we obtain 

!f{ss(11)=J2(-3) pq: + c( 0). Ps. pq . 
}; 4 1 f.Lq -1 f.Ls f.Lq 

(4'6) 

The mass splitting between}; and 11 is therefore given by 

In the next section, we will show that (p q/ f.Lq) > (p s/ f.Ls) if Ms > Mq. From similar 
consideration we can get for Nand S, 

(4'8) 

§ 5. Calculation of hadron mass and other statical parameters 

From the results of the preceding sections, we can write the thermodynamical 
potential of hadrons as follows: 

with 

+3Ma4ln[(f.La+(f.La2- Ma2)1/2))/Ma]]} V, 

Q -I"'" - 5- 31 ...., - V- 31...., iJQ 
s- ~Pa -7r~Pa --R~a/J-;' 

- ~ C .s(_I __ iJQ )(_1_ iJQ_) V 
- a,.s a f.La V iJf.La jip V iJf.Lp a<p 

(5' 1) 

(5·2) 

(5'3) 

(5'4) 
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Statistical Quark Bag Model and Light Hadrons 1695 

(5·5) 

In Eq. (5·3), we have assumed spherical form for the light hadron. At zero 
temperature, the Helmholtz free energy F is equal to the internal energy E and 
then it follows 

E=F=Q+~ fJ.aNa . (5·6) 
a 

We approximate Q by Q o in Eqs. (5·3) and (5·4), i.e., 

Q = _ 31 " JQo =~ "( 2-M 2)3/2 V 
S R L.J J 2R L.J fJ.a a , a fJ.a 7[ a 

(5·7) 

Q _ ~ G (_1_ JQo )(_1_ JQo) V 
ss - a,P aP fJ.a V JfJ.a fJ.p V JfJ.p 

a<p 

(5·S) 

The quark number Na is fixed by 

N = - JQ ={_1_(fJ. 2-M 2)3/2 _--'lLfJ. (fJ. 2-M 2)1/2 
a JfJ.a 37[2 a a 7[2 R a a a 

(5·9) 

We conveniently impose the above condition for each "valance" quark (or anti
quark) independently. Thus two conditions are imposed even in the case where 
a hadron is composed of a quark and an anti-quark with the same flavor quantum 
number. If we don't do so, we must put Na = 1 and 0 for the charged pion and the 
neutral pion respectively. This gives the undesired result for the mass spectra. 
This means that we cannot ensure all the quantum numbers of the hadronic 
system only by the conservation of the quark number. The above treatment gives 
us the picture that the "valence" quarks (or anti-quarks) are surrounded by the 
"sea" quark and anti-quark pair individually at finite temperature. We hereafter 
refer the above equation to the quantum number conservation condition. 

The mechanical equilibrium condition is given by 

- JQ _ B+ 1 "{2 ( 2 M 2)3/2 3M 2 P - - J V - - 247[2 ~ fJ.a fJ.a - a - a fJ.a 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/5/1684/1857320 by U

.S. D
epartm

ent of Justice user on 17 August 2022



1696 S. Kagiyama, S. Hirooka, H. Kikukawa and J Kikukawa 

2/ "( 2 M 2)3/2 1" G [( 2 M 2)3/2/ ] --3 2R L.J J1a - a - (3 2)2 L.J aP J1a - a J1a TC a TC a,P 
a<P 

(5 '10) 

Now we can represent the mass of the hadron from Eqs. (5'6) and (5'10) as 
follows: 

(5·11) 

where the mass M is the value of E at p=O. 

5.1. Valence Quark number dependence 0/ the hadron 

First of all, let us take the limit Ma = 0, G = 0 and / = O. Then we can write 
Q by the simple form: 

(5'12) 

and the quantum number conservation and equilibrium conditions are given by 

(5'13) 

(5'14) 

From the above conditions, we can easily get the chemical potential of the quark 
and the radius of the hadron, 

(5'15) 

(5'16) 

where N = L;aNa. We have considered each valence quark as a different fermion 
from the other valence quarks, because each valence quark has the color quantum 
number in addition to the flavor quantum number. Thus the mass of the hadron 
is written as 

From the above formula, we can obtain the following relations: 

M(meson) / M(baryon) = (2/3)3/4::::0 3/ 4 , 

R(meson)/R(baryon)=(2/ 3)1/4::::09/10, 

1/ R(baryon)::::o (4/ 9TC )1/3( MN/ 3)::::0 160 MeV, 

(5·17) 

(5-18) 

(5'19) 

(5'20) 
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Statistical Quark Bag Model and Light Hadrons 1697 

where MN is the mass of the nucleon. 

5.2. Mass formula 

Next, let us calculate the chemical potentials of the quarks, the radius and 
the mass of the hadron under the following conditions: 

G~l and f~l. 

In this case we obtain the following formulae: 

/1a = {[ 12n2 B( 1 + 8f( 4/ 9n )113 

where 

2 
gap = 3n2 Gap, 

CI = A(l)/ det A , 

-4g12 I 
3- gl2 - 3g23 ' 

g12- g231. 

g23- gl2 

(5-21) 

(5-22) 

(5-23) 

(5-24) 

(5-25) 

(5-26) 

(5- 27) 

(5-28) 

(5-29) 

From the above mass formula, we obtain the following sum rules for the masses 
squared, 
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1698 S. Kagiyama, S. Hirooka, H. Kikukawa and]. Kikukawa 

M 2 M 2 - M2 M 2 - M2 M 2 
,j - N - y.- E - S'- S· 

(5'30) 

(5'31) 

(5'32) 

On the assumption Ms > Mq , the inequalities with the radii of the hadrons are 
obtained from EQ. (5' 23) as follows: 

(5'33) 

(5'34) 

(5'35) 

(5'36) 

Finally we show a fitting for the masses of the hadrons by our formulae of EQs. 
(5'22)~(5'29) for j=O in Table 1. 

Table I. Masses, radii and chemical potentials of the light hadrons, calculated by formulae (5'22) 
~(5'29) for /=0. All quantities are quoted in MeV. 

Particle Mexp M l/R /11 /12 

N 939 933 193 285 324 
11 1116 1093 194 454 320 
1: 1191 1129 207 435 347 
~ 1317 1291 220 335 478 
LI 1236 1201 164 400 400 
Y* 1382 1356 171 518 419 
5* 1529 1503 179 437 533 
Q 1674 1641 186 547 547 
p 778 796 188 398 398 
K* 890 950 201 426 524 
w 783 796 188 398 398 
if; 1019 1091 213 545 545 
K 495 822 224 354 467 
l[ 137 640 202 320 320 

El/4 = 133 MeV, G/4=3.8, MU.d=4.7 MeV, Ms=305 MeV 

In order to see the validity of the approximated formulae (5'22)~(5'29), we 
have directly calculated M, Rand /la from Eqs. (5'9)~(5'11) by computer. 
The results shown in Table II do not differ so much from those in Table 1. In 
both fittings, the values of the parameters are fixed by minimizing the following 
sum: 
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Statistical Quark Bag Model and Light Hadrons 1699 

Table II. Masses, radii and chemical potentials of the light hadrons, calculated from Eqs. (5'9) 
~ (5'11) for f = 0 by computer. All quantities are quoted in Me V. 

Particle Mexp M I/R f./l f./z 

N 939 927 174 218 355 
Jl 1116 1079 181 492 294 
}; 1191 1151 179 383 384 

- 1317 1258 188 286 486 

L1 1236 1218 156 406 406 
Y* 1382 1353 160 544 404 
S* 1529 1490 164 404 543 
Q 1674 1629 169 543 543 
p 778 792 180 396 396 
K* 890 939 188 403 537 

w 783 792 180 396 396 

<P 1019 1082 196 543 543 

K 495 819 208 370 449 
7[ 137 635 197 317 317 

BI14=127.2MeV, G/4=4.26, MU.d=80.7 MeV, Ms=347.8 MeV 

I=~[(M%xp~Mlhe)/M%xp]2 , 
k 

(5' 37) 

except the 0- mesons, where M%XP and Mlhe are the experimental and theoretical 
values of the masses of the light hadrons respectively. 

5.3. Charge radius 

The mean-squared charge radius of the hadron can be estimated by 

with 

PaC r)= i5ae(R~ r), e(x)={~ forx>O, 

for x < 0, 

(5'38) 

(5'39) 

where ea is the charge of the Quark {1 and eh = ~aea. Consequently eh< rh2 > is 
given by 

eh< r/> = (3/ 5)R2 ~ ea. (5'40) 
a 

We give the predictions for the three best-known charge radii by using the results 
of Table II. They are shown in Table III. 
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Table III. Charge radii estimated by the results in Table II. All Quantities 
are Quoted in fm. 

Particle Experiment Prediction 

p 0.SS±0.03 0.S7 

n -0.12±0.01 0 
7f 0.78±0.10 0.77 

5.4 Magnetic moment 

Now we estimate the magnetic moment of the proton by the phenomenological 
formula: 

(5'41) 

Then we find the gyromagnetic ratio: 

gp=2MpTP/e=2.65 , (ExP. 2.79) (5'42) 

where Mp is the mass of the proton and e is the unit charge. 

§ 6. Discussion 

1) By our statistical model of the light hadron we have obtained reasonable 
values for the masses and other statical parameters. 

By assuming that the free quark field cp(x) with mass M is confined in a 
spherical cavity with radius R, the MIT group2) got the following lowest energy 
solution of a single particle from the Dirac equation, 

(6'1) 

where x =x(MR) and x(0)=2.04. In our model the chemical potential J1.a with Na 

=1 corresponds to w, and a similar representation is obtained from Eqs. (5'23) 
and (5·24) as follows: 

Here (97[/4)'13::""1.9 and this value is approximately equal to x(O). This shows 
that our statistical approach is significant though the quark field is treated as a 
plane wave. 
2) We have obtained a mass formula which is very similar to that of the MIT 
group2) in spite of the different starting points. 

In our model, the internal energy of the hadron for Ma = G = 0 is given as 
follows: 
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aQ 
E=Q-L:, Jia-::>-

a UJia 
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which is obtained from Eqs. (5-1)~(5-9), where xa=JiaR. The equation (5-9) is 
rewritten as 

(6-4) 

The "negative zero point energy" in the MIT bag model corresponds to the last 
term of Eq. (6-3), i.e., the surface energy of the hadron. Furthermore we can get 
the mass of the hadron, i.e., the internal energy at the mechanical equilibrium 
aEI aR = 0, as follows: 

M= j (47[B)I/4 ~[~(xa4-8f-xa3)r4 (6-5) 

For f~l, the value of Xa is obtained approximately from Eq. (6-3) as follows: 

(6-6) 

Then the equation (6-5) is rewritten as 

M = N 3 /
4 [127[2 BO + 12f( 41 97[ )1/3) ]1/4 , (6-7) 

and this, of course, accords with Eq. (5 -24). Thus the surface energy gives a 
"positive" contribution to M in our model. However the condition of the quantum 
number conservation (6-4) is not considered in the MIT bag model. Then the 
third term of Eq. (6-3) gives the negative contribution to the mass of the hadron. 
3) Our model predicts larger values for the masses of the 0- mesons than the 
experimental ones. This discrepancy will be explained by assuming that the 0-
mesons are the hadrons of the "super" state and the other light hadrons are the 
ones of the "normal" state. If the hadron is in the "super" state, the volume 
energy B must be rewritten as ll

) 

B= 3m0
4 

_ 3m
4 

2,,10 2,,1' 
(6-8) 

instead of Eq. (2-38). Here m 2 and A are the renormalized mass squared and the 
renormalized coupling constant at finite quark density. From the above equation 
and Eq. (5-17), we can expect that the hadrons of the "super" state have smaller 
masses than the ones of the "normal" state. By Eq. (2-29) and the values of 
Table II, it is easy to choose such parameters (m2

, ,,10 and ga), that give negative 
values of m only for the 0- mesons. In this case we will, however, get larger 
values for the radii than the ones of Table II as supposed by Eq. (5-13). 
4) The sum of the numbers of the "sea quark" and the "anti-seaquark" is 
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estimated by 

f d3k 1 
N s =2·3·4· V (27r)3 exp(k/T)+1 

~ 24 r V fd3x 1 2 19 T3 V 
~ (27r)3 exp(x)+I' , (6·9) 

where we have considered u and d quarks only and neglected their masses. The 
factors 2,3 and 4 are consequences of the degrees of freedom of the flavor, the 
color and the fermion field respectively. Therefore we cannot neglect the effects 
of the "sea quarks" when 

T""O/2.19 V)1/3=96 MeV, (6·10) 

where we have used the value 1/ R = 200 Me V. At this temperature the average 
number of the scalar particle is given by 

f d3k 1 
Nsp= V (27r)3 exp(k/T)+l 0.057, (6·11) 

where we have also neglected the mass of the scalar particle. 
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