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A statistical approach is taken toward the ray optics of optical media with complicated nonspherical and nonplanar
surface shapes. As a general rule, the light in such a medium will tend to be randomized in direction and of 2n 2(x)
times greater intensity than the externally incident light, where n(x) is the local index of refraction. A specific
method for doing optical calculations in statistical ray optics will be outlined. These optical enhancement effects
can result in a new type of antireflection coating. In addition, these effects can improve the efficiency as well as
reduce the cost of solar cells.

1. INTRODUCTION

Traditionally, geometrical optics has concerned itself with the
optical properties of media having spherical and planar sur-
face shapes. Optical materials with more complicated surface
shapes, or even with random surface textures, have not been
thought to merit any special analytical treatment.

Nevertheless, there are many situations in which the optical
properties of materials having complex surface shapes are of
paramount importance. For example, in solar cells there is
a tendency for light to be trapped by total internal reflection
in the semiconductor if at least one of the surfaces is
textured.1-4 In this paper we hope to present a proper ana-
lytical approach toward the ray optics of materials with
complicated surface shapes.

We adopt a statistical approach that is rather general in that
it treats on an equal footing the infinite variety of possible
surface shapes and textures. The implicit assumption in such
an approach is that the behavior of the light rays is ergodic,
i.e., a steady-state, temporally averaged, light-intensity dis-
tribution will be identical with a statistical phase-space in-
tensity distribution. Obviously, in some situations the ergodic
hypothesis will be invalid and the statistical approach of this
paper will not work. We attempt to show how to delineate
those nonergodic geometries from the far larger class that can
indeed be treated by statistical mechanics.

We find that there is an overriding tendency for the light
intensity, internal to an ergodic optical medium, to be n2 times
larger than the incident-light intensity. This enhancement
can be further multiplied by 2 if the incident illumination is
one-sided and a white reflective surface is placed behind the
optical medium. In an inhomogeneous medium, the intensity
enhancement will be given by the same formula employing the
local index of refraction n (x).

In Section 2 we give a derivation based on statistical me-
chanics. Such an approach is powerful in that it can be gen-
eralized to situations in which ray optics is inapplicable (al-
though we will not attempt such a generalization in this arti-
cle). An effort is made in Section 3 to delineate nonergodic
geometries from ergodic geometries. However, we will not
attempt to distinguish between these two classes in the
mathematically rigorous measure-theory sense.

A geometrical-optics derivation of the intensity enhance-
ment is presented in Section 4. It is a simple example of a

useful approach toward optical calculations in statistical ray
optics. Its simplicity permits us to recognize better some of
the prerequisites and limitations of this type of intensity en-
hancement. In Section 5 we show how these considerations
are modified in the presence of absorption.

Experiments on and analysis of a new type of ray-optics
antireflection coating are presented in Section 6. In addition,
two types of solar-cell structures are analyzed and the results
checked against experiment in Sections 7 and 8.

2. STATISTICAL-MECHANICAL DERIVATION

Consider an inhomogeneous optical slab with position-de-
pendent index of refraction n (x), as illustrated in Fig. 1. Let
the index of refraction vary sufficiently slowly in space so that
a density of electromagnetic modes may be defined, at least
locally inside the sheet. Now place the optical medium into
a region of space that is filled with blackbody radiation in a
frequency band dwo at a temperature T. When the electro-
magnetic radiation inside the medium approaches equilibrium
with the external blackbody radiation, the electromagnetic
energy density5 is

hw 2dQ k2 dk

exp w -1 (2w)
3

(1)

This is the standard Planck formula for blackbody radiation
in a vacuum, but, as Landau and Lifshitz show,5 it can be
adapted to any optical medium by making k = nw/c. In ad-
dition, the energy density may be changed to an intensity I
(power per unit area) by multiplying Eq. (1) by the group
velocity vg = dw/dk. Making both changes in Eq. (1), we
obtain:

hco 2dQ n2 C02 dw
I- Uvg = I (27)3 c2 dw

exp (-) - 1

(2)

This differs from the vacuum blackbody intensity simply by
the factor n2. Therefore the intensity of light in a medium
that is in equilibrium with external blackbody radiation is n2

times greater:

Ii1 t(w, x) = n
2
(W, X) Iextbb( ). (3)
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Fig. 1. Textured optical sheet bathed in blackbody radiation. The
intensity inside the sheet is greater than that outside by the factor
n 2(X).

(a

(b)

Fig. 2. In the textured sheet (a) the light fills the internal-phase
space with radiation of enhanced intensity. In (b) the behavior of
the light is nonergodic, and no intensity enhancement occurs.

This factor comes about simply because the density of states
in such a medium is proportional to n2 , and the equipartition
theorem guarantees equal occupation of the states, internal
as well as external. This assumes, of course, that the behavior
of the light rays internal to the medium is ergodic.

Now let us decide whether, or to what degree, the situation
changes when an arbitrary external-radiation field replaces
the blackbody radiation. Since we are considering a trans-
parent medium, inelastic events, such as absorption and
reemission at another frequency, are not permitted. There-
fore each spectral component may be considered individually.
In this circumstance, departure of the external field from an
exact blackbody frequency distribution will not affect Eq. (3),
which will remain valid separately at each frequency w.

A much more serious question is: What happens when the
external-radiation field departs from the isotropic distribution
of blackbody radiation? This situation is illustrated in Fig.
2(a), in which the external light is shown to be collimated. If
the surface of the optical sheet is quite irregular in shape, then
the light rays, on entering the medium, will lose all memory
of the external incident angle after the first or, at most, the
second scattering from a surface. In other words, all corre-
lation with the external angle will be lost almost immediately
on refraction or total internal reflection, especially when av-
eraged over the illuminated surface of the sheet. If this
condition is satisfied, then a collimated incident beam of in-
tensity Iext will produce inside the optical sheet a random
angular distribution of light, no matter which direction the
beam happens to be coming from. Therefore a collimated
beam, when it is subdivided so that it illuminates the optical
medium equally from all directions, produces identical in-

ternal light distributions under those respective conditions.
But the condition of isotropic illumination is equivalent to
that of blackbody illumination. Therefore Eq. (3) remains
valid whether the external field is isotropic, as in the black-
body case, or whether it is collimated, provided again that the
light rays internal to the medium behave ergodically:

Iift(w, x) = n
2
(W, X) Iext( ). (4)

Equation (4) will be corrected for certain surface trans-
mission factors in Section 4, but it is a key formula in this
paper. It rests on the assumption that all correlation of the
internal rays with the external angle of incidence is lost almost
immediately on the rays' entering the medium and/or on their
averaging over the illuminated surface. Even optical sheets
with ordered surface textures will show the type of randomi-
zation that we are discussing here. The reasons are as fol-
lows:

1. If light randomization does not occur on the entering
refraction, it can occur on the first internal reflection.

2. If it does not occur on the first reflection, then it does
on the second.

3. If it does not occur then, it can still be the result of a
spatial average over the illuminated surface area.

4. If it does not occur even then, it can still result from
angular averaging because of the motion of the source, like the
sun moving through the sky.

In other words, there is a rather overwhelming tendency
toward randomization in the angular distribution of light and
toward the validity of Eq. (4). But it is not always satis-
fied.

Consider the simple plane-parallel slab shown in Fig. 2(b).
Clearly there is no intensity enhancement in that case. 6

Another geometry in which there is no angular randomization
is the sphere. The internal angle of incidence is always equal
to the internal angle of refraction. There are many other
situations in which angular randomization does not occur.
These examples show that the key question is whether the
optical geometry is ergodic. If it is ergodic, internal angular
randomization will tend to occur before the light ray escapes.
If it is nonergodic, and angular randomization does not occur,
there will be little or no intensity enhancement whether the
external radiation is isotropic or not. In Section 3, a semi-
quantitative criterion is derived to delineate nonergodic
geometries from the much larger class of ergodic geome-
tries.

Now consider the situation shown in Fig. (3). In that ge-
ometry, the light is confined to a half-space by the presence
of a white reflective plane. In effect, the light intensity ex-
ternal to the optical sheet has been doubled by virtue of re-

LIGHT

WIIITE SURFACE

Fig. 3. A white rear reflector reduces the number of escape channels
for light by half and therefore increases the internal intensity by a
factor of 2.
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flection from the white surface. The total intensity en-

hancement will then be given by

Ii 0t(w, x) = 2n
2

(W, X) Ii.J(w), (5)

where Ii,,(w) is the incident-light intensity.
One of the key implicit assumptions that we did not em-

phasize earlier is that there be no absorption, either within the

volume or on the surface of the medium. Optical absorption

effects will be treated in Section 5.
Another important assumption is that wave-optical effects

can be ignored. Generally, this is a good assumption, as long

as the optical sheet is significantly thicker than half of the

wavelength of light in the medium. The critical point is that

the optical density of modes per unit volume should be rela-

tively unaffected by wave-optical effects. This will be true

if the thickness of the optical sheet is much greater than X/2n.

For a sheet 2 ,gm thick, a vacuum wavelength of 1 ,um, and the

index of refraction n = 3.5 of silicon, this is easily satisfied.

The main conclusion of this section is that a statistical-

mechanical approach results in the intensity enhancement

given in Eq. (5). The factor 2n2 can be quite substantial, i.e.,

approximately 25 for silicon and approximately 15 for TiO2 .

Even conventional glass of index 1.5 has an enhancement

factor equal to 4.5. In view of the importance of this result,

we have given an alternative derivation based on geometrical
optics in Section 4.

3. ERGODIC BEHAVIOR

We have amply emphasized the importance of ergodic be-

havior for the results being reported here. A rigorous

methematical delineation of those dynamical systems in which

phase-space randomization occurs from those in which it does

not is difficult. It represents perhaps the major unsolved

problem in fundamental statistical mechanics. In this section

we merely introduce the subject as it applies to statistical ray

optics.
As was mentioned earlier, angular randomization tends to

be the rule. On the contrary, it is the nonergodic geometries

that are unusual and exceptional. Examples are the plane-

parallel slab, the perfect sphere, and the parallelogram. In

each of these cases, the symmetry is so high that only a re-

stricted class of angles is dynamically accessible to an in-

coming light ray. In some respects, the problem has proper-

ties similar to the billiard-table problem. A moving billiard

ball will access only two discrete angles on a rectangular bil-

liard table. If the billiard table has an odd shape, however,

the full angular space is available for the motion.

The problem for photons is somewhat similar, except that

(1) it is three-dimensional, and (2) the boundary condition at

the edge is not totally reflective, as for billiard balls. When

a photon strikes the internal surface of an optical medium it

is usually totally internally reflected. But if the internal angle

of incidence happens to fall within the escape cone, the light

ray can leave the system. The angle of the escape cone 0, is

defined from Snell's law by the condition for total internal

reflection:

1
sin 0,

n

where n is the index of refraction in the medium.

Fig. 4. The angular texturing required at the rear surface to prevent
escape on the second bounce at the front surface is relatively small.
This may be regarded as a rough guide to the degree of texturing re-
quired to ensure that randomization will compete effectively with the
escape of light rays through the loss cone.

Therefore optical systems are never completely closed, in

contradistinction to billiard tables. The tendency toward

angular randomization must compete with escape of the light

from the optical medium. Not only must there be randomi-
zation but it must come quickly, within one or two refraction

or reflection interactions with the surface. Especially for

high-index materials, such as semiconductors, this is easily

achieved. The solid angle QC subtended by the escape cone

tends to be a rather small fraction of 47r. In fact,

QC2 X 4wr.

If we relate solid angle to probability, then the probability for

the light's escaping in a single-scattering event is only 1/2n2 ,

or about 4% for the index of refraction of silicon. Therefore

many surface-scattering events are available for angular

randomization before escape becomes probable.

A semiquantitative estimate of the degree for roughness
required to satisfy the condition of angular randomization can

be made. Consider the optical sheet shown in Fig. 4.

The front surface Si is flat, whereas the rear surface is

roughened. A small portion S2 of the rear surface, whose

surface angle departs from normal incidence by 0, is shown.

The rear surface is either silvered or backed up by a white

reflector. Therefore we consider the possible escape of light

rays only from the front surface S1. The critical angle for

escape is

20 arcsin(1/n). (6)

In other words, the angle of the rear reflector must depart

from normal incidence by 0 > 1/2 arcsin(1/n) to ensure total

internal reflection at the front surface. It should be empha-

sized that the presence of a quarter-wave antireflection
coating will have no effect on the net angle of total internal
reflection at the front surface. Substituting the index of re-

fraction 3.5 appropriate to c-Si, we find that the angle 0 should

be greater than 8.30 to ensure total internal reflection on the

second bounce and probable angular randomization on sub-

sequent reflections.
That the angle 0 need only be greater than 8.30 is an indi-

cation of the very mild degree of surface roughness that is

adequate for angular randomization. However, it is only a

crude indicator, and it is really applicable only to the geometry

of Fig. 4. In the absence of any better approach, 1/2 arcsin(1/n)

may be regarded as a semiquantitative estimate of the degree

of surface roughness required for ergodic behavior.
In Section 4 we show how the intensity-enhancement factor

can be more simply derived from geometrical optics rather

than from phase-space considerations.

S1
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Fig. 5. Detailed balancing requires that the light escaping in the loss
cone through area element dA equal the amount of incoming light
through the same area element dA.

4. GEOMETRICAL-OPTICS DERIVATION

Our approach is based on detailed balancing of the light that
is incident upon a small area element dA and the light in the
loss cone that escapes from it. Consider the geometry shown
in Fig. 5. Let Iin, be the incident-radiation power per area
element dA. A fraction Tinc(O) of this light will be trans-

mitted through the incoming interface, where 0 is the angle
of incidence. This must be balanced by the internal radiation
that escapes. Let us assume that the internal radiation is
isotropic because of the randomizing influence of refraction
and reflection from the textured interfaces, as was discussed
in the previous section. Let Bint be the internal intensity per
unit internal solid angle. The internal intensity Iint on both
sides of an area element dA is given by

Iint = S Bint cos Odw,

where cos 0 is the reduction of intensity on the area element
due to oblique incidence. In this paper we follow the con-
vention that internal intensity Iint is bidirectional while the
incident intensity Iinc is unidirectional. Therefore

Iint = 2 x 2 7x 2 Bint COS 0 sin 0 dO,

Iint = 2wr Bint.

Only a small fraction of this power per unit area will escape,
since the loss-cone solid angle is much less than 47r sr. The
intensity that escapes is

Iesc= 2r Sc 2 Tesc (0)cos 0 sin 0 do, (7)

where n sin O, = 1 and 0 is the internal angle of incidence. If
we substitute a weighted-average transmission factor Tesc for
the angle-dependent surface transmission factor Tesc(O), then
the integral in Eq. (7) may be easily computed:

-Te
'esc = Iint 2n2

-

If we now apply the principle of detailed balancing, the en-

tering intensity is made equal to the escaping intensity:

Tinc(Ot) Iinc = Iint 2nT2

Therefore

Ii,,t = 2n2 X Tinc ( P)X ie 8
- n X i X Iinc- (8)

Tese

As Eq. (8) shows, the enhancement may be increased be-
yond 2n 2 if Tinc(o), the transmission factor into the medium,,

is greater than Tesc, the average transmission factor out of the
medium. Of course, time-reversal invariance guarantees that
Tinc,() = Tesc(0). If the incident radiation is isotropic, then
the ratio Tinc/Tesc = 1 would appear in Eq. (7), ensuring that
the enhancement factor is 2n2, as it must be for blackbody
radiation. For collimated radiation, an additional small en-
hancement Tinc(,))/Tesc is possible, but this comes at the ex-
pense of angular selectivity. This is fully consistent with the
ordinary brightness theorem of geometrical optics,7 which
states that intensity increases must come at the expense of
angular selectivity. Because of the tendencies toward angular
averaging described in Section 2, the factor Tinck)/Tesc will
be approximated as unity, and for most purposes Eq. (8) can
be rewritten as

Iint = 2n
2

X Iinch (9)

It is interesting that Eq. (9) itself could also have been de-
rived directly from the7 brightness theorem by taking note of
the fact that the brightness defined in a medium differs from
that in vacuum simply by the factor n2.

The calculation that we have just made is a specific example
of an approach that is particularly suited to statistical ray
optics. This approach is described by the following three
steps:

1. Assume internal angular randomization.
2. Balance inflow and outflow.
3. Integrate over surface and volume.

With these three steps we can solve for intensity enhance-
ment in almost any geometry. This method is particularly
suited for dealing with peculiarly shaped media illuminated
by collimated light. The enhancement factor can differ sig-
nificantly from 2n 2 in that case. The area of the collimated
beam that is intercepted may be a strong function of the or-
ientation of the optical medium relative to the oncoming light.
This problem does not arise for isotropic illumination, nor
does it arise for an optical sheet in which the intensity of an
oncoming collimated beam is normalized relative to the frontal
area of the sheet.

The intensity increases discussed so far in this paper do not
necessarily translate directly into absorption enhancements.
This will be the subject of the following section.

5. ABSORPTION ENHANCEMENT

Two types of absorption can modify the results that we have
presented thus far: volume absorption in the textured optical
sheet and surface absorption. In general, both types may be
expected to be present. For example, in a semiconductor
solar-cell material, there would be absorption in the semi-
conductor itself and also at the surfaces because of absorption
in the transparent electrodes and because of the imperfect
reflectors at the rear surface. In this section we model the
intensity-enhancement effects allowing for absorption. First
we set up a general method. Then we model specific geome-
tries that might be of interest for solar cells.

The approach is as indicated earlier, to balance the input
of light from external sources with the loss of light from the

optical medium by absorption and refraction through the
escape cone. The light input is Ainc Iinc Tinc, where Ainc is the
surface area upon which light is incident and the other sym-
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bols have the same meaning as before. To estimate the loss
of light, we will proceed along the same lines as in Section 6.
We will assume that the light internal to the medium is iso-
tropic because of the randomizing influence of refraction and
reflection. There will be three contributions to light that is
lost:

1. Light will escape through the escape cone at the rate

Aesc iAnt Tesc

2n 2

where Aesc is the surface area from which light can escape,
which is not necessarily equal to Ainc, and the other symbols
have the same meaning as before.

2. Light may be absorbed because of imperfect reflection
from the boundaries:

w2 71 Arefl lint cos 0 sin 0 dO = 7 Aredlint
or 2

where i is the fractional absorption that is due to imperfect
reflection at the boundaries and Arefl is the surface area of
imperfect reflection.

3. Finally there may be absorption within the bulk:

f ae int dVdQ = al lintAinc f sin 0 dO = 2almntAinc,

(10)

where d V is a volume element in the bulk, a is the absorption
coefficient, and Eq. (10) may be regarded as a definition of the
effective thickness 1. This will be approximately the mean
thickness of the sheet. Equation (10) implicitly assumes that
the bulk absorption is sufficiently weak that lint is uniform
throughout the volume.

Equating the light gained to the light lost,

Ainc Tin linc = ( 2n
2 

T + 2 + 2a1 Ain, Iint- (11)
22 2

Regarding 'int as the unknown, the expression may be re-
written:

line= Tin. Iin (12)(Ac, Te5  + 5 jAref + 2afr

~An 2n2  An
Although Eq. (12) is much more complex than Eqs. (7) and
(8), there are many realistic situations in which the simpler
expressions are adequate approximations.

One of the main questions that we have is the extent to
which the effects that we have been discussing will act to en-
hance volume absorption. By using Eq. (12), the volume
absorption may be written as

2cd An It = 2ac Ainc Tine Iin

fAcsc Tese fliArefl + 2a 1

\Ainc 2n 2  2Ain )

The fraction of the incoming light that is absorbed in the
volume is

fvl 2a1 Ainc Aint 2a1 Tinc , (13)

Ainc 1ine (Aesc Tefc +lAres +21 3

\Ajnc 2n 2 2A in )

This reduces simply to the transmission factor Tin, of the in-
coming light in the limit of the high absorption coefficient
a.

A corresponding expression may be written for the total
fraction absorbed, including absorption that is due to im-
perfect reflection at the surfaces:

2a! + flArefl

ftot - in - T+ (14)(sAec Tese+ n1Ares .1 i

Am11c 2n2  2Ainc

The absorption enhancement in Eqs. (13) and (14) is of
direct interest for weakly absorbing indirect-gap semicon-
ductors, such as crystalline silicon. As Eq. (13) shows, volume
absorption can be substantial even when al is only 1/4n2 ,

which is 1/50 for silicon. The use of these formulas is best il-
lustrated by some specific examples, which are given in Sec-
tions 7 and 8.

In Section 6 we treat a new type of antireflection coating
that works on the basis of angular randomization and total
internal reflection.

6. ANTIREFLECTION COATINGS

There are several optical principles on which antireflection
coatings are based. The most famous is the quarter-wave
coating, which employs destructive interference to reduce the
reflectivity of a surface almost to zero. These can be effective,
albeit only at a specific wavelength.

Sometimes simple index matching is used. In such cases,
a surface coating subdivides one large index-of-refraction
discontinuity into two smaller index steps. If the coating is
thick, the reflection from the two interfaces is incoherent,
unlike the quarter-wave case. Then the reflectivity is simply
the sum of the individual reflectivities from the two interfaces.
The sum is invariably less than the reflectivity of the original
uncoated surface. Although the reduction in reflectivity is
modest, at least it is independent of wavelength in this
case.

The type of antireflection coating that we will discuss here
is a modification of the incoherent index-matching approach.
We will find that the effectiveness of the surface coating can
be greatly enhanced by texturing and light trapping. The
enhancement factor of antireflection behavior is similar to the
intensity enhancement we have discussed until now.

Consider the geometry shown in the insert in Fig. 6. A layer
of polymethyl methacrylate (PMMA) is sprayed onto a
textured-silicon surface. We are concerned primarily with
those visible and infrared wavelengths that are fully absorbed
by the silicon. The incident light experiences a transmission
factor Tine at the front surface of the plastic. Since the silicon
is assumed to be absorbing, the transmission factor at the
plastic-silicon interface may be regarded as the absorption
factor 77 for the rear surface of the plastic. At that point in the
problem, the reflected light (1 - 77) is randomized in direction,
and Eq. (14) can be used to describe the total absorption of
the reflected fraction (1 - Aq). Since the plastic is transparent,
al drops out of Eq. (14). In addition, all the areas are the
same: Aine = Aesc = Arefs. The total absorption is the sum
of Tj,,,1q the absorption before randomization plus the fraction
of the reflected light TinC (1 - v7) that is absorbed:
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Fig. 6. A thin plastic film on a textured silicon surface combines an
index match with light trapping to produce a superior antireflection
coating [curve (b)]. Texturing alone, without the plastic layer, pro-
duces only - 2% reduction in surface reflectivity [curve (a)].

Absorption = Tinc -q + Tinc(1 - 77) - , (15) -
Tesc
n2 +1

where the second part of Eq. (15) is the simplified form of Eq.
(14). The formula may be rewritten in the following form:

Absorption = Tinc . (16)

1-(1- )/01+ Te2sc

There is another approach toward calculating the absorption;
that is, to calculate the fractional absorption on each reflection
and sum reflections to obtain the total absorption in a geo-
metric series. This gives rise to a similar formula:

Absorption = Tin (17)

In the limit of large n2 equations, Eqs. (16) and (17) are the
same. For index n = 1.5 for the plastic and 3.5 for the silicon,
-q = 0.84 and Tinc = 0.96. We can approximate the angle-
averaged escape-transmission Tesc factor to be equal to Tinc
the incident-transmission factor. With these parameter
values, the absorption in Eq. (17) is 89%, whereas the ab-
sorption in Eq. (16) differs from this value by about 2%.
Therefore the reflection should be reduced to -11%.

The type of antireflection that we are discussing here should
be distinguished from the graded-index effect that texturing
would produce on a bare silicon surface. Curve (a) of Fig. 6
shows the reflectivity observed in an integrating sphere for
the bare roughened surface. The reflectivity drops slightly
from 31%, the polished surface value, to z29% for the textured
surface. Therefore texturing alone had very little effect in
this case. Neither should this type of antireflection coating

be confused with the simple index-matching mechanism,
which would give a reflectivity of -20%. The antireflection
coating that we have been describing combines synergistically

307fi/
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both the index matching and the texturing to take advantage
of a new mechanism, namely, light trapping by total internal
reflection in the thin plastic film. According to Eq. (17), the
reflectivity should be reduced to 11%. From curve (b) of Fig.
6, we see that the reflectivity indeed drops to 11%. The good
agreement is surprising since the index of the plastic film is
only 1.5 and Eq. (6) requires a considerably larger texturing
angle for randomization than would be required for silicon.

The reflectivity of 11% should not be compared to a best-
possible reflectivity of 0%. Solar cells are almost always en-
capsulated behind glass for practical reasons. Therefore the
lowest possible value is 4% because of the reflectivity of the
top glass surface. Thus we should be regarded as having
achieved a reflectivity within 11% -4% = 7% of the best pos-
sible value.

In this section we have considered light trapping in a thin
plastic film on a textured-silicon wafer. In Section 7 we
consider the trapping of light inside the wafer itself.

7. LIGHT TRAPPING IN TEXTURED-SILICON
WAFERS

In the past decade, there have been a number of suggestions
for the use of light trapping by total internal reflection to in-
crease the effective absorption in the indirect-gap semicon-
ductor, crystalline silicon. The original suggestions1' 2 were
motivated by the prospect of increasing the response speed
of silicon photodiodes while maintaining high quantum effi-
ciency in the near infrared.

Subsequently, it was suggested3 that light trapping would
have important benefits for solar cells as well. High efficiency
could be maintained while the thickness of semiconductor
material required was reduced. Additionally, the constraints
on the quality of the silicon could be relaxed since the diffusion
length of minority carriers could be reduced proportionately
to the degree of intensity enhancement. With such important
advantages, interest in this approach has continued, but
progress in this field has been hindered because there was no
method available to calculate the degree of enhancement to
be expected.

For example, St. John1 mentions that total internal re-
flection will result in two or more passes of the light rays with
a proportionate intensity enhancement. On the other hand,
Redfield 3 regards the number of light passes, or degree of
enhancement, as an adjustable parameter that could vary
anywhere between 1 and 100, and he plots the collection ef-
ficiency as a function of this parameter. In calculating the
ideal efficiency of silicon solar cells, Loferski et al.

4 seemed
to imply that perfect light trapping might be possible, which
corresponds to an infinite degree of enhancement.

With the methods and logic of statistical ray optics, we now
know that we can expect to enhance the absorption by a factor
4n 2. This has the effect of improving the utilization of those
weakly absorbed infrared photons near the band edge by that
ratio. The absorption-enhancement factor is twice the in-
tensity-enhancement factor because of angle-averaging ef-
fects.

Some experiments were done to confirm these effects by
measuring the backscattered light from a wafer in an inte-

grating sphere. The geometry was as shown in Fig. 7. [Curve
(a) in Fig. 6 was measured in a similar geometry, except that
the rough side of the wafer was facing the integrating sphere.]
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Fig. 7. Geometry used to measure absorption enhancement in a
silicon wafer, textured in the rear.

BACKSCATTERED LIGHT VS. WAVELENGTH
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Fig. 8. Comparison of the light absorption in a plane-parallel slab
with a textured sheet. The two experimental configurations are al-
most identical, but the results are quite different. The effective po-
sition of the band edge is shifted to the infrared in the light-trapping
case. The dashed lines are the theory given by Eq. (14) for the sta-
tistical case and by a simple double pass absorption formula in the
nonergodic case.

As before, the philosophy of the integrating-sphere mea-

surement is that the fractional absorption in the sample is one

minus the observed reflectivity.
In Fig. 7, the polished side of the wafer faces the integrating

sphere. The main idea is to compare the overall reflectivity

when the rear surface is either ground rough or polished

smooth. The comparison is made in Fig. 8. With both faces

polished, we have a plane-parallel plate, the situation de-

scribed in Fig. 2(b), where angular randomization within the

silicon does not occur. The light simply makes a round trip

in the wafer.
On the other hand, if the rear surface of the silicon is ground

rough, internal angular randomization does occur. We may
apply Eqs. (13) and (14) to this situation. The Fresnel

transmission of the silicon front surface Tin, is about 0.68.

The areas Aesc and Ain, are the same and are equal to the front

surface area. The rear surface was covered with MgCO3 , an
almost perfect white reflector, which is frequently used as a

reference of whiteness. In the geometry of Fig. 7, the edges

of the silicon wafer are actually external to the integrating

sphere. Some of the internally trapped light therefore escapes

across the cylindrical surface defined by the periphery of the

round opening in the integrating sphere. This cylindrical

surface in the silicon can be regarded as an imperfect reflector

of area Arefl = 27rrl, where r is the radius of the opening in the

integrating sphere. Therefore

Arefl/Ainc = 2rrl/7rr2
= 21/r.

The parameters in this experiment were r = 1 cm and I =
0.025 cm. The quantity q, which represents the departure
from unit reflectivity at this edge, is difficult to estimate a
priori, since it depends on the details of the roughness. The
value t = 0.82 describes well the wavelength-independent
backscattered light in Fig. 8 in the transparent region between
1.2 and 1.35 gim. With these values of parameters and the
known8 wavelength-dependent absorption coefficient, a fairly
good fit is obtained between (1 - ftot) from Eq. (14) and ex-
periment through the band-edge-transition wavelengths
(dashed and solid lines, respectively, in Fig. 8).

The geometry described in Figs. 7 and 8 is a favorable one
for solar cells and was first described1 ' 2 some time ago. Figure
8 shows clearly the shift of the effective absorption edge
toward the infrared for the light-trapping case.

8. GRANULAR SILICON SHEETS

Another geometry that has received some interest9 consists
of grains of silicon embedded in a sheet of transparent binder,
as shown in Fig. 9. It has already been recognized that the
light that falls in the transparent plastic between the grains
is not wasted. It tends to be trapped and eventually finds its
way into the silicon grains. We may analyze that situation
in a similar way as previously. Let us denote the quantities
pertaining to the incident light by the subscript 1, those per-
taining to the silicon by the subscript 2, and those pertaining
to the plastic by the subscript 3. Let us also assume that the
white backing layer is perfectly reflective. In accordance with
the recipe given at the end of Section 4, the energy balance for
the plastic may be written as

A23 T 2 + A1 3 T1 3 I1 = A13 T 13 +A 23 T 23 I3, (18)
2(2n 22n 3 

2  2 /

where the first expression on the left-hand side is the light
escaping from the silicon into the plastic and the second ex-
pression is the incident light. On the right-hand side are the
two terms describing the escape of light into the air and into
the silicon, respectively. A similar energy balance may be
written for the silicon:

A23 T23I3A T121
2 +A2T2I

1A12 T12  A23 T23  21A I
- +__ ±  ±al A12 I2

1, 2n2
2 2 (n2/n3)

3 (19)

Here, there is an additional term because of absorption, and
I represents a typical absorption thickness of the silicon grain.
Equations (18) and (19) should be regarded as two simulta-
neous equations in the two unknowns I2 and I3. A specific
numerical solution would be helpful in estimating the extent
to which light falling between the grains tends to be wasted.
For this purpose, let us assume that the area of the sheet oc-

INCIDENT PMMA
LIGHsT/

WHITE BACKING

Fig. 9. Monolayer sheet of silicon granules embedded in plastic on
a white filter paper. Light is trapped both in the silicon and the
plastic binder, resulting in favorable conditions for light collection
in a solar cell.
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cupied by the silicon grains A12 equals the area A13 filled in
by the plastic. For numerical simplicity, let us assume also
that A23 is also the same area. For the indices of refraction,
take n2 = 3.53 in the silicon and n3 = 1.5 in the plastic. For
the transmission factor T23 of the plastic-silicon interface,
take the normal-incidence Fresnel reflectivity, 1 - (n2 -

n3 )2/(n 2 + n3)2 
= 0.84. Let us assume that there is an anti-

reflection coating for the incident rays into the silicon so that
T02 - 0.96, which is the same as the transmission coefficient
into the plastic. With these values of parameters, the si-
multaneous Eqs. (18) and (19) can be solved:

/0.8316
12 = 0.319 0.96I1,

\l + 0.03191

BACKSCATTERED LIGHT VS. WAVELENGTH
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(20)

where 0.96I1 is the transmitted incident intensity, and the
quantity in parentheses is a type of enhancement factor. The
important implications of Eq. (20) become apparent only on
examination of its various limits. Consider, for example, the
situation in the region of wavelengths within the bandgap of
silicon where a = 0. Then

0.8316 X 0.96
12 = Il,

0.0319

which just happens to be 25I1 or 2n 2
211. This, of course, must

be according to the considerations of Section 2.
The most important parameter that we are interested in

is the absorption in the silicon. This may be expressed as

2c112 = 1 0319 - X 0.96I1, (21)
0.0319 + al

when normalized to the area of the silicon grains.
In the limit of small al, the enhancement factor is 4n2

2, as
expected for absorption. In the limit of large al, i.e., in the
visible-wavelength range for silicon,

lim 2a112 = 1.66632 x 0.96I1. (22)

According to Eq. (22), the power absorbed by the silicon
exceeds the power actually falling on the silicon by a factor of
1.6632. This is because the silicon collects not only those rays
that it intercepts directly but also a major fraction of those
intercepted by the plastic. Since only a fraction of the inci-
dent light will tend to escape the plastic, the balance (@0.66)
will tend to be collected by the adjacent silicon grains. In
other words, 83% of the light that enters the sheet will end up
being used, in spite of the fact that the area coverage of the
silicon grains is only 50%. If the surface-area ratios were
more favorable than the conservative assumptions in this
calculation, then an even greater fraction of the light would
end up in the silicon. The extraordinary utility of the struc-
ture described in Fig. 9 is doubly confirmed when it is also
realized that, because of the enhancement in the low-ab-
sorption regime, the thickness of the layer of grains can be
reduced by 50. Therefore, all the advantages of a thin solar
cell mentioned at the beginning of Section 7 would accrue to
the structure in Fig. 9, not the least of which is the likelihood
of that structure's being cheaper to fabricate than conven-
tional silicon solar cells.

The mathematical methods described in this section are
meant to suggest the approach that can be used for intensity
enhancement in the presence of absorption. Refinements are

30%/

20%/6

I -0

1 .05im 0.9pm 0.75pm 0.6pm

WAVELENGTH

Fig. 10. Reflectivity of the structure shown in Fig. 9. The absorption
was - 89%, in spite of an area coverage of less than 60%. In addition,
band-edge absorption is greatly enhanced. The upper curve shows
that the reflectivity of the plastic-covered paper is near 99% in the
absence of the silicon grains.

still needed for the high-absorption case. The formulas given
here tend to underestimate the absorption in that instance
since they assume randomization. But the absorption may
be complete before randomization sets in.

To confirm the quantitative predictions for the optical
properties of granular sheets, the structure of Fig. 9 was fab-
ricated in our laboratory. Silicon granules of 99.999% purity
were passed through a wire mesh to select a very uniform size
distribution averaging 40 ,um in diameter. The grains were
placed in a monolayer on a white filter paper. They were then
sprayed with a solution of PMMA in toluene. After the sol-
vent evaporated, the plastic bound the particles to the filter
paper. The transparent binder also filled in the spaces be-
tween the silicon grains. Approximately 50-60% of the area
was covered by the grains with the intervening spaces filled
in by the binder. Therefore the structure bore a close re-
semblance to Fig. 9. The reflectivity of the structure was
measured in an integrating sphere as before and plotted in Fig.
10. Since the thickness of the layer of grains was very small
(approximately equal to the grain diameter), no corrections
for the light escaping around the edges were necessary.
Therefore Fig. 10 may be directly interpreted in terms of the
absorption being one minus the reflectivity.

Two important observations stand out in Fig. 10. The
absorption at those wavelengths where the silicon is opaque
greatly exceeds the area coverage of silicon, i.e., the absorption
percentage is 89%, whereas the silicon coverage was certainly
less than 60%. This confirms the prediction of Eq. (22). This
performance is quite gratifying, especially insofar as no special
antireflection coating is required. In addition, the effective
band edge for absorption is shifted toward the infrared com-
pared with a planar silicon sheet with the same mean thickness
of the silicon, averaged over the total area, of less than 25 Aim,

i.e., the 4n 2 enhancement factor ensures that we will collect
those weakly absorbed infrared rays just as we did in Fig. 8.
The dashed lines in Fig. 10 are the theory according to Eq.

I-

F-

.............
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(21). Thus we confirm the extraordinary benefits of the
structure described in Fig. 9 for solar-cell applications.

In this paper we have shown the utility of a statistical-
mechanical approach toward the ray optics of textured and
inhomogeneous sheets. This work was motivated mainly by
its applicablity toward solar cells and other types of solar
collectors. The basic enhancement factor for intensity of 2n 2

becomes 4n2 for bulk absorption, and n2 for surface absorp-
tion, because of angle averaging effects. Because many
semiconductors tend to have large indices of refraction n,
these effects are particularly important in those materials.
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