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Statistical reconstruction of three-dimensional porous media from two-dimensional images

Anthony P. Roberts *
Faculty of Environmental Sciences, Griffith University, Nathan, Queensland 4111, Australia

~Received 16 April 1997!

A method of modeling the three-dimensional microstructure of random isotropic two-phase materials is

proposed. The information required to implement the technique can be obtained from two-dimensional images

of the microstructure. The reconstructed models share two-point correlation and chord-distribution functions

with the original composite. The method is designed to produce models for computationally and theoretically

predicting the effective macroscopic properties of random materials ~such as electrical and thermal conductiv-

ity, permeability and elastic moduli!. To test the method we reconstruct the morphology and predict the

conductivity of the well known overlapping sphere model. The results are in very good agreement with data for

the original model. @S1063-651X~97!02309-X#

PACS number~s!: 47.55.Mh, 44.30.1v, 81.05.Rm, 61.43.Bn

Predicting the macroscopic properties of composite or po-

rous materials with random microstructures is an important

problem in a range of fields @1,2#. There now exist large-

scale computational methods for calculating the properties of
composites given a digital representation of their microstruc-
ture ~e.g., permeability @3,4#, conductivity @3–5#, and elastic
moduli @6#!. A critical problem is actually obtaining an ac-
curate three-dimensional description of this microstructure
@3,7,8#. For particular materials it may be possible to simu-
late microstructure formation from first principles. Generally
this relies on a detailed knowledge of the physics and chem-
istry of the system, the accurate modeling of each material
requiring a significant amount of research. Where such infor-
mation is unavailable an alternative is to directly @9–15# or
statistically @3,4,8,16–21# reconstruct the microstructure
from experimental images.

Several techniques of direct reconstruction have been
implemented. A composite can be repeatedly sectioned and
imaged, and the results combined to reproduce a three-
dimensional digital image of the microstructure @9–11#. For
porous materials, time-consuming sectioning can be avoided
by using laser microscopy @12# which can image pores to
depths of around 150 mm. Recent microtomography studies
have also directly imaged the three-dimensional microstruc-
ture of porous sandstones @13,14# and magnetic gels @15#.
The complexity and restrictions of these methods provide the
impetus to study alternative reconstruction methods.

Based on the work of Joshi @16#, Quiblier @17# introduced
a method of generating a three-dimensional statistical recon-
struction of a random composite. The method is based on
matching statistical properties of a three-dimensional model
to those of a real microstructure. A key advantage of this
approach is that the required information can be obtained
from a two-dimensional image of the sample. Recently the
method was applied to the reconstruction of sandstone
@4,8,18,19# and a material composed of overlapping spheres
@3#. Computations of the permeability and conductivity
@3,4,18# of the reconstructed images underestimate experi-

mental data by around a factor of 3. This can be partially
attributed to the fact that percolation threshold of the recon-
structed models is around 10%, while the experimental sys-
tems had thresholds of less than 3% @3#. Recent work in
microstructure modeling led to a general scheme @5,22–27#
~Sec. I! which includes the model employed by Quiblier.
Importantly, other models in the scheme can mimic the low
percolation thresholds observed in sandstones ~and many
other materials @22#!. It is therefore timely to reconsider sta-
tistical methods of reconstructing composite microstructure.

Prior methods of statistical reconstruction produce three-
dimensional models which share first- ~volume fraction! and
second- ~two-point correlation function! order statistics with
the original sample. However the complete statistical de-
scription of a random disordered material requires higher-
order information @8,28# ~e.g., the three- and four-point cor-
relation functions!, information which in turn is a crucial
ingredient of rigorous theories of macroscopic properties
@1,28,29#, and therefore important to the success of the
model. In this paper we show that reconstructions based on
matching first- and second-order statistics do not necessarily
provide good models of the original composite ~Sec. II!. An
alternative method of reconstruction is proposed and tested
~Sec. III!. The procedure is employed to reconstruct a com-
posite generated from identical overlapping spheres ~IOS’s!,
and successfully predicts the electrical conductivity of the
model ~Sec. IV!.

I. MODEL COMPOSITE MATERIALS

To study the statistical properties of composites it is con-
ventional to introduce a phase function f(r) which equals
unity or zero as r is in phase 1 or 2. The volume fraction of
phase 1 is p5^f&, while the standard two-point correlation

function is defined as p (2)(r)5^f(r1)f(r2)&, with r5

ur22r1u ~assuming the material is statistically homogeneous

and isotropic!. p (2)(r) represents the probability that two
points a distance r apart will lie in phase 1, from the defini-

tion p (2)(0)5p and limr→`p (2)(r)→p2. The surface area

per unit volume is s524dp (2)/drur50 @30#. Higher-order
functions can be analogously defined, these playing a central
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role in rigourous theories of composite properties @28#. In
practice the correlation functions of real composites beyond
second order are difficult to measure, and there are signifi-
cant advantages in developing models for which the func-
tions are exactly known. The primary models in this class are
the identical overlapping sphere model @31#, its generaliza-
tion to overlapping annuli @22#, and models derived from
Gaussian random fields ~GRF’s! @5,22,32,33# which are cen-
tral to reconstruction procedures.

We utilize two methods of generating isotropic GRF’s.
Each has specific advantages which we discuss. The first
method develops the random field in a cube of side length T

using a Fourier summation

y~r!5 (
l52N

N

(
m52N

N

(
n52N

N

c lmne iklmn•r, ~1!

where klmn5(2p/T)(li1mj1nk). The statistics of the field
are determined by the random variables c lmn5a lmn1ib lmn

(a lmn and b lmn real!. We require that y is real (c lmn5

c̄ 2l ,2m ,2n), and that ^y&50 (c00050). To ensure isotropy
we also take c lmn50 for k lmn5uklmnu>2pN/T . To generate
a Gaussian field the coefficients a lmn are taken as random
independent variables ~subject to the conditions on c lmn)

with Gaussian distributions such that ^a lmn&50 and ^a lmn
2 &5

1
2 r(k lmn)(2p/T)3 ~similarly for b lmn). The function r(k) is
a spectral density. It can be shown that a random field de-
fined in this manner has field-field correlation function

g~r ![^y~r1!y~r2!&5E
0

`

4pk2r~k !
sinkr

kr
dk . ~2!

By convention g(0)51 which sets a constant of proportion-
ality on r(k). Definition ~1! can be efficiently evaluated by a
Fast Fourier transform routine @5# and is T periodic in each
direction. This is valuable for approximating an infinite me-
dium in calculations of macroscopic properties.

Alternatively a random field can be generated using the
‘‘random-wave’’ form @32,34#

y~r!5S 2

N
D 1/2

(
i51

N

cos~k ik̂i•r1f i!, ~3!

where f i is a uniform deviate on @0,2p), and k̂i is uniformly
distributed on a unit sphere. The magnitude of the wave vec-
tors k i are distributed on @0,`) with a probability ~spectral!

density P(k) @*0
`P(k)dk51#. In terms of the first definition,

P(k)54pk2r(k). In this case the fields are not periodic, but
N can be chosen arbitrarily largely over a specified k range.
This is especially useful for resolving r(k) @so that Eq. ~2!
holds# in cases where it is strongly spiked @e.g., P(k)5d(k)
@33##.

Model composite materials can be defined from a GRF
y(r) by taking the region in space where a<y(r)<b as
phase 1, and the the remaining regions @y(r),a and
y(r).b] as phase 2. This is the ‘‘two-level cut’’ random
field of Berk @34#. In the case a52` the more common
‘‘one-level cut’’ field is recovered @5,17,32#. The phase func-
tion of this model is f„y(r)…5H„y(r)2a…2H„y(r)2b…,

where H is the Heaviside step function. The joint probability
distribution of the correlated random variables
y5@y(r1),y(r2), . . . ,y(rn)#T is

Pn~y!5„~2p !nuGu…21/2exp~2
1
2 yTG21y!,

where the elements of G are g i j5g(r i j)5^y(ri)y(rj)&.
Therefore the n-point correlation function is

p ~n !
5E

2`

` E
2`

`

. . . E
2`

`

Pn~y!)
i51

n

f„y~ri!…dy. ~4!

The volume fraction of phase 1 is p5p (1)
5h5(pb2pa),

where pa5(2p)21/2*
2`
a e2t2/2dt and p (2)(r)5h(r) with

@32,33#

h~r !5h2
1

1

2p
E

0

g~r ! dt

A12t2
3F expS 2

a2

11t
D

22 expS 2

a2
22abt1b2

2~12t2!
D 1expS 2

b2

11t
D G . ~5!

The auxiliary variables h and h(r) are needed below. The
three-point correlation functions @28# have also been evalu-
ated @5,22#.

We now show how new models can be developed. Sup-
pose f1(r) and f2(r) are the phase functions of two statis-
tically independent composites with volume fractions p1 and

p2 and correlation functions p1
(2) and p2

(2) . New model com-

posites can be formed from the intersection and union sets of
each structure. The intersection set f(r)5f1(r)3f2(r) has
volume fraction p5^f1(r)f2(r)&5^f1(r)&^f2(r)&5p1p2

and correlation function

p ~2 !~r!5^f1~r1!f2~r1!f1~r2!f2~r2!&

5^f1~r1!f1~r2!&^f2~r1!f2~r2!&

5p1
~2 !~r !p2

~2 !~r!. ~6!

In a similar way a composite can be modeled as the union of
two independent models. In this case the phase function is
f(r)5f1(r)1f2(r)2f1(r)f2(r) so that p5p11p2

2p1p2 and

p ~2 !~r !5p1
~2 !~r !~122p2!1p2

~2 !~r !~122p1!

12p1p21p1
~2 !~r !p2

~2 !~r !. ~7!

Therefore if the statistical properties of the original mor-
phologies are known ~e.g., level-cut GRF’s or the overlap-
ping sphere model! the properties of their union and inter-
section sets are also known @27#. Note that these results
apply to arbitrary independent phase functions, and are sim-
ply extended to three or more independent sets, as well as to
the calculation of higher-order correlation functions. These
simple results greatly extend the classes of morphology
which can be reproduced by the models.

To simplify matters we now restrict attention to a few
primary models of microstructure. Consider first structures
derived using the normal two-level cut GRF scheme ~model
N). These have the basic statistical properties p5h ~recall
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h5pb2pa), p (2)(r)5h(r) and s524h8(0). We also take
pa5c3(12p)/2 and pb5pa1p (cP@0,1#) to specify the
level-cut parameters; for example, c50 corresponds to a
one-cut field (pa ,b50,p or a52`) and c51 to a symmet-

ric two-cut field @pa ,b5
1
2 2(p/2), 1

2 1(p/2) or a52b#.

Second, we take a class of models based on the intersection
set ~model I) of two statistically identical level-cut GRF’s.

For this model p5h2, p (2)(r)5h2(r) and s528Aph8(0),

with pa5c(12Ap)/2 and pb5pa1Ap . Finally, we
introduce a model based on the union set ~model U) of two

level-cut fields. In this case p52h2h2, p (2)(r)52h2

12h(r)(122h)1h2(r), and s528A12ph8(0), with

pa5cA12p/2 and pb5pa112A12p .
To generate examples of the models defined above, we

employ the field-field correlation function @27,35,36#

g~r !5

e2r/j
2~rc /j !e2r/rc

12~rc /j !

sin 2pr/d

2pr/d
~8!

characterized by a correlation length j , domain scale d , and
a cutoff scale rc . This has the Fourier transform

r~k !5

p22~j2rc!21j4d4

@d2
1j2~kd22p !2#@d2

1j2~kd12p !2#

2

p22~j2rc!21rc
4d4

@d2
1rc

2~kd22p !2#@d2
1rc

2~kd12p !2#
. ~9!

Note that g(r) is symmetric in rc and j , and remains well
defined in the limits rc→j and rc or j→` . In the latter cases
r(k)→d(k22p/d)/4pk2 @33#. For the purposes of calculat-
ing the surface area,

2h8~0 !5

A2

2p
~e21/2a2

1e21/2b2
!S 4p2

6d2
1

1

2rcj
D 1/2

. ~10!

In the case rc or j→0 a fractal surface results @25,33#. Cross
sections of six of the model microstructures obtained with

rc51, j52, and d52mm are illustrated in Fig. 1. p (2)(r) is

measured from three-dimensional realizations ~using 1283

pixels! of the models and plotted against its theoretical value
in Fig. 2. The agreement is very good. In Sec. II we also
consider each of the models at an intermediate value of c5
1
2. The extra three models, along with the six shown in Fig. 1
give nine primary classes of microstructure with which to
compare real composites. These broadly cover the types of
morphology obtainable by combining two composites gener-
ated by the level-cut GRF scheme.

II. STATISTICAL RECONSTRUCTION

The two most common experimentally measured morpho-
logical quantities of composites are the volume fraction pexpt

and the two-point correlation function pexpt
(2) (r) ~e.g., Refs.

@4,19,21,37,38#!. Consider how this information might be
used to reconstruct the composite using the simple one-cut
GRF model ~model N, c50 or a52`). The level-
cut parameter b can be obtained by solving

pexpt5(2p)21/2*
2`
b e2t2/2dt and the field-field function ob-

tained by numerical inversion of

pexpt
~2 ! ~r !5pexpt

2
1

1

2p
E

0

g~r ! dt

A12t2
expS 2

b2

11t
D . ~11!

From g(r) we can obtain r(k) by inverting Eq. ~2! and using
either Eq. ~1! or ~3! to obtain y(r) and hence the model
phase function f(r). The reconstruction shares first- and
second-order statistical properties with the image, and would
therefore be expected to yield a reasonable model of the
original composite. This is similar to the procedure of Quib-
lier @17# employed in previous studies @3,4,8,18–21#, al-
though the formulation of the model is different. There are
several operational problems with this reconstruction proce-
dure. First, the numerical inversion of Eq. ~11! may not be
robust or well defined. Furthermore experimental error in

pexpt
(2) (r) is carried over to g(r). Second, the inversion of Eq.

~11! may yield a spectral density r(k) which is not strictly

FIG. 1. Six different microstructures generated by the level-cut

scheme. In the top row we show a one-cut field and its intersection

and union with a statistically identical structure. In the bottom row

we show analogous structures derived from a two-cut field. The

images have a side length of 10 mm.

FIG. 2. The theoretical ~lines! and measured ~symbols! correla-

tion functions of the six models shown in Fig. 1. The squares cor-

respond to the models constructed from one-cut fields @Figs. 1~a!–

1~c!#, and the triangles to the the two-cut fields @Figs. 1~d!–1~f!#.
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positive. We now generalize the method to incorporate the
models N , I , and U of Sec. I, and show how these problems
can be avoided.

First select one of the three models (N , I , or U) and a
value of c50, 1

2, or 1 ~giving a total of nine combinations! so
that a and b are fixed by pexpt . It remains to find g(r).
Instead of inverting an analog of Eq. ~11! we assume this
function is of the general form given by Eq. ~8! @this guar-
antees that r(k) is positive#. The three length scale param-
eters are obtained by a best-fit procedure which minimizes
the normalized least-squares error;

Ep ~2 !
5(

i51

M

@pfit
~2 !~r i!2pexpt

~2 ! ~r i!#
2/(

i51

M

@pexpt
~2 ! ~r i!2pexpt

2 #2.

~12!

Here pfit
(2)(r i)5p (2)@g(r i ;rc ,j ,d)# is the correlation function

appropriate for model N , I , or U . Once rc , j and d have
been obtained the reconstruction f(r) can be generated. If
the one-cut model (N , c50) is chosen, we assume that the
results will not differ significantly from those obtained using
Quiblier’s method.

To illustrate the procedure we reconstruct a material with
known statistical properties. For this purpose we choose a
normal two-cut GRF model with pa ,b50.4,0.6 ~i.e., model
N , c51) obtained from the field-field function @5#

g~r !5e2~r/l0!2
, r~k !5

l0
3

~4p !3/2
e2~kl0/2!2

~13!

with l052.0 mm. The ‘‘experimental’’ data for the recon-

struction pexpt
(2) (r i) are evaluated using Eq. ~5! at 80 points

distributed uniformly on the interval @0,4# mm ~shown as
symbols in Fig. 3!. The minimization algorithm is used to
find rc , j and d for four different models. Numerical results

are reported in Table I, and the best-fit functions pfit
(2) are

plotted in Fig. 3. Each of the models is able to provide an
excellent fit of the data. As expected, model N (c51) pro-

vides the least value of Ep (2). However the relative improve-
ment over the other three models is not large, and probably
of little significance in the presence of experimental error.
Cross sections of the original composite and the reconstruc-
tions are shown in Fig. 4~a!–~e!. The extremely different
morphologies exhibited by the reconstructions provide a

graphical illustration of the nonuniqueness of p (2)(r). There-
fore for prediction of macroscopic properties ~which will dif-
fer dramatically for materials shown in Fig. 4! it is necessary
to find a more discriminating method of distinguishing com-
posites. From the cross-sectional images the best candidates
appear to be models N (c51) and U (c51) shown in Figs.
4~c! and 4~e!. Obviously it is preferable to establish some
quantitative test to choose the best representation.

A second useful illustration of the method is provided by

TABLE I. The parameters obtained in the reconstruction proce-

dure @Eq. ~12!# of a test composite. The surface area of the original

model is 0.87mm 21. Here, and in subsequent tables, n@m# denotes

n310m.

Cl c rc j d Ep (2) sfit

N 0 0.4033 0.4031 7.7069 1@-3# 1.13

N 1 2.3702 2.3688 6.2140 3@-5# 0.89

I 1 0.9739 0.9729 9.1032 4@-4# 1.05

U 1 4171.1 6651.8 8.3899 4@-3# 0.98

FIG. 3. The correlation functions pfit
(2)(r) ~lines! of four recon-

structed models obtained by fitting ‘‘experimental’’ data ~symbols!.

FIG. 4. Realizations of ‘‘experimental’’ and reconstructed com-

posites. Top row: A material with a monotonically decaying corre-

lation function ~a! compared with four reconstructions ~b!–~e!. The

two point correlation functions of each composite are practically

identical ~see Fig. 3!. Bottom row: A model composite exhibiting

an oscillatory correlation function ~f! and four reconstructions ~g!–

~j!. In each case the region shown is 10310 mm2.

FIG. 5. Correlation functions of two reconstructions ~lines! of a

material exhibiting an oscillatory p (2)(r) ~symbols!. A ‘‘mild’’ two-

cut model ~dashed line! is unable to reproduce the strong oscilla-

tions accurately.
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reconstructing a material with a strongly oscillating correla-
tion function. For this case we take as a test composite a
one-cut model with p50.2 and pa ,b50.0, 0.2 ~i.e., model N ,
c50) based on the field-field function @5#

g~r !53r23~k1
3
2k0

3!21~sink1r2sink0r !

23r22~k1
3
2k0

3!21~k1cosk1r2k0cosk0r ! , ~14!

r~k !53@4p~k1
3
2k0

3!#21@H~k2k0!2H~k2k1!# ,
~15!

with k053.0 and k154.5 (mm! 21. The oscillatory behavior
of the correlation function ~see Fig. 5! can only be repro-
duced by three of the nine basic microstructures; models N ,
I , and U with c50 ~i.e., those formed from one-cut fields!.
For these models Ep (2)

,0.005, whereas Ep (2)
.0.02 for

those based on two-cut structures (c> 1
2, so 0,pa,pb). To

illustrate this we show the best fit of a normal two-cut model

with pa ,b50.05,0.25 (N , c5
1
8 ). As can be seen in Fig. 5 this

‘‘mild’’ two-cut model ~shown as a dashed line! cannot re-
produce the behavior of the experimental data ~see Table II!.
Realizations of the original material and reconstructions are
shown in Figs. 4~f!–4~j!. Each appears to provide a reason-
able representation.

In contrast to the case of a monotonically decaying

p (2)(r) ~which was reproduced by four distinct models!
strong oscillations appear to be a signature of morphologies
generated by the single level-cut model. Unless there exists
some reason to employ models U and I in such a case it is
likely that the standard one-cut GRF ~i.e., the model em-
ployed in prior studies! will be appropriate. There is also a
physical basis for this argument when spinodal decomposi-
tion plays a role in the microstructural formation. In this case
Cahn @39# showed that the evolution of the phase interface is
described by the level-set of a sum of random waves similar
to Eq. ~3!.

Finally we comment on the morphological origin of the
oscillations, and why they cannot be well reproduced by

two-cut models. In Fig. 6 we show p (2)(r) and an image of
model N , c50 with rc52, j54, and d51mm. The material
has strong oscillatory correlations, these representing the
‘‘regular’’ alternating domains which appear in the image.
Compare this with data shown for the two-cut model (N ,

c5
1
2 ) obtained from the same GRF: the alternating structure

is still present but the oscillations are practically extin-
guished. This is due to the sharper decay ~or equivalently the
doubled specific surface! associated with the thinner two-cut

structures @27#. For comparison we also show a structure
with no repeat scale ~model N , c50, with rc5

1
6, j5

1
2, and

d5100 mm!.

III. COMPARISON OF HIGHER-ORDER STATISTICAL

PROPERTIES

We have shown that reconstructions exhibiting quite dif-
ferent morphological properties can share the same two-point
correlation function. Here we propose and test three methods
with the aim of finding a way of selecting the best recon-
struction. Following Yao et al. @8#, we can compare the
three-point correlation function of the model and experimen-
tal materials. To do so we define a normalized least-square
measure of the error as

Ep ~3 !
5(

i51

Nr

(
j51

Ns

(
k51

Nu

@pfit
~3 !~r i ,s j ,uk!

2pexpt
~3 ! ~r i ,s j ,uk!#2Y (

i51

Nr

(
j51

Ns

(
k51

Nu

@pexpt
~3 ! ~r i ,s j ,uk!

2pexpt
3 #2. ~16!

The three-point function p (3)(r ,s ,u) gives the probability
that three points distances r , s and t5(r2

1s2

22rs cosu)1/2 apart all lie in phase 1. For our examples we
take Nr ,s ,u58 with a uniform distribution of r and s on

@0,2# mm and u on @0,p#
A second method of characterizing morphology is to cal-

culate microstructure parameters which appear in theoretical
bounds on transport and elastic properties @1,29#. We there-
fore expect the parameters to contain critical information
about the aspects of microstructure relevant to macroscopic
properties. These are

z5

9

2pq
E

0

`dr

r
E

0

`ds

s
E

21

1

du P2~u ! f ~r ,s ,u ! ~17!

TABLE II. Reconstruction of a normal one-cut model with an

oscillatory correlation function. Models formed from two-cut fields

~i.e., pa.0) were unable to reproduce the oscillations of p (2)(r)

~see, e.g., row 4!. The surface area of the original model is

1.00 mm 21.

Cl c rc j d Ep (2) sfit

N 0 1.6326 1.6330 1.6586 2@-4# 1.01

I 0 2.8276 2.8305 1.7220 4@-3# 1.20

U 0 3.9019 3.8935 1.7263 4@-3# 1.10

N
1
8 4.6684 4.6893 1.9215 3@-2# 1.28

FIG. 6. Three different types of microstructures. A one-cut

model with a well-defined domain ~or repeat! scale ~left!, a two-cut

model obtained from the same GRF ~center!, and a one-cut field

with no domain scale ~right!. The oscillations of p (2) are very weak

for the central model, even though the domain scale is obvious to

the eye.
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h5

5z

21
1

150

7pq
E

0

`dr

r
E

0

`ds

s
E

21

1

du P4~u ! f ~r ,s ,u !, ~18!

where f (r ,s ,u)5p (3)(r ,s ,u)2p (2)(r)p (2)(s)/p , q512p ,
u5cosu, and Pn(u) denotes the Legendre polynomial of or-
der n . The parameter z occurs in bounds on the conductivity
and the bulk modulus, while h occurs in bounds on the shear

moduli. As pfit
(3) and pexpt

(3) are available for our test models,

the parameters can be calculated @5,22#. Techniques have
also been suggested for directly evaluating the parameters
from experimental images @40,41#. We anticipate that the
closer zfit is to zexpt the better the reconstructed model. Note
that z and h contain only third-order statistical information,
and higher-order information is potentially important for our
purposes.

A third simple measure of microstructure is the chord-
distribution function of each phase @40,42,43#. For phase 1
this is obtained by placing lines through the composite and
counting the number of chords n(r) of a given length r

which lie in phase 1. The chord distribution is defined as

r (1)(r)5n(r)/*0
`n(r)dr , so that r (1)(r)dr is the probability

that a randomly selected chord will have length between r

and r1dr . r (2)(r) is defined in an analogous manner. At
present it is not possible to evaluate this function analytically
for the level-cut GRF media, but it can be simply evaluated
from realizations of the experimental and reconstructed ma-
terials. To quantify the difference between the chord distri-
butions, we again employ a least-squares error,

Er ~ j !
5(

i51

M

@r rec
~ j !~r i!2rexpt

~ j ! ~r i!#
2Y (

i51

M

@rexpt
~ j ! ~r i!#

2 , ~19!

with j51 and 2. Note that r ( j)(r) contains information
about the degree of connectedness in phase j , and thus is
likely to incorporate important information regarding macro-
scopic properties @44#.

We also compute the conductivity of samples ~size 128 3

pixels! using a finite-difference scheme @5#. We choose the
conductivity of phase 1 as s151 ~arbitrary units! and phase
2 as insulating (s250). At this contrast the effective con-
ductivity s is very sensitive to the microstructure. The re-

TABLE III. A comparison of the statistical and transport prop-

erties of the four reconstructed models ~Table I! with those of the

‘‘experimental’’ composite. The measured surface area of the digi-

tal reconstructions is also shown.

Cl c Ep (3) zfit hfit s rec Er (1) Er (2) s rec /s1

N 0 5@-3# 0.32 0.29 1.06 0.25 0.62 0.032

N 1 9@-5# 0.74 0.54 0.75 0.04 0.11 0.114

I 1 2@-3# 0.47 0.37 0.98 0.20 0.48 0.069

U 1 6@-3# 0.87 0.70 1.02 0.02 0.15 0.120

‘‘Expt.’’ data 0.72 0.54 0.87 0.110

TABLE IV. A comparison of the statistical and transport prop-

erties of the three reconstructed models ~Table II! which are able to

reproduce the oscillatory correlation function of a test composite.

Cl c Ep (3) zfit hfit s rec Er (1) Er (2) s rec /s1

N 0 9@-5# 0.24 0.20 1.00 0.001 0.003 0.025

I 0 5@-3# 0.33 0.25 1.16 0.137 0.036 0.032

U 0 5@-3# 0.20 0.17 1.10 0.008 0.127 0.009

‘‘Expt.’’ data 0.24 a 0.20 a 0.023

aReference @5#.

FIG. 7. The chord distribution ~for phase 1! of an ‘‘experimen-

tal’’ composite @Fig. 4~a!# compared with data for the four recon-

structions shown in Figs. 4~b!–4~e!. Both models N and U (c51)

appear to mimic the ‘‘experimental’’ data. The lines in the graph

are guides to the eye only.

FIG. 8. The chord distribution ~for phase 2! of an ‘‘experimen-

tal’’ composite compared with data for four reconstructions ~see the

caption of Fig. 7!.
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sults therefore allow us to gauge the ability of a reconstruc-

tion to predict macroscopic properties. This contrast also

occurs commonly in a range of systems ~e.g., electrical con-

ductivity of brine saturated porous rocks or thermal conduc-

tivity of aerogels and foams!.
We calculated the morphological quantities defined above

for the first four reconstructions ~reported in Table I!. The

results are shown in Table III. First note that Ep (3) is greater

than Ep (2) by a factor of 2–5 @45# in each case, and is prob-

ably of little use in an actual reconstruction. The values of

the microstructure parameters z and h are conclusive, as we

expect they indicate that model N (c51) is best. The chord

distributions of the experimental and reconstructed material

are shown in Figs. 7 ~phase 1! and 8 ~phase 2!. From Table

III we see that the chord distribution provides a very strong

signature of the microstructure. The results indicate that ei-

ther model N (c51) or model U (c51) is the best recon-

struction. The fact that the conductivity of each model is so

close to the experimental data provides some evidence that

matching the chord distributions is more important than

matching z and h . The same comparison is shown for the

reconstructions of the test composite which exhibits an os-

cillatory p (2)(r) in Table IV. Model N (c50) provides the
best reconstruction based on both the chord distribution and
the microstructure parameters. This leads to a good predic-
tion of the conductivity.

In Sec. II we showed that it was possible to generate a
number of morphologically distinct reconstructions which
share first- and second-order statistical properties with an
experimental composite. Here we have suggested three

methods of choosing the best reconstruction. As Ep (3) is
relatively small for all seven reconstructions shown in Tables

III and IV, p (3) ~like p (2)) does not appear to provide a
strong signature of microstructure @45#. It is therefore not

possible to conclude that a good reproduction of p (3) ~or

p (4)) implies a successful reconstruction, as was done in Ref.
@8#. In contrast, both the chord distributions and the micro-
structure parameters appear to provide a strong signature of

composite morphology, and hence a method of selecting a
useful reconstruction of the original material.

IV. RECONSTRUCTION OF THE IOS MODEL

Realizations of the IOS model @31# ~or Poisson grain
model @46#! are generated by randomly placing spheres into
a solid or void. In the latter case the morphology is thought
to provide a reasonable model of the pore space in granular
rocks ~so transport occurs in the irregular void region!. As
the model has a different structure from the level-cut GRF
model, it provides a useful test of reconstruction procedures
@3#. The correlation function of the material @31# is

p (2)(r)5pv(r) for r,2r0 and p (2)(r)5p2 for r>2r0, where

v~r !511

3

4
S r

r0
D2

1

16
S r

r0
D 3

. ~20!

For this model it is also possible to calculate the pore chord

distribution as r (1)(r)523/4r03lnp p3r/4r0 @43#.
We first consider the IOS model at a volume fraction

pexpt50.2. The system is 80% filled with spheres of radius
r051mm. Nine reconstructions are generated ~by minimiz-

ing Ep (2)), and their higher-order statistical properties are
compared with those of the IOS model in Table V. Based on

Ep (2) ~and Ep (3)) we note that model U (c5
1
2 ,1) performs

poorly, while the standard one-cut model is very good. The
microstructure parameters z and h indicate that the best re-

construction is model I (c51) followed by model I (c5
1
2 ).

However both models fail to reproduce the solid chord dis-

tribution (Er (2)
.0.6) which is better mimicked by models I

(c50) and N (c50). The ambiguity of the results indicate
that none of models considered may be appropriate.

TABLE V. A comparison of the statistical properties of 11 re-

constructions with those of the IOS model at porosity 20%. Most of

the models are able to reproduce the low-order statistical properties

of the IOS model.

Cl c Ep (2) Ep (3) sfit zfit hfit Er (1) Er (2)

N 0 1@-4# 9@-4# 0.94 0.31 0.28 0.066 0.26

N
1
2 3@-3# 5@-3# 0.79 0.74 0.54 0.35 0.15

N 1 2@-3# 8@-3# 0.79 0.84 0.63 0.59 0.31

I 0 2@-4# 7@-4# 0.98 0.35 0.30 0.024 0.24

I
1
2 6@-4# 1@-3# 1.07 0.50 0.38 0.042 0.65

I 1 4@-4# 1@-3# 1.05 0.52 0.40 0.030 0.63

U 0 2@-4# 1@-3# 0.92 0.28 0.26 0.077 0.30

U
1
2 1@-2# 2@-2# 0.91 0.79 0.62 0.49 0.11

U 1 1@-2# 2@-2# 0.91 0.87 0.70 0.40 0.15

I5 7@-4# 6@-4# 1.00 0.40 0.33 0.003 0.23

I10 1@-3# 5@-4# 1.00 0.43 0.35 0.003 0.13

‘‘Expt.’’ data ~IOS! 0.96 0.52 0.42

FIG. 9. The chord distribution of the IOS model ~open sym-

bols!, model I10 ~solid symbols!, and the standard one-cut model

~broken line, symbols omitted for clarity!. The heavy line is the

theoretical curve for the IOS model, and the lighter lines are guides

to the eye only.
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The IOS model can be thought of as the intersection set of
infinitely many composites comprised of a single sphere of
phase 2 @so f(r)50 within the sphere#. This suggests that
the morphology may be better modeled with the level-cut
scheme by increasing the number of primary composites be-
yond two. To this end we generalize model I to the case of n

independent one-cut fields, so that p (2)(r)5hn(r) with

pa50, pb5p (1/n) and s524np121/nh8(0). This is termed
model In . The statistical properties of the reconstructions for
the cases n55 and 10 are shown in rows 10 and 11 of Table
V. The models reproduce the ‘‘experimental’’ pore chord
distribution very well, and offer a progressively better repre-
sentation of the solid chord distribution and microstructure
parameters. The chord distributions of model I5 are shown in
Fig. 9 along side those of the standard one-cut model and the

IOS model. The good agreement between the measured and

theoretical value of r (1)(r) for the IOS model demonstrates
the accuracy with which this function can be evaluated for a
sample of 128 3 pixels.

To determine which morphological measure (z and h or

Ep (1) and Ep (2)) should be used to select the best recon-
struction, we examine the model morphology and conductiv-
ity. Three-dimensional images of models N (c50), I

(c51), and I10 are shown alongside the IOS model in Fig.
10. The pore space of the single-cut GRF @Fig. 10~a!# is more
disconnected than that of the IOS model, while the pores are
too large and uniform in the intersection model @Fig. 10~b!#.
Model I 10 @Fig. 10~c!# appears better able to reproduce the
interconnected structures characteristic of overlapping
spheres. The results for the conductivity are, s50.038 for
model N (c50), s50.080 for model I (c51), s50.052
for model I10 , and s50.063 for IOS. The fact that model I10

better mimics IOS morphology and conductivity than model

I (c51) provides evidence that minimizing Er ( j) should be
given more weight than matching experimental values of z
and h .

We adopt this strategy to reconstruct the IOS model at
p50.1, 0.3, and 0.4. In each case models I10 and I5 provide
the best agreement with the experimental chord distributions.

TABLE VI. The results of the reconstruction procedure for the

IOS model. The specific surfaces of the IOS model are

s50.71, 0.96, 1.08, and 1.10 mm 21 as p increases. Generally,

model I10 provides a better match of the chord distributions than

model I 5. In each case pb5p1/n for model In .

p Cl rc j d Ep (2) sfit Er (1) Er (2)

0.1 I5 0.8770 0.8769 3.8336 3@-4# 0.69 0.011 0.33

I10 1.2472 1.2470 3.8608 5@-3# 0.70 0.011 0.31

0.2 I5 0.9942 0.9947 3.9055 8@-4# 1.00 0.003 0.23

I10 1.4173 1.4174 3.9777 1@-3# 1.00 0.003 0.13

0.3 I5 1.0974 1.0973 3.9756 1@-3# 1.14 0.003 0.23

I10 1.6047 1.6053 4.0375 1@-3# 1.13 0.003 0.19

0.4 I5 1.2148 1.2151 4.0250 1@-3# 1.17 0.006 0.16

I10 1.8146 1.8158 4.1244 1@-3# 1.15 0.004 0.18

FIG. 10. Reconstructions of the overlapping sphere ~IOS! model

at porosity p50.2. To aid visualization, the pores are shown as

solid, and solid as void. The images shown here and the chord

distributions ~Fig. 9! indicate that model I10 provides the best re-

construction of the IOS model.

FIG. 11. The IOS model ~a!–~d! and reconstructions ~e!–~h!

which reproduce the correlation function ~Fig. 12! and chord distri-

butions ~Fig. 9! of the model. The conducting pore space is shown

in black and the images are 10310 mm2.

FIG. 12. The correlation functions of the IOS model compared

with the ‘‘best-fit’’ function associated with each reconstruction.

Measurements of p (2) obtained from realizations of the models are

also shown.
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The numerical results are shown in Table VI, and cross sec-

tions of each model shown in Fig. 11. We plot pfit
(2)(r),

pexpt
(2) (r) and measurements of the function from the recon-

structed samples in Fig. 12. The measured data show some

deviation from pfit
(2)(r) for p50.3. This is due to the accu-

mulation of errors as we form the intersection sets of pro-
gressively more phase functions. Conductivity data are given
in Table VII and plotted in Fig. 13. Models I5 and I10 pro-
vide a progressively better estimate of the conductivity. We
anticipate that increasing the order of model In would yield
better estimates. The results indicate that we have success-
fully reconstructed the IOS model.

In Fig. 13 we also plot other data for the IOS model. Kim
and Torquato @47# ~KT! estimated s for the IOS model using
a random walker algorithm specifically designed to handle
locally spherical boundaries. In the worst case p50.1 our
data underestimate that of KT by a factor of 1.6 ~the error
decreases significantly at higher volume fractions!. This is
probably due to the discretization effects of our finite-
difference scheme @5#. This does not alter our conclusions as
all the data presented at a given volume fraction are presum-
ably effected in the same manner. The data of Bentz and
Martys @3# for the IOS model and their one-cut reconstruc-
tion are consistently lower than ours.

V. CONCLUSION

We have developed a method of reconstructing three-
dimensional two-phase composite materials from informa-
tion which can be obtained from digitized micrographs. First
a range of models are generated which share low-order ~vol-
ume fraction and two-point correlation function! statistical
properties with the experimental sample. The model which
most closely reproduces the chord distributions of the experi-
mental material is chosen. The distribution functions pro-
vided a better signature of microstructure than the three-
point correlation function, and are simpler to measure than
the microstructure parameters z and h . Significantly the
three-point and higher-order correlation functions of the re-
constructions can be calculated and employed in rigorous
analytical microstructure-property relationships. Three-
dimensional realizations of the models can also be simply
generated for the purpose of numerically evaluating macro-
scopic properties.

We found that materials with practically identical two-
point correlation functions can have very different morpholo-
gies and macroscopic properties. This demonstrates that re-
constructions based on this information alone @3,4,8,16–21#

do not necessarily provide a useful model of the original
material. If the correlation function exhibits strong oscilla-
tions, we found evidence that prior methods will provide
satisfactory reconstructions. In this case it is important to
compare the chord distributions of the model and experimen-
tal materials.

Our method can be applied to a wider range of composite
and porous media than prior reconstruction techniques. The
generality of the method is achieved by incorporating new
models based on the intersection and union sets of level-cut
GRF models. The former have recently been shown to be
applicable to organic aerogels @27# and porous sandstones
@26#, while the latter may be useful for modeling closed-cell
foams. Techniques based on the single-cut GRF model can-
not reproduce the low percolation thresholds of these mate-
rials @22#. The method was successfully used to reconstruct
several test composites and the overlapping sphere model
over a range of volume fractions. The reconstructions are
better able to model the morphology and transport properties
of the IOS model than prior studies @3#.

There are several problems with the reconstruction proce-
dure. First, it is possible that two materials with different
properties may share first- and second-order statistical infor-
mation and chord-distribution functions. In this case the re-
construction method could fail to yield good estimates of the
macroscopic properties. Second, the generality of the models
we have employed is not sufficient to mimic all real compos-
ites ~although prior studies have shown them to be appropri-
ate for a wide range of materials @22–27#!. An example is
provided above where our nine basic reconstructions were
unable to model the chord distribution of the IOS model. In
this case a further generalization was found to be successful.
Others are possible. For example, the restriction that the
level-cut and length-scale parameters are identical for each

TABLE VII. The conductivity of the IOS model and various

reconstructions. Models which match the IOS chord distributions

(I5,10) provide better estimates of the conductivity than a recon-

struction based on the single level-cut model ~Rec. N).

p IOS ~KT! a IOS Rec. N Rec. I5 Rec. I10

0.1 0.022 0.014 0.003 0.007 0.011

0.2 0.076 0.063 0.038 0.042 0.052

0.3 0.16 0.14 0.094 0.120 0.13

0.4 0.25 0.24 0.180 0.210 0.22

aKim and Torquato, Ref. @47#.

FIG. 13. Conductivity of the IOS model ~solid symbols! com-

pared with various reconstructions ~open symbols!. Model I10 pro-

vides a very good prediction of the actual conductivity. Other data

are from Refs. @47# ~KT! and @3# ~BM!.
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component of the intersection, and union sets can be relaxed,
or overlapping spheres can be incorporated in the level-cut
scheme. However, the problem remains. It is unlikely, for
example, that the morphology of randomly packed hard
spheres could be mimicked by this scheme. Third, models
formed from the union and intersection sets contain sharp
edges which are energetically unfavorable in many materials.
However there is little evidence that these play a strong role
in determining macroscopic properties.

New techniques of characterizing microstructure are cur-
rently being developed such as those based on information-
entropy @46#. These may contribute to the problem of select-
ing the best reconstructions. Our work also has application to

the inverse problem of small-angle x-ray scattering from

amorphous materials. In this case the problem is made more

difficult by the absence of higher-order information such as

chord distributions ~although some progress may be possible

@42#!. Work is underway to model anisotropic composites

and apply the method to experimental systems.
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