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Abstract—This paper explores a statistical basis for a process often described in computer vision: image segmentation by region

merging following a particular order in the choice of regions. We exhibit a particular blend of algorithmics and statistics whose

segmentation error is, as we show, limited from both the qualitative and quantitative standpoints. This approach can be efficiently

approximated in linear time/space, leading to a fast segmentation algorithm tailored to processing images described using most

common numerical pixel attribute spaces. The conceptual simplicity of the approach makes it simple to modify and cope with hard

noise corruption, handle occlusion, authorize the control of the segmentation scale, and process unconventional data such as spherical

images. Experiments on gray-level and color images, obtained with a short readily available C-code, display the quality of the

segmentations obtained.

Index Terms—Grouping, image segmentation.

�

1 INTRODUCTION

IT is established since the Gestalt movement in psychology
that perceptual grouping plays a fundamental role in

human perception. Even though this observation is rooted in
the early part of the 20th century, the adaptation and
automation of the segmentation (and, more generally,
grouping) task with computers has remained so far a
tantalizing and central problem for image processing. Vision
is widely accepted as an inference problem, i.e., the search of
what caused the observed data [1]. In this respect, the
grouping problem can be roughly presented as the transfor-
mation of the collection of pixels of an image into a visually
meaningful partition of regions and objects.

This postulates implicitly the existence of optimal seg-
mentation(s) which we should aim at recovering or approx-
imating, and this task implies casting the perceptual
formulation of optimality into a formalized, well-defined
problem. A prominent trend in grouping focuses on graph
cuts, mapping image pixels onto graph vertices, and the
spatial relationships between pixels onto weighted graph
edges. The objective is to minimize a cut criterion, given that
any cut on this graph yields a partition of the image into
(hopefully) coherent visual patterns. Cut criteria range from
conventional [2] to more sophisticated criteria, tailored to
grouping [3], [4], [5]. These are basically global criteria;
however, the strategies adopted for theirminimization range
through a broad spectrum, from local [6] to global optimiza-
tion [5], through intermediate choices [7], [3]. Global
optimization strategies have the advantage to directly tackle
the problem as a whole, and may offer good approximations
[5], at possible algorithmic expenses though [3], [5].

In this paper, we focus on a different strategy which
belongs to the family of region growing and merging
techniques [8], [9]. In region merging, regions are sets of

pixels with homogeneous properties and they are iteratively
grown by combining smaller regions or pixels, pixels being
elementary regions. Region growing/merging techniques
usually work with a statistical test to decide the merging of
regions [9]. Amerging predicate uses this test, and builds the
segmentation on the basis of (essentially) local decisions. This
locality in decisions has to preserve global properties, such as
those responsible for the perceptual units of the image [8]. In
Fig. 1, the grassy region below the castle is one suchunit, even
when its variability is high compared to the other regions of
the image. In that case, a good region merging algorithm has
to find a good balance between preserving this unit and the
risk of overmerging for the remaining regions. Fig. 1b shows
the result of our approach. As long as the approach is greedy,
two essential components participate in defining a region
merging algorithm: the merging predicate and the order
followed to test the merging of regions. There is a lack of
theoretical results on the way these two components interact
together, and can benefit from each other. This might be
partially due to the fact that most approaches use assump-
tions on distributions, more or less restrictive, which would
make any theoretical insight into how region merging works
restricted to such settings and, therefore, of possibly moder-
ate interest (see, e.g., [10] for related criticisms).

Our aim in this paper is to propose a path and its
milestones from a novel model of image generation, the
theoretical properties of possible segmentation approaches to
a practical, readily available system of image segmentation,
and its extensions tomiscellaneousproblems related to image
segmentation. First, the key idea of this model is to really
formulate image segmentation as an inference problem [1]. It
is the reconstruction of regions on the observed image, based
on an unknown theoretical (true) image on which the true
regions we seek are statistical regions whose borders are
defined from a simple axiom. Second, we show the existence
of a particular blend of statistics and algorithmics to process
observed images generated with this model, by region
merging, with two statistical properties. With high prob-
ability, the algorithm suffers only one source of error for
image segmentation: overmerging, that is, the fact that some
observed region may contain more than one true region. The
algorithm does not suffer neither undermerging, nor the—-
most frequent—hybrid cases where observed regions may
partially span several true regions. Yet, there is more: With
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high probability, this overmerging error is, as we show,
formally small as the algorithm manages an accuracy in
segmentation close to the optimum, up to low order terms.
The algorithm has some desirable features: It relies on a
simple interaction between a merging predicate easily
implementable, and an order in merging approximable in
linear time. Furthermore, it can be adapted tomost numerical
feature description spaces (RGB, HSI, L � u � v � , etc.).
Third, we provide a C-code implementation of this last
algorithm, which is a few hundred lines of C, and experi-
ments on various benchmark images, as well as comparisons
with other algorithms. Last, we show how to extend the
algorithm to naturally cope with hard noise and/or sig-
nificantly occluded images at very affordable algorithmic
complexity. Though running the algorithm does not require
tuning its parameters, the control of a statistical complexity
parameter makes it possible to adjust the segmentation scale
in a simple manner.

The next section presents our model of image generation.
Section 3 details our analysis and algorithm, first for the gray-
level setting, and then for color images. Section 4 presents our
experiments. The last two sections conclude and detail the
code availability.

2 PRELIMINARY NOTATIONS AND MODELS

The notation j:j stands for cardinal. The observed image, I,
contains jIj pixels, each containing Red-Green-Blue (RGB)
values, each of the three belonging to the set f1; 2; . . . ; gg (in

practice, we would have g ¼ 256). We have deliberately
chosen not to use complex formulations of the colors, such as
the L � u � v � space [10].

I is an observation of a perfect scene I� we do not know of,
in which pixels are perfectly represented by a family of
distributions, fromwhich each of the observed color channel is
sampled. In I�, the optimal (or true, or statistical) regions
represent theoretical objects sharing a common homogeneity
property:

. Inside any statistical region and given any color
channel 2 fR;G;Bg, the statistical pixels have the
same expectation for this color channel.

. The expectations of adjacent statistical regions are
different for at least one color channel 2 fR;G;Bg.

I is obtained from I� by sampling each statistical pixel for
observed RGB values. Fig. 2 presents an example of a color
channel for one pixel in I� and how to generate the
corresponding observed color channel of the pixel in I. In
each pixel of I�, each color channel is replaced by a set of
exactly Q independent random variables (r.v.), taking
positive values on domains bounded by g=Q, such that any
possible sum of outcomes of these Q r.v. belongs to
f1; 2; . . . ; gg. Fig. 3 gives an example of some true image I�

(in fact, it is the result of our algorithm, ran on Fig. 3b) which
displays the expectation of statistical pixels, and the observed
image I generated from I�. Given the homogeneity property,
frontiers between true regions are connecting pixels with
differences in their color expectations, and the ideal segmen-
tationof I relieson the frontiers between the statistical regions
shown on I� in Fig. 3.
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Fig. 1. An RGB image and the segmentation found by our segmentation
method (regions are white bordered and averaged inside).

Fig. 2. Generation of a single color channel for one pixel from a statistical region O of I� to some observed pixel of I.

Fig. 3. Schematic view of some theoretical image I�, and a corresponding
observed image I. Only the average over R;G;B of the theoretical
pixels’ first moments are shown in I�. According to the homogeneity
property (see text), (a) shows the true (optimal) segmentation of I. a is the
process generating the observed image (see also Fig. 2), and b is
grouping’s objective (i.e., find the statistical regions’ borders, given I).
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The sampling of each pixel and its color channels are
supposed independent fromeachother. It is important tonote
that this is the only assumption we make on I�, and the
frequent independent identically distributed (i.i.d.) assump-
tion is relaxed in thismodel to that of ordinary independence.
Inside a statistical region, it can be the case that all
distributions associated to each pixel are different, as long as
the homogeneity property is satisfied. This freedom has a
counterpart, which led us to introduce Q, not necessarily to
make our model more general, but, essentially, for practical
purposes: The conventional choice Q ¼ 1 would actually
make ithard toestimate reliablyanything for small regionsor,
equivalently, would make it necessary to consider very large
images to improve the statistical accuracy of the segmenta-
tion.Notice thatQ is aparameterwhichmakes sense: It allows
us to quantify the statistical complexity of I�, the generality of
themodel,andthestatisticalhardnessof the taskaswell.From
an experimental standpoint, tuningQmodifies the statistical
complexity of the scene, and makes it possible to control the
coarseness of the segmentation, with the possibility to build a
hierarchy of coarse-to-fine (multiscale) segmentations of an
image [3].

3 THEORETICAL ANALYSIS AND ALGORITHMS

For the sake of simplicity, we first state our theoretical
results for a single color band (e.g., gray-level). On this
basis, the extension of the results to more numerical
channels, such as RGB, does not require an involved
analysis: It is presented in Section 3.3. Recall that it is
enough to give a merging predicate and an order to test
region mergings, to completely define our segmentation
algorithm.

3.1 Merging Predicate

Our first result is based on the following theorem.

Theorem 1 (The independent bounded difference in-

equality, [11]). Let X ¼ ðX1; X2; . . . ; XnÞ be a family of n
independent r.v. with Xk taking values in a set Ak for each
k. Suppose that the real-valued function f defined on

Q

k Ak

satisfies jfðxÞ � fðx0Þj � ck whenever vectors x and x
0 differ

only in the kth coordinate. Let � be the expected value of the
r.v. fðXÞ. Then, for any � � 0,

PrðfðXÞ � � � �Þ � exp �2�2=
X

k

ðckÞ2
 !

: ð1Þ

From this theorem, we obtain the following result on the
deviation of observed differences between regions of I.
Here, the notation EðRÞ for some arbitrary region R is the
expectation over all corresponding statistical pixels of I� of
their sum of expectations of their Q r.v. for the single color
band, and R is the observed average of this color band.

Corollary 1. Consider a fixed couple ðR;R0Þ of regions of I.
80 < � � 1, the probability is no more than � that

jðR�R
0Þ �EðR�R

0Þj � g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2Q

1

jRj þ
1

jR0j

� �

ln
2

�

s

: ð2Þ

Proof. Suppose we shift the value of the outcome of one r.v.
among the QðjRj þ jR0jÞ possible for the couple ðR;R0Þ.

jR�R
0j is subject to a variation of at most cR ¼ g=ðQjRjÞ

when this modification affects region R (among QjRj
possible), and at most cR0 ¼ g=ðQjR0jÞ for a change inside
R0 (amongQjR0jpossible).Weget

P

k ðckÞ
2 ¼ QðjRjðcRÞ2 þ

jR0jðcR0Þ2Þ ¼ ðg2=QÞðð1=jRjÞ þ ð1=jR0jÞÞ. Using the fact that
the deviation with the absolute value is at most twice that
without, and using Theorem 1 (solving for �) brings our
result. tu
SupposewedoNmerging tests in I. Then,withprobability

� 1� ðN�Þ, all couples of regions ðR;R0Þ whose merging is

tested shall satisfy jðR�R
0Þ �EðR�R

0Þj � bðR;R0Þ, with

bðR;R0Þ the right member of Corollary 1. Remark that N is

small: for a single-passalgorithm,N < jIj2. Inour4-connexity
setting (each pixel is connected to its north, south, east, and

westneighborswhentheyexist),weevenhaveN < 2jIj.What

we really need to test the merging of two observed regionsR

andR0 is a predicate accurate enough when the pixels ofR [
R0 come from the same statistical region of I�. From this

standpoint, usingCorollary 1 to devise amergingpredicate is

straightforward: In this case, we have EðR�R
0Þ ¼ 0 and,

thus, with high probability, the deviation jR�R
0j does not

exceed bðR;R0Þ. The merging predicate on two candidate

regions R and R0 could thus be “merge R and R0 iff

jR�R
0j � bðR;R0Þ,” with bðR;R0Þ a merging threshold. We

shall see hereafter that such a predicate is optimistic: Under

some assumption, it tends sometimes to favor overmerging

(i.e., it does more merges than necessary to actually recover

I�), but this phenomenon formally remains quantitatively

small. For both theoretical and practical considerations, we

are going to replace this merging predicate by one slightly

moreoptimistic, i.e.,witha largermergingthreshold.Thisone

turnsout to theoretically incur the sameerror (up to loworder

terms),and itgivesverygoodvisual results.LetRl be thesetof

regions with l pixels and bðRÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ð2QjRjÞÞ lnðjRjRjj=�Þ
p

.

Remark that provided regionsR andR0 are not empty,

bðR;R0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ðRÞ þ b2ðR0Þ
p

< bðRÞ þ bðR0Þ: ð3Þ

Hereafter, we prove a quantitative bound on the error
obtained with the largest quantity (the right one) used as
merging threshold: it holds for both others as well. The
center quantity is the merging threshold we use. An
upperbound on jRlj makes it quite reasonable with regard
to bðR;R0Þ. Considering that a region is an unordered bag of
pixels (each color channel is given 0; 1; . . . ; l pixels), we may
fix jRlj � ðlþ 1Þminfl;gg (we have lþ 1 choices for the number
of pixels having each color channel, which makes
jRlj � ðlþ 1Þg, and then we reduce this large upperbound
by counting the duplicates for l < g). To summarize, our
merging predicate is:

PðR;R0Þ ¼ true if jR0 �Rj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ðRÞ þ b2ðR0Þ
p

false otherwise:

�

ð4Þ

3.2 Order in Merging

The order in which we test the merging of regions follows a
simple invariant A which we define as follows:

. ðAÞ ¼def when any test between two (parts of) true
regions occurs, that means that all tests inside each
of the two true regions have previously occurred.
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It is crucial to note thatA does not postulate the knowledge of
the segmentation of I�. Tomake it clearwhywe should strive
to fulfill A, let us first recall the three types of error a
segmentation can suffer. First, undermerging represents the
casewhere one ormore regions obtained are strict subparts of
true regions. Second, overmerging represents the case where
some regions obtained strictly contain more than one true
region. Third, there is the “hybrid” (and most probable) case
where some regions obtained contain more than one strict
subpart of true regions. We have already partially outlined
this in the preceeding section related to the merging
predicate: together with P (4), Amakes it possible to control
the segmentation error from both the qualitative and
quantitative standpoints. The next theorem states that only
overmerging occurs with high probability. In this theorem,
we define s�ðIÞ as the set of regions of the ideal (optimal)
segmentation of I (defined from I�, see Fig. 3) and sðIÞ the set
of regions in our segmentation of I.

Theorem 2. With probability� 1�OðjIj�Þ, the segmentation on
I satisfyingA is an overmerging of I�, that is:8O 2 s�ðIÞ; 9R 2
sðIÞ : O � R.

Proof. From Corollary 1, with probability > 1� ðN�Þ ¼ 1�
OðjIj�Þ, anycoupleof regions (R;R0) coming fromthesame

statistical region of I�, andwhosemerging is tested, satisfy

jR�R
0j�bðR;R0Þ. Since bðR;R0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ðRÞþb2ðR0Þ
p

, our

merging predicate PðR;R0Þ (4) would authorize the

merging of R and R0. Using the fact that A holds together

with this property, we first rebuild all true regions of I�,

and then eventually make some more merges: The

segmentation obtained is an overmerging of I� with high

probability, as claimed. tu
The next theorem shows a quantitative upperbound on

the error incurred with respect to the optimal segmentation.
We define this error as the weighted average of the
(absolute) channel differences over all nonempty intersec-
tions of regions between s�ðIÞ and sðIÞ:

ErrðsðIÞÞ ¼ EER\O;R2sðIÞ;O2s�ðIÞ EðOÞ �EðRÞj j; ð5Þ

with EE (slanted) denoting the expectation with associated
probability measure �ðR \OÞ ¼ jR \Oj=jIj.
Theorem 3. 80 < � < 1, with probability � 1�OðjIj�Þ:

ErrðsðIÞÞ � O g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

js�ðIÞj ln js�ðIÞj
jIjQ ln

1

�
þ g ln jIj

� �

s
 !

: ð6Þ

(Proof omitted.) This theorem is interesting for three (mostly)
theoretical reasons. First, the constant hidden in the big-Oh
notation is small (<

ffiffiffi

6
p

); second, it is proven for the largest
merging threshold in (3). Last, if we ignore log-terms, the error
incurred by our segmentation is driven by g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

js�ðIÞj=ðjIjQÞ
p

, a
close order approximation to the optimum [12].

3.3 Color Images

The merging predicate for the RGB setting is:

PðR;R0Þ ¼
true if 8a 2 fR;G;Bg;

jR0
a �Raj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ðRÞ þ b2ðR0Þ
p

false otherwise:

8

>

>

<

>

>

:

ð7Þ

Here, Ra denotes the observed average for color channel
a in region R. Provided invariant A holds as in Section 3.2,
our predicate preserves overmerging, and the same bound
as that of Theorem 3 holds on the error if we measure it as
the sum of errors over the three color channels.

3.4 Our Algorithm: SRM

In 4-connexity, there are N < 2jIj couples of adjacent pixels.
Let SI be the set of these couples. Let fðp; p0Þ be a real-

valued function, with p and p0 pixels of I. Our segmentation

algorithm, SRM (for Statistical Region Merging) is simple.

We first sort the couples of SI in increasing order of fð:; :Þ,
and then traverse this order only once. We make for any

current couple of pixels ðp; p0Þ 2 SI for which RðpÞ 6¼ Rðp0Þ
(RðpÞ stands for the current region to which p belongs) the

test PðRðpÞ; Rðp0ÞÞ, and merge RðpÞ and Rðp0Þ iff it returns
true. The objective is obviously to choose fð:; :Þ so as to

approximate A as best as possible.
The next section reviews some choices we have made for

fð:; :Þ, each of constant time computation. Because we do
not update the list of merging tests after merging two
regions, a simple ordering based on radix sorting with color
differences as the keys yields a preordering time complexity
OðjIj logðgÞÞ—linear in jIj—for our basic implementations of
SRM. The merging steps afterward are space/time compu-
tational optimal [13], which makes SRM also optimal from
both standpoints. The execution time of our basic imple-
mentation of SRM, which is not optimized, segments our
largest images (512� 512) in about one second on an Intel
Pentium 1 IV 2.40 GHz processor.

4 EXPERIMENTAL RESULTS

Our model of image generation makes implicitly the

assumption that observed color variations inside true regions

should reasonablybe smaller thanbetween true regions. Such

an assumption is made explicit in [8]. Thus, a good way to

approximate A is to capture the between-pixel local gradi-

ents, and then compute their maximal per-channel variation

in fð:; :Þ: fðp; p0Þ ¼ maxa2fR;G;Bg faðp; p0Þ. Below, we review

some experiments using SRM. The reader may keep in mind

that, unless otherwise stated, the values of the parameters of

SRM are the same for all images: � ¼ 1=ð6jIj2Þ (Corollary 1)

andQ ¼ 32. Furthermore, the images areused as they are, i.e.,

without any preprocessing. Therefore, there is no extensive

domain nor image-dependent tuning of the parameters.

4.1 Basic Choices for fð:; :Þ
We have tested two basic choices to compute faðp; p0Þ. The
simplest choice is to pick directly the pixel channel values
(pa and p0a):

faðp; p0Þ ¼ jpa � p0aj: ð8Þ

Our second choice for fað:; :Þ consists of extending convolu-
tion kernels classically used in edge detection for pixel-wise
gradient estimation. In 4-connexity, neighbor pixels are
either horizontal or vertical. Thus, we only need @̂@x or @̂@y
between neighbor pixels p and p0, for each color channel.
We have chosen Sobel convolution filters, where smoothing
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is performed by the convolution mask ½1 2 1� and the

derivative filter is performed by the convolution mask
½�1 0 0 1�.

Regardless of the choice of fað:; :Þ, the fact that we do

not reorder the merging list during the merging steps

might appear to be quite a strong constraint for efficient

approximations to A. The following simple experiment is

an advocacy that it is not the case, and it uses our

simplest implementation of fað:; :Þ (8). Fig. 4 displays the

result of SRM on gray-level images (with � ¼ 1=jIj2), and
the result of the same algorithm in which the order is

replaced by a conventional scanning of the image (from

left to right and top to bottom) [13]. The preordering

clearly manages dramatic improvements over conven-

tional scanning.

Fig. 5 presents experiments obtained with our two
methods for computing fað:; :Þ on images for which results
are visually different. On images with significant color
gradients, there is a visual advantage to SRM(w) (e.g., cup).
Notice also the segmentation of SRM(w) on bldg, a picture
exhibiting a large amount of motion blur. Remark from
squirrel that SRM is able to isolate regions with high
variability (e.g., the grass), and obtains results even better
than [9] on the squirrel image: Their segmentation,
although tailor-made for textured images, obtains a
segmentation of the grass with many holes, a common
drawback of region-merging techniques [9].

4.2 Random Noise Corruption

We have chosen to study the way SRM handles noise with
our two choices for fað:; :Þ, against two hard noise types.
Each color channel 2 fR;G;Bg of each pixel 2 I is
transformed with probability q 2 ½0; 1� into a new value:

. chosen uniformly in f1; 2; . . . ; gg for transmission
noise (tðqÞ), or

. chosen uniformly in f1; gg (the extremes) for salt and
pepper noise (sðqÞ).

Fig. 6 shows different images corrupted with increasing

amounts of noise, and the results of [8] and SRM. From

45 percent noise, the results of [8] appear to be random,

whereas SRM still manages to findmost interesting regions of

the images.However, on some images, SRM obtained a brutal

degradation of its performances for significant noise levels
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Fig. 4. An experimental display of the importance of sorting. Regions
obtained in the segmentations aregray-level averagedwithwhite borders.

Fig. 5. Comparison of SRM without specific gradient estimation ((8),
center images) and with convolution kernels (right images). Regions are
color averaged with white borders.

Fig. 6. Sample results comparing both versions of SRM and [8].
Segmentation conventions are [8]s: region colors are chosen at random.
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and for both ways of computing fað:; :Þ, indicating that the

algorithm seems to reach its limits. To handle larger noise

corruption, we have extended both solutions for fað:; :Þ to

more robust estimations, paying no significant additional

computational cost. First, we replace pa (8), by a moving

average over a region defining a neighborhood around the

pixel: faðp; p0Þ ¼ jNpðp0Þa �Np0ðpÞaj. Here,Npðp0Þ is the region
defined by the set of points of I that are within Manhattan

distance � 2� to p0 (for some integer � � 0), and that are

closer top0 than theyare top.Whenever� ¼ 0, this expression

matches that of (8). Second, we replace our convolution filter

by larger ones, where smoothing is performed by the

convolutionmask ½1 2 � � � �þ 1 � � � � 1�, and thederivative

filter on each color channel is replaced by a local least-square

linear regression on points whose abscissae are those of the

convolution mask ½�� ��þ 1 � � � ��, and ordinates

defined by color channels of the corresponding pixels.

Whenever� ¼ 1, this matches our Sobel filter’s extension in

Section 4.1.
Using radix sorting again with fð:; :Þ values as the keys,

the whole time complexity of our modifications of SRM
becomes OðjIjðlog gþ�ÞÞ, which is still linear in jIj if � is
constant.

Fig. 7 reports results on the castle of Fig. 1. Conven-
tions for the segmentations results are as follows: [10]’s
regions are averaged with the original colors, [8]’s are
averaged with random colors, and SRMs follow [10]’s (with
white bordered regions). Notice that the number of regions
found by [10], [8] explode with corruption, a phenomenon
which does not appear for SRM modified. The segmentation
time for the three algorithms gives a clear advantage to [8]
and SRM modified. This image gives a slight advantage to
SRM(w/o) over SRM(w) for noise handling, but we have
remarked that both versions perform quite similarly on

average. The best value of �, which controls the local
number of pixels on which each gradient approximation is
computed, seems to vary between images, but it always has
to remain small so as not to obtain “boxy-shaped” regions.
In this respect, � ¼ 10 is not far from the maximal value.

4.3 Handling Occlusions

In our model, occlusions make it necessary to relax the 4-

connexity constraint on the statistical regions of I�. Handling

them from an experimental point of view is simple: We first

runSRM as alreadypresented. Then, in a second stage,we run

it again with two major modifications on the preordering

step: We replace the pixels of I by the regions found after the

first step, and replace the 4-adjacency graph between pixels

by the clique graph between these regions. We also replace

fað:; :Þ in (8) by: faðR;R0Þ ¼ jR0
a �Raj. Radix sorting with the

fð:; :Þ values as the keys brings an overall time complexity

OððjIj þ k2Þ log gÞ, where k is the number of regions found

after the first step. The fact that our approach relies on slight

overmerging tends to narrow the influence of k in the

complexity. Fig. 8 shows some results obtained, on which

SRM has managed to rebuild accurately the principal

occluded regions (such as the road on the road image,

despite the relative noise of this video-extracted picture).

4.4 Controlling the Scale of the Segmentation

Some authors have emphasized the need to control the
coarseness of a segmentation [7], [3], [4]. The objective of
multiscale segmentation is to get a hierarchy of segmenta-
tions at different scales, and get at each scale a level of
details compatible with the perceptual organization of the
image at this scale. In our case, controlling the scale is made
easy with the tuning of parameter Q: The smaller it is, the
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Fig. 7. Results and comparisons with related approaches of SRM with
our noise extensions for (8) (w/o) and Sobel-type filters (w), with � ¼ 10.
(See text for the segmentation conventions.)

Fig. 8. Results on images with occlusions. The largest regions found by

SRM are displayed for each image.

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 1, 2009 at 05:32 from IEEE Xplore.  Restrictions apply. 



harder is the statistical estimation task, and the less
numerous are the regions in the final segmentation. To

visualize this, we run SRM with � ¼ 2 for our extension of
Sobel convolution filters (see Section 4.2), and making Q

range through the values 1; 2; 4; . . . ; 256. Fig. 9 presents the
results obtained on house image. It is interesting to note
that as Q increases, the regions found are getting smaller,
but they often correspond to smaller perceptual regions of
the image at different scales (e.g., the house gets segmented

gradually, from itself as a whole until all its details are
gradually extracted: facades, windows, rooftops, etc.).

5 CONCLUSION

In this paper, we propose a segmentation algorithm based
on the idea that perceptual grouping with region merging
has to catch the big picture of a scene by only having
primary local glimpses on it. Our algorithm is based on a

model of image generation which captures the idea that
grouping is an inference problem. This provides us with a
simple merging predicate, and a simple ordering in merges
which, with high probability, both suffers only one source
of error (overmerging), and achieves with high probability a
low error in segmentation. It can be reliably approximated

by very fast segmentation algorithm, SRM, which from our
experiments tends indeed to satisfy our goal of image
segmentation. Experiments display the ability of the
approach to cope with significant noise corruption, handle
occlusions, and perform scale-sensitive segmentations.
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Fig. 9. Segmentations of SRM on image house, for different values of Q.

Regions found are white-bordered (see text for details).
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