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Abstract

Electronic health records (EHRs) are an emerging re-
lational domain with large potential to improve clin-
ical outcomes. We apply two statistical relational
learning (SRL) algorithms to the task of predicting
primary myocardial infarction. We show that one
SRL algorithm, relational functional gradient boosting,
outperforms propositional learners particularly in the
medically-relevant high recall region. We observe that
both SRL algorithms predict outcomes better than their
propositional analogs and suggest how our methods can
augment current epidemiological practices.

Introduction
One of the most studied pathways in medicine is the health
trajectory leading to heart attacks, known clinically as my-
ocardial infarctions (MIs). MIs are common and deadly,
causing one in three deaths overall in the United States total-
ing 600,000 per year [Manson et al., 1992]. Because of its
medical significance, MI has been studied in depth, mostly
in the fields of epidemiology and biostatistics, yet rarely in
machine learning. So far, it has been established that pre-
diction of future MI is a challenging task. Risk stratifica-
tion has been the predictive tool of choice [Group, 2002;
Wilson et al., 1998], but these methods cannot reliably iso-
late the negative class; that is, everyone is still at risk. A
much richer area of study is the identification of risk factors
for MI. Common risk factors have been identified such as
age, gender, blood pressure, low-density lipoprotein (LDL)
cholesterol, diabetes, obesity, inactivity, alcohol and smok-
ing. Studies have also identified less common risk factors as
well as subgroups with particular risk profiles [Greenland et
al., 2010; Antonopoulos, 2002].

The canonical method of study in this field is the identi-
fication or quantification of the risk attributable to a vari-
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Figure 1: Can we use EHR data to augment clinical studies?

able in isolation using: case-control studies, cohort stud-
ies, and randomized controlled trials. Case-control or cross-
sectional studies identify odds ratios for the variable (or ex-
posure) while controlling for confounders to estimate the
relative risk. Cohort studies measure variables of interest
at some early time point and follow the subjects to observe
who succumbs to the disease. Randomized controlled trials
are the gold standard for determining relative risks of sin-
gle interventions on single outcomes. Each of these meth-
ods is highly focused, centered on the goal of providing the
best risk assessment for one particular variable. One natural
question to ask is: by using machine learning, can we con-
duct fewer studies by analyzing the effects of many variables
instead?

A different and crucial limitation of the longitudinal meth-
ods is that they make measurements at fixed points in time.
In these studies, data is collected at the study onset t0 to
serve as the baseline variables, whose values are the ones
used to determined risk. To illustrate this, consider the
Skaraborg cohort study [Bg-Hansen et al., 2007] for the
identification of acute MI mortality risk factors. The study
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measured established risk factors for MI at t0, and then the
subjects participated in annual checkups to assess patient
health and determine if an MI event had occurred. It is im-
portant to note that, in line with current practice, the subjects
who did not possess risk factors at time t0 but developed
them at some later time were considered as not possessing
them in the analysis. If we knew that these developments
had occurred, say from an EHR, would it be possible to es-
timate the attributable risk more precisely? In the extreme,
can we estimate the risk factors and make reliable predic-
tions without the annual checkups and the baseline t0 mea-
surements?

More generally, can we bring a machine learning perspec-
tive to this task that provides new insights to the study of
MI prediction and risk factor identification? The answer
is yes, and we present here a glimpse of the potential ma-
chine learning has to bring to this field. We suggest that
the emergence of the EHR as the new data source for pop-
ulation health analyses may be able to answer these clin-
ical questions more efficiently, effectively adding another
method of study to the standard three. For the prediction
task, we emphasize the evaluation of methods on statistics
that are clinically relevant, specifically on class separabil-
ity (for risk stratification) and precision at high recalls (for
use as a screening tool). Class separability, which can be
directly assessed using ROC curves, is a well-established
tool for risk stratification [Group, 2002]. Evaluating pre-
cision at high recalls assesses an algorithm’s ability to pre-
dict while disallowing many false negatives, which is the
critical component to a good screening tool. For predicting
MI, a false negative means categorizing a patient as “low-
risk” who goes on to have a heart attack, a costly outcome
we wish to avoid. We also focus our methodology on algo-
rithms with good interpretability, as this is critical for using
the models for risk factor identification. In this work we
survey a host of established machine learning algorithms for
their performance on this task and select the most promising
algorithm for further analysis. We attempt to answer some
of these questions by providing an EHR-based framework
for prediction and risk factor identification.

EHRs are an emerging data source of great potential use
in disease prevention. An EHR effectively tracks the health
trajectories of its patients through time for cohorts with sta-
ble populations (Figure 1). But as of yet they have been used
primarily as a data warehouse for health queries, rather than
as a source for population-level risk assessment and preven-
tion. This trend is changing, however, as exemplified by the
ongoing Heritage Health Prize contest, which uses medical
claims data to predict future hospitalization [2011].

Analogously, we can use EHR data to predict future dis-
ease onset and produce personalized risk scores. Risk strati-
fication models do exist, but they typically require additional
medical intervention, e.g. running laboratory tests required
to quantify risk. Thus, one advantage of risk modeling from
EHRs is that many of the interventions required for standard
risk stratification are rendered superfluous. While interven-
tions provide up-to-date information and could improve risk
stratification, a risk profile without them based on EHR data
would be available regardless. As an example, the Fram-

ingham risk score (FRS) assessment of 10-year risk of coro-
nary heart disease (CHD) requires two lipoprotein labora-
tory assays, blood pressure measurements, and basic demo-
graphic information [Antonopoulos, 2002]. The FRS is a
well-established, robust test for evaluating CHD risk, but a
similar risk could be established with information from the
EHR, which might include overlapping clinical information,
without the additional intervention. Furthermore, the ability
to account for disease occurrences across time instead of the
disease state at an initial time could help modify risk status.
Finally, for less high-impact diseases than MI, the medical
field has focused largely on identifying individual risk fac-
tors for disease. Relational models using EHRs could then
easily produce aggregate risk models analogous to the FRS.

Accurate predictive models of MI or other major health
events have many more potential applications. First, such
models can be incorporated into the EHR to provide prompts
to clinicians such as, “your patient is at high risk for an MI
and is not currently on an aspirin regimen.” Second, the
models themselves can be inspected in order to identify sur-
prising connections, such as a correlation between the out-
come and the use of certain drugs, which might in turn pro-
vide important clinical insights. Third, these models can be
used in research to identify potential subjects for research
studies. For example, if we want to test a new therapy for its
ability to prevent an event such as MI, it would be most in-
structive to test it in a population of high-risk subjects, which
a predictive model can accurately identify.

The primary approach we use draws from relational prob-
abilistic models, also known as Statistical Relational Learn-
ing (SRL) [Getoor and Taskar, 2007]. Their primary ad-
vantage is their ability to work with the structure and re-
lations in data; that is, information about one object helps
the learning algorithms to reach conclusions about other ob-
jects. Unfortunately, most SRL algorithms have difficulty
scaling to large data sets. One efficient approach that yields
good results from large data sets is the relational probabil-
ity tree [Neville et al., 2003]. The performance increase ob-
served moving from propositional decision trees to forests is
also seen in the relational domain [Anderson and Pfahringer,
2009; Natarajan et al., 2010]. One method called functional
gradient boosting (FGB) has achieved good performance in
the propositional domain [Friedman, 2001]. We apply it to
the relational domain for our task: the prediction and risk
stratification of MI from EHRs.

EHR data presents significant challenges to current ma-
chine learning methodology. If we hope to augment tradi-
tional clinical study analyses, we must be able to effectively
address these challenges. A few of them are: size, time-
stamped data, relational data, and definition shifts over time.
We use Relational Functional Gradient Boosting (RFGB)
because it addresses all but the last challenge, which is dif-
ficult for any algorithm to capture. Notably, it is one of the
few relational methods capable of learning from large data
sets. Moreover, RFGB can efficiently incorporate time by
introducing temporal predicates like before(A,B):-A < B.
Also, unlike most other state-of-the-art SRL algorithms,
RFGB allows us to learn structure and parameters simulta-
neously and grows the number of models as needed. Hence,
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we apply RFGB [Natarajan et al., 2010] and relational prob-
ability trees (RPTs) [Neville et al., 2003] to the task of pre-
dicting primary myocardial infarction (MI). Our goal is to
establish that, even for large scale domains such as EHRs,
that relational methods, and in particular RFBG and RPTs,
can scale and outperform propositional variants.

This paper makes a few key contributions: First, we ad-
dress the challenging problem of predicting MI in real pa-
tients and identify ways in which machine learning can aug-
ment current metholodies in clinical studies. Second, we
address this problem using recently-developed SRL tech-
niques, adapt these algorithms to predicting MI and present
the algorithms from the perspective of this task. Third, the
task of MI prediction is introduced to the SRL community.
To our knowledge, this is the first work to use SRL methods
to predict MI in real patients. Fourth, we focus our analysis
on interpretable RPT models, making it easy to discern the
relationship between different risk factors and MI. Finally,
our paper serves as a first step to bridge the gap between SRL
techniques and important, real-world medical problems.

Learning Algorithms

Relational Probability Trees

RPTs [Neville et al., 2003] were introduced for captur-
ing conditional distributions in relational domains. These
trees upgrade decision trees to the relational setting and
have been demonstrated to build significantly smaller trees
than other conditional models and obtain comparable perfor-
mance. We use a version of RPTs that employs the TILDE
relational regression (RRT) learner [Blockeel and Raedt,
1998] where we learn a regression tree to predict positive
examples (in this case, patients with MI) and turn the re-
gression values in the leaves into probabilities by exponen-
tiating the regression value and normalizing them. Hence,
the leaves of the RPTs are still the probability that a person
has an MI given the other attributes. The key advantage of
TILDE is that it can use conjunctions of predicates in the
inner nodes as against a single test by the traditional RPT
learner. This modification has been shown to have better
performance than RPTs by others [Natarajan et al., 2010;
Anderson and Pfahringer, 2009]. In RRTs, the inner nodes
(i.e., test nodes) are conjunctions of literals and each RRT
can be viewed as defining several new feature combinations,
one corresponding to each path from the root to a leaf. The
resulting potential functions from all these different RRTs
still have the form of a linear combination of features but
the features can be quite complex [Gutmann and Kersting,
2006]. We use weighted variance as the criterion to split on
in the inner nodes. We augment the RRT learner with aggre-
gation functions such as count, max, average that are used in
the standard SRL literature [Getoor and Taskar, 2007] thus
making it possible to learn complex features for a given tar-
get. These aggregators are pre-specified and the thresholds
of the aggregators are automatically learned from the data.
Continuous features such as cholesterol level, ldl, bmi, etc.
are discretized into bins based on domain knowledge.

Relational Functional Gradient Boosting
Assume that the training examples are of the form (xi, yi)
for i = 1, ..., N and yi ∈ {0, 1} where y = MI and x rep-
resents the set of all observations about the current patient i.
The goal is to fit a model P (y|x) ∝ eψ(y,x). The standard
method of supervised learning is based on gradient-descent
where the learning algorithm starts with initial parameters
θ0 and computes the gradient of the likelihood function.
A more general approach is to train the potential functions
based on Friedman’s gradient-tree boosting algorithm where
the potential functions are represented by sums of regression
trees that are grown stage-wise [Friedman, 2001]. More
formally, functional gradient ascent starts with an initial po-
tential ψ0 and iteratively adds gradients ∆i. Thus, after m
iterations, the potential is given byψm = ψ0+∆1+...+∆m.
Here, ∆m is the functional gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (1)

where ηm is the learning rate. Dietterich et al. [2004] sug-
gested evaluating the gradient at every position in every
training example and fitting a regression tree to these de-
rived examples i.e., fit a regression tree hm on the train-
ing examples [(xi, yi),∆m(yi;xi)]. They point out that al-
though the fitted function hm is not exactly the same as the
desired ∆m, it will point in the same direction, assuming
that there are enough training examples. So ascent in the di-
rection of hm will approximate the true functional gradient.
The same idea has later been used to learn several relational
models and policies [Natarajan et al., 2010; Sutton et al.,
2000; Kersting and Driessens, 2008; Natarajan et al., 2011;
Gutmann and Kersting, 2006].

Let us denote the MI as y and it is binary valued (i.e.,
occurrence of MI). Let us denote all the other variables mea-
sured over the different years as x. Hence, we are interested
in learning P (y|x) where P (y|x) = eψ(y;x)/

∑
y e

ψ(y;x).
Note that in the functional gradient presented in Equation 1,
the expectation Ex,y[..] cannot be computed as the joint dis-
tribution P (x,y) is unknown. Hence, RFGB treats the data
as a surrogate for the joint distribution.

Instead of computing the functional gradients over the po-
tential function, they are instead computed for each train-
ing example i given as (xi, yi). Now this set of local
gradients form a set of training examples for the gradi-
ent at stage m. Recall that the main idea in the gradient-
tree boosting is to fit a regression-tree on the training ex-
amples at each gradient step. In this work, we replace
the propositional regression trees with relational regression
trees [Gutmann and Kersting, 2006; Natarajan et al., 2010;
Kersting and Driessens, 2008].

The functional gradient with respect to ψ(yi = 1;xi) of
the likelihood for each example (xi, yi) can be shown to be:

∂ logP (yi;xi)

∂ψ(yi = 1;xi)
= I(yi = 1;xi)− P (yi = 1;xi),

where I is the indicator function that is 1 if yi = 1 and 0 oth-
erwise. The expression is very similar to the one derived in
Dietterich et al. [2004]. The key idea in this work is to rep-
resent the distribution over MI of a patient as a set of RRTs
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Figure 2: Flow chart depicting experimental setup

on the features. These trees are learned such that at each it-
eration the new set of RRTs aim to maximize the likelihood
of the distributions with respect to ψ. Hence, when com-
puting P (MI(X)|f(X)) for a particular patient X , given
the feature set f , each branch in each tree is considered to
determine the branches that are satisfied for that particular
grounding (x) and their corresponding regression values are
added to the potential ψ.

Experimental Methods
We analyzed de-identified EHR data on 18, 386 subjects
enrolled in the Personalized Medicine Research Project
(PMRP) at Marshfield Clinic [McCarty et al., 2005; 2008].
The PMRP cohort is one of the largest population-based bio-
banks in the United States and consists of individuals who
are 18 years of age or older, who have consented to the study
and provided DNA, plasma and serum samples along with
access to their health information in the EHR. Most of the
subjects in this cohort received most, if not all, of their medi-
cal care through the Marshfield Clinic integrated health care
system.

Within the PMRP cohort, 1153 cases were selected using
the first International Classification of Diseases 9th revision
(ICD9) code of 410.0 through 410.1. Cases were excluded
if the incident diagnosis indicated treatment for sequelae of
MI or “MI with subsequent care”. The age of the first case
diagnosis was recorded and used to right-censor EHR data
from both the case and the matching control one month prior
to the case event. In other words, all facts linked to the case
and the matched controls after the case age–one month prior
to case diagnosis–were removed so that recent and future
events could not be used in MI prediction.

To achieve a 1-1 ratio of cases to controls (i.e., posi-
tive and negative examples), cases were matched with con-
trols based on the last age recorded in the EHR. For many
matches, this corresponds to a case who is alive being
matched to a control of the same age. For others it means

matching someone who died from a heart attack to some-
one who died from other causes or was lost to follow-up.
Matching on last reported age was chosen so that each sub-
ject would have both a similar age and similar presence in
the EHR.

As CHD is the leading cause of mortality in the US,
of which MI is a primary component, risk factors are
well-studied [Antonopoulos, 2002; Greenland et al., 2010;
Manson et al., 1992; Wilson et al., 1998], and those repre-
sented in the EHR were included in our experiments. We in-
cluded major risk factors such as cholesterol levels (LDL in
particular), gender, smoking status, and systolic blood pres-
sure, as well as less common risk factors such as history of
alcoholism and procedures for echocardiograms and valve
replacements. Drugs known to have cardiac effects were
included, notably the coxibs and tricyclic antidepressants.
As EHR literals are coded in hierarchies, we chose to use
the most specific level of information, which often split es-
tablished risk factors into multiple subcategories. The risk
factors were chosen a priori as opposed to employing algo-
rithmic feature selection (e.g. the feature selection inherent
in decision trees) to shrink the feature size from hundreds
of thousands (excluding genetic data) to thousands for com-
putational reasons and so that algorithms without inherent
feature selection would perform comparably. The features
chosen came from relational tables for diagnoses, medica-
tions, labs, procedures, vitals, and demographics.

Patient relations were extracted to temporally-defined fea-
tures in the form of “patient ever had x ∈ X” or “patient
had x ∈ X within the last year”. For laboratory values and
vitals, both of which require an additional literal for the re-
sult of the test, the result was binned into established value
categories (e.g. for blood pressure, we created five binary
features by mapping the real value to {critically high, high,
normal, low, and critically low}). This resulted in a total of
1,528 binary features.

The cases and controls were split into ten folds for cross-
validation in a nine-fold train set to one-fold test set. Al-
though we did choose a one-to-one ratio of cases to con-
trols, in general this would not be the case, so we chose to
assess the performance of the algorithms with the area un-
der the ROC curve (AUC-ROC), accuracy, and by visualiz-
ing the results with a precision-recall plot. Also, precision
at high recalls {0.95, 0.99, 0.995} were calculated to assess
a model’s usefulness as a screening tool. p-values were cal-
culated comparing the RFGB model with the comparison
methods using a two-sided paired t-test on the ten-fold test
sets, testing for significant differences in accuracy and pre-
cision at a recall of 0.99.

The key question is whether the relational algorithms
consistently produced better predictions than their corre-
sponding propositional variant. Thus we compared RFGB
models to boosted decision trees (AdaBoostM1 (Ada); de-
fault parameters) and RPTs with decision tree learners (J48;
C=0.25, M=2). We also included other common models:
Naive Bayes (NB; default parameters), Tree-Augmented
Naive Bayes (TAN; SimpleEstimator), support vector ma-
chines (SVMs; linear kernel, C 1.0; radial basis function
kernel, C 250007, G 0.01), and random forests (RF; 10 trees,
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Table 1: Area under the ROC curve, accuracy and corresponding p-value(RFGB vs. all), precision at recalls (P@R), and
p-value(RFGB vs. all, P@R=0.99). Bold indicates best performance.

AUC-ROC Accuracy p P@R=0.95 P@R=0.99 P@R=0.995 p(P@R=0.99)
Tree J48 0.744 0.716 4e-5 0.500 0.500 0.500 6e-7

Boosted Trees 0.807 0.753 1e-4 0.634 0.572 0.532 4e-4
Random Forests 0.826 0.785 4e-1 0.669 0.593 0.525 2e-3

NB 0.840 0.788 8e-1 0.680 0.513 0.500 1e-4
TAN 0.830 0.768 6e-3 0.662 0.518 0.500 2e-4

SVM (linear) 0.704 0.704 5e-6 – – – –
SVM (rbf) 0.761 0.761 1e-2 – – – –

RFGB 0.845 0.791 – 0.688 0.655 0.625 –
RPT 0.792 0.738 4e-6 0.622 0.595 0.578 4e-5

Figure 3: Precision-recall curves, with vertical lines de-
noting the recall thresholds {0.95, 0.99, 0.995}. RFGB
(dashed) and RPT (dotted) are bolded. RFGB outperforms
all other algorithms in the medically-relevant region (high
recall). At recall=0.9, the ordering of algorithms (best to
worst) is: RFGB, Random Forests, TAN, NB, RPT, Boosted
Trees, J48.

default parameters). All propositional learners were run us-
ing Weka software [Hall et al., 2009]. In our secondary anal-
ysis, we varied both the experimental setup and the RFGB
parameters to investigate the effect on their predictive abil-
ity. First, we altered the case-control ratio {1:1, 1:2, 1:3},
holding the number of cases fixed. Second, we altered the
maximum number of clauses (for internal node splits) al-
lowed per tree {3, 10 (default), 20, 30}. Third, we altered
the maximum depth of the tree {1 (stump), 5}. Finally, we
altered the number of trees {3, 10 (default), 20, 30}. We
also compared the results among these analyses if they con-
tained the same maximum number of parameters (e.g. 30
parameters: 3 trees × 10 clauses, 10 trees × 3 clauses).

Table 2: Secondary analyses: RFGB performance as case-
control ratio (CC), number of clauses, trees and tree depth
are modified. Default number of clauses = 10 and trees = 10

AUC-ROC Accuracy P@R=0.99
CC 1:1;1:2;1:3 .84;.87;.88 .79;.80;.82 .66;.51;.43
Trees 3;20;30 .80;.85;.85 .74;.80;.80 .61;.67;.66

Clauses 3;20;30 .85;.85;.85 .79;.79;.79 .66;.66;.66
Tree depth 1;5 .85;.85 .79;.79 .66;.66

Results
The best cross-validated predictor of primary MI according
to AUC-ROC was the RFGB model as shown in Table 1.
RFGB outperformed the other tree learners, forest learners
and SVMs. The RPT model did not score as well, ranking
in the middle of the propositional learners. It is of note that
the RFGB and RPT models significantly outperformed their
direct propositional analogs (Boosted Tree and Tree mod-
els, respectively). The Bayesian model (NB; TAN) scores
may be somewhat inflated because only features known to
be CHD risk factors were specifically chosen for this anal-
ysis. They may be more prone to irrelevant feature noise as
those models include all features into their final models.

The precision-recall curves for the algorithms are shown
in Figure 3 (SVMs are omitted as their outputs do not ad-
mit a ranking over examples). Medically, the most impor-
tant area is the region of high recall (i.e. sensitivity) because
typically the cost of leaving a condition undiagnosed is high.
In other words, the expected cost of a false positive is much
smaller than a false negative because a false positive incurs
the costs of additional interventions, while a false negative
incurs costs of untreated human morbidity, and usually ex-
pensive, delayed treatments. Given that we cannot accept
models with many false negatives (i.e. low recall), we look
to the high recall region for the best performing algorithm,
and RFGB gives the highest precision as shown in Table 1.

In our secondary analysis, when changing the case-
control ratio we observed an increase in the AUC-ROC
as well as the expected increase in accuracy and decrease
in precision shown in Table 2. We suspect the improve-

2345



Figure 4: The first learned tree in the RFGB forest

ment in AUC-ROC may be attributed to the larger popu-
lation size, as for example CC 1:3 has twice as many ex-
amples as CC 1:1. RFGB performance improved with in-
creases with forest size, with the greatest gains coming be-
tween using three and ten trees, and no overfitting was ob-
served using our largest fifty-tree forest (see our website:
http://cs.wisc.edu/∼jcweiss/iaai2012). Varying the number
of clauses or tree depth made no visible difference in RFGB
performance, at least when holding the number of trees fixed
at ten. Per parameter, we found that increasing forest size
improved prediction more than increasing individual tree
sizes, as we see by comparing equal-parameter rows in Table
2.

Figure 4 shows an example tree produced in the RFGB
forest. We can read this as follows. Given a patient A and
their censor ageB (i.e. for cases, one month before their first
MI; for controls, the censor age of the corresponding case),
ifA had a normal non-HDL cholesterol measurement at time
C, take the left branch, otherwise take the right branch. As-
suming we took the left branch, if the measurement C was
within one year of the censor age, take the left branch again.
The leaf regression value is the best estimate of the residual
of the probability of the covered examples given the model
at that iteration. The whole RFGB forest is available at our
website: http://cs.wisc.edu/∼jcweiss/iaai2012.

Direct interpretation of the tree can lead to useful insights.
In the example above, the tree indicates that a patient is more
likely to have a future MI event if they have had a normal
non-HDL cholesterol level reading in the last year compared
to patients who have had normal cholesterol readings not in
the last year. Now, since it is implausible that the measure-
ment itself is causing MI, it could be considered a proxy for
another “risk factor”, which in this case could be physician
concern, as frequent lipoprotein measurements may display
a concern for atherosclerosis-related illness. The set of trees
can also be converted into a list of weighted rules to make
them more interpretable [Craven and Shavlik, 1996].

The density plot in Figure 5 shows the ability of RFGB
and RPT models to separate the MI class from the controls.
It is clear from the far left region of the RFGB graph that
we can accurately identify a substantial fraction of controls
with few cases by thresholding around 0.25, or more strin-
gently at 0.05. This region captures an algorithm’s utility
as a screening tool, where we see that RFGB significantly

Figure 5: Density of cases (dashed) and controls (solid) by
{RFGB (left), RPT (right)} prediction, one line per fold.
Taking the integral from 0 to cutoff c for example at c = 0.05
and c = 0.25 show that RFGB identifies many controls at
low-risk of developing MI.

outperforms the others.

Discussion and Conclusion
In this paper, we presented the challenging and high-impact
problem of primary MI from an EHR database using a sub-
set of known risk factors. We adapted two SRL algorithms
in this prediction problem and compared them with stan-
dard machine learning techniques. We demonstrated that
RFGB is as good as or better than propositional learners at
the task of predicting primary MI from EHR data. Each re-
lational learner does better than its corresponding proposi-
tional variant, and in the medically-relevant, high recall re-
gion of the precision-recall curve, RFGB outperforms all the
other methods that were considered.

One additional layer of complexity not addressed in this
experiment is the use of other relational information such
as hierarchies. EHRs have hierarchies for diagnoses, drugs,
and laboratory values, and it is important to be able to cap-
ture detail at each level. For example, characteristic dis-
ease progression pathways stem from infarctions of differ-
ent heart walls, but at a high level, the presence of any MI
leads to standard sequelae. Relational domains can eas-
ily incorporate this knowledge into hierarchical “is a” re-
lations, whereas propositional learners must create new fea-
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tures for every level. The challenge for relational tree-based
learners is that the search algorithm is greedy; identifying
high-level relations requires traversing several “is a” rela-
tionships first, and thus they might not be found in a greedy
search. Expanding internal nodes to longer clauses has been
implemented with some success [Natarajan et al., 2010;
Anderson and Pfahringer, 2009], although this does have
the effect of rapidly increasing the number of features to
consider during branching. The use of SRL algorithms
could also allow the use of relations like patient physicians
and providers, which form complex relations less “patient-
disease”-oriented but ones that still may be central to patient
care. Questions regarding disease heritability could also be
addressed through relational family-based analyses.

Given our initial success, we plan to extend our work by
including more potential risk factors for learning (i.e., in-
clude all the measurements on all the patients). This will
be challenging as the number and frequencies of the mea-
surements will differ greatly across patients. In our current
model, we used time as the last argument of our predicates.
While there is a vast body of work in learning and reason-
ing with temporal models in propositional domains, the sit-
uation is not the same for relational models. We plan to
investigate a principled approach to learning and reasoning
with relational dynamic models that will allow physicians to
monitor the cardiovascular risk levels of patients over time
and develop personalized treatment plans. Finally, we plan
to build a complete machine learning system for identifying
risk factors across many diseases given the longitudinal data
available in the EHR.
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