
ORIGINAL RESEARCH
published: 03 July 2018

doi: 10.3389/frobt.2018.00076

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2018 | Volume 5 | Article 76

Edited by:

Kristian Kersting,

Technische Universitt Darmstadt,

Germany

Reviewed by:

Nicola Di Mauro,

Universitá degli studi di Bari Aldo

Moro, Italy

Elena Bellodi,

University of Ferrara, Italy

Tarek Richard Besold,

City University of London,

United Kingdom

*Correspondence:

Jeffrey Heinz

jeffrey.heinz@stonybrook.edu

Specialty section:

This article was submitted to

Computational Intelligence,

a section of the journal

Frontiers in Robotics and AI

Received: 01 December 2017

Accepted: 04 June 2018

Published: 03 July 2018

Citation:

Vu MH, Zehfroosh A,

Strother-Garcia K, Sebok M, Heinz J

and Tanner HG (2018) Statistical

Relational Learning With

Unconventional String Models.

Front. Robot. AI 5:76.

doi: 10.3389/frobt.2018.00076

Statistical Relational Learning With
Unconventional String Models

Mai H. Vu 1, Ashkan Zehfroosh 2, Kristina Strother-Garcia 1, Michael Sebok 2, Jeffrey Heinz 3*

and Herbert G. Tanner 2

1Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, United States, 2Cooperative

Robotics Lab, Department of Mechanical Engineering, University of Delaware, Newark, DE, United States, 3Department of

Linguistics and Institute of Advanced Computational Science, Stony Brook University, Stony Brook, NY, United States

This paper shows howmethods from statistical relational learning can be used to address

problems in grammatical inference using model-theoretic representations of strings.

These model-theoretic representations are the basis of representing formal languages

logically. Conventional representations include a binary relation for order and unary

relations describing mutually exclusive properties of each position in the string. This

paper presents experiments on the learning of formal languages, and their stochastic

counterparts, with unconventional models, which relax the mutual exclusivity condition.

Unconventional models are motivated by domain-specific knowledge. Comparison of

conventional and unconventional word models shows that in the domains of phonology

and robotic planning and control, Markov Logic Networks With unconventional models

achieve better performance and less runtime with smaller networks than Markov Logic

Networks With conventional models.

Keywords: statistical relational learning, Markov logic networks, grammatical inference, formal language theory,

model theory, phonology, robotics, control and planning

1. INTRODUCTION

This article shows that statistical relational learning (Getoor and Taskar, 2007; Domingos and
Lowd, 2009; Natarajan et al., 2015) provides a natural solution to the problem of inferring formal
languages when the alphabetic symbols underlying the formal languages share properties.

Formal languages are sets of strings or probability distributions over strings (Hopcroft and
Ullman, 1979; Kracht, 2003; Kornai, 2007). We use the word word synonymously with string.
They have found application in many domains, including natural language processing, robotic
planning and control (Fu et al., 2015), and human-robot interaction (Zehfroosh et al., 2017).
In each of these domains there are instances where formal languages have to be inferred from
observations. Grammatical inference algorithms (de la Higuera, 2010; Heinz and Sempere, 2016)
address the problem of learning formal languages in theory and practice and have found success in
the aforementioned domains (Fu et al., 2015; Heinz et al., 2015).

However, there is an important, unexamined assumption in much of the grammatical inference
literature. Formal languages depend on an alphabet of symbols, from which the strings are built.
Broadly speaking, these alphabetic symbols are treated as uniformly independent. But in many
domains these symbols represent entities which may share properties, and these shared properties
may ease the inference problem. In other words, it may not always be appropriate to represent
strings as a sequence of independent symbols. The appropriate representation of strings in a given
domain may carry richer information that is kept out of view with conventional representations of
strings.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00076
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00076&domain=pdf&date_stamp=2018-07-03
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jeffrey.heinz@stonybrook.edu
https://doi.org/10.3389/frobt.2018.00076
https://www.frontiersin.org/articles/10.3389/frobt.2018.00076/full
http://loop.frontiersin.org/people/503071/overview
http://loop.frontiersin.org/people/525704/overview
http://loop.frontiersin.org/people/571475/overview
http://loop.frontiersin.org/people/529873/overview
http://loop.frontiersin.org/people/188656/overview
http://loop.frontiersin.org/people/134145/overview

Vu et al. SRL With Unconventional String Models

In this article, we apply finite model theory (Hodges, 1993;
Libkin, 2004) to study different representations of strings and
show how statistical relational learning can be used to infer
formal languages using these representations. Since formal
languages can be expressed with logical expressions (Büchi,
1960; Thomas, 1997), it makes sense to make the logical
expressions the targets of learning. This avenue has not been
extensively pursued within the grammatical inference tradition,
which tends to focus on representing formal languages with
automata and formal grammars (de la Higuera, 2010; Heinz and
Sempere, 2016). With few exceptions, both automata and formal
grammars treat symbols autonomously. However, if one were to
develop learning algorithms for logical expressions within the
grammatical inference tradition, we expect the result would be
precisely the kind of work present in the tradition of statistical
relational learning! It is in this way that this work reveals
connections between statistical relational learning, model theory,
and grammatical inference.

Specifically, this article re-examines the unary relations that
make up word models. These are typically assumed to be disjoint:
in a string with three positions like abc, a position x cannot satisfy
both a(x) and b(x). In other words, x cannot simultaneously be
labeled both a and b.

However, in natural languages (and often in robot planning),
events in a sequence can share certain properties. For instance,
in the word impossible, it is significant that the m and the p both
involve lip movement in addition to a full stoppage of the airflow
in the oral cavity (Odden, 2014). Hence position x corresponding
to eitherm or p could be said to satisfy the predicates labial(x)
and stop(x). However, production ofmmakes air flow through
the nasal cavity, unlike with p. So positions x corresponding tom
would satisfynasal(x) but positions x corresponding to pwould
not. In this scenario, a position x which simultaneously satisfies
predicates labial, nasal, and stop would be interpreted as
the speech sound which we express with the single symbol m.
Similarly, an aerial robot can execute the same controlled action
under different conditions, e.g., it can fly in free space, as well
as in proximity to ceiling, ground, or wall; yet the aerodynamics
in each case can be significantly different (Karydis et al., 2015).
A ground robot that can autonomously navigate can still do so
while pushing an object (Parker, 1994) or carrying a load (Kiener
and von Stryk, 2007)—cf. (Mellinger et al., 2013); in each case,
the dynamics of the vehicle and the effect of its action on the
environment are different. Thus a robot’s mode of operation is
similarly characterized by a particular combination of attributes
and features.

There is already precedent for the importance of the
representations of words for understanding the complexity
of subregular formal languages (Thomas, 1997; Rogers and
Pullum, 2011; Rogers et al., 2013). For example, if the
relational structures underlying word models use the successor
relation (+1) to represent sequential order, then long-distance
dependencies require Monadic Second Order (MSO) logic to be
expressed, unlike local dependencies which only require First-
Order (FO) logic. Consequently, formal languages expressing
local dependencies are more efficiently expressed and learned
compared to those expressing long-distance dependencies

with the successor representation. Conversely, if relational
models underlying strings use the precedence relation (<)
to represent sequential order, then certain kinds of long-
distance dependencies can be expressed with Propositional
(PR) logic, while those involving local dependencies require
FO logic. Again it follows that formal languages expressing
long-distance dependencies are more efficiently expressed and
learned compared to those expressing local ones with the
precedence representation. These facts are reviewed in more
detail in section 4, and lends support for the idea familiar to
modern artificial intelligence (AI) research, that in learning,
representationsmatter.

We thus take advantage of domain-specific knowledge to
model strings with carefully chosen sets of unary relations that
capture salient properties. We show that doing so concretely
simplifies the formal languages that are often learning targets,
and makes it possible to reliably infer them with less data. We
demonstrate this approach by applying Markov Logic Networks
(Richardson and Domingues, 2006; Domingos and Lowd, 2009)
to case studies drawn from the phonology of natural languages
and robotic planning.

This article is organized as follows. Section 2 reviews model
theory and FO logic and section 3Markov logic networks (MLNs).
Section 4 reviews foundational aspects of formal language
learning from both a categorical and probabilistic perspective.
This section also introduces conventional word models and
presents examples which illustrate how the character of the
logical expression for a given formal language changes as a
result of the model by reviewing well-studied subregular classes.
Section 5 explains how well-motivated unconventional word
models fit into the picture developed so far.

The remainder of the article details our experiments and
contributions with MLNs. Section 6 explains general features
of how we employed the software package Alchemy to learn
stochastic formal languages.

Section 7 presents the first experimental contribution of this
paper: an empirical demonstration on a toy problem that a MLN

can emulate a smoothed n-gram model (Jurafsky and Martin,
2008) using a conventional string representation. A theoretical
result in the form of a mathematical proof establishing the
equivalence of n-gram models with these MLNs is left for future
research. We then postulate that if statistical relational learning
modules can effectively learn formal languages expressed with
conventional word models as was the case with the toy problem
here, then they should also succeed for unconventional word
models because the conventional word model is just one of
many possible representations of strings. Thus, the results
in this section give us confidence that applying MLNs with
unconventional word models to the problem of learning formal
languages would also be meaningful and successful.

Our second contribution comes from the domain of
phonology. We examine unbounded stress assignment, which
is a long-distance dependency in well-formed words in some
languages (Hayes, 1995; van der Hulst et al., 2010). As
explained in Section 8, stress in phonology refers to the syllables
which are pronounced prominently. We train MLNs based
on both conventional and unconventional word models. The

Frontiers in Robotics and AI | www.frontiersin.org 2 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

unconventional word model takes into account phonological
representations of stress, unlike the conventional model. Our
analysis shows that the MLNs with the unconventional word
model generalizes more successfully on small datasets than MLNs
with the conventional word model.

The third contribution is found in Section 9, where statistical
relational learning is applied for the first time on a problem
of (deliberate) cooperative interaction between heterogeneous
robots. The first objective here is first to demonstrate how the
same theory that helps us reason about words and stress, can
also apply to engineering problems of planning and decision
making in robotics; the second objective is to show how
the use of unconventional models can both analytically and
computationally facilitate the analysis of cooperative interaction
between autonomous agents. The case study featured in Section 9
involves an aerial vehicle, working together and physically
interacting with a ground wheeled robot, for the purpose of
allowing the latter to overcome obstacles that it cannot by itself.
The focus in this case study is not on learning different ways
in which the vehicles can interact with each other — not on
the planning of the interaction per se; this can be a subject of a
follow-up study.

Instances of problems where physical interaction between
autonomous agents has to be coordinated and planned to serve
certain overarching goals, are also found in the context of
(adaptive) robotic-assisted motor rehabilitation, which to a great
extent motivates the present study. In this context, humans and
robotic devices may interact both physically and socially, in ways
that present significant challenges for machine learning when the
latter is employed to make the robots customize their behavior
to different human subjects and different, or evolving, capability
levels for the same subject. One of the most important challenges
faced there is that one does not have the luxury of vast amounts of
training data. The algorithms need to learn reliably and fast from
small data, and the overall goal of this paper is to highlight that
the type of formal representation that is used for the world and
available knowledge, does matter.

The last section 10 concludes.

2. MODEL THEORY AND FIRST-ORDER
LOGIC

Model theory studies objects in terms of mathematical logic
(Enderton, 2001). A model of an object is a structure containing
information about the object. The type of information present in
a model theory of a set of objects is given by the model signature,
and a set of mathematical statements about how structures are
interpreted. Specifically, a model signature contains a domain
(a set of elements), a set of relations, and a set of functions.1

Here, we only consider model signatures with finite domains
and whose signatures contain only relations and no functions. In

1Model signatures may also include constants, but we leave out this term for two

reasons. First, within model theory, constants are often treated as functions which

take zero arguments. Second, the term constant has a different meaning in the

statistical relational learning literature. There, constants are understood as domain

elements which ground formulas.

other words, we apply finitemodel theory to relational structures
(Libkin, 2004).

Model signatures define a collection of structures S (or
models, or representations), which are tuples consisting of a
finite domain D, and a finite number m ∈ N of ni-ary relations
Ri, for 1 ≤ i ≤ m and ni ∈ N. A structure is therefore
denoted S = 〈D;R1,R2, . . . ,Rm〉. For a finite domain D, its
elements are standardly given as elements of N: D = {1, . . . k}
for some k ∈ N. The size of S , denoted |S|, coincides with
the cardinality of its domain. In the context of this paper, the
model signature, denoted M = 〈D;R〉, specifies what kind
of elements and relations are present in a structure. Here, D

is a set of domains, and R is a set of relations in a particular
structure. Thus a structure S of signature 〈D;R〉 will have
D ∈ D and 〈R1, . . . ,Rm〉 ∈ R, in other words, structures
are specific instantiations of some particular signature. Such
instantiations are referred to as groundings. Given a finite set C
of constants (domain elements), the Herbrand base of all the
possible groundings of the relations in R with respect to C is
HC = {R(c1 . . . cn) | R is an n-ary relation in R, ci ∈ C}.

A signature gives rise to a FO logical language where the names
of the relations in R become atomic predicates in the logic. In FO

logic, there are variables x, y, z . . . which range over the elements
in the domain of the structure. The logical language has a syntax
to define sentences. These are usually defined inductively with
the predicates and variable equality (=) serving as base cases,
and with the inductive cases provided by Boolean connectives
(∧,∨,→,↔) between formulas, in addition to quantification
(∃,∀) over formulas. The logical language also has a semantics,
which lets one determine whether a well-formed logical formula
ϕ is true for some structure S . This semantics is compositional
and can be computed following the syntactic structure of ϕ.
We assume some previous familiarity with FO logic. Enderton
(2001) and Libkin (2004) provide good references for formal
treatments.

3. MARKOV LOGIC NETWORKS

We adapt the presentation of De Raedt et al. (2016). A
Markov Network is a representation of a Markov random field
(Pearl, 1988). It expresses graphically the joint distribution of a
collection of random variables X = {X1,X2, . . .Xn} taking values
in some space X . Here, these random variables are assumed
discrete and finite. A Markov Network representation consists of
an undirected graph and a set of potential functions φk. There
is one such potential function φk for every clique in the graph,
and the clique associated with potential function φk is denoted
{k}. The subset of random variables associated with that clique is
denoted X{k}.

If a particular valuation of X is denoted x, and given that X is
finite, one can define the partition function

Z =
∑

x∈X

∏

k

φk
(

x{k}
)

(1)

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

Then the joint probability distribution of the network can be
factored over the network’s cliques in the form

P(X = x) =
1

Z

∏

k

φk
(

x{k}
)

Usually, a log-normal representation for this joint probability
distribution is utilized, in the form of an exponential of a
weighted sum of real-valued feature functions fj(x). There is one
such feature fj for each possible valuation of the state x in clique k,
and this feature is weighted with wj = logφk

(

x{k}
)

. In this form,
the joint probability distribution is

P(X = x) =
1

Z
exp

∑

j

wj fj(x)

A MLN is a set of pairs (Fi,wi), where Fi is a first order formula
and wi is a real number. Note that an FO logic associated to
some signature 〈D;R〉, naturally provides such formulas. The
MLN now becomes a template for generating Markov networks:
given a domain D ∈ D and a collection of atomic predicates
〈R1, . . . ,Rm〉 ∈ Rwith signature 〈D;R〉, there is a node for every
possible grounding of an atomic predicate Ri, and a feature fj for
each possible grounding of a formula Fi. In fact, despite being
different depending on the choice of D and Ri, all of these ground
Markov networks have the same potential for a given formula Fi,
namely φi(x{i}) = ewi . The feature fj(x) is equal to the number
of all true groundings of formula Fj in x. It is denoted nFj . Thus,
the joint distribution of the ground Markov network generated
by the MLN is expressed by

P(X = x) =
1

Z

∏

i

φi
(

x{i}
)nFi (x) (2)

=
1

Z

∏

i

exp
(

wi nFi (x)
)

=
1

Z
exp

∑

i

wi nFi (x)

Since each structure S corresponds to a particular instantiation
of the random vector X = x given the set of formulas and
weights (Fi,wi), (2) essentially expresses the probability that the
MLN assigns to a particular structure:

P(S) =
1

Z
exp

∑

i

wi nFi (S) (3)

From a learning perspective, natural problems include finding
either the weights of given formulas or both the weights and the
formulas themselves (Domingos and Lowd, 2009, Chapter 4). In
this paper we only concern ourselves with the former problem
and assume the specific domains provide the formulas a priori.

For any parametric model M with a set of parameters P and
set of data D, the maximum likelihood estimate (MLE) refers
to the parameter values P̂ that maximize the likelihood of the
D according to M. In other words any parameter values which

deviate from P̂ will result in M assigning a smaller probability
to D. MLNs are parametric models where the weights are the
parameters. Finding the MLE is thus a natural learning problem
for MLNs.

In principle, the weights of the formulas of a MLN that yield
the MLE of the data can be found by adjusting their values so as to
reduce the difference between the actual counts of the groundings
of the formulas in the data and the expected counts given the
current weights on the formulas. This is expressed with partial
derivative of the log-likelihood of the dataD below for a given set
〈F,w〉 of pairs of formulas and weights (Fi,wi) in the MLN.

∂

∂wi
log P〈F,w〉(D) = nFi (D)− E〈F,w〉

[

nFi (D)
]

Then standard optimization techniques, such as gradient descent,
the conjugate gradient, andNewton’s method, or variants thereof,
can be used to find weights corresponding to the MLE of the
data given the MLN. In practice, computing nFi (S) is challenging.
The gradient of the pseudo-log-likelihood is often calculated
instead as this is much more efficient. The price paid is that
any guarantees of convergence to maximum likelihood are lost.
Gaussian priors to prevent overfitting are also used.

4. STRINGS AND STRINGSETS

Strings (words) are familiar: they are sequences of symbols and
formal languages are sets of strings. Formal language theory
studies the computational nature of stringsets (Hopcroft and
Ullman, 1979). Since patterns in strings can be represented
with formal grammars, the question addressed by the field of
grammatical inference is how grammars, such as automata, can
be learned under various learning paradigms (de la Higuera,
2010; Heinz and Sempere, 2016). However, stringsets can also
be expressed with logic. Learning these logical expressions is
therefore another strategy for inference. This is where relational
learning, statistical relational learning, and related fields like
Inductive Logic Programming become relevant.

In this section, we provide formal background and notation
on strings, formal languages, finite-state automata, logic, and
model theory. Connections among them are made along the way.

4.1. Strings
In formal language theory, the set of symbols is fixed, finite and
typically denoted with 6. The free monoid 6∗ is the smallest
set of strings which contains the unique string of length zero λ
(the identity element in the monoid) and which is closed under
concatenation with the symbols from 6. Thus, if w ∈ 6∗ and
σ ∈ 6 then wσ ∈ 6∗ where wσ represents the string obained by
concatenating σ to the end of w. Concatenation applies between
strings as well. If u and v are strings, then uv represents their
concatenation.

For all u, v,w, x ∈ 6∗, if x = uwv then w is a substring
of x. If x ∈ 6∗σ16

∗σ26
∗ . . . σn6

∗ then w = σ1σ2 . . . σn is a
subsequence of x. A substring (subsequence) of length k is called
a k-factor (k-subsequence). Let factork(w) denote the set of
substrings of w of length k. Let subseqk(w) denote the set of

Frontiers in Robotics and AI | www.frontiersin.org 4 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

subsequences ofw up to length k. The domains of these functions
are extended to languages in the normal way.

We sometimes make use of left and right word boundary
markers (⋊ and ⋉, respectively), but do not include those in6.

4.2. Stringsets
Formal languages are subsets of 6∗. For example suppose 6 =

{a, b} and consider the set of strings which contains an even
number of as, which we denote Ea. Ea is a subset of6

∗. It is useful
to identify every formal language S ⊆ 6∗ with its characteristic
function fS :6∗ → {0, 1}. Continuing the example, if w = abaaa,
then f (w) = 1 since the string w has an even number of as and so
belongs to Ea, but ifw = abbaa, then f (w) = 0 since it has an odd
number of as and does not belong to Ea. This shift in perspective
provides a direct parallel to the study of probability distributions
over6∗. These are expressed as functions whose co-domains are
the real-interval [0, 1]. Formally they are f :6∗ → [0, 1] such that
∑

w∈6∗ f (w) = 1. In other words, sets of strings and probability
distributions over strings are identified as functions with domain
6∗. We use the term categorical stringsets to refer to subsets
of 6∗ identified with f :6∗ → {0, 1} and the term stochastic
stringsets to refer to subsets of6∗ identified with f :6∗ → [0, 1].
We use the stringset to refer to both categorical and stochastic
ones.

One important problem studied addressed in formal language
theory is the membership problem, which is the problem
of deciding whether an arbitrary string in 6∗ belongs to a
categorical stringset. A closely related problem is determining the
probability of an arbitrary string in a stochastic stringset. In each
case, the problem is, for all w ∈ 6∗, to compute the output of
f (w).

These functions f may be learned from examples. There
are different ways the learning problem can be formulated
(Jain et al., 1999; De Raedt, 2008; de la Higuera, 2010;
Clark and Lappin, 2011; Heinz, 2016). One way is to require
that the data sample input to the learning algorithms only
contains positive evidence. For functions f :6∗ → {0, 1}
this means the evidence only contains words w such that
f (w) = 1. For functions f :6∗ → [0, 1] which are
probability distributions this usually means the evidence is
obtained according to independent and identically distributed
(i.i.d.) draws from f .

Both the membership and learning problems are closely
related to the study of formal grammars. It is well-known,
for instance, that if the functions f are regular functions then
computing f (w) is straightforward.

4.3. Regular Stringsets and Automata
Informally, regular stringsets are those whose membership
problem can be decided by a computation model whose
memory is independent of the length of the input w. Such
stringsets underlie many applications in natural language
processing (Mohri, 2005) and planning and control (Kress-Gazit
et al., 2009). Formally, regular stringsets can be characterized
in multiple, independently motivated ways from automata
theory, logic, and algebra (Thomas, 1997; Droste and Gastin,
2009).

DEFINITION 1. A real-weighted deterministic finite-state
acceptor (RDFA) is a tuple (6,Q, q0, δ, ρ,α):

6 is a finite alphabet of symbols,
Q is a finite set of states,

q0 ∈ Q is the designated start state,
δ :Q×6 → Q is the transition function,

ρ :Q×6 → [0, 1] is a real-valued weight, and
α :Q → [0, 1] is a function mapping each state to a

real-valued weight.

A RDFA processes strings (words) in6∗ reading them from left to
right, and transitioning from one state to another upon reading
each of the symbols in the input string.

Each RDFA gives rise to a function f :6∗ → [0, 1]. The
function f associated with an RDFA A = (6,Q, q0, δ, ρ,α), and
henceforth denoted fA, can be derived as follows. Let a dot (·)
denote real numbermultiplication, a backslash (\) set difference.
Define the function “process”

π :Q×6∗ × [0, 1] → [0, 1]

recursively as follows:

π(q, λ, r) = r · α(q)

π(q,wa, r) = π
(

δ(q, a),w, r · ρ(q, a)
)

In other words, π(q,wa, r) processeswa from state qwith current
value r by successively transitioning the RDFA A to the next
state as given by the letter a and transition function δ. The
value r is updated at each step by multiplying the real-valued
weight associated with that transition ρ(q, a). When the process
concludes at state q, the value r is multipled by α(q). Then fA can
be defined as

fA(w)
def
= π(q0,w, 1) .

Note that fA(w) may be undefined for some w if δ, ρ, and α are
undefined for some (q, σ).

The recursive path of computation given by π indicates how
the membership problem for any stringset definable with a RDFA

is decided. Examples are given below.
If for each state q ∈ Q it holds that

∑

σ∈6

ρ(q, σ)+ α(q) = 1

then fA computes a probability distribution over 6∗ (de
la Higuera, 2010). We call such an RDFA a probabilistic
deterministic finite-state acceptor (PDFA) because the real-valued
weights can be interpreted as probabilities. Strings w for which
fA(w) are undefined are said to have probability 0.

As an example, let 6 = {a, b, c} and consider the graphical
representation of the PDFA A shown in Figure 1. This PDFA is
used in the case study in Section 7. This PDFA has four states:
Q = {a,b,c,start} indicated by the circles and diamond bearing
those labels. The δ, ρ, and α functions are indicated by the arrows
(which we also call transitions) as follows. For all q, r ∈ Q, if there
is an arrow from state q to r then δ(q, r) = r. Thus from the start

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

FIGURE 1 | The PDFA A is the basis for the case study in section 7.

state, upon processing the symbol a, the PDFA transitions to state
a. The numbers on the transitions between states shows the ρ
function. For example, ρ(start, a) = 0.33 and ρ(b, a) = 0.2. The
α function is shown with the arrows from the states to the circle
labeled “end.” For example α(a) = 0.3. The probability A assigns
to the string ab is calculated as follows.

fa(ab) = π(start, ab, 1) = π(a, b, 1 · 0.33) = π(b, λ, 1 · 0.33 · 0.2)

= 1 · 0.33 · 0.2 · 0.3 = 0.01980

Note the final product above correlates with the probabilities
along the “path” taken by A when processing ab: 1 · ρ(start,a) ·
ρ(a,b) · α(b).

Next we turn to RDFAs for defining categorical stringsets. If for
each state q ∈ Q and σ ∈ 6 it holds that ρ(q, σ) equals 1, 0, or is
undefined and α(q) equals 1, 0, or is undefined, then fA identifies
a characteristic function of a regular categorical stringset S ⊆ 6∗.
Strings w for which fA(w) = 1 are said to be accepted. Strings for
which fA(w) = 0 or are undefined are said to be rejected; in the
latter case, we let fA(w) = 0.We call such an RDFA a deterministic
finite-state acceptor (DFA).

As an example, let6={H, H́, L, Ĺ} and consider the DFA ALHOR

shown in Figure 2. The categorical stringset represented by this
DFA is the basis for the case study in Section 8. In Figure 2,
Q={start,1,2}, and the δ and ρ functions are as follows. For all
q, r ∈ Q, if there is an arrow from state q to r labeled σ then
δ(q, σ) = r. If no such arrow is present for q, σ then δ(q, σ) is
undefined. Thus from the start state, upon processing the symbol
H́, the DFA transitions to state 2. Similarly, for all q, r ∈ Q,
ρ(q, σ) = 1 iff there is an arrow from state q to r labeled σ ;
otherwise ρ(q, σ) = 0. The α function is defined as follows:
α(1) = α(2) = 1 and α(start) = 0.

Witness the following computation of ALHOR on input LL.

fALHOR (LL) = π(start, LL, 1) = π(start, L, 1 · 1)

= π(start, λ, 1 · 1 · 1) = 1 · 1 · 1 · 0 = 0

FIGURE 2 | The DFA ALHOR is the basis for the case study in section 8.

ThusALHOR rejects this string. On the other hand,ALHOR accepts
LĹ.

fALHOR (LĹ) = π(start, LĹ, 1) = π(start, Ĺ, 1 · 1)

= π(1, λ, 1 · 1 · 1) = 1 · 1 · 1 · 1 = 1

The reader may verify that ALHOR also rejects ĹH and accepts
LH́. The significance of what this categorical stringset represents
is discussed in Section 8.

4.4. Learning Regular Stringsets
There are learning results for the general case of learning any
regular stringset and results for learning subclasses of regular
stringsets. An early result was that regular categorical stringsets
cannot be learned exactly from positive evidence only (Gold,
1967), though they can be learned exactly from positive and
negative evidence (Oncina and Garcia, 1992). There are also
theoretical guarantees for learning regular, stochastic stringsets
to any arbitrary degree of precision (Carrasco and Oncina, 1994,
1999). De la Higuera (2010) gives a comprehensive uniform
presentation of such results.

Each DFA describes a class of categorical stringsets, and
each stringset in this class can be learned exactly from positive
evidence only (Heinz and Rogers, 2013). Similarly, each PDFA

describes a class of stochastic stringsets by varying ρ and α and
keeping the other aspects of the PDFA constant. One way then to
express the problem of learning a stochastic stringset associated
to a PDFA is to set ρ and α so that they maximize the likelihood of
the data (MLE). There is a simple solution to this problem which
amounts to normalizing the counts of the PDFA’s parsing of this
data (de la Higuera, 2010).

4.5. Logical Descriptions of Stringsets
Regular stringsets can also be defined logically. Traditional logic
is used for categorical stringsets and weighted logic for stochastic
stringsets (Droste and Gastin, 2009). Informally, an unweighted
logical expression ϕ picks out the strings which satisfy the
condition expressed by ϕ. Similarly, a weighted logical expression
will assign weights (for example real numbers) to strings.

In order to define a stringset with a logical expression, the
logical expressions need to be able to refer to aspects and
properties of the string. This is where model theory becomes
relevant. Model theory makes explicit the representation of

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

objects. Combined with a logic, such as FO or MSO, a logical
language is produced. The expressions of these logical languages
define stringsets.

For example, consider the unweighted logical expression
shown below, which is read as “for all x, it is not the case that
x is labeled with a.”

ϕ
def
= (∀x)[¬a(x)]

In plain English, this means “Well-formed words do not contain
the letter a.” For example, strings like bcb satisfy ϕ since no
position x is labeled a. However, the string bab does not satisfy
ϕ because when x is assigned to the second position in the string,
it satisfies a(x) and hence makes ϕ false.

In general, the interpretation of ϕ depends on what the
atomic predicates are in the models of words. Conventional
models of strings are relational structures, whose signature
contains |6| unary relations and a single binary relation which
represents the order between the elements of the string. For
concreteness, let us examine two distinct conventional model-
theoretic representations of words.

For the sake of this analysis let 6 = {a, b, c} and let the set
of objects of interest be 6∗. Then following Rogers and Pullum
(2011) and Rogers et al. (2013), one conventional model for
words can be the Successor Word Model (M✁), which is given
by the signature 〈D;✁,Ra,Rb,Rc〉where✁ is the binary ordering
relation successor and for each σ ∈ 6, Rσ is a unary relation
denoting which elements are labeled σ .

Contrast this with another conventional model for words:
the Precedence Word Model (M<). This model (structure)
has signature 〈D;<,Ra,Rb,Rc〉 where < is the binary ordering
relation precedence, and the unary relations Rσ are the same as in
M

✁.
Under both model signatures, each string w ∈ 6∗ of length

k has a unique interpretable structure. The model of string
w = σ1σ2 . . . σk has domain D = {1, 2 . . . k}, and for each
σ ∈ 6, Rσ = {i ∈ D | wi = σ }. The difference between M

✁

and M
< is the ordering relation. Under the successor model

M
✁, the ordering relation is ✁

def
= {(i, i+ 1) ∈ D× D},

while for the precedence model M
<, the ordering relation is

<
def
= {(i, j) ∈ D× D | i < j}.
Figure 3 illustrates these different word models with the word

cabb, along with graphical representations of the models. In
these graphs, nodes represent domain elements; binary relations
are shown with directed labeled edges; and unary relations are
shown as labels above the nodes. Note that in both models Ra =

{2},Rb = {3, 4}, and Rc = {1}. While the unary relations in these
models illustrated in Figure 3 are the same because the same
positions have the same labels, information about the order of
the elements is represented differently.

It follows that certain conditions must be met for structures
to be interpretable as strings. In both theories, for a structure
S with domain D to be interpretable as a word, each element
in D must have at least one label—symbolically translated as
(∀i ∈ D)(∃σ ∈ 6)[i ∈ Rσ] — and at most one label—again,
mathematically expressed as (∀ σ , σ ′ ∈ 6)[Rσ ∩ Rσ ′ = ∅].
Furthermore, in both theories every element must be ordered.

For example, the structure S = 〈{1, 2};∅, {1}, {2},∅〉 is a case
of a structure which is not interpretable as a string in either M

✁

or M
<. Structure S in this case specifies two elements, one of

which is labeled a and the other is labeled b, but the order of these
elements remains unspecified. Another example of a structure
which does not correspond to a string is S = 〈{1};∅, {1}, {1},∅〉;
here there is one element which is labeled both a and b.

4.6. Subregular Complexity
Depending on the choice of model and logic different classes
of stringsets arise (Büchi, 1960; McNaughton and Papert, 1971;
Thomas, 1982, 1997; Rogers et al., 2010, 2013; Rogers and
Pullum, 2011). Figure 4 shows proper inclusion relationships
among many such classes. The figure and subsequent discussion
provides logical characterizations for categorical stringsets,
but stochastic versions for each can be given with weighted
logics (Droste and Gastin, 2009). For completeness, language-
theoretic definitions of each class are given below and other
characterizations based on automata and algebra are omitted.

We have already defined regular stringsets as those
characterized by a DFA or PDFA. Büchi (1960) showed these are
exactly the categorical stringsets definable with weak MSO logic
with the order relation given as successor (or precedence, since
the precedence relation is MSO-definable from successor and
vice versa). We now define the other classes in Figure 4 moving
left-to-right and top-to-down.

DEFINITION 2 (Locally Threshold Testable Thomas, 1982).
A stringset L is Locally Threshold Testable iff there are two
numbers k and t such that for all strings u, v ∈ 6∗ and k-factors
x ∈ factork({⋊}6∗{⋉}), whenever x occurs either at least t
times in both u and v or an equal number of times in both u and
v, then either u, v ∈ L or u, v 6∈ L.

In other words, membership of a string w in any LTTt,k stringset
is determined solely by the number of occurrences of each k-
factor in w, counting them only up to some threshold t. Thomas
(1982) showed that FO-definable categorical stringsets with the
successor model M✁ are exactly the Locally Threshold-Testable
stringsets.

DEFINITION 3 (Non-Counting). A stringset L is Non-
Counting iff there is a k such that for all w, u, v ∈ 6∗, if wuv ∈ L
then wuk+1v ∈ L.

McNaughton and Papert (1971) showed that FO-definable
stringsets with the precedence model M

< are exactly the
Non-Counting stringsets. They also prove languages in the
Non-Counting class are exactly those definable with star-free
generalized regular expressions and exactly those obtained by
closing LT stringsets under concatenation. Hence this class also
goes by the names “Star-Free” and “Locally Testable with Order.”
The Non-Counting class properly includes the Locally Threshold
Testable languages because the successor relation is FO-definable
from precedence but not vice versa.

Finally, observe that stringsets that are regular but not Non-
Counting typically count modulo some n. For example, the
stringset which contains all and only strings with an even number
of as is not Non-Counting, but regular.

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

FIGURE 3 | Successor and precedence models for word cabb with graphical representations.

FIGURE 4 | Subregular Hierarchies from a model-theoretic perspective.

DEFINITION 4 (Locally Testable Rogers and Pullum, 2011).
Language L is Locally k-Testable (LTk) iff there is some
k such that, for all strings x and y, if factork(⋊x⋉) =

factork(⋊y⋉) then x ∈ L ↔ y ∈ L. Stringset L is Locally
Testable (LT) if there is some k such that L ∈ LTk.

From a logical perspective, Locally Testable languages are ones
given by a propositional calculus whose propositions correspond
to factors (Rogers and Pullum, 2011). With respect to FO logic,
they may be understood as belonging to the B(61), which is the
Boolean closure of FO formulas (with successor) which begin
with a single block of existential quantifiers in prenex normal
form (Thomas, 1997). Note that LTk class equals LTT1,k.

DEFINITION 5 (Piecewise Testable). A language L is Piecewise
k-Testable (PTk) iff there is some k such that, for all strings x and
y, if subseqk(x) = subseqk(y) then x ∈ L ↔ y ∈ L. Stringset
L is Piecewise Testable (PT) if there is some k such that L ∈ PTk.

Piecewise Testable languages are ones given by a propositional
calculus whose propositions correspond to subsequences (Rogers
et al., 2013). With respect to FO logic, they may be understood as
belonging to the B(61), which is the set of Boolean closure of FO
formulas (with precedence) which begin with a single block of
existential quantifiers in prenex normal form (Thomas, 1997).

DEFINITION 6 (Strictly Local Rogers and Pullum, 2011).
A stringset L is Strictly k-Local (SLk) iff whenever there is a
string x of length k − 1, and strings u1, v1, u2 and v2 such that
u1xv1, u2xv2 ∈ L, then u1xv2 ∈ L. Stringset L is Strictly Local
(SL) if L ∈ SLk for some k. We say L is closed under suffix
substitution.

From a logical perspective, Strictly k-Local languages are ones
given by a conjunction of negative literals (propositions) where
literals correspond to k-factors (Rogers and Pullum, 2011). This
means that a Strictly k-Local stringset only includes strings which
do not contain any forbidden substring of length k (of which
there can only be finitely many). For example, the conjunction
¬aa∧¬bbmeans that aa and bb are forbidden substrings. If6 =

{a, b} then the only strings satisfying this expression alternate as
and bs. With respect to FO logic, Strictly Local stringsets may be
understood as belonging to 51, which is the set of FO formulas
(with successor) which begin with a single block of universal
quantifiers in prenex normal form (Thomas, 1997).

From an automata perspective, the SLk class of stringsets is
represented by a RDFA as follows. The states are strings whose
lengths are less than k (the start state corresponds to the empty
string), and its δ function maps a state q and symbol σ ∈ 6

to the longest suffix of qσ whose length is less than k. For
instance, if k = 4 then δ(a, b) = ab and δ(abc, a) = bca.
With the structure of the RDFA so determined, each stringset
S∈SLk reduces to a particular functions ρ and α. Such DFAs define
categorical SLk stringsets and such PDFAs define stochastic ones.
The experiments in Sections 7 and 9 have SL stringsets as learning
targets.

DEFINITION 7 (Strictly Piecewise Rogers et al., 2010). A
language L is Strictly k-Piecewise (SPk) iff subseqk(w) ⊆

subseqk(L) implies w ∈ L. Stringset L is Strictly Piecewise (SP)
if there is a k such that it belongs to SPk; equivalently, L belongs
to SP iff L is closed under subsequence.

From a logical perspective, Strictly Piecewise languages are
ones given by a conjunction of negative propositions where
propositions correspond to factors (Rogers et al., 2010). This
means that a Strictly k-Piecewise stringset only includes strings
which do not contain any forbidden subsequences of length k
(of which there can only be finitely many). For example, the
conjunction ¬aa ∧ ¬bb means that aa and bb are banned

Frontiers in Robotics and AI | www.frontiersin.org 8 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

subsequences. If 6 = {a, b, c} then the only strings satisfying
this expression contain at most one a and at most one b. With
respect to FO logic, they may be understood as belonging to
51, which is the set of FO formulas (with precedence) which
begin with a single block of universal quantifiers in prenex
normal form (Thomas, 1997). Rogers et al. (2010) provide an
automata-theoretic characterization.

While the subregular classes of stringsets in the above diagram
exhibit different properties, the logical characterizations make
the parallels between the two sides of the hierarchy clear. The
Strictly Local and Strictly Piecewise classes are relevant to the
experiments presented later.

4.7. Sub-structures
For any two relational structures S1 and S2 of the same theory,
we say S1 is a sub-structure of S2 (written S1 ⊑ S2) iff there
exists an injective homomorphism h which maps every element
in D1, the domain of S1, to elements in D2, the domain of S2,
such that all n-tuples of elements of D1 and for all n-ary relations
Rij with i ∈ {1, 2} and j = 1, . . . ,m, we have (x1, . . . , xn) ∈ R1j iff
(

h(x1), . . . h(xn)
)

∈ R2j.
For example underM

✁,Mab is a sub-structure ofMcabb. (Let
h map 1 to 2 and 2 to 3.) Under M

<, Mcb is a sub-structure of
Mcabb. (Let hmap 1 to 1 and 2 to 3 (or 4).)

The lemma below is not difficult to prove.

LEMMA 1. For all u, v ∈ 6∗, word u is a substring of v iff
M

✁

u ⊑ M
✁

v . Likewise, u is a subsequence of v iffM
<
u ⊑ M

<
v .

Not only do these facts help make clear the similarities between
substrings and subsequences observed in earlier works (Lothaire,
1997, 2005; García and Ruiz, 2004), they also show that what a
sub-structure is depends on themodel. As we will see in sections 8
and 9, sub-structures play an important role in unconventional
models and relational learning, where it provides a generality
relation in the sense of De Raedt (2008).

4.8. Learnability of Subregular Classes
From a learning perspective, the characterizations place limits on
what kinds of stringsets can be learned when learning systems
rely on FO logic. MLNs, for example, can never exactly learn any
regular stringset that is not Non-Counting because those cannot
be expressed with FO formulas. On the other hand whether a
MLN can learn a Non-Counting stringset may well depend in part
on whether the word model employs the successor relation, the
precedence relation or both.

It is known that for given k, the strictly k-local stringsets are
identifiable in the limit from positive data (García et al., 1990).
This result can be generalized to the SPk, LTk, PTk, and LTTt,k

stringsets (García and Ruiz, 2004; Heinz, 2010; Heinz et al., 2012).

5. UNCONVENTIONAL MODELS

In many domains of interest—including natural language
processing and robotic planning and control—stringsets are
used to characterize aspects of the nature of system. While
conventional word models may be sufficiently expressive for
problems in these domains, they do not take advantage of

domain-specific knowledge. Specifically, in the conventional word
models discussed previously, the unary relations are such that
each position in a word can only satisfy one such relation. It
is not the case that a position can satisfy two unary relations
simultaneously.

Here is a simple motivating example. If we restrict
ourselves to the alphabet {a, . . .z,A, . . .Z}, then under a
conventional model there are 52 unary relations. Upper
and lowercase versions of these symbols, e.g., a and A, are
in no way associated. However, an unconventional word
model that takes such associations into account might
posit just 27 unary relations {a, . . .z,capital}. For a
word like Mama, both capital(1) and m(1) would be
true. In this way, this unconventional model captures the
similarity between corresponding lowercase and uppercase
letters.

In the context of learning stringsets, these correspondences
can, and should be, exploited. Current learning approaches
based on automata are challenging since automata are
best understood as processing individual symbols. On the
other hand, relational learning methods can immediately
be applied to this problem. As explained in Section 4,
different logical languages from different word models yield
different classes of stringsets. The subregular hierarchies in
Figure 4 exemplify the nature of the classes obtained when
representational primitives are changed between successor
and precedence models. The goal here is to expand the
horizontal axis in Figure 4 to consider word models where
the assumption that the unary relations are disjoint, is
relaxed.

In the remainder of this paper we apply MLNs (Section 3) to
learning stringsets (Section 4) withmodel-theoretic treatments of
words (Section 2). We present three experimental case studies. In
each case study, we provide the formulas and learn the weights.

The first case study serves as a sanity check. We expect that
MLNs should be able to learn stringsets from examples, regardless
of whether the strings are represented with conventional
or unconventional word models. Therefore, we ask whether
an MLN can mimic n-gram models. These are parametric
models widely used in natural language processing (NLP)
which implicitly adopt the conventional successor model. From
the perspective of the Subregular Hierachies (Figure 4), n-
gram models are stochastic Strictly n-Local stringsets. The
case study explains how to express the logic underlying
SLk stringsets, and how to express this logic with MLNs.
The experimental result shows that the learning behavior of
the MLN closely mimics the learning behavior of the n-
gram model. We conclude that MLNs can instantiate n-gram
models, but are much more general because other parametric
models can be instantiated with MLNs by changing both the
underlying model-theoretic representation of strings and the
logical formulas.

This knowledge is put to use in the subsequent case
studies. The second case study is about the problem of
learning an aspect of one’s phonological grammar: how
to assign stress (a type of prominence) in words. The
stress pattern we describe is amenable to multiple logical

Frontiers in Robotics and AI | www.frontiersin.org 9 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

descriptions. We offer two: one using a conventional precedence
model and one with an unconventional precedence model.
We show learning the stress pattern requires less data
and less computation time if the unconventional model is
used.

The third case study illustrates the application of MLNs and
unconventional models to an engineering problem where one
(a machine) has to learn how two pieces of hardware—in this
case, mobile robots—can interact with each other and work
together as a team. In the particular case study, the interaction
is meaningful and needed, because the task that needs to be
performed cannot be accomplished by only one robot working
in isolation. The idea behind this case study is that one may
obtain a set of example interaction cases by having a skilled
(human) operator coordinating the robots over, possibly, a
variety of different tasks. Then the problem is how to construct
a formal model that captures and generalize possible ways of
interaction between these agents, which would be an important
first step into planning the coordination in a fully autonomous
way at a later stage. In addition to demonstrating that the
statistical relational learning framework is general enough to
be useful in different application spaces, this last case study
allows one to draw similar conclusions as before regarding the
efficiency of learning algorithms when applied to unconventional
models.

6. IMPLEMENTATION IN ALCHEMY

We used the software package Alchemy 2 (Domingos and Lowd,
2009) to implement the experiments with MLNs described in
the following sections. Appendix A in Domingos and Lowd
(2009) provides details of the Alchemy system. The Alchemy
website http://alchemy.cs.washington.edu provides source code
and additional documentation.

For each experiment, there are two input files for weight
learning. One is a .mln file that lists the FO formulas in the
language of the model-theoretic representation which define the
MLN.

Our case studies are mostly limited to Strictly k-Local
and Strictly k-Piecewise stringsets so we illustrate how they
can be implemented as MLNs in the .mln files with a
simple example. Let 6 = {a, b} and consider a Strictly
2-Local grammar. The input .mln file contains statements
of the possible predicates in the successor model. Since
there are four 2-factors, {aa, ab, ba, bb}, there would be four
FO statements (where adjacent stands for the successor
relation):

adjacent(x, y) ∧ a(x) ∧ a(y)

adjacent(x, y) ∧ a(x) ∧ b(y)

adjacent(x, y) ∧ b(x) ∧ a(y)

adjacent(x, y) ∧ b(x) ∧ b(y)

In the same .mln file, we would declare the following
predicates:

adjacent(char,char)

a(char)

b(char)

If we were to consider a Strictly 2-Piecewise grammar,
then the .mln file would be very similar to the one just
described. The only difference would be that instead of the
adjacent predicate, the four FO formulas would contain
the follows predicate (which stands for the precedence
relation).

The other input file to Alchemy 2 is a training database
(.db file) which provides the sample data which is the input
to the MLN. The training database provides a list of evidential
predicates, also called ground atoms. These essentially are the
model-theoretic representations of the strings in the data sample.

To represent each input string in the training database, each
position in each string are indexed with a dummy denotation.We
used capitalized letters of the alphabet and their combinations.
These positions correspond to elements of the domain in a word
model. Having that, we then list the properties of each position,
and also the binary relations between positions.

For example, a string in the training dataset of the current
example might be ‘cabb’. For such a string, we get the following
list of atoms in the .db file (cf. Figure 3) under the successor
model M✁.

{

c(A), a(B), b(C), b(D), adjacent(A,B),

adjacent(B,C), adjacent(C,D)
}

In an unconventional word model, more than one unary relation
may be listed for some node. How the set of strings for each
training dataset was generated for each case study is described
later.

When Alchemy 2 is run with these input files, it produces
an output file which provides the learned weights for each
statement in the .mln file. For running the weight-learning
function, we used generalized weight-learning (command-line
option −g), with no listing of non-evidence predicates and
default parameters.

Each of our case studies required some specific treatment
beyond the overall methods described above, which we discuss
as appropriate in the subsequent sections.

7. COMPARISON OF MLNS WITH N-GRAM
MODELS

N-gram models are widely used in natural language processing
(Jurafsky and Martin, 2008). An n-gram model can be
understood as a PDFA whose underlying structure is Strictly
n-Local.

This section shows that MLNs can mimic n-gram models.
Specifically, our experiments demonstrate that a trained bigram

Frontiers in Robotics and AI | www.frontiersin.org 10 July 2018 | Volume 5 | Article 76

http://alchemy.cs.washington.edu
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

model and a trained MLN behave similarly. We leave establishing
the theoretical facts for future research.

7.1. Target Stochastic Stringset
The PDFA A in Figure 1 in section 4.3 exemplifies a n-grammodel
with n = 2 and 6 = {a, b, c}. As such, it represents a stochastic
Strictly 2-Local stringset fA :6∗ → [0, 1], and is the learning
target in this section. As mentioned in Section 4.4, the PDFA A
defines a class of stochastic stringsets of which fA is one. Learning
fA comes down to learning the ρ and α functions. PDFA A has
16 parameters, all necessary to fully specify ρ and α. Table 1
summarizes these values.

7.2. Learning Algorithms
To see how well MLNs can learn the stochastic stringset defined
by A, we generated samples of words from A to use as training
data.

We fed these training samples to two learning algorithms.
One algorithm is the one mentioned in section 4, which uses the
structure of A to find parameters that yield the MLE with respect
to the family of stochastic distributions that A defines (see de la
Higuera, 2010 for details). The other algorithm takes a MLN with
formulas that are intended to mimic the structure of A, and finds
the weights that produce the MLE with respect to the family of
stochastic distributions this MLN defines.

In natural language processing, the first approach is usually
implemented in a way that incorporates smoothing (Chen and
Goodman, 1999); the latter refers to a variety methods that assign
nonzero probability to all possible strings, in an attempt to yield
better learning outcomes when the training data size is small.
This option is not adopted here since the emphasis of the present
analysis is not on performance on varying training data size, but
rather on comparing qualitatively the performance of a MLN with
a conventional model to the standard method of obtaining the
MLE of a given PDFA.

The formulas in the MLN included logical statements in
the form given in Section 6 for Strictly 2-Local grammars, in
addition to statements related the beginnings and endings of
words. We assumed that predicates initial and final can
only occur on word-edges. Therefore, this MLN was developed
with signature 〈D;✁,Ra,Rb,Rc,Rinitial,Rfinal〉. As such, the
MLN contained 16 FO statements, each of which correspond to a
parameter ofA. The complete .mln file is given in the Appendix.

7.3. Evaluation Method
The models output by these learning algorithms were compared
in two ways: by comparing the probabilities of subsquent symbols

TABLE 1 | The parameter values of pdfa A of Figure 1.

q ρ(q,a) ρ(q,b) ρ(q, c) α(q)

start 0.3333 0.3333 0.3333 0

a 0.3000 0.2000 0.2000 0.3000

b 0.2000 0.3000 0.2000 0.3000

c 0.2000 0.2000 0.3000 0.3000

directly in the trained models and by calculating the perplexity
the models give to a test set.

For the first comparison, we converted the weights obtained
in the MLN model into interpretable parameter values for A.
Generally, whenever analyzing MLNs, one should avoid the
computation of the partition function Z through (1) whenever
possible. One way for doing that is to find sets of conditional
events that are mutually exclusive and collectively exhaustive
(sum to one), and then look at the ratio of the probabilities of
those conditional events.

For instance, suppose we are given two constants x and
y; then P

(

b(y)|a(x),adjacent(x, y)
)

corresponds to ρ(a, b).
We denote Sab the world in which a(x) = 1, b(y) = 1,
adjacent(x, y) = 1, and zero is assigned to all other ground
atoms. It follows that

P(Sab) =
ρ(a, b)

P
(

a(x),adjacent(x, y)
)

Let Fσσ ′ = adjacent(x, y) ∧ σ (x) ∧ σ ′(y) and denote wσσ ′ its
weight. Let σ range over the predicates {a,b,c,initial}, and
σ ′ range over {a,b,c,final}. Then let Sσσ ′ be the structure of
size two, for which Fσσ ′ is true. According to Equation (3), the
probability that the MLN assigns to Sσσ ′ is

P(Sσσ ′) =
exp

∑

σσ ′ wi nFσσ ′ (Sσσ ′)

Z

We want to determine ρ(a, a), ρ(a, b), ρ(a, c), and ρ(a,⋉). These
must sum to one. Observe that the ratio ρ(a,a)

ρ(a,b)
= P(Saa)

P(Sab)
and

P(Saa)

P(Sab)
=

1
Z exp

(
∑

σσ ′ waa nFaa (Saa)
)

1
Z exp

(
∑

σσ ′ wab nFab (Sab)
)

=
exp

(
∑

σσ ′ waa nFaa (Saa)
)

exp
(
∑

σσ ′ wab nFab (Sab)
) (4)

Notice that Saa has one true grounding only in Faa, and zero true
grounding in all other formulas. Similarly, the world Sab has one
true grounding only in Fab and zero true grounding in all other
formulas. Consequently, the ratio of the probabilities equals the
ratio of the exponential of the weights of corresponding satisfied
formulas, namely

ρ(a, a)

ρ(a, b)
=

P(Saa)

P(Sab)
=

exp
(

∑

σσ ′ waa nFaa (Saa)
)

exp
(

∑

σσ ′ wab nFab (Sab)
) =

exp(waa)

exp(wab)

Thus ρ(a, a) is expressed directly in terms of ρ(a, b). Calculating
all such ratios and considering the fact that ρ(a, a) + ρ(a, b) +
ρ(a, c)+ ρ(a,⋉) = 1 provides a solvable system of equations.

The second method examined the perplexity of a data
set. Perplexity is a measure of model performance utilized in
natural language processing (Jurafsky and Martin, 2008). It is an
information theoretic measure of how well a model predicts the
next symbol given the previous symbols. If PM(σi | σ1, . . . , σi−1)
denotes the probability that model M assigns to the ith symbol

Frontiers in Robotics and AI | www.frontiersin.org 11 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

given the previous i− 1 symbols in the string, then the perplexity
ofM is given by

2−
1
n6

n
i=1log2PM(σi|σ1,...,σi−1) (5)

Low perplexity is an indication of model prediction accuracy.

7.4. Training Data
The training data was randomly generated with the PDFA A in
Figure 1. In other words, strings were drawn i.i.d. according to
the probability distribution over 6∗ that A represents, which is
the standard procedure for generating training data for learning
PDFAs (de la Higuera, 2010; Sicco Verwer and Eyraud, 2014). We
considered three different sizes of training data: 20, 50, and 100
strings. We generated training data of different sizes because we
are also interested in performance on small data sets. For each
size, we generated 10 different datasets so we could aggregate
results across them. As we will see in the next section, we found
that this range of sizes in the training data was sufficient to show
that MLEs and trained MLNs behave similarly, especially with
100 strings in the training data set.

Before training the MLN, each training set had to be translated
to a knowledge database (see Section 6). This entailed listing
successor relations between adjacent nodes, along with the labels
of the nodes. The strings in the training set were augmented with
initial and final positions, so that a string abc was represented as

{

initial(A), a(B), b(C), c(D), final(E),

adjacent(A,B), adjacent(B,C), adjacent(C,D),

adjacent(D,E)
}

7.5. Results and Discussion
Table 2 summarizes the results for each training sample of size
N. The parameter values shown are averages obtained from
randomly generating 10 samples of size N and running the
learning algorithms on each sample. After each run of a learning
algorithm, a test set of 10 test strings was generated by A and the
perplexity of the learned model was calculated. This was done
1,000 times and these perplexity values were averaged.

The results of Table 2 confirm that a MLN with formulas that
instantiate the logical structure of a Strictly 2-Local stringset
behaves similarly to a bigram model. The parameter values and
perplexity scores across the two models are similar. In fact, the
trained MLN behaves like a smoothed bigram model since every
parameter has nonzero values. This is likely due to the Gaussian
prior used for the weights.

Thus, MLNs can mimic the behavior of standard language
models. The next two sections compare the effects of different
representations on learning, by studying two MLNs trained on
the same data sets. The formulas in one MLN are based on
a conventional word model, and the formulas in the other
are based on an unconventional word model. Since the only
difference between the MLNs is due to the nature of the word
models, any differences observed in learning outcomes can
reasonably be attributed to representation.

8. UNBOUNDED STRESS PATTERNS

This case study compares conventional and unconventional word
models in light of the problem of phonological well-formedness.
It is widely accepted in phonology that in many languages the
syllables of a word have different levels of prominence, evident
either from acoustic cues or perceptual judgments (Chomsky
and Halle, 1968; Liberman, 1975; Schane, 1979; Hayes, 1995).
For example, native English speakers generally agree that the
second syllable in America stands out from the rest. This type of
prominence is called stress.

The position of stress in a word is predictable in many
languages, and a variety of stress patterns have been described
(van der Hulst et al., 2010). Learning where stress falls is therefore
a problem for children acquiring their native language, for
second-language learners, and for many applications, including
speech synthesis and recognition.

Predictable stress patterns can be broadly divided into two
categories: bounded and unbounded. In bounded patterns, the
position of stress is always within some fixed distance of the
beginning or end of the word. Thus all bounded patterns are SLk
where k is the number of positions from the stressed syllable to
the left or right word edge. Unbounded stress patterns are not
bounded.

In some languages, an important factor for predicting stress
is syllable weight. Put simply, syllable weight is determined by
the length of the syllable and the number of different sounds
included at the end of the syllable. Usually only two weights are
distinguished: light (L) and heavy (H).2 Stress patterns that take
syllable weight into account are quantity-sensitive. We focus on
one such pattern, called Leftmost-Heavy-Otherwise-Rightmost
(LHOR).

8.1. The LHOR Stress Pattern
Hayes (1995) describes four types of simple quantity-sensitive
unbounded stress patterns. The pattern we study is exemplified
by Kwak’wala, an indigenous language spoken on the Pacific
Northwest Coast (Bach, 1975). Stress in Kwak’wala generally falls
on the leftmost heavy syllable of the word. If the word has no
heavy syllables, then stress falls on the rightmost light syllable.
This pattern is therefore abbreviated LHOR (Leftmost-Heavy-
Otherwise-Rightmost).

Let 6 = {L,H,́L,H́}. The acute accent denotes stress and L and
H denote light and heavy syllables (so H́ denotes a stressed heavy
syllable). Let LLHOR be the set of all strings that obey the LHOR
pattern. These are called well-formed words. Some examples are
given in Table 3.

The DFA ALHOR in Figure 2 computes the stringset LLHOR;
that is, it accepts all and only those strings which obey the LHOR
pattern.

The well-formedness of a word in LHOR can be analyzed in
terms of its subsequences of size 2 or smaller. The permissible
and forbidden 2-subsequences in LHOR are shown in Table 4. If

2Syllable weights, and in fact stress itself, manifest differently in different languages.

We abstract away from this fact.

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

TABLE 2 | Mean parameter values and perplexity obtained by the two learning algorithms on the training sets. Standard deviations are shown in parentheses.

q Maximum likelihood estimates MLN probabilities

ρ(q, a) ρ(q, a) ρ(q, c) ρ(q, end) ρ(q, a) ρ(q, a) ρ(q, c) ρ(q, end)

20 STRING TRAINING SET

Start 0.3550 0.3150 0.3300 0 0.3433 0.2776 0.3790 9.5e-5

a 0.2532 0.2278 0.1914 0.3276 0.3078 0.2028 0.2335 0.2560

b 0.2354 0.3146 0.1418 0.3082 0.2643 0.3568 0.1596 0.2193

c 0.1717 0.2202 0.2664 0.3417 0.1467 0.2360 0.3614 0.2259

Perplexity 2,012.9 (1184.2) 1,794.1 (966.9)

50 STRING TRAINING SET

Start 0.3220 0.3360 0.3420 0 0.3288 0.3394 0.3318 3.0e-5

a 0.2914 0.1989 0.2101 0.2996 0.3588 0.1950 0.1913 0.2549

b 0.1949 0.2815 0.2267 0.2970 0.1930 0.3262 0.2250 0.2559

c 0.2040 0.2200 0.3009 0.2751 0.2097 0.2215 0.3382 0.2307

Perplexity 1,119.4 (272.9) 1,090.9 (192.8)

100 STRING TRAINING SET

Start 0.3190 0.3590 0.3220 0 0.3279 0.3466 0.3255 2.3e-5

a 0.2751 0.2214 0.1918 0.3118 0.3406 0.2120 0.1909 0.2565

b 0.1961 0.3008 0.2047 0.2985 0.1999 0.3442 0.2101 0.2457

c 0.2046 0.2057 0.2866 0.3030 0.2151 0.1961 0.3440 0.2449

TABLE 3 | Some well-formed words in LLHOR.

Ĺ LĹ LLĹ LLLĹ LLH́

H́ H́H H́LL H́HH LH́LHL

TABLE 4 | 2-subsequences in LHOR (Strother-Garcia et al., 2016, Table 2).

Permissible Forbidden

LL HH LĹ HL HH́ ĹL HĹ ĹĹ

LH H́H LH́ H́L H́H́ ĹH H́Ĺ ĹH́

a word contains a single stressed syllable and does not contain
any of the forbidden 2-subsequences, then it is well-formed.

Heinz (2014) analyzes simple unbounded stress patterns like
the one above and shows that they are neither SL nor SP. LHOR
cannot be SL because it is not closed under suffix substitution.
While both H́LkL and LkĹ belong to LLHOR, H́LkĹ does not.
LHOR is therefore not SL for any k. Moreover, it cannot be
SP because it is not closed under subsequence. LLkĹ belongs to
LLHOR but the subsequence LL does not, so LHOR is not SPk for
any k.

Furthermore, Heinz (2014) shows that LHOR and similar
patterns can be understood as the intersection of two stringsets:
a Strictly 2-Piecewise one which bans the forbidden 2-
subsequences and a Locally 1-Testable one which requires words
to contain a stress.3 This analysis of LHOR extends similarly for
other simple unbounded stress patterns.

3The latter stringset equals6∗Ĺ6∗ ∪6∗H́6∗.

8.2. Logical Characterizations of LHOR
Strother-Garcia et al. (2016) provide two logical characterizations
of the LHOR pattern. One is based on a conventional word
model and the other on an unconventional one. Of interest is
the reduction in complexity of the logical formulas when the
unconventional word model is adopted.

Consider the conventional Precedence Word Model M
<

(Section 4.5) with6 = {L, H, Ĺ, H́}. The signature of M< is thus
〈D;<,RL,RH,RĹ,RH́〉. The LHOR pattern can be defined with
formula templates F and G. Letting a, b range over6, we define

Fab = (∃x, y) [x < y ∧ Ra(x) ∧ Rb(y)]

Ga = (∃x) [Ra(x)]

For example, strings that satisfy FHH́ contain the 2-subsequence
HH́ and strings that satisfy GH́ contain the symbol H́. The
set of banned subsequences in LHOR (Table 4) is B =

{HH́, H́H́, ĹL, ĹH, HĹ, H́Ĺ, HĹ, ĹĹ, ĹH́}. Then

ϕLHOR
def
=

∧

v∈B

¬Fv ∧ (GĹ ∨ GH́)

is true of string w iff w contains no member of B as a subsequence
and it contains either Ĺ or H́. Formula ϕLHOR is in 2-conjunctive
normal form (CNF).

LLHOR is the set of all strings w whose models Mw satisfy
ϕLHOR.

LLHOR = {w ∈ 6∗ | Mw |H ϕLHOR}

The unconventional word model M is similar to M
< with an

important caveat: each domain element may belong to more

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

than one unary relation. In other words, each position may bear
multiple labels. Let 6′ = {light,heavy,stress}. Then M

includes the unary relations RL,RH,RS for light, heavy, and
stress, respectively. The elements of 6′ can be interpreted in
terms of the conventional alphabet as follows:

RL(x) = {x ∈ {L, Ĺ}}

RH(x) = {x ∈ {H, H́}}

RS(x) = {x ∈ {́L, H́}}

For example, if position x in a string is labeled H́, both RH(x)
and RS(x) are true in the unconventional model. The symbol
H́ is now a shorthand for stress and heavy. As in the
case of capital and lowercase letters (Section 5), both models
are used to represent the same objects (members of LLHOR).
The unconventional model M captures an important linguistic
generalization that is not apparent in the conventional model:
that stress is related to, but separable from, syllable weight.

The unconventional model provides a richer array of sub-
structures (section 4.7) with which generalizations can be stated.
Given M and 6′, Table 5 shows the possible sub-structures of
size one, taking into account that syllables cannot be both light
and heavy. The table also provides a symbol we use in this text
to represent each possibility. Thus H́ and Ĺ are fully-specified
structures, while H and L represent heavy and light syllables
that are unspecified for stress. Similarly, σ́ represents a stressed
syllable unspecified for weight, and σ is a completely unspecified
syllable.

Strother-Garcia et al. (2016) construct a new formula under
M that also describes LHOR exactly. Recall that every word
must have at least one stressed syllable. Under M, the formula
representing this fact is Gσ́ . This structure is underspecified; it
models no word in LLHOR, but is a sub-structure of both MH́
andMĹ.

The banned sub-structures are also simplified underM. Recall
here that a stressed light is only permissible if it is the final
syllable. Thus one of the banned sub-structures in the LHOR
pattern is a stressed light followed by any other syllable, given
by the formula FĹσ . Again, this structure is underspecified. It is a
sub-structure of four of the forbidden 2-subsequences in Table 4:
ĹH, ĹH́, ĹL, and ĹĹ.

In a word with one or more heavy syllables, the stress must
fall on the leftmost heavy. Consequently, a heavy syllable may
not be followed by any stressed syllable. This is represented by

TABLE 5 | Feature geometry for LHOR sub-structures of size 1.

Symbol Features

H́ heavy(x) ∧ stress(x)

Ĺ light(x) ∧ stress(x)

H heavy(x)

L light(x)

σ́ stress(x)

σ ∅

the formula FHσ́ , which is a sub-structure of the remaining four
forbidden 2-subsequences from Table 4: HH́, H́H́, HĹ, and H́Ĺ.

Thus, LHOR can be described with a 1-CNF formula under
M,

ψLHOR = Fσ́ ∧ ¬FĹσ ∧ ¬FHσ́

which contrasts with the 2-CNF formula ϕLHOR under M
<.

Formula ψLHOR refers to sub-structures of size 2 or
less, which are analogous to 2- and 1-subsequences. The
unconventional word model permits a statement of the core
linguistic generalizations of LHOR without referring to a
seemingly arbitrary list of subsequences.

Strother-Garcia et al. (2016) point out that 1-CNF formulas
are known to be learnable with less time and data than
2-CNF formulas (Valiant, 1984). They also demonstrate an
algorithm that learns 1-CNF formulas exactly. The next sections
compare how well MLNs can learn the LHOR pattern with the
conventional and unconventional word models.

8.3. Markov Logic Networks With
Conventional and Unconventional Models
Here we describe the two MLNs used in this experiment.
To illustrate the differences between the conventional and
unconventional models, Table 6 shows how the word LH́L would
be represented in the database files in Alchemy.

The different word models also determined a different set of
formulas in each of the MLNs . For the conventional word model,
all possible formulas of the form Fab = adjacent(x, y) ∧
a(x) ∧ b(y) with a,b ∈{L,H,́L,H́} were included, as explained in
Section 7. This yields 16 statements.

For the MLN with the unconventional model, if all possible
formulas with two variables of the form Fab witha,b belonging to
the six sub-structures shown in Table 5 were included then there
would be 36 statements. This increase occurs because positions
in a string may satisfy more than one predicate.

However, we do not think it is appropriate to include them all.
A sentence of the form “x < y ∧ P(x) ∧ Q(y)” can be interpreted
as a prediction that position y has property Q given that position
x with property P precedes it. There are three properties of
interest for position y: heavy, light, or stressed. With respect to
the predictor (the x position), we are interested in how individual
properties (heavy, light, stressed) and how possible combinations
of properties (of which there are two, heavy-stressed and light-
stressed) predict the properties of y. For these reason, we only

TABLE 6 | Conventional and unconventional word models for LH́L.

Conventional Unconventional

L(A) L(A)

H́(B) H(B), stress(B)

L(C) L(C)

follows(A,B) follows(A,B)

follows(A,C) follows(A,C)

follows(B,C) follows(B,C)

Frontiers in Robotics and AI | www.frontiersin.org 14 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

included formulas that predict one atomic property of y given
the properties that may hold of position x. In other words the
MLN included formulas Fab = adjacent(x, y) ∧ a(x) ∧ b(y)
with a ∈{L,H,σ́ ,́L,H́} and b ∈ {L,H, σ́ } where these symbols are
a shorthand for the logical expressions shown in Table 5. This
yielded 15 statements.

As mentioned, the LHOR pattern also requires sub-structures
as indicated with formulas of type Ga. Thus for both the
conventional and unconventional word models, we also included
statements which require sub-structures in strings. Our initial
efforts in this regard failed because Alchemy quickly runs out
of memory as it converts all existential quantification into a
CNF formula over all the constants in the database file. To
overcome this hurdle, we instead introduced statements into
the database file about each string. This work-around essentially
encoded the information in the existential formula as a property
of another constant in the database. If there were n strings
in the database file, we included constants S1, S2, . . . Sn which
represented each string. In the conventional model, predicates
isString(x), hasLstr(x), and hasHstr(x) were included.
These predicates declare that x is a string, x contains a light and
stressed syllable, and x contains a heavy and stressed syllable,
respectively. The MLN included the formula isString(x) ∧
(hasHstr(x) ∨ hasLstr(x)). In the unconventional word
model, predicates isString(x) and hasStress(x) were
included, where hasStress(x) states that string x has a
stressed syllable. The MLN included the formula isString(x)∧
hasStress(x).

The .mln files of both the conventional and unconventional
model for the stress example can be found in the Appendix.

8.4. Training Data
We generated data sets in six sizes: 5, 10, 20, 50, 100, and 250
strings. For each size, we generated ten different datasets. We
generated training data of different sizes because we were also
interested in how well the MLNs generalized from small data sets.

To generate a training data set, we first randomly generated
strings from length one to five inclusive from the alphabet 6 =

{H,L}. As a second step, we assigned stress to the correct syllable
based on the LHOR pattern. These strings were then translated
into a training database file for the MLN based on its word model.

Table 7 reports the runtime of the weight-learning algorithm
for both MLNs with the conventional and unconventional
models, over 5, 10, 20, 50, 100, and 250 strings. Unsurprisingly,
the runtime for the unconventional models was slightly shorter
than for the conventional models, since the unconventional
models contained one less statement.

8.5. Evaluation Method
Two types of evaluations were conducted to address two
questions. Did the MLNs plausibly learn the LHOR pattern and
how much data was necessary to learn it?

First, to evaluate whether the MLNs correctly identified
the LHOR pattern, we conducted an analysis of the trained
models. Similar to Section 7, we find conditional events
whose probabilities sum to one, identify their ratios, and solve
for the probabilities of four structures which represent the

TABLE 7 | Runtime of learning weights for linguistic statements.

Conventional model Unconventional model

5 strings 0.29s 0.27s

10 strings 0.51s 0.51s

20 strings 1.94s 1.89s

50 strings 10.28s 10.66s

100 strings 58.76s 49.43s

250 strings 8 min, 36.02s 7 min, 57.48s

generalizations of interest. These generalizations are shown
below (cf. ψLHOR).

(G1) No syllables follow stressed light syllables.

(G2) No stressed syllable follows a heavy syllable.

(G3) There is at least one stressed syllable.

(G4) There is at most one stressed syllable.

We elaborate on the analysis for G2; the analyses for the rest is
similar. For the conventional model, let two constants (positions)
A and B be given, and consider the following conditional
probabilities.

P1 = P
(

H́(B) | H(A),follows(A,B)
)

P2 = P
(

Ĺ(B) | H(A),follows(A,B)
)

P3 = P
(

L(B) | H(A),follows(A,B)
)

P4 = P
(

H(B) | H(A),follows(A,B)
)

These probabilities are all disjoint and sum to one i.e.,
P1 + P2 + P3 + P4 = 1. The probability of P1 is given explicitly
as

P1 =
P
(

H́(B),H(A),follows(A,B)
)

P
(

H(A),follows(A,B)
)

Probabilities P2, P3, and P4 are calculated similarly. Let PS1
1 =

P
(

H(A),follows(A,B)
)

; this is the probability of the world S1:

S1 =
{

H(A)∧follows(A,B)∧H́(B)∧¬Ĺ(A)∧¬H́(A)∧¬H(B)

∧ ¬L(B) ∧ ¬L(A) ∧ ¬Ĺ(B),¬follows(B,A)
}

Worlds S2, S3, S4 (with probabilities PS2
2 , P

S3
3 , PS4

4) can be
defined for P2, P3, P4 respectively, in the similar way. Given
two syllables, it is obvious that P1 + P2 is the probability that
a stressed syllable comes after H(A), which we denote P(Hσ́).
Likewise, P3 + P4 is the probability that an unstressed syllable
comes after H(A), which we denote P(H¬σ́). We also know
P(Hσ́)+P(H¬σ́) = 1. Thus we can compare P(Hσ́) and P(H¬σ́),
using N to denote the number of formulas, wi the weight for

Frontiers in Robotics and AI | www.frontiersin.org 15 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

formula Fi, and ni(Si) the number of true groundings of formula
Fi in world Si:

P(Hσ́)

P(H¬σ́)
=

PS1
1 + PS2

2

P
S3
3 + PS4

4

=

∑2
j=1 exp

(

∑N
i=1 wi ni(Sj)

Z

)

∑4
j=3 exp

(

∑N
i=1 wi ni(Sj)

Z

)

=

∑2
j=1 exp

(

∑N
i=1 wi ni(Sj)

)

∑4
j=3 exp

(

∑N
i=1 wi ni(Sj)

)

The closer this ratio is to zero, the higher the confidence on
the statement that the MLN has learned (G2) that “No stressed
syllable follows a heavy syllable.”

The analysis of the MLNs based on both the conventional and
unconventional models proceeds similarly.

Our second evaluation asked how much training is needed
for each model to reliably learn the generalizations. Here we
tested both models on small training samples. Specifically, we
conducted training and analysis on 10 sets of 10 training
examples and 10 sets of 5 training examples.

Prior to running the models, we arbitrarily set a threshold of
0.05. If the ratios calculated with the weights of the trained model
were under this threshold, we concluded the model acquired the
generalizations successfully. Otherwise, we concluded it failed.
We then measured the proportion of training sets on which the
models succeeded.

8.6. Results
Given a training sample with 100 examples, the resultant ratios
representing each generalization for the MLNs instantiating the
conventional and unconventional word models are presented in
Table 8. Three ratios are presented for G4 because two stressed
syllables can occur in one of four ways: a stressed syllable follows
H́, a stressed syllable precedes H́, a stressed syllable precedes Ĺ,
or a stressed syllable follows Ĺ. The last case is already included in
G1 (No syllable follows Ĺ), so the other three ratios are presented.

Both MLNs assign small values to these ratios, which indicate
that they successfully learned the generalizations given 100

TABLE 8 | Summary of ratios from one training sample with 100 examples.

Generalization Ratio Conventional model Unconventional model

(G1) P(Ĺσ)

P(σ Ĺ)
0.0193 6e-6

(G2) P(Hσ́)
P(H¬σ́)

0.1030 7e-4

(G3) P(∃σ́)
P(¬∃σ́)

4e-6 0.0185

(G4) P(H́σ́)
P(H́¬σ́)

7.6e-6 6.4e-10

(G4) P(σ́ H́)
P(¬σ́ H́)

0.0013 5e-10

(G4) P(σ́ Ĺ)

P(¬σ́ Ĺ)
0.0023 5.7e-10

The closer the ratio is to zero, the better the generalization.

training examples. However, in most cases, the unconventional
model generalized better.

With respect to the question of how much data was required
to learn the LHOR pattern, we conclude that MLNs using
unconventional word representations, like the one posited here,
require less training data in order to generalize successfully. On
sets with 5 training strings, the MLN based on the conventional
model learned the generalizations on 3 out of the 10 sets. On the
other hand, the MLN based on the unconventional model learned
the generalizations on 9 out of the 10 sets. On sets with 10 training
strings, the MLN based on the conventional model learned the
generalizations on 6 out of the 10 sets. The MLN based on the
unconventional model learned the generalization on all 10 sets.

9. ROBOTIC PLANNING

Unconventional word models can potentially reduce the
planning complexity of cooperative groups of heterogeneous
robots (i.e., groups of two or more robots with non-identical
functionality). In such a system, robots interact to perform
tasks that would be impossible for any single agent to complete
in isolation. Attempting to account for all different possible
interactions, the representative DFA generated by classical
automata operations is typically large. In this section, it is
demonstrated that unconventional word models may provide
compact interaction representations and permit computational
savings, both in planning, but primarily in learning these models.

9.1. Planning Case Study
Consider a heterogeneous robotic system consisting of two
vehicles: a ground vehicle (referred to as the crawler) and an aerial
vehicle (referred to as the quadrotor). These two vehicles are
able to operate independently, in isolation, or can be connected
together by a flexible tether. The quadrotor is also able to perch on
a flat surface, and use the latter as an anchor point when tethered
to the crawler. Once the perching occurs, the crawler is able to
reel in the tether, allowing for traversal of obstacles in order to
reach a desired location (Figure 5). It is assumed that the crawler
cannot traverse certain obstacles in its environment, such as a
steep hill, without an applying force to the anchored tether.

The primary motivation in using an unconventional word
model is enabling the heterogeneous system to autonomously
traverse a variety of otherwise insurmountable obstacles (e.g.,
the fence in Figure 5) after a small amount of training. The
training data in this case would be a human operator manually
controlling the quadrotor and crawler to allow the latter to
climb over the fence using its spool. Using operator coordinating
decisions as data, the system learns which action sets are most
likely to result in the crawler reaching its goal position. Another
potential benefit of the unconventional model is a reduction in
the calculation times which allow for the automated planner to
better determine the best course of action in real time.

Table 9 shows the alphabet used for the conventional model,
and the corresponding properties that become the unary relations
in the unconventional model. Overall, these properties encode
three separate pieces of information: the vehicle under concern
(crawler/quad), the motion it makes (move/stop), and

Frontiers in Robotics and AI | www.frontiersin.org 16 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

FIGURE 5 | The heterogeneous robotic system considered in this section. The two robots can latch onto each other by means of a powered spool mechanism. By

positioning itself on the other side of the fence, the quadrotor can act as an anchor point for the crawler, which will use its powered spool to reel itself up and over the

fence to reach the other side. (A) the quadrotor lands in front of the ground vehicle; (B) the tip of the ground vehicle’s spool attaches to the quadrotor’s velcro apron;

(C) the quadrotor takes off to fly over the fence, tethered on the ground vehicle which lets the line real out; (D) the quadrotor lands on the other side of the fence; (E)

the ground robot uses its powered spool to reel in the line and climb vertically against the fence; (F) the ground robot has made it over the fence and is on its way to

the soft landing area on the other side of the fence.

TABLE 9 | Feature geometry for each state of the heterogeneous multi-robot

system of Figure 5.

Conventional Vehicle Motion Tether

Alphabet (crawler/quad) (move/stop) (untethered/attach

/ethered)

a crawler move untethered

b crawler stop untethered

c quad move untethered

d quad stop untethered

t crawler move attach

A crawler move tethered

B crawler stop tethered

C quad move tethered

D quad stop tethered

whether it is tethered, untethered, or attaching. Note that
attach only co-occurs with crawler and move.

The grammar for the cooperative robot behavior is created
based on three assumptions: (i) two vehicles cannot move
at the same time — one has to stop for the other to start,
(ii) the crawler is tethered to the quadrotor after attach, and
(iii) the strings have to start with move and end with stop.
Based on these assumptions, the DFA of Figure 6 is constructed,
whose underlying structure is Strictly 2-Local. Transitions in the
diagram are unlabeled because, as in Section 7, all transitions
are of the form δ(q, σ) = σ . Similarly to the strings in
Section 7, strings obtained from this DFA are also augmented with
initial (⋊) and final (⋉).

To illustrate, the similarity and differences between the
conventional and unconventional models, Table 10 shows how

FIGURE 6 | The automaton that accepts strings of robot actions, along

cooperative plans in which one robot moves at any given time instant.

the string abtBCD would be represented in each of the database
files.

The grammar of the language generated by the DFA

of Figure 6 is expressed as a list of forbidden 2-factors in
Table 11. In this table, we only listed unique 2-factors for
the conventional model, even though one 2-factor in the
unconventional one might correspond to several forbidden
2-factors in the conventional model. For example, both
untethered-tethered and move-move forbid the
substring aA, but it is only listed for untethered-tethered.

9.2. Markov Logic Networks With
Conventional and Unconventional Models
The formulas in the MLN with the conventional model included
the statements like those presented in Section 6 for Strictly 2-
Local grammars, in addition to statements with initial and final as

Frontiers in Robotics and AI | www.frontiersin.org 17 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

TABLE 10 | Conventional and unconventional word models consistent with the

word (plan) abtBCD.

Conventional word model Unconventional word model

initial(A) initial(A)

a(B) crawler(B), move(B), untethered(B)

b(C) crawler(C), move(C), untethered(C)

t(D) crawler(D), move(D), attach(D)

B(E) crawler(E), stop(E), tethered(E)

C(F) quad(F), move(F), tethered(F)

D(G) quad(G), stop(G), tethered(G)

final(H) final(H)

adjacent(A,B) adjacent(A,B)

adjacent(B,C) adjacent(B,C)

adjacent(C,D) adjacent(C,D)

adjacent(D,E) adjacent(D,E)

adjacent(E, F) adjacent(E, F)

adjacent(F,G) adjacent(F,G)

adjacent(G,H) adjacent(G,H)

TABLE 11 | Forbidden 2-factors constituting the strictly 2-Local grammar for the

cooperative behavior of the heterogeneous robotic system of Figure 5, under the

Conventional and Unconventional Word Models.

Unconventional model Conventional model

initial-stop ⋊b, ⋊d, ⋊B, ⋊D

initial-attach ⋊t

initial-tethered ⋊A, ⋊B, ⋊C, ⋊D

move-final a⋉, c⋉, t⋉, A⋉, C⋉

untethered-tethered aA, aB, aC, aD, bA, bB, bC, bD, cA, cB, cC,

cD, dA, dB, dC, dD

tethered-untethered Aa, Ab, Ac, Ad, Ba, Bb, Bc, Bd, Ca, Cb, Cc,

Cd, Da, Db, Dc, Dd

move-move aa, cc, ac, at, ca, ct, tt, tA, tC, AA, CC, At, AC,

Ct, CA

stop-stop bb, dd, bd, db, BB, DD BD, DB

attach-untethered tb, td

tethered-attach Bt, Dt

[move,crawler][stop,quad] ad, AD

[move,quad][stop,crawler] cb, CB

in Section 7. This resulted in a total of 99 statements. The .mln
file, which lists all these statements, is given in the Appendix.

For the unconventional model, the formulas can be
categorized into three types as listed below, yielding a total
of 39 statements. These statements were selected based on our
own knowledge that the tether features do not interact with the
vehicle and motion features, but that vehicle and motion features
do interact, as only one vehicle was allowed to move at any
point. Thus, the statements are (i) 9 FO statements involving the
tether features {tethered,untethered,attach}, (ii) 16
FO statements involving combinations of motion and vehicle
features, and (iii) 14 FO statements involving individual feature

TABLE 12 | Runtime for learning weights for robotic statements.

Conventional model Unconventional model

20 strings 1 min, 3.89s 35.7s

50 strings 8 min, 57.5s 4 min, 16.3s

100 strings 3 h, 3.07 min 28 min, 49.6s

250 strings 11 h, 46.8 min 5 h, 6.57 min

combined with initial and final. The .mln file with the
complete list is given in the Appendix.

The runtime of the weight-learning algorithm for the
robot grammar is given in Table 12. Learning weights for the
unconventional model took about half the time compared to
doing the same for the conventional model.

9.3. Training Data
We generated strings for the training data-set, assuming that all
transitions have the same probability. We considered training
data sets of 5, 10, 20, 50, 100, and 250 strings. For each of the data
sets of size 5 and 10, we generated 10 files. Due to the significantly
longer list of statements that Alchemy had to assign weights to
(and consequently longer runtime for training), we did not train
it on multiple files of sizes 20, 50, 100, and 250.

9.4. Evaluation Method and Results
The learning outcomes under the conventional and
unconventional MLN models on 20 training strings are
presented in Tables 13, 14, respectively. For instance, the entry
in row a and column b expresses the conditional probability
P
(

b(x)|a(x),adjacent(x, y)
)

, which corresponds to ρ(a, b)
in the associated PDFA of Figure 6. We introduced a threshold
of 0.05 for the probability of allowed bi-grams. The allowed
bi-grams (based on the threshold) are shaded in the table.

These results indicate that both models meet this benchmark
of success with 20 training strings. Generally, however, the
unconventional model provides higher probabilities to licit
sequences.

To evaluate how much training is needed for each model
to reliably generalize, we tested both models on small training
samples. Specifically, we tested both models on ten training sets
with 10 strings and ten training sets with 5 strings. On sets with
5 training strings, the trained MLN with the conventional model
learns the correct grammar on 1 set out of 10. The trained MLN

with the unconventional model learns the correct grammar list
on 6 sets out of 10. On sets with 10 training strings, conventional
models learn the correct grammar only on 4 sets out of 10. The
unconventional model learns the correct grammar on 9 sets out
of 10.

The empirical conclusions from this case study are in
agreement with those of Section 8: MLNs trained with
unconventional models seem to require less training data to
converge. Additionally, the computation time required by the
unconventional model is far smaller than that of the conventional
one, since the former featured a significantly more compact
representation.

Frontiers in Robotics and AI | www.frontiersin.org 18 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

TABLE 13 | Conventional model trained on 20 training strings.

a b c d t A B C D ⋉

⋊ 0.496927 0.000815 0.493377 0.000592 0.001016 0.001278 0.000736 0.001084 0.001039 0.003137

a 6.54E-05 0.999517 5.08E-05 2.17E-06 0.000101 0.000104 7.17E-06 8.87E-05 3.41E-05 2.96E-05

b 0.094095 0.008997 0.091477 0.007491 0.367243 0.000349 0.007735 0.010931 0.009811 0.401872

c 8.23E-05 4.03E-06 6.22E-05 0.999358 0.000145 0.000147 7.99E-06 0.000119 4.02E-05 3.35E-05

d 0.071082 0.006026 0.085054 0.004911 0.522097 0.000112 0.005017 0.00774 0.006597 0.291364

t 0.000247 4.43E-05 0.00021 3.24E-05 0.000324 0.000334 0.998374 0.00029 4.29E-05 0.000101

A 0.000329 9.12E-05 0.000283 7.63E-05 0.00041 0.000423 0.997791 0.000381 5.96E-05 0.000156

B 0.00242 0.00283 0.001839 0.002265 8.07E-05 0.15365 0.002296 0.054035 0.00315 0.777433

C 8.88E-05 4.82E-05 7.07E-05 3.93E-05 0.000125 0.000131 9.83E-06 0.000113 0.999327 4.67E-05

D 0.008202 0.009073 0.006643 0.00762 0.000387 0.286747 0.00799 0.245995 0.009906 0.417436

TABLE 14 | Unconventional model trained on 20 training strings.

a b c d t A B C D ⋊

⋉ 0.503601 0.000828 0.494177 0.000812 0.000217 0.000181 2.97E-07 0.000178 2.92E-07 4.84E-06

a 1.32E-04 0.99942 2.64E-04 2.35E-06 0.000107 4.22E-09 3.20E-05 8.45E-09 7.52E-11 4.30E-05

b 0.29998 0.00156 0.244344 0.003385 0.242705 9.60E-06 4.99E-08 7.82E-06 1.08E-07 0.208008

c 2.65E-04 2.57E-06 1.34E-04 0.999328 0.000214 8.48E-09 8.22E-11 4.28E-09 3.20E-05 2.46E-05

d 0.321375 0.002458 0.324781 0.001342 0.260015 1.03E-05 7.87E-08 1.04E-05 4.30E-08 0.090007

t 3.60E-09 2.73E-05 7.20E-09 6.41E-11 7.34E-09 0.000132 0.999575 0.000264 2.35E-06 1.19E-08

A 2.00E-08 1.52E-04 4.01E-08 3.57E-10 6.31E-09 0.000132 0.999328 0.000264 2.35E-06 0.000122

B 4.01E-05 2.09E-07 3.27E-05 4.53E-07 1.26E-05 0.263762 0.001372 0.214843 0.002976 0.516961

C 4.03E-08 3.90E-10 2.03E-08 1.52E-04 1.27E-08 0.000265 2.57E-06 0.000134 0.999377 6.96E-05

D 5.40E-05 4.13E-07 5.46E-05 2.26E-07 1.70E-05 0.355314 0.002718 0.359079 0.001484 0.281278

10. DISCUSSION

This article has applied statistical relational learning to the
problem of inferring categorical and stochastic formal languages,
a problem typically identified with the field of grammatical
inference. The rationale for tackling these learning problems with
relational learning is that the learning techniques separate issues
of representation from issues of inference. In this way, domain-
specific knowledge can be incorporated into the representations
of strings when appropriate.

Our case studies indicate that not only can MLNs mimic
traditional n-gram language models, but that successful inference
with unconventional word models, which permit multiple
positions in strings to share properties, concretely improve
inference. This is because with the richer representations
unconventional models provide, fewer formulas in the MLN are
necessary to instantiate a sufficiently expressive parametricmodel
as compared to the representations provided by conventional
models. Two important consequences of this are a reduction in
the training time and a reduction in the amount of data required
to generalize successfully. These results were demonstrated in
different domains, phonology and robotics.

In addition to exploring learning with unconventional models
in these domains and others, there are four other important
avenues for future research.

While this article considered the learning problem of finding
weights given formula, another problem is identifying both the
formulas and the weights. In this regard, it would be interesting
to compare the learning of stochastic formal languages with
statistical relational learning methods where the formulas are not
provided a priori to their learning with grammatical inference
methods such as ALEGRIA (de la Higuera, 2010).

Second, is the problem of scalability. Unless the input files to
Alchemy 2 were small, this software required large computational
resources in terms of time and memory. Developing better
software and algorithms to allow MLNs to scale is essential to
moving from the examples presented here to more complex
real-world applications. We suspect that MLNs instantiated by
formulas of the type discussed in this paper can be brought
to scale. This is because the notion of sub-structure which
underlies these methods provides a generality relation which
structures the hypothesis space and thus significantly cuts down
the computational resources required (De Raedt, 2008). Studying
how to integrate this inference structure into MLNs with the right
properties would be a worthwhile endeavor.

Third, Section 7.3 introduces a way to translate the weights
on the formulas in the MLN to probabilities on the transitions in
a PDFA. A welcome theoretical result would be to establish the
general conditions and algorithmic procedure under which this
translation can occur and be computed automatically.

Frontiers in Robotics and AI | www.frontiersin.org 19 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

Finally, while the case studies in this article are experimental,
we believe that general theoretical results relating relational
learning, grammatical inference, unconventional word
models, and formal languages are now within reach.
We hope that the present paper spurs such research
activity.

AUTHOR CONTRIBUTIONS

MV developed the training data and the MLNs used in sections
7–9. AZ conducted the analysis of the results in sections 7–9.

Everyone contributed equally to the design of the experiments
in sections 7–9. JH, HT, and KS-G drafted section 1; JH sections
2, 4; HT and JH sections 3 and 5; MV section 6; AZ, MV, and JH
section 7; KS-G, MV, AZ, and JH section 8; HT, MS, MV, AZ and
JH section 9; and JH section 10. Everyone helped revise the initial
draft.

FUNDING

This research is supported by NIH R01HD087133-01 to HT
and JH.

REFERENCES

Bach, E. W. (1975). “Long vowels and stress in Kwakiutl,” in Texas Linguistic

Forum, Vol. 2 (Austin, TX), 9–19.

Büchi, J. R. (1960).Weak second-order arithmetic and finite automata.Math. Logic

Q. 6, 66–92.

Carrasco, R. C. and Oncina, J. (1994). “Learning stochastic regular grammars by

means of a state merging method,” in Proceedings of Grammatical Inference and

Applications, Second International Colloquium, ICGI-94 (Alicante), 139–152.

Carrasco, R. C. and Oncina, J. (1999). Learning deterministic regular grammars

from stochastic samples in polynomial time. RAIRO Theor. Inf. Appl. 33, 1–20.

Chen, S. F., and Goodman, J. (1999). An empirical study of smoothing techniques

for language modeling. Comp. Speech Lang. 13, 359–394.

Chomsky, N., and Halle, M. (1968). The Sound Pattern of English. New York, NY:

Harper & Row Inc.

Clark, A., and Lappin, S. (2011). Linguistic Nativism and the Poverty of the Stimulus.

Wiley-Blackwell.

de la Higuera, C. (2010). Grammatical Inference: Learning Automata and

Grammars. Cambridge, UK: Cambridge University Press.

De Raedt, L. (2008). Logical and Relational Learning. Berlin; Heidelberg: Springer-

Verlag.

De Raedt, L., Kersting, K., Natarajan, S., and Poole, D. (2016). Statistical Relational

Artificial Intelligence: Logic Probability and Computation. San Rafael, CA:

Morgan and Claypool.

Domingos, P., and Lowd, D. (2009). Markov logic: an interface layer for

artificial intelligence. Synth. Lect. Artif. Intell. Mach. Learn. 3, 1–155.

doi: 10.2200/S00206ED1V01Y200907AIM007‘

Droste, M., and Gastin, P. (2009). “Weighted automata and weighted logics,” in

Handbook ofWeighted Automata,Monographs in Theoretical Computer Science,

eds M. Droste, W. Kuich, and H. Vogler (Berlin: Springer), 175–211.

Enderton, H. B. (2001). AMathematical Introduction to Logic, 2nd Edn. San Diego,

CA: Academic Press.

Fu, J., Tanner, H. G., Heinz, J., Karydis, K., Chandlee, J., and Koirala, C. (2015).

Symbolic planning and control using game theory and grammatical inference.

Eng. Appl. Artif. Intell. 37, 378–391. doi: 10.1016/j.engappai.2014.09.020

García, P., and Ruiz, J. (2004). Learning k-testable and k-piecewise testable

languages from positive data. Grammars 7, 125–140.

García, P., Vidal, E., and Oncina, J. (1990). “Learning locally testable languages in

the strict sense,” in Proceedings of theWorkshop on Algorithmic Learning Theory

(Tokyo), 325–338.

Getoor, L., and Taskar, B. (2007). Introduction to Statistical Relational Learning.

Cambridge, MA: MIT press.

Gold, E. (1967). Language identification in the limit. Inform. Control 10, 447–474.

Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. Chicago, IL:

University of Chicago Press.

Heinz, J. (2010). “String extension learning,” in Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics (Uppsala),

897–906.

Heinz, J. (2014). “Culminativity times harmony equals unbounded stress,” inWord

Stress: Theoretical and Typological Issues, ed H. van der Hulst (Cambridge:

Cambridge University Press), 255–276.

Heinz, J. (2016). “Computational theories of learning and developmental

psycholinguistics,” in The Oxford Handbook of Developmental Linguistics, eds

J. Lidz, W. Synder, and J. Pater (Oxford: Oxford University Press), 633–663.

Heinz, J., de la Higuera, C., and van Zaanen, M. (2015). Grammatical Inference for

Computational Linguistics. San Rafael, CA: Morgan and Claypool.

Heinz, J., Kasprzik, A., and Kötzing, T. (2012). Learning with lattice-

structured hypothesis spaces. Theor. Comput. Sci. 457, 111–127.

doi: 10.1016/j.tcs.2012.07.017

Heinz, J., and Rogers, J. (2013). “Learning subregular classes of languages with

factored deterministic automata,” in Proceedings of the 13th Meeting on the

Mathematics of Language (MoL 13) (Sofia), 64–71.

Heinz, J.. and Sempere, J., (eds.). (2016). Topics in Grammatical Inference.

Berlin;Heidelberg: Springer-Verlag.

Hodges, W. (1993).Model Theory. Cambridge, UK: Cambridge University Press.

Hopcroft, J. E., and Ullman, J. D. (1979). Introduction to Automata Theory,

Languages, and Computation. Reading, MA: Addison-Wesley.

Jain, S., Osherson, D., Royer, J. S., and Sharma, A. (1999). Systems That Learn:

An Introduction to Learning Theory (Learning, Development and Conceptual

Change), 2nd Edn. Cambridge, MA: The MIT Press.

Jurafsky, D., and Martin, J. (2008). Speech and Language Processing: An

Introduction to Natural Language Processing, Speech Recognition, and

Computational Linguistics, 2nd Edn. Upper Saddle River, NJ: Prentice-Hall.

Karydis, K., Poulakakis, I., and Tanner, H. G. (2015). Probabilistically

valid stochastic extensions of deterministic models for systems with

uncertainty. Int. J. Robot. Res. 34, 1278–1295. doi: 10.1177/02783649155

76336

Kiener, J., and von Stryk, O. (2007). “Cooperation of heterogeneous, autonomous

robots: A case study of humanoid and wheeled robots,” in Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems (San

Diego, CA), 959–964.

Kornai, A. (2007). “Advanced information and knowledge processing,” in

Mathematical Linguistics (London: Springer Verlag).

Kracht, M. (2003). The Mathematics of Language. Berlin: Mouton de Gruyter.

Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2009). Temporal-logic-based

reactive mission and motion planning. IEEE Trans. Robot. 25, 1370–1381.

doi: 10.1109/TRO.2009.2030225

Liberman, M. Y. (1975). The intonational system of English. PhD thesis,

Massachusetts Institute of Technology.

Libkin, L. (2004). Elements of Finite Model Theory. Berlin: Springer.

Lothaire, M., editor (1997). Combinatorics on Words. Cambridge;New York, NY:

Cambridge University Press.

Lothaire, M., editor (2005). Applied Combinatorics onWords, 2nd Edn. Cambridge

University Press.

McNaughton, R., and Papert, S. (1971). Counter-Free Automata. Cambridge, MA:

MIT Press.

Mellinger, D., Shomin, M., Michael, N., and Kumar, V. (2013). “Cooperative

grasping and transport using multiple quadrotors,” in Distributed Autonomous

Robotic Systems, Vol. 83 of Springer Tracts in Advanced Robotics, eds

A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt,

M. A. Hsieh, L. E. Parker, and K. Støy (Berlin; Heidelberg: Springer),

545–558.

Frontiers in Robotics and AI | www.frontiersin.org 20 July 2018 | Volume 5 | Article 76

https://doi.org/10.2200/S00206ED1V01Y200907AIM007`
https://doi.org/10.1016/j.engappai.2014.09.020
https://doi.org/10.1016/j.tcs.2012.07.017
https://doi.org/10.1177/0278364915576336
https://doi.org/10.1109/TRO.2009.2030225
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

Mohri, M. (2005). “Statistical natural language processing,” in

Applied Combinatorics on Words, ed M. Lothaire (New York, NY: Cambridge

University Press), 210–240.

Natarajan, S., Kersting, K., Khot, T., and Shavlik, J. (2015). Boosted Statistical

Relational Learners: From Benchmarks to Data-DrivenMedicine. SpringerBriefs

in Computer Science. Springer.

Odden, D. (2014). Introducing Phonology, 2nd Edn. Cambridge, UK: Cambridge

University Press.

Oncina, J., and Garcia, P. (1992). “Identifying regular languages in polynomial

time,” in Advances in Structural and Syntactic Pattern Recognition, Vol. 5

of Series in Machine Perception and Artificial Intelligence (World Scientific),

99–108.

Parker, L. E. (1994). Heterogeneous Multi-Robot Cooperation. PhD thesis,

Massachusetts Institute of Technology.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Francisco, CA: Morgan Kaufmann.

Richardson, M., and Domingues, P. (2006). Markov logic networks. Mach. Learn.

62, 107–136. doi: 10.1007/s10994-006-5833-1

Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., et al.

(2010). “On languages piecewise testable in the strict sense,” in TheMathematics

of Language, Vol. 6149 of Lecture Notes in Artifical Intelligence (Berlin:

Springer), 255–265.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013).

“Cognitive and sub-regular complexity,” in Formal Grammar, Vol. 8036 of

Lecture Notes in Computer Science (Berlin; Heidelberg: Springer), 90–108.

Rogers, J., and Pullum, G. (2011). Aural pattern recognition experiments

and the subregular hierarchy. J. Logic Lang. Inform. 20, 329–342.

doi: 10.1007/s10849-011-9140-2

Schane, S. A. (1979). Rhythm, accent, and stress in English words. Ling. Inquiry 10,

483–502.

Sicco Verwer, C. D. L. H., and Eyraud R. (2014). Pautomac: a probabilistic

automata and hidden markov models learning competition. Mach. Learn. 96,

129–154. doi: 10.1007/s10994-013-5409-9

Strother-Garcia, K., Heinz, J., and Hwangbo, H. J. (2016). “Using model theory

for grammatical inference: a case study from phonology,” in International

Conference on Grammatical Inference (Delft), 66–78.

Thomas, W. (1982). Classifying regular events in symbolic logic. J. Comput. Sys.

Sci. 25, 370–376. doi: 10.1016/0022-0000(82)90016-2

Thomas, W. (1997). “Chapter 7: Languages, automata, and logic,” in Handbook of

Formal Languages, Vol. 3 (Berlin: Springer).

Valiant, L. (1984). A theory of the learnable. Commun. ACM 27, 1134–1142.

doi: 10.1145/1968.1972

van der Hulst, H., Goedemans, R., and van Zanten, E., editors (2010). A Survey

of Word Accentual Patterns in the Languages of the World. Berlin: Mouton de

Gruyter.

Zehfroosh, A., Kokkoni, E., Tanner, H. G., and Heinz, J. (2017). “Learning models

of human-robot interaction from small data,” in Mediterranean Conference on

Control and Automation (Valletta), 223–228.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Vu, Zehfroosh, Strother-Garcia, Sebok, Heinz and Tanner. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 21 July 2018 | Volume 5 | Article 76

https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.1007/s10994-013-5409-9
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1145/1968.1972
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

APPENDIX:

Input .mln Files for Alchemy 2
ABC-strings
a(char)

b(char)

c(char)

initial(char)

final(char)

adjacent(char,char)

0 adjacent(x,y) ^ initial(x) ^ a(y)

0 adjacent(x,y) ^ initial(x) ^ b(y)

0 adjacent(x,y) ^ initial(x) ^ c(y)

0 adjacent(x,y) ^ initial(x) ^ final(y)

0 adjacent(x,y) ^ a(x) ^ final(y)

0 adjacent(x,y) ^ b(x) ^ final(y)

0 adjacent(x,y) ^ c(x) ^ final(y)

0 adjacent(x,y) ^ a(x) ^ a(y)

0 adjacent(x,y) ^ a(x) ^ b(y)

0 adjacent(x,y) ^ a(x) ^ c(y)

0 adjacent(x,y) ^ b(x) ^ a(y)

0 adjacent(x,y) ^ b(x) ^ b(y)

0 adjacent(x,y) ^ b(x) ^ c(y)

0 adjacent(x,y) ^ c(x) ^ a(y)

0 adjacent(x,y) ^ c(x) ^ b(y)

0 adjacent(x,y) ^ c(x) ^ c(y)

Unbounded Stress Pattern

Conventional Model

h(char)

l(char)

hstr(char)

lstr(char)

follows(char,char)

hasLstr(string)

hasHstr(string)

isString(string)

0 follows(x,y)^ h(x) ^ h(y)

0 follows(x,y)^ h(x) ^ l(y)

0 follows(x,y)^ h(x) ^ hstr(y)

0 follows(x,y)^ h(x) ^ lstr(y)

0 follows(x,y)^ l(x) ^ h(y)

0 follows(x,y)^ l(x) ^ l(y)

0 follows(x,y)^ l(x) ^ hstr(y)

0 follows(x,y)^ l(x) ^ lstr(y)

0 follows(x,y)^ hstr(x) ^ h(y)

0 follows(x,y)^ hstr(x) ^ l(y)

0 follows(x,y)^ hstr(x) ^ hstr(y)

0 follows(x,y)^ hstr(x) ^ lstr(y)

0 follows(x,y)^ lstr(x) ^ h(y)

0 follows(x,y)^ lstr(x) ^ l(y)

0 follows(x,y)^ lstr(x) ^ hstr(y)

0 follows(x,y)^ lstr(x) ^ lstr(y)

0 isString(x) ^ (hasLstr(x) v hasHstr(x))

Frontiers in Robotics and AI | www.frontiersin.org 22 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

Unconventional Model

follows(char,char)

h(char)

str(char)

l(char)

hasStress(string)

isString(string)

0 follows(x,y) ^ h(x) ^ str(x) ^ h(y)

0 follows(x,y) ^ h(x) ^ str(x) ^ l(y)

0 follows(x,y) ^ h(x) ^ str(x) ^ str(y)

0 follows(x,y) ^ l(x) ^ str(x) ^ h(y)

0 follows(x,y) ^ l(x) ^ str(x) ^ l(y)

0 follows(x,y) ^ l(x) ^ str(x) ^ str(y)

0 follows(x,y) ^ h(x) ^ h(y)

0 follows(x,y) ^ h(x) ^ l(y)

0 follows(x,y) ^ h(x) ^ str(y)

0 follows(x,y) ^ l(x) ^ h(y)

0 follows(x,y) ^ l(x) ^ l(y)

0 follows(x,y) ^ l(x) ^ str(y)

0 follows(x,y) ^ str(x) ^ h(y)

0 follows(x,y) ^ str(x) ^ l(y)

0 follows(x,y) ^ str(x) ^ str(y)

0 isString(x) ^ hasStress(x)

Robot Planning

Conventional Model

adjacent(char,char)

initial(char)

final(char)

a(char)

b(char)

c(char)

d(char)

a-prime(char)

b-prime(char)

c-prime(char)

d-prime(char)

t(char)

0 adjacent(x,y) ^ a(x) ^ a(y)

0 adjacent(x,y) ^ a(x) ^ b(y)

0 adjacent(x,y) ^ a(x) ^ c(y)

0 adjacent(x,y) ^ a(x) ^ d(y)

0 adjacent(x,y) ^ a(x) ^ a-prime(y)

0 adjacent(x,y) ^ a(x) ^ b-prime(y)

0 adjacent(x,y) ^ a(x) ^ c-prime(y)

0 adjacent(x,y) ^ a(x) ^ d-prime(y)

0 adjacent(x,y) ^ a(x) ^ t(y)

0 adjacent(x,y) ^ b(x) ^ b(y)

0 adjacent(x,y) ^ b(x) ^ a(y)

0 adjacent(x,y) ^ b(x) ^ c(y)

0 adjacent(x,y) ^ b(x) ^ d(y)

0 adjacent(x,y) ^ b(x) ^ a-prime(y)

0 adjacent(x,y) ^ b(x) ^ b-prime(y)

0 adjacent(x,y) ^ b(x) ^ c-prime(y)

0 adjacent(x,y) ^ b(x) ^ d-prime(y)

Frontiers in Robotics and AI | www.frontiersin.org 23 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

0 adjacent(x,y) ^ b(x) ^ t(y)

0 adjacent(x,y) ^ c(x) ^ c(y)

0 adjacent(x,y) ^ c(x) ^ a(y)

0 adjacent(x,y) ^ c(x) ^ b(y)

0 adjacent(x,y) ^ c(x) ^ d(y)

0 adjacent(x,y) ^ c(x) ^ a-prime(y)

0 adjacent(x,y) ^ c(x) ^ b-prime(y)

0 adjacent(x,y) ^ c(x) ^ c-prime(y)

0 adjacent(x,y) ^ c(x) ^ d-prime(y)

0 adjacent(x,y) ^ c(x) ^ t(y)

0 adjacent(x,y) ^ d(x) ^ d(y)

0 adjacent(x,y) ^ d(x) ^ a(y)

0 adjacent(x,y) ^ d(x) ^ b(y)

0 adjacent(x,y) ^ d(x) ^ c(y)

0 adjacent(x,y) ^ d(x) ^ a-prime(y)

0 adjacent(x,y) ^ d(x) ^ b-prime(y)

0 adjacent(x,y) ^ d(x) ^ c-prime(y)

0 adjacent(x,y) ^ d(x) ^ d-prime(y)

0 adjacent(x,y) ^ d(x) ^ t(y)

0 adjacent(x,y) ^ a-prime(x) ^ a-prime(y)

0 adjacent(x,y) ^ a-prime(x) ^ a(y)

0 adjacent(x,y) ^ a-prime(x) ^ b(y)

0 adjacent(x,y) ^ a-prime(x) ^ c(y)

0 adjacent(x,y) ^ a-prime(x) ^ d(y)

0 adjacent(x,y) ^ a-prime(x) ^ b-prime(y)

0 adjacent(x,y) ^ a-prime(x) ^ c-prime(y)

0 adjacent(x,y) ^ a-prime(x) ^ d-prime(y)

0 adjacent(x,y) ^ a-prime(x) ^ t(y)

0 adjacent(x,y) ^ b-prime(x) ^ b-prime(y)

0 adjacent(x,y) ^ b-prime(x) ^ a(y)

0 adjacent(x,y) ^ b-prime(x) ^ b(y)

0 adjacent(x,y) ^ b-prime(x) ^ c(y)

0 adjacent(x,y) ^ b-prime(x) ^ d(y)

0 adjacent(x,y) ^ b-prime(x) ^ a-prime(y)

0 adjacent(x,y) ^ b-prime(x) ^ c-prime(y)

0 adjacent(x,y) ^ b-prime(x) ^ d-prime(y)

0 adjacent(x,y) ^ b-prime(x) ^ t(y)

0 adjacent(x,y) ^ c-prime(x) ^ c-prime(y)

0 adjacent(x,y) ^ c-prime(x) ^ a(y)

0 adjacent(x,y) ^ c-prime(x) ^ b(y)

0 adjacent(x,y) ^ c-prime(x) ^ c(y)

0 adjacent(x,y) ^ c-prime(x) ^ d(y)

0 adjacent(x,y) ^ c-prime(x) ^ a-prime(y)

0 adjacent(x,y) ^ c-prime(x) ^ b-prime(y)

0 adjacent(x,y) ^ c-prime(x) ^ d-prime(y)

0 adjacent(x,y) ^ c-prime(x) ^ t(y)

0 adjacent(x,y) ^ d-prime(x) ^ d-prime(y)

0 adjacent(x,y) ^ d-prime(x) ^ a(y)

0 adjacent(x,y) ^ d-prime(x) ^ b(y)

0 adjacent(x,y) ^ d-prime(x) ^ c(y)

0 adjacent(x,y) ^ d-prime(x) ^ d(y)

0 adjacent(x,y) ^ d-prime(x) ^ a-prime(y)

0 adjacent(x,y) ^ d-prime(x) ^ b-prime(y)

0 adjacent(x,y) ^ d-prime(x) ^ c-prime(y)

0 adjacent(x,y) ^ d-prime(x) ^ t(y)

0 adjacent(x,y) ^ t(x) ^ t(y)

0 adjacent(x,y) ^ t(x) ^ a(y)

Frontiers in Robotics and AI | www.frontiersin.org 24 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

0 adjacent(x,y) ^ t(x) ^ b(y)

0 adjacent(x,y) ^ t(x) ^ c(y)

0 adjacent(x,y) ^ t(x) ^ d(y)

0 adjacent(x,y) ^ t(x) ^ a-prime(y)

0 adjacent(x,y) ^ t(x) ^ b-prime(y)

0 adjacent(x,y) ^ t(x) ^ c-prime(y)

0 adjacent(x,y) ^ t(x) ^ d-prime(y)

0 adjacent(x,y) ^ initial(x) ^ a(y)

0 adjacent(x,y) ^ initial(x) ^ b(y)

0 adjacent(x,y) ^ initial(x) ^ c(y)

0 adjacent(x,y) ^ initial(x) ^ d(y)

0 adjacent(x,y) ^ initial(x) ^ a-prime(y)

0 adjacent(x,y) ^ initial(x) ^ b-prime(y)

0 adjacent(x,y) ^ initial(x) ^ c-prime(y)

0 adjacent(x,y) ^ initial(x) ^ d-prime(y)

0 adjacent(x,y) ^ initial(x) ^ t(y)

0 adjacent(x,y) ^ a(x) ^ final(y)

0 adjacent(x,y) ^ b(x) ^ final(y)

0 adjacent(x,y) ^ c(x) ^ final(y)

0 adjacent(x,y) ^ d(x) ^ final(y)

0 adjacent(x,y) ^ a-prime(x) ^ final(y)

0 adjacent(x,y) ^ b-prime(x) ^ final(y)

0 adjacent(x,y) ^ c-prime(x) ^ final(y)

0 adjacent(x,y) ^ d-prime(x) ^ final(y)

0 adjacent(x,y) ^ t(x) ^ final(y)

Unconventional Model

adjacent(char,char)

crawler(char)

quad(char)

move(char)

stop(char)

tethered(char)

untethered(char)

attach(char)

initial(char)

final(char)

0 adjacent(x,y) ^ crawler(x) ^ move(x) ^ crawler(y) ^ move(y)

0 adjacent(x,y) ^ crawler(x) ^ move(x) ^ crawler(y) ^ stop(y)

0 adjacent(x,y) ^ crawler(x) ^ move(x) ^ quad(y) ^ move(y)

0 adjacent(x,y) ^ crawler(x) ^ move(x) ^ quad(y) ^ stop(y)

0 adjacent(x,y) ^ crawler(x) ^ stop(x) ^ crawler(y) ^ move(y)

0 adjacent(x,y) ^ crawler(x) ^ stop(x) ^ crawler(y) ^ stop(y)

0 adjacent(x,y) ^ crawler(x) ^ stop(x) ^ quad(y) ^ move(y)

0 adjacent(x,y) ^ crawler(x) ^ stop(x) ^ quad(y) ^ stop(y)

0 adjacent(x,y) ^ quad(x) ^ move(x) ^ crawler(y) ^ move(y)

0 adjacent(x,y) ^ quad(x) ^ move(x) ^ crawler(y) ^ stop(y)

0 adjacent(x,y) ^ quad(x) ^ move(x) ^ quad(y) ^ move(y)

0 adjacent(x,y) ^ quad(x) ^ move(x) ^ quad(y) ^ stop(y)

0 adjacent(x,y) ^ quad(x) ^ stop(x) ^ crawler(y) ^ move(y)

0 adjacent(x,y) ^ quad(x) ^ stop(x) ^ crawler(y) ^ stop(y)

0 adjacent(x,y) ^ quad(x) ^ stop(x) ^ quad(y) ^ move(y)

0 adjacent(x,y) ^ quad(x) ^ stop(x) ^ quad(y) ^ stop(y)

0 adjacent(x,y) ^ untethered(x) ^ untethered(y)

Frontiers in Robotics and AI | www.frontiersin.org 25 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Vu et al. SRL With Unconventional String Models

0 adjacent(x,y) ^ untethered(x) ^ tethered(y)

0 adjacent(x,y) ^ tethered(x) ^ untethered(y)

0 adjacent(x,y) ^ tethered(x) ^ tethered(y)

0 adjacent(x,y) ^ attach(x) ^ untethered(y)

0 adjacent(x,y) ^ untethered(x) ^ attach(y)

0 adjacent(x,y) ^ attach(x) ^ tethered(y)

0 adjacent(x,y) ^ tethered(x) ^ attach(y)

0 adjacent(x,y) ^ initial(x) ^ crawler(y)

0 adjacent(x,y) ^ initial(x) ^ quad(y)

0 adjacent(x,y) ^ initial(x) ^ move(y)

0 adjacent(x,y) ^ initial(x) ^ stop(y)

0 adjacent(x,y) ^ initial(x) ^ untethered(y)

0 adjacent(x,y) ^ initial(x) ^ tethered(y)

0 adjacent(x,y) ^ initial(x) ^ attach(y)

0 adjacent(x,y) ^ crawler(x) ^ final(y)

0 adjacent(x,y) ^ quad(x) ^ final(y)

0 adjacent(x,y) ^ move(x) ^ final(y)

0 adjacent(x,y) ^ stop(x) ^ final(y)

0 adjacent(x,y) ^ tethered(x) ^ final(y)

0 adjacent(x,y) ^ untethered(x) ^ final(y)

0 adjacent(x,y) ^ attach(x) ^ final(y)

Frontiers in Robotics and AI | www.frontiersin.org 26 July 2018 | Volume 5 | Article 76

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Statistical Relational Learning With Unconventional String Models
	1. Introduction
	2. Model Theory and First-Order Logic
	3. Markov Logic Networks
	4. Strings and Stringsets
	4.1. Strings
	4.2. Stringsets
	4.3. Regular Stringsets and Automata
	4.4. Learning Regular Stringsets
	4.5. Logical Descriptions of Stringsets
	4.6. Subregular Complexity
	4.7. Sub-structures
	4.8. Learnability of Subregular Classes

	5. Unconventional Models
	6. Implementation in Alchemy
	7. Comparison of MLNs with n-Gram Models
	7.1. Target Stochastic Stringset
	7.2. Learning Algorithms
	7.3. Evaluation Method
	7.4. Training Data
	7.5. Results and Discussion

	8. Unbounded Stress Patterns
	8.1. The LHOR Stress Pattern
	8.2. Logical Characterizations of LHOR
	8.3. Markov Logic Networks With Conventional and Unconventional Models
	8.4. Training Data
	8.5. Evaluation Method
	8.6. Results

	9. Robotic Planning
	9.1. Planning Case Study
	9.2. Markov Logic Networks With Conventional and Unconventional Models
	9.3. Training Data
	9.4. Evaluation Method and Results

	10. Discussion
	Author Contributions
	Funding
	References
	Appendix:
	Input .mln Files for Alchemy 2
	ABC-strings
	Unbounded Stress Pattern
	Conventional Model
	Unconventional Model

	Robot Planning
	Conventional Model
	Unconventional Model

