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Statistical Representation of Distribution System
Loads Using Gaussian Mixture Model
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Abstract—This paper presents a probabilistic approach for sta-
tistical modeling of the loads in distribution networks. In a distri-
bution network, the probability density functions (pdfs) of loads
at different buses show a number of variations and cannot be rep-
resented by any specific distribution. The approach presented in
this paper represents all the load pdfs through Gaussian mixture
model (GMM). The expectation maximization (EM) algorithm is
used to obtain the parameters of the mixture components. The per-
formance of the method is demonstrated on a 95-bus generic dis-
tribution network model.

Index Terms—Expectation maximization (EM) algorithm,
Gaussian mixture model, load profile.

I. INTRODUCTION

F
OLLOWING the significant development in business reg-

ulations, technology evolutions, and various government

policies towards low carbon generation technology, the main

challenges before distribution companies are to improve their

operating efficiencies, develop new tariffs, and offer new ser-

vices to low voltage (LV) consumers without significant capital

burden. Since the loads of the LV consumers are unmetered, the

planning and operation of the networks requires to make use of

sample customer load profiles and apply modeling techniques

for greater asset utilization and increased automation. The ran-

domness of the customer load behavior merely indicates the ne-

cessity of statistics-based modeling approach.

The most common technique to model the loads is through

Gaussian distribution [1]. However, the single Gaussian as-

sumption is not justified for all the loads [2]. In [2], the research

work on statistical methods for load research data analysis con-

cludes that the statistical distribution of electric load variation

does not follow any common probability distribution function.

Several attempts have been made to model the loads

through various probability distributions [3]–[7]. Irwin et al.

[3] have fitted the Weibull distribution to consumer billing

data. Although the distribution was flexible enough to explain

Manuscript received January 30, 2009; revised May 11, 2009. First published
October 30, 2009; current version published January 20, 2010. This work was
supported by EDF Energy Networks, U.K., under Grant EESC-P05821. Paper
no. TPWRS-00041-2009.

R. Singh and B. C. Pal are with the Department of Electrical and Elec-
tronic Engineering, Imperial College, London SW7 2BT, U.K. (e-mail:
ravindra.singh@ic.ac.uk; b.pal@ic.ac.uk).

R. A. Jabr is with the Department of Electrical and Computer Engi-
neering, American University of Beirut, Beirut 1107 2020, Lebanon (e-mail:
rabih.jabr@aub.edu.lb).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2009.2030271

the distribution of energy consumption of the customers in

Northern Ireland, the analysis covers only the customer energy

and billing data. Seppala [4] has suggested log-normal distribu-

tion models. Reference [4] also proposed a model of customer

load confidence interval. The models were verified from hourly

load measurement data obtained from a Finnish load research

project.

Herman and Kritzinger [5] fitted various distribution func-

tions (Weibull, normal, Erlang, and beta) to grouped domestic

loads. As a result, they proposed the beta distribution function.

A similar research effort was reported by Ghosh et al. [6] in dis-

tribution system state estimation problem. They validated var-

ious models such as normal, log-normal, and beta distribution

through chi-square goodness of fit test. Reference [6] concluded

that an appropriate model was system specific with clear prefer-

ence for the beta distribution because of its flexibility to adapt to

the skewness in the distribution. An improved model with beta

distribution was also presented in [7].

It can be concluded that there is no unique methodology to

model the load pdf. In general, the Gaussian modeling of the

load profiles appears to be a natural choice for various applica-

tions due to its simplicity as it can be completely described by

two moments (mean and variance). Although there are a host of

two parameter distributions, the Gaussian is preferable because

the analysis based on this distribution is well developed and re-

ported in the literature. Furthermore, many computational tools,

such as the state estimation function, can easily incorporate the

Gaussian pdfs.

In view of this, in our research, we have modeled the vari-

ability in the load distribution through Gaussian mixture model

(GMM) approximation. The advantage of GMM approach is

that different types of load distributions can be fairly represented

as a convex combination of several normal distributions with re-

spective means and variances. The problem of obtaining various

mixture components (weight, mean, and variance) is formulated

as a parametric estimation problem. The expectation maximiza-

tion (EM) algorithm [8]–[10] was utilized to obtain the solution.

The EM algorithm is a powerful tool in parameter estimation

problems. It is a general method of finding the maximum-likeli-

hood estimate of the parameters of an underlying distribution

from a given data set when the data are incomplete or have

missing values. The above formalism was applied to a 95-bus

UK Generic Distribution System (UKGDS) model. Section II

introduces the UKGDS network model and load profile calcula-

tions. GMM, EM algorithm, and further refinement through re-

duction techniques followed by simulation results are discussed

in Sections III and IV.
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Fig. 1. UKGDS: 95-bus test system model.

II. LOAD PROFILE CALCULATIONS

Load profiles were generated for a part of UKGDS model.

The system model comprises 95 buses, with 55 load buses and

two wind farms as sources of distributed generation (DG). Fig. 1

shows the schematic of the test system. The network and load

data for UKGDS were obtained from [11].

The U.K. generic distribution network project [11] identified

the following four types of consumers for developing generic

load profile index (LPI).

1) Domestic-Unrestricted (D/U)

2) Domestic-Economy (D/E)

3) Industrial (I)

4) Commercial (C)

The LPI for a particular class of consumer was defined as the

average half hourly power consumptions of several customers

across the entire network measured at the same time. This was

part of the load survey conducted in the UKGDS project [11].

The power was measured at a feeder of particular class of cus-

tomer and was normalized with respect to that feeder rating.

A half hourly normalized load profile was obtained. This half

hourly profile across all the measured feeder of this particular

category was averaged to generate a uniform LPI for a particular

class of customer. LPIs of four types of consumers were com-

puted in this way. The resulting LPIs are displayed in Fig. 2. The

annual maximum demand (kW) information for a type of cus-

tomer at a bus is known from the maximum demand indicator

(MDI) record in each feeder. The annual maximum demand thus

maps with the maximum value of the annual LPI.

Based on this information the real and reactive power load

profiles at th bus were computed as follows:

(1)

(2)

Fig. 2. Annual half hourly demand profile indices for various consumers.

Fig. 3. Probability distribution of load at different buses.

where

, half hourly time instances of the year;

, real and reactive power loads at the th bus

at time instant ;

LPI value of the th class of consumer at

time instant ;

annual maximum demand of the th class

of consumer at bus ;

angle of average power factor of the th

class of consumer;

number of consumer classes.

The typical power factors for all four classes of consumers

were taken as 0.95, 0.99, 0.98, and 0.90 lagging, respectively.

A. Distribution of Load Profiles

The density histogram of load profiles was generated for a

load bus by segmenting the range of the data into various dis-

joint categories known as bins. The computation of the relative

frequencies of each bin is fairly standard and the details can be

found in [12]. Some of the load distributions are displayed in

Fig. 3. It is clear that no single standard distribution model can

fit all of them. Fig. 4 shows that a nonstandard distribution can

be composed through a weighted combination of normal dis-

tributions. This takes us to the concept of GMM, which is dis-

cussed next.
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Fig. 4. Gaussian mixture approximation of density: dotted lines represent in-
dividual mixture components and solid line represents the resultant density.

III. GAUSSIAN MIXTURE MODEL

A Gaussian mixture (GM) pdf is a weighted finite sum of
Gaussian pdfs (Fig. 4). It is characterized by the number of mix-
ture components and the weights, mean, and variance (mean
vector and covariance matrix for the multivariate case) of each
component. Since a pdf must be nonnegative and the integral of
a pdf over the sample space of the random quantity it represents
must evaluate to unity, the mixture weights must be nonnegative
and the sum of all the weights must equal to one. For the multi-
variate case, the GM pdf model is given by

(3)

where is the number of mixture components and is the
weight of the th mixture component, subject to and

. is chosen from the set of parameters

, a member of which defines a GM.
Given a -dimensional random variable , with mean and
covariance , the density function of each mixture component

is a normal distribution given by

(4)

Example: Mixture of Two Gaussian Components: Consider
that a probability density function is represented by a weighted
sum of two normally distributed pdfs. The resulting probability
density function will be

(5)

(6)

Integrating both sides of (6) over the sample space of

(7)

Since integral of any pdf over the entire sample space gives the
total probability of distribution which is equal to one, the inte-
gral terms on both sides of (7) evaluate to unity. In this case, (7)
becomes

(8)

Equation (8) shows that the resultant density in (6) is the convex
combination of the two Gaussian densities. In this example, in
order to express a given probability density as a convex combi-
nation of two Gaussian components, we need to know the pa-
rameters . The EM algorithm is an efficient
tool to obtain these parameters. The details of the EM algo-
rithm to obtain the mixture parameters to fit a distribution are
described next.

A. GM Parameter Estimation by EM Algorithm

The EM algorithm to obtain the parameters of the GM,
constructed by sampling from a given distribution, has been
adopted in various application areas such as target tracking
[13], clustering [14], and pattern recognition [15]. In the context
of power distribution load modeling, a version of the EM algo-
rithm is used to obtain in the circumstances when each
can be regarded as marginal distribution of a joint distribution

involving an additional “auxiliary” variable , i.e.

(9)

Let denote a set of independent and identically dis-
tributed data samples, i.e., and

denote a set of hidden random variables
, such that . To put it

simply, each refers to a mixture component through which
an observation comes from.

The EM algorithm used in this paper maximizes the following
log-likelihood expectation:

(10)

where are the current parameters estimates that are used to
evaluate the expectation and are the new parameters that are
optimized to increase .

The EM algorithm recursively generates a sequence of pa-

rameters , that, in fea-

sible circumstances, converges to a maximizer of over
. One step of the recursion, yielding formulae for

given , is

(11)

(12)

(13)
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where

(14)

The steps to obtain (11)–(13) are briefly explained in
Appendix A.

IV. SIMULATION STUDY

The formulation of GMM is general, as it treats as a ma-

trix of dimension . We first consider the univariate case in

which we have applied the GMM methodology to the UKGDS

model to obtain the mixture components for real and reactive

demands in all 55 buses. In the univariate distribution ,

the load at each bus was modeled as a GMM. This excludes

the correlation amongst the loads. We also applied the GMM

in the multivariate case by augmenting the loads at different

buses in . The multivariate GMM incorporates the correlation

information. The GMM components at every bus were obtained

using the EM algorithm. The algorithm was coded in MATLAB

and run on a Pentium-IV PC, 2.99-GHz processor with 1 GB

of RAM. The EM algorithm was initialized using -means

clustering algorithm available in MATLAB [16]. The algorithm

was terminated when the relative difference of log-likelihood

values [17] in two consecutive iterations is below a threshold.

(i.e., ). A threshold value of 0.001

was taken as the termination criterion. In the algorithm, the

number of mixture components was pre-specified. The

basis for choosing the is explained with the help of Table III

in Section IV-D.

A. Full Component GMM

Fig. 5 shows the distribution of various mixture components

in buses #1, #26, and #82. There can be a situation in which

a load can be represented by more than one Gaussian mixture

component. For example, a careful look at bus #82 load pdf sug-

gests that a 12-kW value can be solely captured by mixture com-

ponent #2, whereas a 25-kW value can be represented either by

component #1 or component #5 or by the weighted combination

of the both. Since a single Gaussian pdf is required in various ap-

plications, it is necessary to produce an equivalent Gaussian pdf

for the 25-kW load. There are several ways to achieve this. One

can select the pdf with the highest weight. However when the

weights are comparable with low overlap between the respec-

tive pdfs, both of them should be chosen. In the cases such as

25 kW, where the respective pdfs have significant overlap with

comparable weights, the equivalent mean and variance can be

generated by merging relevant components. A full component

merging to produce the overall mean and covariance is based

on the following equations:

(15)

Fig. 5. GMM approximation of the load pdf with (a) 3, (b) 5, and (c) 5 Gaussian
components.

(16)

However, this generates a pdf with larger spread and does not

seem to offer preferential treatment to high density region. This

happens due to the presence of some pdfs having significantly

different parameters from the rest. A solution is through an im-

proved analytical approach to merging via mixture reduction.
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TABLE I
PARAMETERS OF THE GMM COMPONENTS: THE HIGHLIGHTED COMPONENTS

ARE SELECTED FOR DELETION USING DISTANCE MEASURE GIVEN IN (17)

B. Reduced Component GMM

The merging is based on the clustering algorithm that com-

bines mixtures into groups (clusters). The algorithm operates by

selecting the component with the largest weight as the principal

component for a cluster, and merging all components that are

within a certain distance of the principal component. The dis-

tance measure is defined by Salmond [18]:

(17)

where subscript “ ” denotes the principal component. All the

mixture components, satisfying for ,

are merged together. The components which do not satisfy

are ignored. Threshold “ ” is determined by the

-test using a 99% confidence. The equivalent mean and

covariance of the merged components are given by

(18)

(19)

(20)

It is to be noted that because of the exclusion of some of the

components based on the above criterion, the summation of the

weights of the components within the cluster will not add to

unity. This has been accounted for by normalizing the mean and

variances of the cluster with .

Table I shows the parameters of GMM components. The

buses requiring mixture reduction are shown in Table I. The

parameters of the components selected for deletion are high-

lighted.

The results of the full component merging and reduced com-

ponent merging to a single Gaussian pdf are displayed in Fig. 6.

Fig. 6. Single Gaussian approximation of the load pdf with and without mixture
reduction.

It is seen that the mixture reduction algorithm provides a better

approximation of the original pdf. In Fig. 6, the merging of full

and reduced components to a single Gaussian pdf is demon-

strated for comparison purposes. In practice, a set of non-over-

lapping Gaussian pdfs is produced by merging the relevant com-

ponents and each pdf in the set statistically represents the range

of load (low, medium, and high).

C. Performance Comparison of GMM With

Other Distributions

To compare the performance of the GMM, a number of

distributions (normal, log-normal, beta, gamma) were fitted in

the load density histograms. The fitted distributions along with
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Fig. 7. Probability distribution of load at different buses.

TABLE II
CHI-SQUARE GOODNESS-OF-FIT FOR VARIOUS DISTRIBUTIONS

GMM at buses #1 and #19 are displayed in Fig. 7. The GMM

offers to provide a better fit for the load density histograms as

compared to other distributions. To verify this numerically, the

-statistics which measures the goodness of fit was used. A

similar measure is used in [6]. The Chi-square goodness-of-fit

was obtained using function available in MATLAB

[16]. Table II shows the Chi-square goodness-of-fit for various

distributions. A smaller value indicates a better fit. At both

buses, this value is smallest for the GMM, confirming the

GMM as best fit of all those considered.

D. Performance of GMM With Increased Mixture Components

Table III shows the chi-square goodness-of-fit values for the

GMM at bus #1 after termination of the algorithm with #2,

#3, #4, and #5 Gaussian components. A lower value of the

chi-square goodness-of-fit indicates better accuracy. For one

Gaussian pdf, the value of the chi-square goodness-of-fit is

very high (8649.02 in Table II). As seen from Table III, when

the number of components increases from 2 to 3 and 3 to 4, the

chi-square goodness-of-fit value decreases significantly. With

increase in number of components from 4 to 5, this decrease

is not very high, whereas computational efforts in terms of

CPU times and number of iterations are very high. Thus as

a trade-off, three components were selected for the GMM at

bus #1. The components for the GMM at other buses were

determined similarly.

E. Load Correlation Through Multivariate GMM

The results presented in the previous sections were obtained

by considering the load profile at an individual bus. This leads to

the univariate GMM, and thus, no information about the correla-

tions was obtained. However, the GMM algorithm presented in

TABLE III
PERFORMANCE AT BUS #1 WITH INCREASING GMM COMPONENTS

Fig. 8. Bivariate GMM approximation with four mixture components.

this paper is generic and also incorporates the multivariate dis-

tributions. In the multivariate case, the load profiles at different

buses are augmented together in in order to capture the corre-

lations. In this case, the off-diagonal elements of the covariance

matrix (corresponding to the th component) represent the

correlations. In this research, we augmented the real and reac-

tive power load profiles at all 55 buses and obtained the GMM

components. The GMM was represented by ten mixture compo-

nents. The covariance matrix of each component has dimension

of 110 110 which is difficult to show in this paper. However,

we have demonstrated the correlation between the real power

loads by considering the correlations in two and three loads in

buses which are close to each other. Fig. 8 shows the two-di-

mensional GMM which is obtained from the load profiles at

buses #33 and #34, respectively. The bivariate distribution was

modeled through four Gaussian components which in two di-

mensions are represented by black ellipses. Table IV shows the

parameters of GMM components. In the table, off-diagonal ele-

ments of each of the represent the correlation between

the loads at buses #33 and #34. Similarly the load correlations

between the buses #22, #23, and #24 were obtained, and re-

sults are presented in Table V. In the three-dimensional case,

a Gaussian component is represented by an ellipsoid.

V. DISCUSSION

The GMM technique and statistical representation of the load
based on the consumer load profiles can be very useful for var-
ious distribution system applications such as distribution net-
work planning [1], probabilistic load flow [19], load forecasting
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TABLE IV
MIXTURE COMPONENTS WITH CORRELATION AT BUSES #33 AND #34

TABLE V
MIXTURE COMPONENTS WITH CORRELATION AT BUSES #22, #23, AND #24

[20], customer billing [3], load management [21], state estima-
tion [6], system restoration, and distribution automation. For ex-
ample, most of the probabilistic load flow techniques are devel-
oped based on the assumption that the distribution of the load
is Gaussian. This assumption works well in transmission net-
works, whereas in distribution networks, different probabilistic
load distributions exist and representing them through single
Gaussian pdf cannot be justified. Furthermore, the large size
of the distribution network having various probability distribu-
tions at different buses makes accommodating them in a single
load flow formulation impractical. On the other hand, represen-
tation of loads through GMM provides a unique framework to
model the variability of distribution functions while retaining
the Gaussian distribution assumption.

The GMM-based technique finds another important applica-
tion in distribution system state estimation (DSSE). In distri-
bution systems, measurements are limited, and hence, a large
number of pseudo measurements are introduced in order to run
the state estimation algorithms. The most common algorithm for
the DSSE is weighted least squares (WLS) [22]. The WLS for-
mulation is based on the maximum-likelihood estimation theory
and utilizes the fact that the measurements are normally dis-
tributed. The GMM-based technique can be applied to model
the loads as pseudo measurements and the Gaussian compo-
nents of the pseudo measurements can be accommodated in
WLS formulation.

In the load forecasting based on the ARMA model [20],
the error component of the model can be represented through
GMM. In reliability studies, various probability of failure func-
tions irrespective of their distributions can be fairly represented
by GMM. In the billing process, the GMM can be utilized to
explain the energy consumptions of various class of customers.
In load management, where the load modeling methodology
allows the independent consideration of individual load compo-
nent use and response model, the proposed technology can be
adapted to the study of the load response evaluation for demand
side management control actions, cold load pick-up, etc.

In general, the proposed technique can be applied in hosts
of probabilistic-based power system analysis. However, our re-
cent research efforts have targeted its application in distribution
system state estimation [23]. In DSSE, the loads are modeled
as pseudo measurements and load information is obtained from
the load profile. If we choose a snapshot of load to perform the

state estimation, we also need the information about its vari-
ance. This information is obtained from the mixture component
corresponding to this load. A load can be associated with a par-
ticular Gaussian component in the mixture through data asso-
ciation by relative marginal density given in (14). This is done
by computing the relative marginal density of the load snap-
shot with respect to each component. The component with max-
imum density is identified as the representative of the load. If
several components have comparable marginal densities, they
can be merged together using the mixture reduction technique
described in Section IV-B. As seen from (14), the computation
of marginal densities with respect to each component requires
all the parameters of the GMM.

The performance of the DSSE using GMM is reported in [23]
where two approaches are demonstrated. One approach is based
on measurement correlation factor and the other is based on
GMM. The results in the paper confirm that the GMM perfor-
mance is better than that of the correlation-based approach.

The effect of correlation between the loads on the accuracy of
the estimates is significant [24]. In view of this, the multivariate
GMM must be used to generate the parameters of the Gaussian
components, which are useful for state estimation.

VI. CONCLUSION

An efficient approach based on the EM algorithm, to repre-

sent the loads statistically, is presented and theoretically justi-

fied. The advantage of the approach is that all the load pdfs irre-

spective of their distributions are represented by GMM approxi-

mation followed by the appropriate reduction. The performance

comparison of the GMM with various distribution indicates its

effectiveness for load modeling in various distribution system

applications.

APPENDIX A

EM ALGORITHM AND PROBABILITY DENSITY ESTIMATION

Given a measure space of incomplete data. Assume that

a complete data set exists . An element of is

a vector which contains the labels of each element of (i.e.,

which mixture component spawned which samples). In view of

Section III-A assume a joint density function

(21)
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Now, define a complete data likelihood as a function of the joint

density:

(22)

The EM algorithm first finds the expected value of complete-

data log-likelihood with respect to the unknown

data given observation and current parameter estimates .

That is, we define

(23)

is the marginal distribution of the unobserved data

and is dependent on both the observed data and current

parameters.

The evaluation of the expectation is called the E-step of the

EM algorithm. The second step of the algorithm is called the

M-step, in which the expectation computed in the E-step is max-

imized by choosing

(24)

denotes the set of values which

maximize over . This set must be nonempty for the

M-step to be well defined. If this set is a singleton, then we have

(25)

These two steps are repeated in recursion until convergence.

Now consider a Gaussian mixture model defined in (3). Also

define the vector . If we know , we have

(26)

(27)

By Bayes’s rule

(28)

Equation (23) in discrete domain takes the form

(29)

After some complex algebraic manipulation, the above equation

takes the following simplified form:

(30)

The parameters of the mixture components can be obtained

by maximizing the above expression using first-order (Kuhn

Tucker) conditions. Now we can introduce the Lagrange mul-

tiplier with the constraint that and find as

follows:

(31)

Using the fact that , the above expression

results in

(32)

Taking the log of (4), ignoring any constant term (since they

disappear after taking the derivatives), the second summation

on the right-hand side of (30) becomes

(33)

Let be a square matrix, and then from matrix algebra, we have

. Defining

, the right-hand side of (33) can be written as

(34)

Taking the derivatives of (33) and (34) with respect to and

, respectively, and setting them equal to zero, we get

(35)

(36)

Now the algorithm proceeds recursively from an initial starting

point. One step of the recursion of (32), (35), and (36) results in
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(11), (12), and (13), respectively. It should be noted that (36) is

derived using the facts

and .
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