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Abstract: This paper introduces a novel machine learning (ML) model for the lightning performance
analysis of overhead distribution lines (OHLs), which facilitates a data-centrist and statistical view
of the problem. The ML model is a bagging ensemble of support vector machines (SVMs), which
introduces two significant features. Firstly, support vectors from the SVMs serve as a scaffolding,
and at the same time give rise to the so-called curve of limiting parameters for the line. Secondly, the
model itself serves as a foundation for the introduction of the statistical safety factor to the lightning
performance analysis of OHLs. Both these aspects bolster an end-to-end statistical approach to the
OHL insulation coordination and lightning flashover analysis. Furthermore, the ML paradigm brings
the added benefit of learning from a large corpus of data amassed by the lightning location networks
and fostering, in the process, a “big data” approach to this important engineering problem. Finally, a
relationship between safety factor and risk is elucidated. THe benefits of the proposed approach are
demonstrated on a typical medium-voltage OHL.

Keywords: lightning protection; insulation coordination; distribution line; safety factor; machine
learning; support vector machine; bagging ensemble

1. Introduction

Lightning performance analysis of medium-voltage (MV) overhead distribution lines
(OHLs) constitutes one of the major contributing factors to their secure and reliable op-
eration. Namely, the insulation of MV distribution lines is far more prone to flashover
incidents, as a consequence of lightning interactions with the line, than is the respective
insulation of the high-voltage (HV) overhead transmission lines. This stems from the two
interrelated aspects, notwithstanding the environmental influences, that foster a clear dis-
tinction between the lightning performance of distribution and transmission lines: (1) MV
insulation has a much lower lightning withstand voltage than the HV insulation, and
(2) lightning interaction with the MV lines is more complex, due to the influence of indirect
nearby lightning strikes. In other words, lightning performance of MV lines, unlike that of
the HV lines, is aggravated by the fact that nearby indirect lightning strikes often have a
dominant influence on their operation.

Generally speaking, the interaction of lightning with the overhead electric power lines
depends, to a large extent, on the presence or absence of shield wire(s) and can be classified
into a total of five different modes, as follows: (1) direct strike to the phase conductor when
a shield wire is absent, (2) direct strike to the phase conductor when a shield wire is present
(this is known as a shielding failure incident), (3) direct strike to the tower top or to the
shield wire along the span (with a consequent so-called backflashover incident), (4) indirect
nearby strike when a shield wire is absent, and (5) indirect nearby strike when a shield
wire is present. Each mode is associated with an overvoltage that may cause a flashover
on the line insulation. As can be seen, there are three modes of direct and two of indirect
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interaction. The last two modes of interaction produce an overvoltage that may trigger
a flashover incident, through the electromagnetic (EM) coupling of radiated fields from
the lightning channel to the line conductors. A lightning channel is essentially behaving
like an antenna that radiates strong, high-frequency EM fields far from the location of the
strike. These two modes of interaction pose no threat to the HV lines but, at the same time,
have a very prominent influence on the MV lines. The shield wire(s), when present on
the line, provide to the phase conductors both (a) a shielding effect from the direct strikes,
in accordance with the electrogeometric (EGM) theory and (b) a screening effect from the
radiated EM fields emanating from the indirect strikes. Both shielding and screening effects
depend, primarily, on the number and position of the shield wires on the tower.

All five modes of lightning interaction with overhead power lines have been thor-
oughly studied, both in case of transmission and distribution lines of different geometries
and voltage levels [1,2]. They are only briefly introduced here, while the interested reader
is, at this point, advised to consult Refs. [1,3] for additional information. Of the three
direct modes of interaction, the backflashover incidents are the most difficult to analyze.
This partly stems from the complex nature of the EM wave propagation through the mul-
ticonductor, multispan structure which comprises towers, phase conductors, and shield
wires, including reflections from the tower’s grounding system and adjacent spans. Some
additional complicating aspects of the backflashover phenomenon are [1,4]: (1) lightning
strokes to the tower tops and along the span length (which initiate different traveling
wave patterns), (2) tower height and its grounding impulse impedance, (3) soil ionization,
(4) the presence of counterpoise wire, (5) the impact of the nonstandard wave-shape of the
backflashover overvoltage on the critical flashover voltage (CFO) of the line insulation,
(6) the statistical probability of the time to crest of the lightning current, (7) statistical
correlation between amplitudes and time-to-crest values, (8) power-frequency voltage, and
(9) the influence of corona on the propagation of traveling waves. Corona attenuates and
distorts traveling waves, but also decreases the surge impedance of the shield wire and
increases the coupling factor between the shield wire and phase conductors. The EGM
theory features prominently in analyzing all three modes of direct interaction, giving in
the process rise to the associated notion of the “shielding angle” that is a design feature of
the towers. Further complexity in analyzing flashovers on distribution lines (from direct
strikes) stems from the possibility of “side strikes” on sloping terrain, the presence of the
so-called “rogue” towers, and other exogenous factors (e.g., keraunic levels, orographic
factors, the encroachment of nearby structures on the right-of-way of the line, etc.) [1,5].

Two indirect modes of lightning interaction with overhead distribution lines give
rise to, probably, the most demanding and complex mathematical models among all five
aforementioned modes of interaction. The full-wave EM theory of coupling radiated fields
over lossy ground, from the lightning strike channel to the (shielded or exposed) phase
conductors, is known to be notoriously complicated; see, for example, Refs. [6–12] for more
details and additional information. It is beyond the scope of the present paper to discuss
these various numerical approaches to the solution of this complex problem. The associated
numerical codes (e.g., FDTD approach in particular) tend to be computationally demanding
and expensive to solve, in terms of CPU time and hardware resources. Furthermore,
some of the (almost) elusive features of lightning exert an important influence on the
overvoltage shape and amplitude that is a consequence of the EM field coupling to the
phase conductors [4]. For example, a velocity of the return-stroke current (of the negative
downward lightning strike) is one of those elusive but important parameters that features
prominently in analyzing indirect lightning strikes to distribution lines.

A secure and reliable operation of an OHL presupposes that the insulation coordina-
tion of the line has been properly carried out. Since the OHL has a self-restoring insulation,
it is recommended that the statistical method of insulation coordination be applied, as
described in the international norm IEC 60071-2:2018 [13]. The statistical method exhibits
many advantages over the deterministic method, particularly in that it fully accounts for
the stochastic nature of the lightning itself, as well as the statistical characteristics of the
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insulation strength. It also brings the notion of flashover probability, risk, statistical safety
factor, and others, that are replacing the hard (and often crude) limits of the determinis-
tic (worst-case scenario) approach. Moreover, the advent of lightning location networks
(LLNs), which record lightning strike locations and associated amplitudes for strikes over
large areas (spanning even whole continents), has ushered in a “big data” paradigm into the
lightning analysis domain [14]. Large lightning datasets, coupled with machine learning
(ML) techniques, give rise to a new class of models for analyzing the lightning performance
of overhead power lines, including their statistical insulation coordination. Using ML
techniques has certain advantages over more traditional EM-theory-based methods, partic-
ularly in terms of computational speed, reduced model complexity, and reliance on a large
corpus of recorded LLN measurements data. ML is able to learn from (real-world) data
those (almost intangible) relationships between lightning-current parameters (including
strike locations) and OHL flashover probabilities.

One of the most prominent examples of using ML in the analysis of lightning per-
formance of overhead distribution lines was given by Martinez and Gonzalez-Molina
in [15,16]. Therein, they applied a feed-forward artificial neural network (ANN) for the
analysis of OHL lightning flashovers. The problem was posed as a binary classification,
and the ANN was trained on a synthetic dataset generated from the analytical treatment
of OHL exposure to lightning. Going forward, two important and interrelated aspects
of the problem ought to be emphasized: (1) an insulation flashover is a low-probability
event (with all the ramifications that it entails for classification tasks), and (2) any dataset
of lightning flashovers on OHLs will, necessarily, be class imbalanced (with important
repercussions on the training of ML classifiers). There have been other ML and statistical
approaches to analyzing lightning performance of OHLs. For example, Ain et al. in [17]
introduced a Gaussian process regression model for the prediction of lightning-induced
overvoltages on OHLs. Napolitano et al. in [18] used a stratified-sampling Monte Carlo
method for the lightning performance assessment of distribution lines.

The present paper builds on our previous research published in Ref. [19], where the
bagging ensemble was first introduced for the lightning assessment of OHL performance.
This research is extended here with the introduction of a statistical safety factor. It is
argued that the proposed bagging ensemble of support vector machines (SVM) provides
not only a robust classifier but brings unique benefits to the statistical treatment of the OHL
lightning performance. These emanate primarily from the underlying support vectors,
which are unique feature of the SVM. Namely, it is shown how support vectors can be used
to construct a curve of limiting parameters (CLP) of the OHL, which features prominently
in the statistical methods of insulation coordination; see IEC TR 60071-4:2004 [20] for
more information. This is considered to be an original contribution to the state of the art.
Furthermore, the proposed ML model provides a foundation for the introduction of a
statistical safety factor (SF) to the OHL lightning performance analysis. This is the first
time, as far as the authors are informed, that the statistical safety factor is used in the
context of the lightning performance analysis of OHLs. Both of these aspects (CLP and
SF) fully endorse an end-to-end statistical approach (based on “big data” and ML) to the
insulation coordination and flashover performance analysis of OHLs. The interested reader
is advised to consult IEC TR 60071-4:2004 [20] for more information related to the use of
CLP in insulation coordination and connected studies, which is considered beyond the
scope of this paper. The focus of the present paper is on the statistical safety factor and its
close relationship with the risk of flashover.

The rest of this paper is organized as follows. Section 2 forms the main body of
the paper and presents in Section 2.1 a lightning data generating process, which rests on
the Monte Carlo method. It also introduces a dataset on which the subsequent machine
learning model is trained and tested. Next, Section 2.2 presents the proposed ensemble
learning model, based on SVMs, to study lightning flashovers on overhead distribution
lines. It further details the related processes of deriving the curve of limiting parameters
for the line, as well as its statistical safety factor. Both stem from the ML model outputs
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(i.e., support vectors and model predictions). It also discusses the relationship between
the safety factor and a risk of flashover, as well as its use in the pricing of overvoltage
protection measures. Section 3 brings a brief discussion of the proposed statistical approach
in terms of the international norms IEC 60071 and IEC 62305, along with its limitations and
possible future extensions. The paper is concluded in Section 4.

2. Materials and Methods

The materials part introduces a synthetic dataset of lightning flashovers on OHLs, its
generation process, and statistical properties. The methods part describes the ML model,
its training and testing procedure, and the use of its products in deriving the CLP and the
SF for the distribution lines.

2.1. Dataset of OHL Lightning Flashovers

This section briefly introduces a dataset of lightning flashovers for training the machine
learning model, which was generated by means of a Monte Carlo simulation; see [19] for
more information on the data generating process itself. The main outline of the dataset con-
struction process is depicted in Figure 1. The statistical probability of lightning flashovers
on distribution lines, considering all five modes of lightning interaction, is dependent on
several parameters. Each of these comes with its own particular statistical distribution,
as follows: lightning current amplitudes (I) from a log-normal distribution, lightning
return-stroke velocities (v) and lightning strike distances (d) from the uniform distribution,
OHL tower’s grounding surge impedances (R) from the normal distribution, shield wire’s
presence/absence on the tower (s) from the Bernoulli distribution, and EGM model types (e)
from the categorical distribution.

EGM type

lightning
amplitudes

strike distance tower
grounding

shield wire
presence

distribution 
line flashover 

analysis

statistical distribution 
of flashovers

N
simulations

return-stroke
velocity

Figure 1. Monte Carlo method of lightning data generating process.

In accordance with the above-stated facts, statistical variables for the Monte Carlo
simulation were generated as follows:

I ∼ Log-Normal(31, 0.55) kA (1a)

v ∼ Uniform(50, 500)m/s (1b)

d ∼ Uniform(0, 500)m (1c)

R ∼ Normal(50, 12.5)Ω, R > 0 (1d)

s ∼ Bernoulli(0.5) (1e)

e ∼ Categorical(p) (1f)

Since grounding (impulse) impedance cannot possess a negative value (it is a strictly
positive real number), the associated normal distribution is cut off on the left-hand side
above zero. Furthermore, it was assumed that shield wire(s) were installed in only 50 % of



Energies 2022, 15, 8248 5 of 19

cases. This fostered data diversity. The EGM could be randomly chosen from six different
types (see [1,19] for more information):

e ∼ f (x|p) =
6

∏
n=1

pxn
n , (2)

each with its own probability pn, n = 1, . . . , 6, where ∑ pn = 1. Using slightly different
EGM variants introduced an additional level of noise into the dataset, which raised the
level of difficulty for the model learning.

The simulation started by generating a large number (N = 10, 000) of samples from
each of the statistical distributions. Next, it engaged a lightning flashover analysis, which
considered a mode of lightning interaction with the distribution line (direct or indirect).
Interaction mode depended on the EGM type and distance of the strike from the line.
The mathematical details of the lightning flashover analysis can be found in [1,3,16,19]
and are not repeated here. A basic outline of the computational procedure is depicted in
Algorithm 1. It can be mentioned that each flashover analysis was carried out in accordance
with the EGM theory and a particular mode of interaction. The Rusck’s method was used
for the analysis of indirect strikes [16]. Each resulting overvoltage that exceeded the CFO
of the line accounted for a flashover incident.

Algorithm 1 Lightning flashover analysis on OHL

input OHL geometry (height, sg, . . .).
I, v, d, R, s, e← Generate statistical distributions.
flashovers← empty(list)
for x0 in d do . for each lightning strike

rg, rc = EGM(I, e)
if s = True then . shield wire is present

Compute EGM distances Dg(rg, rc) and Dc(rg, rc).
if x0 ≤ sg/2 + Dg then . stroke to shield wire

V← Compute backflashover.
else if sg/2 + Dg < x0 ≤ sg/2 + Dg + Dc then . stroke to phase conductor

V← Compute shielding failure.
else if x0 > sg/2 + Dg + Dc then . indirect stroke

V← Compute indirect strike with shield.
else . shield wire is absent

Compute EGM distance Dc(rg, rc).
if x0 ≤ sg/2 + Dc then . stroke to phase conductor

V← Compute direct strike.
else if x0 > sg/2 + Dc then . indirect stroke

V← Compute indirect strike w/o shield.
if V ≥ CFO then

flashover = True
else

flashover = False
flashovers.append(flashover)

return flashovers

OHL Dataset Example

The dataset generating process was demonstrated using a typical distribution line, on
a flat terrain, with a horizontal arrangement of conductors [16]. The height of the phase
conductors was 15 m. The line had double shield wires (when installed), with a separation
distance of sg = 3 m and positioned 1.5 m above the phase conductors. The diameter of
the phase conductor was 10 mm. The diameter of the shield wire was 5 mm. The CFO of
the line insulation equaled 160 kV. The coordinate system was centered on the line itself
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and conditions were symmetric in relation to the line. Only downward (negative) lightning
strikes were considered, without the possibility of side strikes.

Figure 2 presents a dataset, in terms of the two main attributes: (a) lightning ampli-
tudes and (b) striking distances. It features a scatter plot in the main area of the figure.
Flashovers are depicted as red dots, while lightning strikes that do not provoke a flashover
are shown as blue dots. The flashover analysis was posited as a binary classification
problem [16]. The figure also provides two (independent) marginal distributions, in terms
of amplitude and distance of the lightning strokes. The marginal distribution of flashover
amplitudes, in particular, featured a fat tail that was not present in the starting Log-N
distribution. This clearly indicated a direction, statistically speaking, in which lightning
amplitudes that triggered flashovers were drifting.

Figure 2. Scatter plot with superimposed marginal distributions of simulated lightning incidents.

Furthermore, Figure 2 indicates that the dataset had a hierarchical structure which
distinguished between the presence and absence of a shield wire(s) on the towers, which is
depicted by the black edge on the scatter points. The dataset was also class imbalanced
(the number of blue points outweighed the number of red ones), which had important
repercussions on the subsequent training of the ML models. This imbalance emanated from
the fact that a flashover on the distribution line is a low probability event. It can be further
deduced from Figure 2 that flashovers were more probable for lightning strikes in the
vicinity of the line (red dots clustered to the left-hand side of the figure). These were direct
as well as very close nearby indirect lightning strikes. Furthermore, flashovers emanating
from indirect strikes were more probable for those associated with larger amplitudes (red
dots are predominant in the top portion of the figure). All this was expected and showed
that this synthetic dataset emulated reality quite well [16]. Moreover, the screening effect of
the shield wire(s) could be discerned by comparing points with and without black edges.
This was another notable feature of the dataset that also reflected reality. An instance of the
dataset was deposited on Zenodo [21] with a CC BY license.

In order to apply machine learning, the dataset needed to be further processed. First,
any extreme outliers in the dataset were removed. These might be particularly associated
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with lightning-current amplitudes. Then, the continuous features from the dataset were
standardized (i.e., scaled to zero mean and unit variance). Next, the dataset was split,
reserving 80 % of the data for training and the remaining 20 % for testing. The training part
of the data was then split for the second time, into training and validation sets (with the
same 80/20 ratio). Due to the class imbalance in the data, a stratified shuffle split strategy
was used during both splittings [22], which preserved the class imbalance rates between
training, validation, and test sets.

2.2. Ensemble Learning in OHL Lightning Flashover Analysis

Ensemble learning is an ML paradigm where multiple models, often called base
estimators, are trained independently (and even in parallel) and their predictions combined,
by some sort of aggregation, to increase the prediction performance [23]. A bagging
ensemble is a type of ensemble that is built by means of the bootstrap aggregation of
multiple base estimators. The training of each base estimator is performed on a random
subset from the training dataset (i.e., bootstrap sample). Aggregation takes predictions from
all base estimators and averages them. This kind of ensemble helps reduce overall variance
of the final model and helps avoid overfitting at the same time [23]. Here, the proposed
bagging ensemble used support vector machines as base estimators and a (weighted or not)
“soft voting” strategy for the aggregation. A basic outline of the overall ensemble building
process is presented as Algorithm 2. The model was built using the scikit-learn and
scipy Python libraries. The source code was deposited on GitHub [24].

Algorithm 2 Bagging ensemble built from SVM base estimators

input X-features, y-labels
splitter← StratifiedShuffleSplit(splits = 1, test = 20%)
X-data, y-data, X-test, y-test← splitter.split(X-features, y-labels) . 1st
X-train, y-train, X-validate, y-validate← splitter.split(X-data, y-data) . 2nd
estimators← empty(list)
for m = 1 to |M| do

X, y← Sample random subset from X-train, y-train. . bootstrap sample
estimator← SVM(C, γ, w) . base estimator
Pipeline(transformer, estimator)
Distributions(transformer:[None, StandardScaler], kernel:[linear, RBF], C, γ, . . .)
model← HalvingRandomSearchCV(Pipeline, Distributions, StratifiedKFold(k = 3), . . .)
model.fit(X, y) . fit on sample from train set
estimators.append(model)

if weight = True then . weighted ensemble
weights← Estimators cross-entropy minimization.

else . equal weights
weights← None

ensemble← SoftVotingClassifier(estimators, weights)
ensemble.fit(X-validate, y-validate) . fit on validation set
ŷ← ensemble.predict(X-test) . predict on test set
score←metric(y-test, ŷ)
return ŷ, score

It can be seen that the training of base estimators (including their hyperparameters
optimization) involved a stratified k-fold cross-validation on the random (i.e., bootstrap)
sample from the train set. On the other hand, the training of the ensemble as a whole
(including weights optimization) used the validation set. Furthermore, the predictions
from the ensemble were performed on the test set (never seen before by the model). Each
SVM, as a base estimator, was slightly different (see below) and therefore, brought unique
qualities to the group (i.e., ensemble), boosting its performance. Furthermore, the individual
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predictions of the base estimators from the ensemble were aggregated by averaging their
prediction probabilities [23]:

f (y|x) = 1
|M| ∑

m∈M
wm · fm(y|x), (3)

whereM is a set of base models fm(y|x) in the ensemble, while wm, m ∈ M are model
weights. The weights could be determined on the basis of the model’s confidence in
the predictions, or all models could be assigned equal weights. It was found that equal
weighting preserved a higher diversity within the ensemble and produced a slightly better
performing final classifier.

For each SVM, the bootstrap training dataset comprised N input vectors x1, . . . , xN
with corresponding target (i.e., class) values t1, . . . , tn, where tn ∈ {−1, 1}. The SVM solved
the following optimization problem [23]:

min
ζ, w

C
N

∑
n=1

ζn +
1
2
||w||2 (4a)

s.t.
{

tny(xn) ≥ 1− ζn,
ζn ≥ 0, n = 1, . . . , N

(4b)

where C is the penalty that acts as an inverse regularization parameter, while ζn is a slack
variable. The dual Lagrangian formulation for the primal in (4) can be written in terms of
dual variables {an}, after eliminating slack variables {ζn}, as follows [25]:

L̃(a) =
N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamtntmk(xn, xm) (5a)

s.t.
{

0 ≤ an ≤ C
∑N

n=1 antn = 0
(5b)

where k(xn, xm) is the kernel function. This is a quadratic programming (constrained
minimization) problem which can be solved using the standard routines from mathematical
programming. The predictions for new points x are given by [25]:

y(x) =
N

∑
n=1

antnk(x, xn) + b, (6)

with

b =
1
|A| ∑

n∈A

(
tn − ∑

m∈S
amtmk(xn, xm)

)
(7)

where A denotes the set of indices of data points having 0 < an < C, while S represents
a set of indices of the support vectors. This set of support vectors, which defines the
separation margin between classes, are the only points that contribute to the predictions.

The actual training of SVMs that formed the ensemble (see Algorithm 2) used a pipeline
that (1) was fed preprocessed subsamples from the training set, (2) invoked hyperparameter
optimization with a stratified k-fold cross-validation, (3) aggregated individual predictions,
and (4) returned outputs that included the support vectors and prediction probabilities
from the test set. A so-called “hyperband” bandit-based optimization algorithm was used
as an optimizer [26]. It is much faster than the more known “random search” (which it
extends by adding successive halving and some clever resource management) and has
better convergence; see [26] for more information. Each SVM that was part of the ensemble,
in addition to hyperparameters, could have different kernel types. Hyperband chose
between linear and radial basis function (RBF) kernels and then fine-tuned the RBF kernel
coefficient (if it was selected) along with a regularization parameter of the penalty function.
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The regularization provided an important safeguard against overfitting of the individual
SVMs and was randomly sampled from C ∼ Log-U(1, 1000). Finally, since the dataset was
class-imbalanced, each base estimator used a class-weight balancing during training. This
step should not be confused with sample weighting, which can be applied in addition to
the class weighting.

The so-called Brier score was used as a principal loss metric for training the bagging
ensemble, which can be defined as follows:

BS =
1
N

N

∑
n=1

[yn − p(xn)]
2 (8)

where yn is the nth sample’s true label and p(xn) is its positive class probability. As a mean
square error, the Brier score is lower with better calibrated predictions, and it remains
strictly positive. It is found to be far less sensitive to the class imbalance problem than
“accuracy” and other often-reported measures.

Computing individual weights for the base estimators within the ensemble can be
achieved by considering their relative scores (on the validation set), as follows:

min
w
{−[y · log Lq + (1− y) · log(1− Lq)]}

for Lq = ∑
m∈M

wm · P|y=1(x)

s.t.
{

0 ≤ wm ≤ 1
∑ wm = 0

(9)

where wm is the model’s relative score within the set ofM base models, y is a true class
label and P|y=1 is a probability estimate of the flashover class. The optimization given by (9)
essentially minimizes the cross-entropy between the SVMs within an ensemble. It usually
retains only a few best-performing base estimators while discarding others by assigning
very small weights to them.

2.2.1. Classifier Performance

The bagging ensemble consisted of three SVMs, which were individually trained with
a cross-validation on the bootstrap samples from the training set. The model training
resulted in each base estimator having (slightly) different hyperparameters, that could
further vary between runs. However, the ensemble as a whole was stable between runs
and produced consistent predictions. An example of training results, in terms of model
hyperparameters, is presented in Table 1. It can be seen that only two out of three base
estimators participated when the ensemble weights were left to be determined by the model
training (with linear and RBF kernels), while the third was seen as redundant. The kernel
coefficient of type scale implemented 1/(n f · var(X)), while that of type auto used 1/n f ,
where n f was the number of features and var(X) was the variance of the input features
matrix [22].

Table 1. Hyperparameters of base estimators from the bagging ensemble.

Estimator Transformer Kernel Coefficient Regularization Weight

SVM-A StandardScaler Linear None 35.8 0.31
SVM-B None RBF Scale 11.2 0.02
SVM-C StandardScaler RBF Auto 2.86 0.67

After training was completed, the bagging ensemble classifier produced a single
prediction probability value for each sample in the test set (i.e., probability of positive
class). This probability was then converted, based on the classifier’s threshold level, to the
statement of belonging (or not) to the flashover class. Figure 3 is a testament to the high
performance of the classifier. It presents the following measures: (a) the receiver operating
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characteristic (ROC) curve, (b) precision–recall (PR) curve, and (c) detection error trade-off
(DET) curve of the classifier. All three types of curves were obtained from the test dataset.
The area under the ROC curve (i.e., the AUC score) and average precision (i.e., the AP
score) are also provided on the figure, both of which confirmed the high performance of the
proposed classifier. The presented curves measured the model’s performance in terms of
different types of errors that it made when predicting class labels [22]. Furthermore, when
there is a class imbalance (as is the case here), the PR curve may be superior to the ROC
curve in gauging a classifier’s performance. Finally, the DET curve can be a valuable aid in
the classifier calibration process.

Figure 3. Performance measures: (a) receiver operating characteristic, (b) precision–recall curve, and
(c) detection error trade-off curve for the bagging ensemble classifier and individual base estimators.

It can be seen from the figure that even a single SVM could already achieve substantial
classification accuracy on this synthetic dataset. However, the ensemble enlarged (and
diversified) the pool of support vectors, which helped increase the robustness of the CLP.
This is an important feature, particularly if one considers the lightning detection errors and
other sources of noise that will pollute a real-world dataset.

2.2.2. Curve of Limiting Parameters

The support vectors from SVMs were considered here as a very important byproduct
of the proposed classifier. They supported the decision boundary of the classifier. This
boundary in-turn provided a scaffolding for the so-called curve of limiting parameters
(CLP). It was found through experimentation and repeated simulations of different light-
ning datasets (representing different OHL geometries), that a second-degree polynomial
fit, based on a least-squares regression, of the support vectors yielded a satisfactory CLP
of the OHL which could be used in statistical studies. Hence, Figure 4 presents (in a 2D
coordinate space of lightning amplitude and strike distance) the CLP fit of the support
vectors and superimposed on the samples from the training set for a better visual reference.
The dark shaded region around the CLP curve provides a 95% confidence interval, while
the light shaded region depicts a 95% prediction interval. The adjusted R2 of the regression
was around 0.9. The CLP was not a straight line, generally speaking, and its curvature de-
pended on the line height and geometry, the insulation’s CFO level, and the local statistical
properties of lightning in the area. The support vectors from all underlying SVMs in the
ensemble (with any duplicates removed) are highlighted in the figure with orange circles.
It can be seen that they “support” (as the name implies) the decision boundary between
classes at the same time.

It is important to emphasize that the dataset needs to be sufficiently large in order for
the support vectors to cover the region of high-amplitude lightning currents (so that the
CLP is well-defined in the broad range of values). Furthermore, since our bagging ensemble
employed several SVMs (each slightly different), often between three and at-most ten, their
combined decision vectors (without duplicates) were generally robust and insensitive to
perturbations and noise in the data. This translated into a robust and stable CLP curve,
with tight confidence and prediction intervals. The importance of this stability can be
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appreciated by considering the fact that the ML model would typically be applied on data
coming from measurements supported by the LLN. These data come with measurement
errors related to both lightning amplitudes and strike locations. Namely, the detection
accuracy of the LLN strike location (in terms of longitude and latitude coordinates) is
defined through an error ellipse that can be wider that 100 m or more.

Figure 4. Curve of limiting parameters obtained from the least-squares fit to the support vectors.

2.2.3. Statistical Safety Factor

Furthermore, the ML model’s prediction probabilities can be employed in defining a
so-called insulation performance function of the OHL, derived in terms of the statistical
cumulative distribution function (CDF). Interested reader is at this point advised to consult
Ref. [27] for more information on the relationship between a CDF and the insulation’s
performance function. Namely, a trained classifier returns a prediction probability for each
sample from the test set, and these probabilities can be used to construct a CDF of the OHL
insulation flashover. Several of these CDFs are presented in Figure 5, considering different
strike distances (where scatter points represent class labels from the test set).

Figure 5. Flashover probabilities in relation to lightning-current amplitudes for several striking distances.
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The left-most curve (blue line) represents the flashover probability from direct strikes
and is cut off at zero. Other curves represent indirect lightning strikes at various distances
from the line. It can be seen that as the strike location moves away from the line, the
associated amplitude for attaining the same probability of flashover is increasing. For
example, a nearby indirect strike with an amplitude of 30 kA has a 90% probability of
evoking a flashover on the line for a strike distance of up to 50 m (orange line), while that
probability drops to 30% for a distance of 100 m (green line).

By using the probability density function (PDF) of the lightning-current amplitudes (of
negative downward lightning strikes) in combination with the previously obtained CDFs of
the line insulation flashover (Figure 5), one can define the statistical safety factor (SF) due to
nearby indirect lightning strikes. Namely, the SF is hereafter defined as a quotient between
the OHL insulation withstand (taken as the 10% probability of insulation flashover) and
the probability of obtaining an amplitude that will be exceeded in no more than 10% of
cases. It follows that the SF is a strictly positive number and can be defined for any indirect
strike distance d from the line as:

SFd =
Lw(d)

Ls
(10)

where Lw(d) defines a point on the CDF curve of the line’s insulation with a 10% proba-
bility of flashover, while Ls defines a point on the PDF curve of lightning-current ampli-
tudes with a 10% probability of being exceeded. Here, the PDF was a well-known Log–N
distribution [28], while the CDF was taken from Figure 5 for any desired distance d from
the line. Both of these mentioned points were obtained from the associated quantile (i.e.,
inverse CDF) functions of the appropriate statistical distributions, as follows:

Lw = F̂−1
d (α), (11a)

Ls = F−1
s (1− α), (11b)

with

Fs(I) =
∫ I

−∞
fs(x)dx (12)

and

fs(I) =
exp

[
− (ln I−ln Iµ)

2

2σ2
ln I

]
√

2π · I · σln I
(13)

where α = 0.1 is the threshold, F̂d is the CDF of lightning flashovers at distance d from the
line and fs(I) is the PDF of the lightning-current amplitudes in which Iµ = 31 kA was the
median value and σln I = 0.55 was the standard deviation [28]. Furthermore, due to the fact
that F̂d was defined by points (Figure 5), a linear interpolation was used in combination
with a numerical inversion of this function. On the other hand, the Log–N distribution from
(12) and (13) had a well-defined quantile function.

The threshold level (α) on both Ls and Lw points was taken at the 10% probability
level, as already mentioned. It ought to be emphasized that this is a standard statistical
withstand limit of the self-restoring insulation. At the same time, the selected threshold
considered the lightning-current amplitudes from the tail of the Log–N distribution that
had only a 10% chance of being exceeded. In other words, the SFd, as a single number, tied
together the probabilities of two low-probability consecutive events for any strike distance:
(1) the probability of obtaining a certain lightning-current amplitude with (2) a probability
of insulation being able to withstand the associated overvoltage without flashover. It needs
to be stated that these were not independent stochastic events. Moreover, the threshold
imposed on the amplitudes could be made more stringent (e.g., at the 5% level) if necessary.

In order to demonstrate the above definition, Figure 6 depicts the graphical construc-
tion of the SF for an example of nearby lightning strikes at a distance d = 100 m from
the distribution line at hand. It ought to be pointed out that points Ls and Lw did not
have equal height on the y-axis, and that, actually, two independent y-axes were used in
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order to better illustrate the graphical construction of the statistical safety factor. Needless
to say, the graphical construction is here provided as a visual aid only, and the SF was
computed numerically from the PDF and CDF curves. It should not be forgotten that
the CDF curves came directly from the classifier’s prediction probabilities. It can be seen
from the figure that Ls = 62 kA was obtained as a threshold of the PDF distribution (of
lightning current amplitudes) with a 10% margin (shaded area in the right-hand tail of the
distribution function). At the same time, it can be seen that Lw = 18 kA was obtained as a
point on the CDF of the line insulation (for d = 100 m) flashover characteristic with a 10%
probability. Since Lw < Ls, the resulting SF = 0.29 < 1 did not provide a sufficient safety
against flashovers at this particular distance.

LsLw
10%

10%

SF =
Lw

Ls

=
18

62
= 0.290

Figure 6. Statistical safety factor for a nearby lightning strike at a distance of 100 m from the line.

Furthermore, at the same time, Figure 7 depicts the same graphical construction of
the SF, but for an example of nearby lightning strikes at a distance d = 350 m from the
distribution line at hand. It can be seen that in this particular case of more distant lightning
strikes, although Ls stayed the same (because the lightning ambient conditions did not
change), the withstand point increased to Lw = 88 kA (for the same 10% probability of
withstand). This resulted in Lw > Ls, which yielded a much higher statistical safety factor
of SF = 1.42 > 1. Furthermore, when Ls = Lw, it would follow that SF = 1.

Ls Lw

10%

SF =
Lw

Ls

=
88

62
= 1.419

10%

Figure 7. Statistical safety factor for a nearby lightning strike at the distance of 350 m from the line.
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2.2.4. Safety Factor vs. Risk

It is important to note that the statistical safety factor is very closely related to the risk
of insulation flashover, where the risk can be computed from the following expression [1]:

Rd =
∫ ∞

0
fs(I)F̂d(I)dI, (14)

where fs(I) is the PDF of lightning-current amplitudes, while F̂d(I) is the CDF of the
insulation flashover probability for the considered distance of the nearby lightning strikes
(from Figure 5). The definite integral in (14) can be computed with sufficient accuracy using
the well-known trapezoidal or Simpson’s rules.

This relationship between the SF and risk is graphically presented for the OHL at hand
in Figure 8, where the SF and risk are given as individual functions of the lightning strike
distance from the line in the left-hand part of the figure, while their mutual relationship
is depicted in the right-hand part of the figure. It can be seen that this relationship of the
safety factor vs. risk was nonlinear. For a safety factor of zero, the risk equaled one, and as
the safety factor increased beyond one, the risk dropped to low values, and approached
zero asymptotically thereafter. This figure reveals that, for the considered OHL, the risk of
flashover at a distance of 100 m was around 50% and it dropped to only 2% at the distance
of 350 m.

Figure 8. Relationship between the statistical safety factor and the risk of insulation flashover.

The nonlinear relationship between the risk and safety factor could be mathematically
described using the following function:

Rd = ρ · exp(−η · SFd) (15)

where ρ = 1 and η = 3 were determined from the least-squares fit using the Levenberg–
Marquardt algorithm and an exponential weighting of the safety factors by w = e−3x.
The weighting gave a higher importance to larger SFd values by decreasing uncertainty.
The relationship is graphically presented in Figure 9 using a semilog scale for better visual
reference. The correlation coefficient for this particular fit equaled R2 = 0.98.

It can be further argued, based on the above presented analysis, that a statistical safety
factor above one, i.e.,:

SFd ≥ 1 (16)

is a sufficient requirement for the purpose of OHL insulation coordination (in terms of the
nearby indirect lightning strikes at distance d from the line). In this particular case, it can be
seen that the safety factor rose above the threshold of one already at a distance of around
250 m. It needs to be stated that the SF can be increased by translating the CDF curve
to higher amplitude levels, which can be accomplished (assuming that the shield wire is
already installed) either by (a) increasing the CFO of the line insulation, or by (b) installing
the surge arresters. This is exactly what the OHL insulation coordination is all about, where
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the statistical safety factor can feature prominently in reconciling the opposing demands
between the actual lightning threat levels (i.e., as recorded by the LLN) and the OHL
insulation levels (including the possibility of installing protective measures). The statistical
approach is reinforcing the safety and reliability aspects of this coordinating process.

Figure 9. Least -squares fit of the relationship between risk and statistical safety factor.

2.2.5. Profitability of Protection Measures

Investments in lightning and surge protection measures needs to be analyzed in
terms of the reductions it brings to the total cost of damages associated with lightning
incidents [29]. The projected reductions in costs of damage must come from the decrement
of the associated risk of damage (which is congruous to the increment of the statistical safety
factor). In other words, the investment in protection measures needs to be recuperated
through the savings emanating from a decline in the total cost of damages (which are
averted by the installation of protection measures). Hence, based on the IEC 62305-2
standard [30], the profitability of the investment can be analyzed, considering the annual
cost of protection measures, by means of the following equation [31]:

ct · ∆R− cp · (i + a + m) ≥ 0, (17)

where cp is the annual cost associated with protection measures, i is the interest rate (for
financing protection measures), a is the amortization rate (calculated as the service life
of the protection measures), m is the maintenance rate (which may include inspection
and maintenance costs), ct is the total cost of damages (which includes repair cost, lost
revenue due to outage time, and any additional costs inferred from penalties for not serving
customers), and ∆R = R0− Rp is the reduction in risk from the initial level (R0) to the lower
level (Rp) associated with the implementation of protection measures. Thus, the procedure
assumes that costs can be (roughly) estimated before actually planning lightning and surge
protection measures. General information on interest rates, the amortization of protection
measures and planning, and maintenance and repair costs must also be available [31]. It
can be seen that the investment in protection measures makes economic sense only if the
annual saving is expected to be positive. Satisfying inequality (17) can be approached
by examining several possibilities and finding that which has the costs of damage as low
as possible.

3. Discussion

A statistical treatment of the insulation coordination of high-voltage apparatuses
and electrical power stations has been part of the IEC norms for quite some time; see
IEC 60071-2:2018 [13] and IEC TR 60071-4:2004 [20]. The probabilistic and risk-based
approaches to the lightning protection of electrical installations, and buildings in general,
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have long been advocated as part of the IEC 62305-2:2010 [30]. Lightning interaction
with wind farms has gone through another revision in the most-recent edition of the IEC
61400-24:2019 [32]. All this points to the ongoing efforts of including the latest research
findings into the engineering standards. The same can be said about the associated technical
recommendations published by different working groups. However, it needs to be said that
it is still habitual among industry experts to consider more traditional approaches, based on
field experience and worst-case scenarios, in dealing with these issues. A full probabilistic
and risk-based insulation coordination is, unfortunately, still carried-out only is special
select cases. The use of the CLP in particular has been underappreciated, although it was
given very prominent position in the IEC TR 60071-4:2004. This is unfortunate. The present
paper is seen as a contribution in the direction of remedying this situation.

Furthermore, the advent of lightning location networks has completely transformed
the way the risk of lightning has been dealt with in the past. For example, the so-called
“thunderstorm day”, as a measure of lightning activity in an area (criticized for a very
long time), has been replaced by much more precise lightning density maps, which are
constructed from the LLN’s data. Other custom-tailored products of the LLN are often used
by insurance companies for determining payments on lightning-related insurance claims.
Risk is also being introduced in the process of selection of surge arresters, which is now
approached from the point of view of buying insurance [31,33]. However, the introduction
of machine learning is still in the nascent phase, particularly when it comes to the lightning
analysis of flashovers on overhead power lines. This paper is seen as a contribution to
the state-of-the-art and promotes a wider ML adoption for enhancing existing statistical
approaches in the fields of insulation coordination and lightning flashover analysis of
overhead electric power lines. The proposed ML approach extends the former statistical
view of the insulation coordination by learning new relationships directly from the data
and applying that knowledge within the existing statistical/engineering framework. That
also includes extending the existing framework with the risk-based pricing of protection
measures [31].

Model Limitations and Future Extensions

The proposed ML model learned from the synthetic dataset, where Rusck’s model
featured prominently in the analysis of indirect lightning strikes. It needs to be stated that
this is a rather rudimentary model that could not account for some important features, such
as the lightning wavefront time duration and earth conductivity. It was retained here for
compatibility with Ref. [16]. Better models could be employed, and we implemented two
alternatives [24]: (a) the Chowhduri–Gross model and (b) the Liew–Mar model. Both are su-
perior to Rusck’s model, but are far more computationally expensive. We also implemented
a simplified CIGRE method (see Ref. [1] for more information) of a backflashover analysis
as an additional alternative [24]. All these aspects further reinforce synthetic data diversity,
increasing the generalization potential of the subsequently trained models. Future research
will inspect several of these aspects: a comparison between alternative data generating
approaches, the generalization ability of models trained on synthetic data, the treatment of
different OHL geometries, testing models with actual lightning data, and others. Future
work will also examine in more detail the application of the proposed statistical safety
factor in OHL insulation coordination and surge arrester selection, with the emphasis on a
pricing of protection measures.

4. Conclusions

This paper presented a novel bagging ensemble classifier, which was built from
support vector machines, for the prediction of lightning flashovers on overhead distribution
lines. An important benefit that stemmed from the use of an SVM as a base estimator was
that it provided support vectors. A set of support vectors from all SVMs that formed the
ensemble (with any duplicates removed) served as a basis for fitting the curve of limiting
parameters. A least-squares fit with a second-degree polynomial gave rise to a CLP of
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substantial precision for subsequent statistical analyses. In addition, the proposed ML
model enabled the construction of a CDF of the OHL insulation, which was related to its
so-called performance function. On top of this function, we defined a statistical safety
factor of the overhead line. The safety factor was closely related to the risk and could be
used as its substitute. Both these aspects, the CLP curve and the statistical safety factor,
fully supported an end-to-end statistical evaluation of lightning performance of overhead
distribution lines and their insulation coordination.

Furthermore, the presented analysis showed that, starting from the ML model’s appli-
cation on the lightning data (e.g., gathered by the LLN), one could derive a statistical safety
factor for any OHL, for any foreseeable distance from the line. Carrying out the insulation
coordination of the line against nearby indirect lightning strikes, for any particular distance,
was a straightforward matter of getting the safety factor to satisfy the inequality SFd ≥ 1.
This approach had the benefit of fully considering both the random nature of lightning and
the stochastic nature of self-restoring insulation’s overvoltage withstand strength. The “big
data” paradigm and the associated machine learning approach has just started entering
this engineering field, and it is argued here that it can bring valuable assistance to the
design engineers and decision-makers alike. Specifically, bringing together the statistical
safety factor, risk, and profitability of protection measures, bridges the gap between engi-
neering and finance departments, which may streamline the decision-making process by,
metaphorically speaking, leveling the playing field.
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