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Abstract. While the realization of the Semantic Web as once envisioned
by Tim Berners-Lee remains in a distant future, the Web of Data has al-
ready become a reality. Billions of RDF statements on the Internet, facts
about a variety of different domains, are ready to be used by semantic
applications. Some of these applications, however, crucially hinge on the
availability of expressive schemas suitable for logical inference that yields
non-trivial conclusions. In this paper, we present a statistical approach
to the induction of expressive schemas from large RDF repositories. We
describe in detail the implementation of this approach and report on an
evaluation that we conducted using several data sets including DBpedia.
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1 Introduction

The generation of ontologies from formal and semi-formal data, frequently called
Semantic Web Mining [29], has been studied for several years within the Seman-
tic Web community. Recently d’Amato [11] et al. suggested the term Ontology
Mining for “all those activities that allow to discover hidden knowledge from
ontological knowledge bases.” This line of research is partly motivated by the
crucial role ontologies play for reasoning-based applications, and by the knowl-
edge acquisition bottleneck that is caused by the enormous efforts it takes to
build highly axiomatized logical theories.

However, as argued by Auer and Lehmann [2], ontologies derived from RDF
repositories can also bring major benefits for the Web of Data. Although it would
be foolish to consider ontologies (or generally speaking “schemas”) a panacea for
all the problems currently plaguing the Web of Data, they can help to ease in-
tegration, querying and maintenance of RDF datasets. By providing conceptual
descriptions of RDF graphs ontologies might facilitate, for instance, the discovery
of links between disconnected data sets, or enable the detection of contradictory
facts spread across the cloud of Linked Open Data. Unlike Jain et al. [18], for
example, we do not believe that it will be feasible or desirable to squeeze every
RDF repository under a single top-level ontology such as SUMO – and those
people who are currently contributing to the success of the Linked Open Data
initiative by publishing their data as RDF triples will certainly not be willing to
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adhere to any prescribed schema. Still, if we were able to automatically generate
such a schema for any given RDF repository, we would be able to provide people
with formal semantics of the terminology people use for talking about their data,
and possibly prepare the grounds for new types of applications.

The more RDF data becomes available the more promising seems the use of
inductive, i.e. bottom-up, methods which facilitate the construction of ontologies
from given facts. Inductive methods to acquiring schema-level knowledge from
RDF data sources have been shown to be effective, e.g., by Lehmann et al. [17]
(for an excellent overview of various types of inductive methods in the context of
Linked Data see [11]). We can roughly distinguish between logical and statistical
methods: While statistical methods based on conceptual clustering, for instance,
tend to be more scalable and robust with respect to noisy or uncertain data,
logical methods such as Inductive Logic Programming are often inferior when it
comes to the generation of highly axiomatized ontologies.

In this paper, we propose an approach to generating ontologies from RDF
datasets that we will refer to as Statistical Schema Induction (SSI). After giving
a brief overview of related work (cf. Section 2), we elaborate on the theoretical
foundations of our approach, including the basics of association rule mining. In
Section 3, we also introduce the EL profile of OWL 2, which provides us with the
logical basis for constructing ontologies that are both reasonably expressive and
computationally tractable. Section 4 describes in detail the implementation of
our approach, before we provide the reader with details about the experiments
we conducted in order to evaluate this approach on several real-world datasets
(cf. Section 5). Finally, in Section 6, we conclude with a summary and an outlook
to possible future work.

2 Related Work

Our approach follows previous work in the field of ontology generation from
formal and semi-formal data, e.g., in the form of RDF or OWL knowledge bases.
Early approaches in this line of research rely upon systematic generalization [13]
or clustering [24]. Later Grimnes et al. [14] suggested an ILP-based approach to
generating descriptions of groups of people from FOAF profiles.

ILP, short for Inductive Logic Programming, is a type of machine learning
that combines machine learning and logic programming techniques in order to
derive logical theories from examples (i.e. assertions) and background knowl-
edge. Common to all ILP-based approaches is that they adhere to the paradigm
of induction – a form of inference that draws general conclusions from specific in-
stances, assuming that the latter exemplify a general truth. ILP-based methods
have successfully been applied to the problem of concept learning and ontology
induction, e.g., by Cohen and Hirsh [10], but only very few implementations are
commonly available one of those being the DL-Learner by Jens Lehmann [22].
In recent experiments, Hellmann et al. [17] applied the DL-Learner to several
RDF knowledge bases, in order to generate definitions of classes from the YAGO
ontology, for instance. Unlike our implementation, the DL-Learner uses positive



126 J. Völker and M. Niepert

and negative examples (i.e. members and non-members of these classes) ran-
domly sampled, e.g., from DBpedia. Another particularly interesting approach
has been proposed by Cimiano et al. [9], who generate intentional descriptions
of the factoid answers (e.g. sets of individuals) that are returned by queries to a
given knowledge base. These intentional descriptions consist of concept expres-
sions obtained by bottom-up generalization.

Further extensional approaches to generating or refining ontologies based on
given facts can be found in the area of Formal Concept Analysis (FCA) or Rela-
tional Exploration, respectively. OntoComP developed by Baader et al. [5] sup-
ports knowledge engineers in the acquisition of axioms expressing subsumption
between conjunctions of named classes. A similar method for acquiring domain-
range restrictions of object properties has been proposed later by Rudolph [27].
In both cases, hypotheses about axioms potentially missing in the ontology are
generated from existing as well as from interactively acquired assertions. One
of the biggest challenges for research on both FCA and ILP is uncertain and
noisy input in the form of background knowledge or examples. While Auer and
Lehmann [2] suggest to face this challenge by higher degrees of user interaction,
we rely on statistical methods that are both robust and scalable enough to handle
huge sets of Linked Data – an important prerequisite for compensating the lack
of negative examples, which are not taken into account by our mining algorithms.
The expressiveness of ontologies acquired by means of Statistical Schema Induc-
tion is comparable to those produced by ILP-based methods (mostly variants of
ALC) and higher than what can obtained by Relational Exploration (i.e. FLE).

In the field of ontology learning from natural language text, we find our ap-
proach related, e.g., to methods for inducing taxonomies by means of hierarchi-
cal clustering of context vectors [8] as well as to early approaches to extracting
non-taxonomic relations by Association Rule Mining [23]. The discovery of asso-
ciation rules has also been shown to facilitate the generation of ontologies from
folksonomies [19] and semantic annotations in text documents [21].1 An efficient
algorithm for computing sets of association rules from RDF data was suggested
by Jiang and Tan [20], while Nebot and Berlanga [25] use association rules to
discover causal relations in RDF-based medical data.

Association rules have also been applied in the area of ontology matching as
in the AROMA system, for example [12]. Most closely related to our approach
is recent work by Parundekar et al. [26], who consider containment relationships
between sets of class instantiations for producing alignments between several
linked data repositories, including DBpedia. While their approach could as well
be used to suggest refinements for a single ontology, they currently only acquire
mappings which express subsumption or equivalence between so-called restric-
tion classes roughly corresponding to C � ∃r.D class expressions. In order to
determine the type of correspondence between a given pair of restriction classes,
Parundekar et al. rely on thresholds applied to measures of extensional overlap.

1 Note that Association Rule Mining is similar to FCA in so far as every rule with
a confidence of 1.0 directly corresponds to an implication in a formal context, and
hence there has been some research on using FCA for Association Rule Mining [28].
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3 Preliminaries

3.1 OWL 2 EL

The EL profile of the Web Ontology Language OWL 2 captures the expressivity
of many ontologies in the life sciences and other application domains. In OWL 2
EL, which is based on the description logic EL++[3], reasoning services such as
consistency and instance checking can be performed in time that is polynomial
with respect to the number of axioms. Therefore, OWL 2 EL is well-suited for
applications employing ontologies that contain very large numbers of classes,
properties, and axioms. Several efficient reasoning algorithms are available.

Description logics define concept descriptions inductively by a set of con-
structors, starting with a set NC of concept (or class) names, a set NR of role (or
property) names, and a set NI of individual names. Concept descriptions and role
inclusions in EL++ are build with the constructors depicted in Figure 1. We will
write a and b to denote individual names; r and s to denote role names; and C
and D to denote concept descriptions. The semantics of the concept descriptions
in EL++ are defined in terms of an interpretation I = (�I , ·I). The domain �I

of this interpretation is a non-empty set of individuals and the interpretation
function ·I maps concepts names A ∈ NC to a subset AI of �I , role names
r ∈ NR to a binary relation rI ⊆ �I ×�I , and each individual name a ∈ NI to
an individual aI ∈ �I . The extension of ·I to arbitrary concept descriptions is
recursively defined as shown in Table 1.

Table 1. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � �I

bottom ⊥ ∅
conjunction C � D CI ∩ DI

existential restriction ∃r.C {x ∈ �I |∃y ∈ �I : (x, y) ∈ rI ∧ y ∈ CI}
GCI C � D CI ⊆ DI

RI r1 ◦ ... ◦ rk � r rI1 ◦ ... ◦ rIk ⊆ rI

Role inclusion (RI) axioms generalize axiom types that occur often in ontol-
ogy applications such as role hierarchies r � s and transitive roles, which can
be expressed by the axiom r ◦ r � r. Also note that the bottom concept in
combination with generalized concept inclusion axioms (GCIs) can be used to
express disjointness of complex concept descriptions. Furthermore, it is possible
to model both range and domain restrictions [4] in OWL 2 EL.

In this work, we will focus on axiom types that are captured by the EL profile
of OWL 2. This way we are able to learn many of the axioms used in practical,
large-scale ontologies while being able to employ efficient reasoning algorithms.
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3.2 Association Rule Mining

Association rules are a very simple but useful form of implication patterns.
Consider the example in Table 2. The rows represent individuals and the columns
represent the types occurring in DBpedia. A value of 1 in field (i, j) indicates
that individual i is of type j. We are now interested in mining meaningful rules
that provide evidence for certain axioms in the hidden schema. The framework
of association rules was originally developed for large and sparse datasets such
as transaction databases of international supermarket chains. A typical dataset
in such a setting can have up to 1010 transactions (rows) and 106 attributes
(columns). Hence, the mining algorithms developed for these applications are
also applicable to the large data repositories in the open Linked Data cloud.

Let I = {i1, i2, ..., in} be a set of n binary attributes. These attributes are
usually referred to as items. In the open Linked Data setting items correspond to
types occurring in the repository. Let D = (t1, t2, ..., tm) be a list of transactions
(the transaction database) with each ti a subset of I. Each transaction (that is,
each row in the database) corresponds to one individual. The entry in column j
has value 1 if the individual is of type ij and 0 otherwise. The support supp(X)
of an itemset X ⊆ I is defined as the number of transactions in the data set
which contains the itemset X :

supp(X) = |{ti ∈ D : X ⊆ ti}|
Now, the frequent itemset mining problem is the following: Given the set I of
items, a transaction database D over S, and a nonnegative threshold τ , determine
the set of items whose support is at least τ . The most widely used algorithm for
mining frequent itemsets is the Apriori algorithm [1].

Association rules are often used to gain a deeper understanding of the regu-
larities and patterns of large data sets. An association rules is an implication of
the form X ⇒ Y with X and Y itemsets. While there is an exponential amount
of potential association rules most state of the art algorithms take advantage of
the sparsity of the transaction database and prune the search space whenever
possible. In the majority of the cases, the output of frequent itemset algorithms
such as Apriori is further processed to derive all association rules with a particu-
lar minimum support. The confidence of an association rule which is sometimes
also called the accuracy is defined as follows:

conf(A ⇒ B) =
supp(A ∪ B)

supp(A)

The confidence value of an association rule can be viewed as a frequency-based
maximum-likelihood estimate of the conditional probability of B occurring in
the data given that A occurs in the data. The basic idea of the presented work is
that association rules with a high confidence value correspond to certain OWL 2
EL axioms. For instance, a high confidence value for the association rule A ⇒ B
with A and B being RDF types would provide evidence for the validity of the
subsumption axiom A � B because most resources that are of rdf:type A are
also of rdf:type B.
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Table 2. Example of a transaction database in the context of the DBpedia dataset

IRI Comedian Artist Person Airport Building Place Animal

Jerry Seinfeld 1 1 0 0 0 0 0

Black Bird 0 0 0 0 0 0 1

Chris Rock 1 1 1 0 0 0 0

Robin Williams 1 0 1 0 0 0 0

JFK Airport 0 0 0 1 1 1 0

Hancock Tower 0 0 0 0 1 1 0

Newark Airport 0 0 0 1 1 1 0

Example. Let us assume that the table in Figure 2 is the transaction database
for a fragment of the DBpedia data set. Then, we have for instance that
supp({Comedian, Artist}) = 2, supp({Comedian}) = 3, supp({Artist, Person})
= 1, supp({Airport, Building} = supp({Airport, Place}) = supp({Airport,
Building, Place}) = 2, and supp({Building, Place}) = 3. Furthermore, some
of the association rules and their confidence values are conf({Comedian} ⇒
{Artist}) = 2

3 and conf({Airport} ⇒ {Building}) = 2
2 = 1.0.

4 Statistical Schema Induction

In the following, we describe in detail our approach to inducing or enriching the
schema of an RDF repository through its SPARQL endpoint. Our implementa-
tion of this approach is based on the assumption that the semantics of any RDF
resource, such as a predicate for example, is revealed by patterns we can observe
when considering the usage of this resource in the repository. While the general
methodology of detecting such patterns by means of association rule mining can
be applied to virtually any RDF repository with minor modifications, certain
characteristics of a underlying RDF graph certainly facilitate the induction of
a schema. We will discuss some of these characteristics in Section 5, where we
detail on the experimental evaluation we conducted on different datasets.
The overall process of SSI can be summarized as follows (cf. Figure 1):

1. First, we acquire the terminology, i.e. the non-logical vocabulary of the OWL
ontology to be constructed, by posing SPARQL queries to the repository’s
endpoint (cf. Section 4.1). The result of this step is a set of relational database
tables containing the URIs of all those RDF resources which we assume to
correspond to classes and properties.2 Note that we also assign unique iden-
tifiers to certain combinations of resources (e.g. any pair of two predicates
r1 and r2) as we would like use those for building complex class or property
expressions (e.g. r1 ◦ r2).

2 In order to identify potential classes and properties in an RDF graph, we rely on
heuristics similar to those suggested by Bechhofer and Volz [6] and taken up later
by Hellmann et al. [17].
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∃r.� � C

r1 ◦ r2 � r3

C1 � C2 � C3

C1 � ∃r.C2

a2 → C1, C2, C5

a1 → C1, C4

a3 → C2, C3

Fig. 1. Worfklow of the Statistical Schema Induction framework

2. Second, we construct the transaction tables, which we need in order to mine
the dataset for the various kinds of OWL axioms (cf. Section 4.2). Each
transaction, i.e. row in a transaction table, corresponds to a resource or a
pair of resources, respectively. While for every single resource the items in a
transaction are named or complex “classes” according to our terminology, a
pair of resources always maps to the set of predicates or predicate chains (i.e.
“property expressions”) they are linked with. We then mine the transaction
tables for association rules.

3. Finally, every association rule gets translated into an OWL 2 EL axiom. The
support and the confidence values of the rules are taken into account when
the ontology is constructed in a fully automatic manner (cf. Section 4.3).

4.1 Terminology Acquisition

Named classes. Initially, we gather information about those resources which
are likely to represent classes C ∈ NC in the ontology that we would like to
generate. We do so by means of a SPARQL query motivated by a simple heuristic:
every object of an rdf:type statement is a class, whereas the subjects of all such
statements provide us with the instances of these classes.3 Since the syntax and
semantics of RDF do not constrain the use of rdf:type statements nor otherwise
enforce a division into assertional and terminological level, we cannot expect this
heuristic to work for every RDF graph. However, as we will see in Section 5, it
yields good results for several of the most well-known datasets. Every resource
supposed to be a class or an individual gets assigned a unique numerical identifier
and is stored in a relational database.

3 We only consider explicit rdf:type statements, hence ignore those which are entailed
e.g. by owl:sameAs statements, which often have an unclear semantics [16].
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While the names of the “individuals” (i.e. those resources explicitly stated to
have an rdf:type) are not relevant for our approach as the individuals anyway
will not become part of the schema, we have to be able to uniquely identify them
in order to construct the transactions table (see further below). In cases where
the overall number of resources considered individuals is too high for storing
them locally, one should consider the use of sampling heuristics (as suggested,
e.g., by d’Amato et al. [11]) or of a Map-Reduce infrastructure on top of a dis-
tributed file system. The latter would actually work very well with our approach
as the computation of the transactions tables from the data gathered at this
stage can be conducted in a completely parallel way.
Object properties. In a similar way, we collect the names of all those RDF
resources which we assume to represent object properties r ∈ NR in the ontology:
Every predicate of an RDF triple which belongs to the DBpedia namespace and
whose object is linked to another resource by means of an rdf:type statement is
considered an object property. Again, we store both, all of these predicates and
the unique pairs of resources linked by any of these predicates, in our database.

Class expressions. Now that we have acquired the basic terminology, i.e. the
names of all resources to denote named classes or properties, we can turn to
complex class and property expressions. Since we want to be able to also mine
the dataset for domain and range restrictions such as ∃r.� � C, for example, we
have to assign unique identifiers to the following types of class expressions: ∃r.C,
∃r.� and ∃r−1.� for each r ∈ NR and C ∈ NC.4 Note that there can be resources
which are not explicitly stated to be of some type (cf. named classes) while still
fitting some of these class expressions (e.g. because the respective resource is
linked to another one by virtue of a property r). For this reason, we also need
to extend our initially computed set of identifiers for potential individuals.

Property chains. Finally, as motivated in Section 3.1, we would like to acquire
transitivity axioms for all the predicates (i.e. potential object properties) in the
dataset. Transitivity can be expressed by a particular type of property chain
inclusion axiom, namely r ◦ r � r for r ∈ NR. Therefore, we again create a
database table for mapping each property chain expression to a unique identifier
and, similarly as for the class expressions, assign a new identifier to a pair of
resources whenever this pair is not linked directly by any object property but
only by a property chain of the aforementioned shape.

4.2 Association Rule Mining

Before we can start mining for association rules as described in Section 4.3, we
have to create transaction tables for the various types of axioms that we would
like to become part of the ontology. Figure 3 gives an overview of the types of ax-
ioms covered by our current implementation and the corresponding transaction
tables. For example, axioms of the type C � D (that is, those expressing sub-
sumption between atomic classes) can be mined from a transaction table whose
4 Range restrictions can be expressed in OWL 2 EL, even though inverse properties

are not included in the profile [4].
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Table 3. Each row in a transaction table either corresponds to a resource a or pair
of resources (a, b) for a, b ∈ NI, which are assumed to represent an individual or a pair
of individuals, respectively. We output the identifier of C iff a is linked to a resource
named C by means of an rdf:type statement, and the identifier of r iff a and b are
connected by the predicate r. Likewise, if a row in the transaction table contains the
identifier of a class expression ∃r.C, for example, this means that the corresponding
resource a is linked to another resource of rdf:type C by virtue of r.

Axiom Type Transaction Table Association Rule

C � D a → C1, ..., Cn for a ∈ NI {Ci} ⇒ {Cj}
C � D � E a → C1, ..., Cn for a ∈ NI {Ci, Cj} ⇒ {Ck}
D � ∃r.C a → C1, ..., Cl, ∃r1.C11, ..., ∃rm.Cmn for a ∈ NI {Ck} ⇒ {∃rj .Cjk}
∃r.C � D a → C1, ..., Cl, ∃r1.C11, ..., ∃rm.Cmn for a ∈ NI {∃rj .Cjk} ⇒ {Ci}
∃r.� � C a → C1, ..., Cl, ∃r1.�, ..., ∃rm.� for a ∈ NI {∃rj .�} ⇒ {Ci}

∃r−1.� � C a → C1, ..., Cl, ∃r−1
1 .�, ..., ∃r−1

m .� for a ∈ NI {∃r−1
j .�} ⇒ {Ci}

r � s (a, b) → r1, ..., rn for (a, b) ∈ NI × NI {ri} ⇒ {rj}
r ◦ r � r (a, b) → r1, ..., rn, r1 ◦ r1, ...rn ◦ rn for (a, b) ∈ NI × NI {ri ◦ ri} ⇒ {ri}

rows correspond to those individuals having at least one rdf:type C ∈ NC. Each
row in this table contains the identifiers of those classes C1, ..., Cn the respec-
tive individual belongs to, and can be determined by a simple SPARQL query
(SELECT distinct ?c WHERE <a> a ?c) followed by a lookup in the previously
built terminology tables (cf. Section 4.1). Note that axioms that involve the same
types of class or property expressions can be mined from the same transaction
tables. For instance, both the D � ∃r.C and the ∃r.C � D axioms are mined
from the same transaction database. Thus, we only need 6 transaction databases
in order to mine the dataset for the axiom types listed in Table 3.

4.3 Ontology Construction

As indicated by Figure 3, the association rules mined from the various trans-
action tables can be translated into OWL 2 EL axioms in a relatively straight-
forward way. The confidence and support value for each of the association rules
provides us with a measure of certainty, which we take into account when con-
structing the ontology.5

Following [15], we pursue a simple greedy strategy for adding the acquired ax-
ioms to an initially empty or to an existing OWL ontology that we would like to
refine: First, we sort all of the generated axioms in descending order based on their
certainty values. Then we add them to the ontology one by one, checking the co-
herence of the ontology after the addition of each axiom. In case any of the classes
in the ontology becomes incoherent, e.g. because an axiom states disjointness
5 By setting a confidence threshold of 1.0 we obtain an ontology that perfectly fits

the data, i.e. which does not contain any inconsistencies if merged with the factoid
knowledge in the RDF repository.
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between two classes which subsume each other according to a previously added
axiom, we retract the most recent axiom and continue with the next one.

5 Evaluation

In the following, we report on several experiments we conducted in order to
evaluate Statistical Schema Induction with real-world data. The results of these
experiments are available online and can be downloaded from a dedicated web
page.6 By the first experiment based on the DBpedia dataset (cf. Section 5.1) we
were aiming to gain some insights regarding the quality of the generated ontolo-
gies as compared to existing, manually constructed schemas. The comparatively
large size of the DBpedia dataset makes it a good benchmark for the scalability
of our implementation. In a second experiment (see Section 5.2), we assessed the
feasibility of our approach on a set of smaller RDF datasets, all of them taken
from data.gov.uk.

Both of these experiments were carried out on a an AMD 64bit DualCore
computer with 2,792 MHz and 8 GB RAM. The Java-based implementation
of our approach makes use of various publicly available libraries for database
access (MySQL 5.0.51), ontology management (Pellet 2.2.1 and OWL API 3.0.0)
and Linked Data querying (Jena 2.6.3). In addition, we applied the Apriori
implementation by Borgelt and Kruse [7] to mine the association rules.

1110 1325 6293 0 1 144

4065 4665 4695 1146 6330 6973 64 185

1146 6330 6973 64 68 141

3235 6668 6769 3242 5049 6673 3907 2 66

1110 1325 6293 0 73 144

Fig. 2. Textual serialization of a transaction table

The input to this implementation were textual serializations of the trans-
action tables (cf. Table 3). Figure 2 shows an excerpt from an input file that
enables us to acquire axioms of the form C � ∃r.D and ∃r.C � D for the DB-
pedia dataset (cf. Section 5.1). The items in each transaction like 144 (Place)
or 3907 (∃language.Language), for example, are the identifiers of those named
or complex classes the respective individual belongs to. Note that we only need
to compute transactions for those individuals which are known to be members
of at least one named or complex class. For the DBpedia dataset, the number
of rows in the various transaction tables varied between 5,217,133 (transitivity
axioms) and 1,477,796 (domain and range restrictions).

From the computed association rules, we generated the types of axioms listed
by Table 3. Moreover, we generated disjointness axioms (C � D � ⊥) between
classes with more than 100 instances that do not have any individuals in com-
mon. The confidence values for these axioms were generated by normalizing the
product of the number of instances for each pair of classes.
6 http://code.google.com/p/gold-miner/

data.gov.uk
http://code.google.com/p/gold-miner/
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τ # axioms recall precision F1 score

1.0 365 0.997 0.992 0.995

0.9 373 0.997 0.971 0.983

0.8 381 0.997 0.950 0.973

(a) Without support threshold

τ # axioms recall precision F1 score

1.0 339 0.926 0.991 0.957

0.9 347 0.926 0.968 0.947

0.8 354 0.926 0.949 0.937

(b) With support threshold of 10

Fig. 3. Recall, precision and F1 values for subsumption axioms between atomic
classes for varying thresholds on the confidence values

τ # axioms recall precision F1 score

1.0 950 0.900 0.808 0.852

0.9 1143 0.946 0.655 0.774

0.8 1181 0.946 0.683 0.793

(a) Without support threshold

τ # axioms recall precision F1 score

1.0 821 0.790 0.821 0.805

0.9 1036 0.835 0.576 0.682

0.8 1092 0.838 0.558 0.670

(b) With support threshold of 10

Fig. 4. Recall, precision and F1 values for domain restriction axioms for varying
thresholds on the confidence values

5.1 DBpedia

We evaluated the generated ontology by comparing it to the DBpedia ontol-
ogy7 (version 3.5.1), which we considered the most natural gold standard. The
DBpedia ontology was created by a manual mapping of 1,055 Wikipedia infobox
templates to 259 named classes. Besides these classes, the ontology comprises 602
object properties, 674 datatype properties, 257 explicit subsumption axioms as
well as 459 domain and 482 range restrictions. 1,477,796 of the roughly 3.4 mil-
lion “things” (i.e. RDF resources representing Wikipedia articles) are explicitly
classified with regard to the DBpedia ontology.

However, as the expressivity of the DBpedia ontology is relatively low (it
equals the complexity of the ALF(D) description logic), we only considered
those types of axioms that are common to both ontologies when comparing
the two schemas: subsumption between named classes and property restrictions.
Tables 3, 4, and 5 list the results of the schema induction process for various
thresholds on the confidence values. The time needed to compute the association
rules was less than 5 seconds for the largest transaction table, which confirms the
scalability of the Apriori algorithm to the large Linked Data repositories. The
recall and precision scores are computed relative to the DBpedia ontology. Hence,
not all false positives and false negatives with respect to the DBpedia ontology
would necessarily be incorrect in terms of a more complete gold standard. Note
that for the comparison of the two ontologies we did not only consider the
explicit axioms, but all the inferable class subsumption and property restriction
axioms.

7 http://wiki.dbpedia.org/Ontology

http://wiki.dbpedia.org/Ontology
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τ # axioms recall precision F1 score

1.0 401 0.392 0.666 0.494

0.9 740 0.712 0.655 0.682

0.8 868 0.790 0.620 0.695

(a) Without support threshold

τ # axioms recall precision F1 score

1.0 206 0.258 0.854 0.396

0.9 740 0.580 0.512 0.544

0.8 840 0.658 0.604 0.630

(b) With support threshold of 10

Fig. 5. Recall, precision and F1 values for range restriction axioms for varying
thresholds on the confidence values

5.2 Other Datasets

In order to test the applicability of Statistical Schema Induction to RDF datasets
other than DBpedia (in particular to datasets that do not come with any existing
schema yet), we performed a second evaluation experiment based on the RDF
repository of data.gov.uk. In this experiment, we focused on the taxonomy of
named classes and merely generated axioms of the form C � D. Due to time
constraints and the lack of a proper gold standard for this dataset we only report
our most important findings, and refer the reader to the aforementioned website
that we setup for our experiments.

Without any changes to our implementation, we were able to compute appro-
priate transaction tables for five subsets of data.gov.uk each of these subsets
corresponding to a public sector:8 reference, eduction, ordnance, transport and
finance. For three of them we obtained a proper class hierarchy,9 while closer
inspection of the other two datasets (ordnance and finance) revealed that none
of the resources in the dataset was stated to be of more than one rdf:type.

One might argue that the redundancy caused by multiple type statements
cannot be assumed to be common in real-world datasets. However, note that
the kind of axioms involving complex class expressions or any of the property
subsumption axioms could still be acquired in this case. Moreover, whenever we
do not find multiple rdf:type statements for all of the RDF resources (e.g. in
the case of the ordnance dataset of data.gov.uk only very few resources have
more than one type), we could pursue the following bootstrapping-like strategy:
First, we mine the dataset for domain-range restrictions of the predicates that
we assume to represent object properties. For example, we might find the domain
of a certain predicate r to be of type C, that is ∃r.� � C. Then, we use these
restrictions in order to “classify” all of the resources in the RDF graph. In
particular, adhering to the OWL semantics of domain-range restrictions, we can
infer that each resource that has the property r must be of type C and likewise
for the range. Those additional type statements could finally help to induce the
hierarchy of named classes.
8 As the legislation part of data.gov.uk uses only a very limited set of identifiers for

the objects of rdf:type statements, we were unable to acquire a sufficiently rich
terminology for this dataset.

9 For example, the axioms DeputyDirector � CivilServicePost and MinisterialDepart-
ment � Department were mined from the reference part of the data.gov.uk dataset.

data.gov.uk
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Without applying this strategy, we obtained 64 classes and 47 axioms for
education, 62 classes and 137 axioms for transport, 20 classes and 17 axioms for
reference, 29 classes and 3 axioms for ordnance, as well as 41 classes and 0 axioms
for finance, where “axioms” refers to explicit subsumption axioms (C � D).

6 Conclusion and Future Work

In this paper, we introduced statistical schema induction as a means to generat-
ing ontologies from RDF data. Our approach based on association rule mining
has been tested on several real-world datasets. While the first results are actually
very promising, we are well aware of the fact that our implementation could be
improved in various respects.

As future work we envision, for example, an adaptation of our approach to
more expressive description logics. In particular, we will extend our implementa-
tion to also capture property disjointness (r � ¬s), inverse properties (r ≡ s−1)
and cardinality restrictions (e.g. C � ≤ 1r.�). Furthermore, we would like to
facilitate a more efficient construction of the transaction tables by appropriate
sampling strategies or a Map-Reduce framework for distributed computation.
Another very promising way to increase the scalability of our approach could be
the use of incremental methods for adapting a generated ontology to subsequent
changes in the underlying dataset. As long as we can assume these changes to be
strictly monotonic, the necessary adaptations to the transaction tables will be
linear in time, and efficient algorithms for mining association rules could suggest
appropriate ontology refinements within a few seconds at most. It is thus tempt-
ing to imagine, for example, an on-the-fly refinement of the DBpedia ontology
that keeps it synchronized with the DBpedia live dataset. Finally, we are con-
fident that these optimizations as well as existing instance mapping techniques
will facilitate the application of Statistical Schema Induction across even larger
and more heterogenous fragments of the Linked Data cloud.

Acknowledgements. We especially thank Jens Lehmann and the AKSW research
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