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for wind energy potential appraisal in the area 
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Abstract 

Paramount two-parameter Weibull function has been extensively used to assess the wind energy potential. 

The performance contrast of four statistical methods, i.e., energy pattern factor method, least squares regres-

sion method, method of moments and mean standard deviation method in estimating extensively used Weibull 

parameters for wind energy application at four selected locations of northern Ethiopia has been studied. The 

contrast of statistical methods is compared through relative percentage error, root mean square error, mean 

percentage error, mean absolute percentage error, Chi-square error and analysis of variance (or) efficiency of the 

methods used. Test results evidently revealed that, least squares regression method presents better performance 

than other methods selected in the investigation. The least efficient methods to fit the Weibull distribution curves 

for the assessment of wind speed data especially for four selected locations are energy pattern factor method, 

method of moments and mean standard deviation. From the actual data analysis, it is found that if wind speed 

distribution matches well with the Weibull function, the above three methods are applicable, but if not, least 

squares regression method can be considered based on the cross checks including energy potential and cumula-

tive distribution function.
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Background
Wind is one of the unlimited renewable energy resources 

which can provide with significant units of energy to bear 

the requirements of a nation. It is renowned that wind 

energy has stood out as the most precious and promis-

ing choice for generation of electricity. Earlier studies 

have proved that the installation of a number of wind 

turbine generators can effectively reduce environmental 

pollution, fossil fuel consumption, and the costs of over-

all electricity generation (Paritosh 2011). �ough wind 

is only the sporadic source of energy which can repre-

sent a reliable energy resource from a long-term energy 

policy among the diverse renewable energy resources, 

wind energy is one of the most admired energy resources 

around the globe.

In Africa, Ethiopia is among the least developed coun-

tries on the globe with a total access to electricity not 

exceeding 16 %. �e country is endowed with all sources 

of energy such as hydro, solar, wind, biomass, natural gas, 

geothermal, etc., and has not been able to develop, trans-

form and utilize these resources for optimal economic 

development. It has a capacity of generating electricity of 

more than 5000 MW from geothermal and 10,000 MW 

from wind (Ethiopian Electric Power Corporation 

(EEPCo) 2011) and an average potential of 5.26 kWh 

per square meter per day from high solar energy (Min-

istry of Water and Energy (MoWE) 2011). Wind power 

is growing globally at the rate of 30 % annually, with an 

installed capacity increased from 196,653  MW in 2010 

to 239,000 MW at the end of 2011 (World Wind Energy 

Association (WWEA) 2015). �e Ethiopian government 
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is devoted to improving its energy production capac-

ity as quickly as possible by constructing new power 

plants, expanding the national grid and has planned to 

reach 10,000 MW of installed capacities by 2015 (Ethio-

pian Electric Power Corporation (EEPCo) 2011). Lack of 

reliable wind data covering the entire country has been 

one of the reasons for limited application of wind energy 

in Ethiopia, but lately studies have shown that it has 

substantial potential to generate electricity from wind, 

geothermal and hydropower sources. Considering the 

substantial wind energy resource in the country, govern-

ment has committed itself to generate power from wind 

plants by constructing eight wind farms with total capac-

ity of 1116 MW together with a number of hydropower 

plants over the 5  year Growth and transformation plan 

(GTP) period from 2011 to 2015. �is development of 

wind power is a part of the current energy sector policy 

of the country that aims at five time’s increase in renew-

able energy production by the end of 2015 (Mulugeta 

et  al. 2013). Based on the theoretical cubic relationship 

for wind power estimation, it was found that the simpli-

fied approach may provide significantly lower estimates 

of wind power potential by 42–54  % (Yong et  al. 2012). 

A feasibility study has been proven that the basic needs 

of the community are served by small Hydro/PV/Wind 

hybrid system for off-grid rural electrification in Ethio-

pia (Getachew and Getnet 2012). �e analysis of solar 

energy potential and design of a hybrid stand alone elec-

tric energy supply system that includes a wind turbine, 

PV, diesel generator and battery (Bekele and Palm 2009).

Wind energy has intrinsic variances and hence it can be 

expressed by distribution functions. �e Weibull distri-

bution is an important distribution especially for reliabil-

ity and maintainability analysis. Two-parameter Weibull 

distribution function has been commonly used in many 

folds which includes wind energy assessment, rainfall 

and water level prediction, sky clearness index classifica-

tion, life length analysis of material, etc., for representing 

the picture of energy potential and feasibility of install-

ing wind turbine systems (Abernethy 2002; Weibull 1939, 

1951). Extreme transitions in wind speed characteriza-

tion require specific efforts in investigating spatial, tem-

poral and directional variation of wind speeds, which 

render rather difficult the characterization and classifica-

tion of an area as of high or low wind potential, in the 

majority of cases (Bagiorgas et al. 2008). In recent times, 

it became a reference delivery in commercial wind energy 

software’s resembling Wind Atlas Analysis and Applica-

tion Program (Carta et al. 2009).

Enlargement of upgraded and innovative techniques 

for accurately assessing the wind energy potential of a 

site is gaining augmented importance. �is is because 

of the fact that planning and establishment of a wind 

energy system depend upon factors like variation of wind 

speed distribution, mean wind speed, standard devia-

tion, and characteristic operational speeds of turbine 

viz. cut-in velocity, rated velocity, and cut-out velocity. 

It is mandatory to amend the wind speed characteris-

tics of a particular location to establish certain wind tur-

bines for generation of electricity. Among the methods 

suggested by the prior researchers, it is bringing to cru-

cial findings that the maximum likelihood method per-

forms better than the popularly used graphical method 

in determining Weibull parameters; but the graphical 

method’s performance can be enhanced as the bin size 

of wind speed is reduced (Seguro and Lambert 2000). 

�e empirical method provides more accurate predic-

tion of average wind speed and power density than the 

graphical method (Jowder 2009). Chi square method 

gave better estimations for Weibull parameters than the 

moment and graphical methods, based on the Kolmogo-

rov–Smirnov statistics (Dorvlo 2002). �e performances 

of maximum entropy principle (MEP) derived probability 

density functions (PDFs) in fitting wind speed data var-

ies from site to site. Also, the results demonstrate that 

MEP—derived PDFs are flexible and have the potential 

to capture other possible distribution patterns of wind 

speed data (Junyi et al. 2010). A little difference in terms 

of adjusted R2 and root mean square error (RMSE) values 

in modeling wind direction with angular-linear (AL) and 

Farlie–Gumbel–Morgenstern (FGM) approaches using 

bivariate statistical models for representing both wind 

direction and speed (Erdem and Shi 2011). Excellent fit-

ting can be achieved for wind speed using conventional 

univariate probability distribution functions, but it is 

found that accurately fitting air density distribution of the 

North Dakota site can only be obtained using bimodal 

distributions (Xiuli and Jing 2010). All the geomet-

ric methods mentioned are based on the fact that wind 

speed data follow the Weibull probability distribution. 

However the wind data actually observed is not necessary 

with the Weibull distribution. For a given data set, widely 

used statistical methods such as moment method, least 

square regression method, standard deviation method, 

maximum likelihood method, modified maximum likeli-

hood method and energy pattern factor method can be 

applied to estimate the Weibull parameters (Lai and Lin 

2006; Zhou et al. 2006; Akpinar and Akpinar 2004; Celik 

2003; Ucar and Balo 2009; Chang et al. 2003; Kwon 2010; 

�iaw et al. 2010; Akdag and Dinler 2009).

�e evaluation of Weibull parameters is so vital in 

wind energy application at a desired location. However, 

the precision of four statistical methods mentioned has 

been discussed in this current research. A very few stud-

ies have been performed to investigate the characteristics 

and pattern of wind speed across Ethiopia, less attention 
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has been given to the sites principally in Northern Ethio-

pia. �e main intention of this study is, therefore, to ver-

ify the performance of four statistical methods to analyze 

the Weibull parameters for wind energy applications at 

four selected locations (i.e., Chercher, Maychew, Mekele 

and Senkata) in the Northern Tigray region of Ethiopia.

Data measurement

�e wind data used in this study was obtained from 

National Meteorological Agency (NMA), located at capi-

tal city of Tigray region, Mekele. �e geographical coor-

dinates of the meteorological stations where the wind 

speed data were captured at a height of 10 m by Belford—

three cup type anemometer are furnished in Table  1. 

Care has been taken during the collection of data to avoid 

uncertainties and followed the methodologies proposed 

and explained in the ISO guide (International Standards 

Organization 1992). �e uncertainty in the mean veloci-

ties at 95 % confidence level was determined to be ±2 % 

(Manwell et al. 2010). Wind speed data used are observed 

per 3 h each day throughout the year from 2013 to 2014 

at four different wind farms experiencing almost simi-

lar weather conditions. �e recorded wind speeds were 

computed as the mean of wind speed for each month. 

It was noticed that using monthly wind speed has some 

limitations such as loosing extremely high or low wind 

speeds within the month as well as inability to observe 

diurnal variations in the wind speed. However, using the 

monthly mean wind speed, which is mostly available for 

all selected locations, can be used to study the seasonal 

changes in wind speed and facilitates wind data analysis.

Methods for appraising Weibull parameters
In the modern past, numerous statistical models have 

been developed and used for scrutiny of wind speeds for 

assessing energy potential at a location. Former studies 

have also been showed that a very few statistical meth-

ods such as Weibull and Rayleigh distribution models 

can also be equally used (Akpinar and Akpinar 2005). 

Among these methods, paramount two-parameter 

Weibull probability distribution function is one of the 

most appropriate, conventional and suggested method 

for wind speed analysis owing to a better fit for measured 

monthly probability density distributions, than other 

statistical functions (Akdag et  al. 2010). Moreover, the 

Weibull parameters at known heights can also be used 

to estimate wind parameters at a new height (Mathew 

2006).

Weibull distribution function is described by the shape, 

scale, and threshold parameters. �e case when the 

threshold parameter is zero is called the two-parameter 

Weibull distribution and it is depending on the values 

of its parameters and can take various forms. Due to its 

repetition from earlier researchers, the two-parameter 

Weibull probability distribution function has proven that 

the most appropriate, accepted and recommended distri-

bution function for wind speed data analysis (Junyi et al. 

2010). �e variation in wind velocity is characterized by 

two parameter functions: probability density function 

(PDF) and the cumulative distribution function (CDF). 

�e probability density function f(v) indicates the proba-

bility of wind at a given velocity, while the corresponding 

cumulative distribution function F(v) gives the prob-

ability that wind velocity is equal to or lower than v, or 

within a given wind speed range. �e Weibull probability 

density function is given as, e.g., (Justus et al. 1978):

where f(v) is the probability of observed wind speed (v), 

k is the dimensionless Weibull parameter and c is the 

Weibull scale parameter (m/s). �e scale parameter can 

be related to the mean wind speed v̄ through the shape 

factor, which determines the consistency of wind speed 

at a given location.

�e cumulative distribution, F(v) is the integral part 

of probability density function, and can be expressed as, 

(Manwell et al. 2010):

�e entire distributions can be used to resolve the 

probability of occurrence affects the shape of probability 

curve and wind regime. �e cumulative curve probability 

nature typically fits to the Weibull distribution function. 

Copious methods for estimation of Weibull parameters 

are originated in the literature are furnished below.

Energy pattern factor method (EPFM)

�e energy pattern factor is connected to the aver-

age data of wind speed and can be defined as the ratio 

of mean of cubic wind speed to the cube of mean wind 

speed. �e energy pattern factor (EPF) can be expressed 

as:

(1)f (v) =

dF(v)

dv
=

(

k

c

)

(v

c

)k−1
exp

[

−

(v

c

)k
]

(2)F(v) =

∫ v

0

f (v)dv = 1 − e−( v
c )

k

Table 1 Geographical coordinates of  selected experimen-

tal locations

S. no Stations Longitude Latitude Altitude (m) Measurement 
period

1 Chercher N12°53′ E39°76′ 1767 2013–2014

2 Maychew N12°47′ E39°32′ 2479

3 Mekele N13°29′ E39°28′ 2084

4 Senkata N14°13′ E39°34′ 2480
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where vi is the wind speed in meter per second for ith 

observation, N is the total number of wind speed obser-

vations, and v̄ is the mean wind speed. Once EPF is 

calculated, the Weibull shape and scale factors can be 

estimated from the following formulas:

Least‑squares regression method (LSRM)

LSRM is well known as a graphical method implemented 

by plotting a graph in such a way that the cumulative 

Weibull distribution becomes a straight line where the 

time-series data must be sorted into bins. �e equation 

of PDF, after transformation and taking into considera-

tion of natural logarithms both sides, the expression can 

be written as (Johnson and Kotz 1970):

Equation  6 is linear and can be fitted using the fol-

lowing least square regression method: y = ax + b with

y = ln[− ln(1 − F(v))], x = ln(v), a = k , b = −k ln(c) 

and also

�e cumulative distribution function F(v) can be esti-

mated easily, using an estimator, which is the median 

rank, according to Benard’s approximation:

where i is the number of the wind speed measurements 

and N is the total number of observations (Benard and 

Bos-Levenbach 1953).

�e relationship between ln(v) against ln[−ln[1 − F(v)]] 

represents a straight line with slope k and the intersection 

point with Weibull line gives the value of scale parameter 

(c) in meters per second.

Method of moments (MOM)

MOM is one of the imperative techniques universally used 

in the field for evaluating Weibull parameters. It is based 

on the numerical iteration of mean  wind speed (v̄) and 

(3)
EPF =

1

(v̄3)

(

n
∑

i=1

v
3

i

N

)

=

Γ

(

1 +
3

k

)

Γ 3

(

1 +
1

k

)

(4)k = 1 +
3.69

(EPF)2

(5)
c =

v̄

Γ

(

1 +
1

k

)

(6)ln[− ln(1 − F(v))] = k ln v − k ln c

(7)k = a and c = e
−

(

b

k

)

(8)F(v) =
i − 0.3

N + 0.4

standard deviations (σ) of wind speeds are expressed: where 

v̄ =
1

n

∑
n

i=1
(vi) and σ = c

[

Γ

(

1 +
2

k

)

− Γ
2

(

1 +
1

k

)]
1

2

�e dimensionless Weibull and scale parameters can be 

calculated as follows:

where Γ ( ) is the Gamma function expressed by:

�e average wind speed can be expressed as a function 

of Weibull scale parameter (c) and dimensionless Weibull 

shape parameter (k) derived from the Gamma function 

mentioned in Eq. (12).

where y =

(

v
c

)k
 and v

c = yx−1; x = 1 +
1

k
 after few 

transformations

Mean standard deviation method (MSDM)

MSDM is constructive where only the two parameters 

such as mean wind speed and standard deviations are 

available. It is well known as empirical method and could 

be considered as a unique case of MOM method, Weibull 

shape and scale parameters are estimated by:

where σ is the standard deviation and v̄ is the mean wind 

speed (in meter per second). Alternatively, Weibull scale 

parameter can be projected from the following expres-

sion given by:

(9)
σ

v̄
=

√

√

√

√

√

√

Γ

(

1 +
2

k

)

[

Γ

(

1 +
1

k

)]2
− 1

(10)k =

(

0.9874

σ

v̄

)1.0983

(11)v̄ = cΓ

(

1 +
1

k

)

(12)Γ (x) =

∫
∞

0

yx−1e−y
dy

(13)

v̄ = c + Γ

(

1 +
1

k

)

= 0.8525 + 0.0135k + e
−[2+3(k−1)]

(14)k =

(

σ

v̄

)

−1.086

(15)
c =

v̄

Γ

(

1 +
1

k

)

(16)c =
v̄ k2.6674

0.184 + 0.816 k2.73855
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Statistical inaccuracy analysis/goodness of �t
To find the best method for analysis, several statistical 

tools were used by the previous researchers to analyze 

the efficiency of above-mentioned methods. �e follow-

ing tests are as follows (Mohammadi and Mostafaeipour 

2013; Costa Rocha et al. 2012; Justus and Mikhail 1976): 

(a) Relative percentage of error (RPE)

  

(b) Root-mean square error (RMSE)

  

(c) Mean percentage error (MPE)

  

(d) Absolute mean percentage error (AMPE)

  

(e) Chi-square error

  

(f ) Kolmogorov–Smirnov test

  

(g) Analysis of variance (or) regression coefficient

  

where N is the number of wind speed observations; 

yi,m is the frequency of observation or ith calculated 

value from measured data; xi,w is the frequency of 

Weibull or ith calculated value from the Weibull dis-

tribution; zi,v is the mean of ith calculated value from 

measured data. In general, RPE shows the percent-

age deviation between the calculated values from the 

Weibull distribution and the calculated values from 

measured data. Similarly, the MPE shows average 

of percentage deviation between the calculated val-

ues from the Weibull distribution and the calculated 

(17)
RPE =

(

xi,w − yi,m

yi,m

)

× 100 %

(18)RMSE =

[

1

N

n
∑

i=1

(

yi,m − xi,w
)2

]
1
2

(19)MPE =

1

N

n
∑

i=1

(

xi,w − yi,m

yi,m

)

× 100 %

(20)AMPE =

1

N

n
∑

i=1

∣

∣

∣

∣

xi,w − yi,m

yi,m

∣

∣

∣

∣

× 100 %

(21)χ
2

=

∑n
i=1

(

yi,m − xi,w
)2

xi,w

(22)Q95 =
1.36
√
N

(23)

R2
=

∑n
i=1

(

yi,m − zi,ν̄
)2

−
∑n

i=1

(

yi,m − xi,w
)2

∑n
i=1

(

yi,m − zi,ν̄
)2

values from measured data, and MAPE shows the 

absolute average of percentage deviation between the 

calculated values from the Weibull distribution and 

the calculated values from measured data. Paramount 

results are obtained when these values are nearest to 

zero. Regression coefficient (R2) determines the lin-

ear relationship between the calculated values from 

the Weibull distribution and measured data. �e ideal 

value of regression coefficient is equal to 1.

Coe�cient of variation (COV)
COV is defined as the ratio between mean standard devi-

ation to the mean wind speed expressed in terms of per-

centage. It demonstrates the uncertainty of wind speed 

and can be expressed as (Ahmed and Mahammed 2012):

where σ is the standard deviation and v̄ is the mean wind 

speed in m/s.

Wind energy potential
Wind turbine or wind energy conversion system (WECS) 

is a structure that transforms the kinetic energy of the 

incoming air stream into electrical energy. �e perfor-

mance of a wind turbine is primarily characterized by the 

manner in which the main indicator of power varies with 

wind speed. In general, the electrical power output of a 

model wind turbine is commonly rely on cut-in, rated 

and cut-off wind speeds. Accurate models of power curve 

serve as an important tool in wind power forecasting. 

But the theoretical wind energy per unit area for a given 

time period T based on the Weibull probability functions, 

given by (Tian 2011):

where ρ is the air density (assumed to be 1.225 kg/m3).

�e analogous energy based on actual time-series data 

can be obtained by:

where v3 is the mean of wind speed cubes.

Results and discussion
In this investigation, an effort is made to assess the preci-

sion concerning the four statistical methods. True mean 

wind speed data observed at four selected experienc-

ing dissimilar weather conditions are used in the sub-

sequent calculations, i.e., Chercher, Maychew, Mekele 

and Senkata. Figures  1, 2, 3, 4 show the monthly varia-

tions of Weibull distributions generated by four statistical 

(24)COV(%) =
σ

v̄
× 100

(25)Ew =
1

2
ρc3Γ

(

1 +
3

k

)

T

(26)Ea =

1

2
ρv3T
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approaches considered for Weibull shape and scale 

parameters at selected locations. It can be seen that, the 

divergence for shape parameters and the methods is more 

significant than that of scale parameters. Dimensionless 

Weibull shape parameters observed less significant val-

ues obtained from EPFM and LSRM. �e consistency is 

arrived at Weibull scale parameters and both the MOM 

and MSDM present comparable range of Weibull shape 

and scale parameters.   

To scrutinize the performance of the four statistical 

methods aforementioned in estimating Weibull param-

eters, a model of cross verification has been anticipated. 

Tables 2, 3, 4, 5 catalog the expressive statistics of wind 

speed, which reveal evident variation for different time 

periods. �e speed range can be represented as the 

discrepancy between the maximum and minimum wind 

speed. Mean wind speeds are ranging between 3.147 

and 1.360 m/s at Chercher. Furthermore locations May-

chew, Mekele and Senkata are ranging between 3.147 

and 1.889 m/s correspondingly. Likewise standard devia-

tions are identical at Chercher and Senkata (i.e., 0.341–

0.814  m/s), slightly elevated at Maychew and Mekele. 

Skewness values are ranging between −0.270 and 1.907; 

and Kurtosis values are ranging between −0.393 and 

4.264, −0.366 and 4.554, −0.481 and 9.582 and −1.743 

and 9.132 at Chercher, Maychew, Mekele and Senkata, 

respectively. �e critical values at 95 % confident level in 

Kolmogorov–Smirnov test (Q95) are 0.086 and 0.088 for 

months with 31 days and 30 days, respectively. At the end, 

the max-error in CDF never exceeds the corresponding 
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significant values implying that the technique proposed is 

applicable to generate the variables required in selection 

of feasible site for generation potential wind energy from 

turbines.

�e precision of four statistical methods observed 

at four locations experiencing almost similar weather 

conditions are used in the subsequent calculations, i.e., 

Chercher, Maychew, Mekele and Senkata. Figures  5, 6, 

7, 8 present the histograms and comparison of Weibull 

probability functions of monthly mean wind speeds for 

four selected locations. As found, for wind data soundly 

characterized by both Weibull probability density func-

tion (PDF) and cumulative distribution function (CDF). 

�e CDF max-errors are less than or near the critical 

values of 95 % confidence level in Kolmororov–Smirnov 

test. In all places similar behavior was observed and least 

square regression method satisfying more precisely than 

all other methods.

In each station, the above mentioned four methods 

were used, in order to estimate the Weibull two param-

eters i.e., shape and scale parameters. �ese values are 

averaged and presented in Table 6. It can be clearly seen 

that a strong linear relation between the monthly mean 

Weibull scale parameters c (averages of the four meth-

ods, taken from Table  6) and the measured monthly 

mean wind speeds for four selected locations. �e 

regression coefficients (R2) values are extremely high 

and demonstrate an exceptional counterpart of the 
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linear model (0.993  <  R2  <  0.999). Figure  9 shows the 

linear relationship between Weibull scale parameter 

and monthly mean observed values at Chercher, May-

chew, Mekele and Senkata respectively. �e maximum 

regression coefficient (i.e., 0.999) was observed at May-

chew and the other three locations illustrate regression 

coefficient of 0.993. At last, the correlation between 

monthly scale parameter, c and the measured mean 

monthly wind speed was examined in the selected loca-

tions and was found linear, with a slope directly propor-

tional to the average of the monthly scale parameters k 

of the location. 

Table 2 Expressive statistics for observed wind speed data at Chercher

Months Data  
observations

Wind speed 
range (m/s)

Mean (m/s) Standard  
deviation (m/s)

Skewness Kurtosis Power  
Density (W/m2)

Q95

Jan 248 1.850 2.425 0.474 −0.270 −0.393 8.730 0.086

Feb 224 1.810 2.786 0.468 0.570 0.962 13.238 0.091

Mar 248 2.310 2.931 0.539 0.230 0.498 15.422 0.086

Apr 240 2.110 3.147 0.551 0.076 −0.954 19.097 0.088

May 248 2.910 2.471 0.814 0.861 −0.388 9.240 0.086

June 240 1.500 2.827 0.390 −0.253 −0.591 13.842 0.088

July 248 2.260 3.096 0.536 0.337 −0.191 18.173 0.086

Aug 248 2.190 2.626 0.669 0.038 −1.158 11.091 0.086

Sep 240 1.860 1.905 0.524 0.913 0.169 4.234 0.088

Oct 248 1.750 1.889 0.396 1.347 2.126 4.126 0.086

Nov 240 1.360 2.452 0.341 0.258 −0.291 9.031 0.088

Dec 248 2.230 2.463 0.507 1.907 4.264 9.149 0.086

Feb–Apr 712 2.077 2.955 0.519 0.292 0.169 15.798 0.051

May–July 736 2.223 2.798 0.580 0.315 −0.390 13.416 0.050

Aug–Oct 736 1.933 2.140 0.530 0.766 0.379 6.001 0.050

Nov–Jan 736 2.002 2.446 0.441 0.631 1.193 8.969 0.050

Annual 5840 3.010 2.585 0.517 0.501 0.338 135.372 0.087

Table 3 Expressive statistics for observed wind speed data at Maychew

Months Data  
observations

Wind speed 
range (m/s)

Mean (m/s) Standard  
deviation (m/s)

Skewness Kurtosis Power  
Density (W/m2)

Q95

Jan 248 1.110 1.619 0.249 0.769 1.401 2.597 0.086

Feb 224 0.580 1.649 0.174 −0.088 −1.087 2.744 0.091

Mar 248 0.670 1.755 0.191 −0.701 −0.366 3.309 0.086

Apr 240 0.720 1.567 0.212 0.147 −1.196 2.356 0.088

May 248 1.030 1.906 0.225 −0.120 0.990 4.244 0.086

June 240 2.390 2.339 0.648 0.935 −0.062 7.840 0.088

July 248 4.960 4.110 1.443 0.062 −0.812 42.516 0.086

Aug 248 4.240 2.919 0.992 0.861 1.148 15.230 0.086

Sep 240 0.890 1.552 0.205 1.279 1.767 2.288 0.088

Oct 248 0.610 1.588 0.165 −0.151 −1.014 2.451 0.086

Nov 240 0.820 1.545 0.157 1.488 4.554 2.257 0.088

Dec 248 0.560 1.537 0.128 0.436 0.532 2.225 0.086

Feb–Apr 712 0.657 1.657 0.192 −0.214 −0.883 2.785 0.051

May–July 736 2.793 2.785 0.772 0.292 0.039 13.233 0.050

Aug–Oct 736 1.913 2.019 0.454 0.663 0.633 5.044 0.050

Nov–Jan 736 1.939 1.567 0.178 0.898 2.162 2.356 0.050

Annual 5840 5.450 2.007 0.399 0.410 0.488 90.058 0.087
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�e mutability of wind speed can be demonstrated 

by the coefficient of variation/turbulence intensity. It 

can be defined as the ration between standard deviation 

over the wind speed. It is an indicator of turbulence and 

not an absolute value, which is a very useful indicator in 

wind turbine operation and design. �e monthly mean 

COV values are presented in Fig. 10. It can be seen that 

the coefficient of variation is ranging between 32.930 

and 13.896  % at Chercher and Senkata. �e other loca-

tions, Maychew and Mekele, ranging between 32.930 and 

6.992 %, 32.930 and 5.715 %, respectively. For instance, at 

Maychew got higher percentage of variation due to the 

gusty wind existence in 2 months i.e., July and August. In 

general, the COV is lower when wind speed is maximum 

Table 4 Expressive statistics for observed wind speed data at Mekele

Months Data  
observations

Wind speed 
range (m/s)

Mean (m/s) Standard  
deviation (m/s)

Skewness Kurtosis Power  
Density (W/m2)

Q95

Jan 248 0.620 1.582 0.200 −0.406 −1.112 2.427 0.086

Feb 224 0.490 1.514 0.145 0.080 −0.935 2.124 0.091

Mar 248 1.280 1.629 0.359 0.975 0.246 2.648 0.086

Apr 240 1.010 1.649 0.246 0.088 −0.032 2.749 0.088

May 248 0.530 1.481 0.167 0.293 −1.112 1.989 0.086

June 240 0.400 1.337 0.131 1.799 1.691 1.465 0.088

July 248 0.620 1.329 0.135 2.937 9.582 1.438 0.086

Aug 248 0.540 1.398 0.238 2.264 5.453 1.674 0.086

Sep 240 0.370 1.337 0.086 1.796 4.043 1.462 0.088

Oct 248 0.520 1.458 0.158 0.611 −0.775 1.897 0.086

Nov 240 0.560 1.481 0.169 0.736 −0.481 1.989 0.088

Dec 248 1.040 1.420 0.241 2.681 7.293 1.755 0.086

Feb–Apr 712 0.927 1.597 0.250 0.381 −0.240 2.497 0.051

May–July 736 0.517 1.382 0.144 1.676 3.387 1.618 0.050

Aug–Oct 736 0.477 1.397 0.160 1.557 2.907 1.672 0.050

Nov–Jan 736 0.538 1.495 0.204 1.004 1.900 2.045 0.050

Annual 5840 1.310 1.468 0.190 1.155 1.989 23.618 0.018

Table 5 Expressive statistics for observed wind speed data at Senkata

Months Data  
observations

Wind speed 
range (m/s)

Mean (m/s) Standard  
deviation (m/s)

Skewness Kurtosis Power  
Density (W/m2)

Q95

Jan 248 0.850 1.921 0.206 0.014 −0.104 4.342 0.086

Feb 224 1.470 2.152 0.332 −0.249 0.063 6.101 0.091

Mar 248 1.470 2.348 0.440 0.597 −0.564 7.931 0.086

Apr 240 2.570 3.119 0.667 0.805 −0.187 18.582 0.088

May 248 3.200 2.446 0.822 1.435 1.789 8.960 0.086

June 240 1.960 2.251 0.668 0.130 −1.743 6.983 0.088

July 248 1.170 1.672 0.299 0.771 0.794 2.862 0.086

Aug 248 1.770 1.666 0.333 2.366 9.132 2.833 0.086

Sep 240 1.770 2.068 0.563 0.504 −1.073 5.418 0.088

Oct 248 2.720 2.522 0.712 0.947 0.424 9.826 0.086

Nov 240 1.940 2.173 0.471 0.292 −0.037 6.282 0.088

Dec 248 2.200 2.051 0.543 1.442 1.491 5.285 0.086

Feb–Apr 712 1.837 2.540 0.480 0.384 −0.229 10.032 0.051

May–July 736 2.110 2.123 0.597 0.779 0.280 5.858 0.050

Aug–Oct 736 2.087 2.085 0.536 1.272 2.828 5.555 0.050

Nov–Jan 736 1.682 2.048 0.407 0.583 0.450 5.263 0.050

Annual 5840 3.420 2.199 0.505 0.754 0.832 85.405 0.087
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or vice versa. However, for the sake of complete wind 

energy potential assessment, wind energy conversion 

operation, or grid integration, some supplementary 

information is needed concerning periodicity and more 

generally time variability of the wind velocity for a given 

time scale.

In statistical analysis, for judgment of statistical meth-

ods to each other and to find out the efficiency of the 

methods, six statistical tools, i.e., relative percentage 

error (RPE), root mean square error (RMSE), mean per-

centage error (MPE), mean absolute percentage error 

(MAPE), Chi square error (χ2), and analysis of vari-

ance or efficiency of the method (R2) were used. Many 

researchers have already been used the methods at dif-

ferent geographical locations for wind energy estima-

tion (Lun and Lam 2000). In general, only one column is 

required to rank the statistical methods, since the above 

all approaches gave identical virtual results. For more 

precise diagnosis, authors used these six statistical tools 

to rank the methods.

�e efficiencies of statistical methods (i.e., EPFM, 

MSDM, MOM and LSRM) at different locations are 
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furnished in Tables 7, 8, 9, 10. Among the selected loca-

tions in the study, statistical tools revealed the maxi-

mum regression coefficient noticed at Chercher and is 

presented in Table  7. It can be clearly seen that EPFM 

(χ2 = 13.563, R2 = 0.802), LSRM (χ2 = 4.227, R2 = 0.972), 

MOM (χ2 = 16.522, R2 = 0.602) and MSDM (χ2 = 14.715, 

R2  =  0.605) give very close results and showed better 

performance than other methods. �e most important 

statistical tool i.e., Chi square error, χ2 =  4.227 and the 

efficiency of the method is R2  =  0.972, where the best 

results are obtained when these values are close to zero 

and unity, respectively.

�e test results of four statistical methods and stand-

ings of the methods according to their performance and 

efficiency in evaluation of wind data is summarized in 

Table  11. �e standings were done by considering mini-

mum error and maximum efficiency according to first 

to four positions, respectively. In the position standings, 
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Table 6 Middling values of monthly mean Weibull parameters estimated from four methods at selected locations

Chercher Maychew Mekele Senkata

k c (m/s) k c (m/s) k c (m/s) k c (m/s)

Jan 4.282 2.580 5.229 1.907 6.173 1.865 7.090 2.119

Feb 4.856 2.860 7.242 1.904 7.881 1.793 5.197 2.334

Mar 4.511 2.987 7.055 1.990 3.871 1.941 4.422 2.513

Apr 4.702 3.163 5.820 1.857 5.367 1.930 3.976 3.172

May 2.769 2.676 6.556 2.115 6.825 1.778 2.709 2.659

Jun 5.738 2.868 3.203 2.547 7.764 1.657 3.034 2.478

Jul 4.739 3.120 2.673 4.088 7.494 1.652 4.592 1.960

Aug 3.447 2.775 2.704 3.061 4.797 1.736 4.174 1.964

Sep 3.221 2.185 5.946 1.843 11.462 1.634 3.251 2.319

Oct 4.030 2.148 7.325 1.856 7.089 1.757 3.153 2.703

Nov 5.694 2.565 7.486 1.820 6.758 1.778 3.926 2.384

Dec 4.089 2.621 8.983 1.802 4.797 1.754 3.312 2.303

Annual 4.340 2.712 5.852 2.232 6.690 1.773 4.070 2.409
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four decimal places have been considered in each value by 

numerical iteration methods. In this statistical scrutiny, it 

has been found that the LSRM achieved the first position 

and the both EPFM and MSDM taken the second position. 

Although, the MOM got the third position, this method 

has better performance for low height wind data assess-

ment. �e main intention of this statistical analysis is to 

fulfill the above statistical analysis where we identify the 

best methods to determine the Weibull distribution and 

selecting the best wind site by using these best methods.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
O

V
 (

%
)

Month of year

Chercher

Senkata

Maychew

Mekele

Fig. 10 Monthly COV of selected locations

Table 7 E�ciency of statistical methods used at Chercher

Method k c (m/s) RPE RMSE MPE MAPE χ2 R2

EPFM 3.900 2.858 0.108145 0.146590 0.013447 0.000025 13.563 0.802

LSRM 1.346 2.424 0.040660 0.054781 0.005040 0.000026 4.227 0.972

MOM 6.077 2.783 0.140325 0.204084 0.017467 0.000023 16.522 0.602

MSDM 6.036 2.784 0.139926 0.203193 0.017417 0.000024 14.715 0.605

Table 8 E�ciency of statistical methods used at Maychew

Method k c (m/s) RPE RMSE MPE MAPE χ2 R2

EPFM 4.087 2.221 0.155112 0.237382 0.019259 0.000029 20.393 0.401

LSRM 1.356 2.428 0.048056 0.070872 0.005960 0.000027 5.496 0.952

MOM 9.036 2.140 0.249320 0.434901 0.031003 0.000028 6.889 0.542

MSDM 8.929 2.141 0.270923 0.476823 0.033704 0.000025 11.666 0.786

Table 9 E�ciency of statistical methods used at Mekele

Method k c (m/s) RPE RMSE MPE MAPE χ2 R2

EPFM 4.326 1.615 0.130576 0.254938 0.016291 0.000108 19.846 0.162

LSRM 1.352 2.420 0.036178 0.086152 0.004485 0.000101 7.027 0.853

MOM 10.611 1.528 0.245858 0.614909 0.030568 0.000083 4.717 0.163

MSDM 10.470 1.529 0.244792 0.605580 0.030435 0.000103 1.277 0.551
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Conclusions
In this paper, the scrutiny of four statistical methods in 

deriving Weibull parameters for wind energy application 

has been scientifically compared at selected locations 

in Northern Ethiopia. Statistical diagnosis of the best 

Weibull distribution methods for wind data analysis is 

discussed and presented. From the analysis of test results 

evidently revealed that LSRM presents better perfor-

mance than other methods. �e accuracy of four meth-

ods enhances more data numbers. Other methods such 

as EPFM, MOM and MSDM are the least efficient meth-

ods to fit the Weibull distribution curves for the assess-

ment of wind speed data especially for these four selected 

locations. �e maximum regression coefficient noticed at 

Chercher. �e poor class wind power has been noticed in 

all selected locations. Furthermore, energy density and 

total energy intensity per unit area has been analyzed 

by numerical iteration methods. �is study offers a new 

pathway on how to evaluate feasible locations for wind 

energy assessment which is applicable at any windy sites 

in any country in the world.

Nomenclature
Symbols

ν
3  mean of wind speed cubes, m3/s3

ν̄  mean wind speed, m/s

c  scale parameter of Weibull distribution func-

tion, m/s

COV  coefficient of variation

EPF  energy pattern factor, dimensionless

Ew  wind energy per unit area by Weibull func-

tion, kW h/m2

f(v)  Weibull pdf

F(v)  cumulative Weibull function

k  Weibull shape parameter, dimensionless

N  total no. of wind speed observations

R2  regression coefficient or analysis of variance

T  time period, h

v  wind speed, m/s

xiw  the frequency of Weibull or ith calculated 

value from the Weibull distribution

yi,m  the frequency of observation or ith calculated 

value from measured data

zi,v  the mean of ith calculated value from meas-

ured data

χ2  Chi-square error

Greek letters

σ  standard deviation of wind speed, m/s

Γ( )  gamma function

ρ  air density, kg/m3
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Table 10 E�ciency of statistical methods used at Senkata

Method k c (m/s) RPE RMSE MPE MAPE χ2 R2

EPFM 3.740 2.440 0.124385 0.169483 0.015435 0.000023 20.368 0.723

LSRM 1.340 2.417 0.050517 0.066387 0.006275 0.000024 5.072 0.960

MOM 5.599 2.390 0.160906 0.235879 0.020002 0.000024 15.513 0.380

MSDM 5.599 2.390 0.160906 0.235879 0.020002 0.000024 15.513 0.380

Table 11 Standings of the methods by statistical test results

S. no Statistical methods Chercher Maychew Mekele Senkata Recommendation

1 EPFM Second Fourth Fourth Second –

2 LSRM First First First First First preference

3 MOM Fourth Third Third – –

4 MSDM Third Second Second – –
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