
Noname manuscript No.
(will be inserted by the editor)

Statistical Segmentation and Structural Recognition for Floor
Plan Interpretation

Notation Invariant Structural Element Recognition

Llúıs-Pere de las Heras · Sheraz Ahmed · Marcus Liwicki · Ernest

Valveny · Gemma Sánchez

Received: date / Accepted: date

Abstract A generic method for floor plan analysis and

interpretation is presented in this article. The method,

which is mainly inspired by the way engineers draw

and interpret floor plans, applies two recognition steps

in a bottom-up manner. First, basic building blocks, i.

e., walls, doors, and windows are detected using a sta-

tistical patch-based segmentation approach. Second, a

graph is generated and structural pattern recognition

techniques are applied to further locate the main enti-

ties, i. e., rooms of the building. The proposed approach

is able to analyze any type of floor plan regardless of the

notation used. We have evaluated our method on differ-

ent publicly available datasets of real architectural floor

plans with different notations. The overall detection

and recognition accuracy is about 95%, which is signif-

icantly better than any other state-of-the-art method.
Our approach is generic enough such that it could be
easily adopted to the recognition and interpretation of
any other printed machine-generated structured docu-

ments.

1 Introduction

Automatic floor plan analysis is at the core of a

number of applications in the architectural domain such

as re-utilization of previous designs, 3D reconstruction,

assistance in decoration, etc. Thus, it has been an ac-

Llúıs-Pere de las Heras, Ernest Valveny, Gemma Sánchez
Computer Vision Center, Barcelona, Spain
E-mail: {lpheras,ernest,gemma}@cvc.uab.es

Sheraz Ahmed , Marcus Liwicki
German Research Center for AI (DFKI), Kaiserslautern, Ger-
many
E-mail: {sheraz.ahmed,marcus.liwicki}@dfki.de

tive research topic within the graphics recognition field.

Several sub-problems related to floor plan analysis have

been investigated, ranging from simple raster to vector

conversion [20,34] to the full interpretation of the whole

plan [10,26,37] going through intermediate tasks such

as symbol recognition [24], symbol spotting in large li-

braries [11] or room detection and segmentation [2,27].

A common problem for automatic floor plan anal-

ysis systems is the lack of a standard notation for the

design of a floor plan1. Thus, they must face a high

variability in: the visual representation of a building,
the nature of the information contained in a floor plan,

and the way this information is visually represented (for
instance, a wall can be depicted as a thick line or as a
specific textured pattern or as two thin parallel lines,
etc.) Some information (for instance, dimensions, tex-

tual annotations, furniture, the projection of the roof,

etc.) can appear or not depending on the drawing style.

The consequence is that existing approaches in the liter-

ature tend to be very ad-hoc, and very specific for a par-
ticular type of graphical convention. Most of them are
based on vectorizing the images in order to extract the

basic linear components. Then, interpretation is done

by applying a set of rules that permit to group these

basic components into high-level entities (walls, doors,

etc.). These methods need to completely reformulate

the segmentation process to deal with every different
notation.

In this paper we focus on the automatic detection

and segmentation of rooms in any kind of floor plan,
with any type of graphical notation. The proposed me-

1 In Germany, a DIN-standard exists (DIN 1356-1), but
is rarely used. Furthermore, standards vary from country to
country and often even from one architecture company to
another. Depending on the visual appealing, the architects
within the same office decide to use different representation.

2 Llúıs-Pere de las Heras et al.

Fig. 1: Pipeline of the method.

thod is a combination of two different steps. The pipeline

of the method is shown in Fig. 1.

First, an extended and improved version of the sta-

tistical patch-based segmentation for walls introduced

in [16] is used to segment the graphical entities in the

floor plans (walls, door, and windows). It works at the

pixel level permitting to deal with any kind of graphical
notation. Only an off-line learning process is required
to adapt the system to a new notation.

Second, a structural approach works independently

from the notation by grouping the graphical entities,
obtained as a result of the segmentation, into rooms.
Firstly, wall entities are extracted by vectorizing the
zones of the image containing pixels segmented as walls.

Then, the door and window segmentation and the struc-

tural context of walls are combined to search, using the

A* algorithm, the final door and window entities on a

vectorized image graph. Finally, rooms are detected as

the cycles in the entity plane graph of walls, doors, and

windows using the method introduced in [21] .

The whole system is applied on recently published

datasets of real architectural floor plans with different

graphical notations. The system is evaluated using two

evaluation protocols; one for the segmentation of walls

and another one for the recognition of rooms. They

are explained in detail in this paper with the aim of
becoming standards for the evaluation of interpreta-
tion systems for architectural floor plans. Evaluation
results show that the system is able to perform well

on all datasets obtaining better results than previous

approaches.

The rest of the paper is organized as follows. The

related work for the different floor plan analysis tech-

niques is summarized in Sect. 2. The Pixel-based ap-

proach for wall, window, and door segmentation at the

level of pixels is explained in Sect. 3. Subsequently, the

Structural-based approach to recognize the entity el-

ements out from the pixel detections is explained in

detail in Sect. 4. The datasets used to evaluate our

method, the two different evaluation protocols and the

final results obtained are shown in Sect. 5. Finally, the

paper is concluded in Sect. 6.

2 Related Work

Researchers from document analysis community has al-

ready put many efforts to analyze and transfer data

from paper or on-line input to digital form, Architec-

tural floor plans are one example of application. The

conversion of these diagrams, printed or hand drawn,

from paper to digital form usually needs vectorization
and document preprocessing, while the on-line input
needs to manage hand drawn strokes and distortions.

The analysis of these diagrams allows the recognition

of different structural elements (doors, windows, walls,

etc.), recognition of furniture or decoration (tables, so-

fas, etc.), generation of corresponding CAD format, 3D

reconstruction, or finding the overall structure and se-
mantic relationship between elements.

The work of Tombre’s group in [1], [9]. and [10]

tackle the problem of floor plan 3D reconstruction. In

these works, they have as input scanned printed plans.

First a preprocess separates text and graphics infor-

mation. In the graphical layer thick and thin lines are

separated and vectorized. Walls are detected from thick
lines whereas the rest of the symbols, including doors
and windows, are detected from the thin ones. In this
process they consider two kinds of walls: ones repre-

sented by parallel thick lines and others by a single

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 3

thick line. Doors are seek by detecting arcs, windows by

finding small loops, and rooms are composed by even

bigger loops. At the end, they can perform 3D recon-

struction of a single level [1], or put in correspondence

several floors of the same building by finding special

symbols as staircases, pipes, and bearing walls [9]. Ei-

ther in [9] and [10] it is indicated the need of human

feedback when dealing with complex plans. Moreover,
the symbol detection strategies implemented are ori-
ented to one specific notation. An hypothetical change

of the floor plan drawing style might imply the recon-

sideration of part of the method.

Or et al. in [28] focus on 3D model generation from

a 2D plan. Using QGAR tools [31], they preprocess the

image by separating graphics from text and vectoriz-

ing the graphical layer. Subsequently, they manually

delete the graphical symbols as cupboards, sinks, etc.
and other lines disturbing the detection of the plan
structure. Once the remaining lines belong to walls,
doors, and windows, a set of polygons is generated us-

ing each polyline of the vectorized image. At the end,

each polygon represents a particular block, walls are

represented by thick lines, windows by rectangles in-

side walls, and doors by arcs, which simplify their final
detection. This system is able to generate a 3D model of
one-story buildings for plans of a predefined notation.

Again, the modification of the drawing style lead to the

redefinition of the method.

Cherneff in [8] presents a knowledge-based interpre-

tation method for architectural drawings: KBIAD. His

aim is to extract the structure of the plan, that means

walls, doors, windows, rooms, and the relations between

them. The input is an already vectorized plan with vec-

tors, arcs, and text that is preprocessed to obtain spe-

cial symbols as doors. The system has two models: the

semantic and the structural one. The semantic model

represents the plan with building components as walls,
doors, and windows, and their relations that arrange
in composite structures as rooms. The structural one

represents the geometry of the plan, including two di-

mensional spatial indexing of primitives. A predefined

Drawing Grammar represents the drawing syntax of a

plan describing its symbols and components as a set
of primitives and their geometrical relationships. The
rules have to be general enough to accept all the vari-
ations in a symbol but specific enough to distinguish

between symbols. For example, they define walls as par-

allel segments that can have windows or doors at the

end. This fact strongly restricts the interpretation pos-

sibilities, since walls in real floor plans can be curved
or even not be modeled by parallel lines.

The work presented by Ryall in [32] is focused on

segmenting rooms in a building. They propose a semi-

automatic method for finding regions in the machine

printed floor plan image, using a proximity metric based
on a proximity map. This method is an extension of the
area-filling approach that is able to split rooms when

there is a lack of physical separation. Nevertheless, the

method retrieves many false positives given by objects

that are also drawn by closed boundaries, such as ta-

bles, doors, and staircases. Once more, the method is

predefined to work with a single notation.

Macé in [27] also focused on the extraction of the

structure from scanned plans. As in [1], [9], and [10] a

text/graphic separation is done followed by a thin/thick

separation from graphic components. In that way the

authors look for walls among the set of thick lines.

Then, they look for parallel lines extracted from con-

tours, expecting walls to be formed by very thick lines.

Afterwards, doors and windows are found to finally de-

tect rooms based on a recursive decomposition of im-

ages until convex regions are found. The wall detector

strongly depends on the wall notation, and should be

re-designed to be able to cope with different floor plans.

Ahmed in [2,4] starts with the classical text/graphics

separation to later separate graphic components into
thin, thick lines and, as a novelty, medium lines. Lines
forming walls are extracted from thick and medium
ones while thin lines are considered forming symbols.

Then symbol spotting is applied using SURF to de-

tect doors and windows and extract the rooms from the

plan. At the end, text inside the rooms is used to label

each of them. This method is further enhanced by the
same authors in [3] by splitting rooms in as many parts
as labels are inside them, just splitting them vertically

or horizontally according to the distribution of their la-

bels. These works take into account some structural and

semantic information as they are labeling rooms with

their name and are verifying their composition using the

position of their doors and windows. But, as before, the
method might have to be revisited when dealing with
floor plans of different graphical conventions.

Some works have as an input a CAD file format,

that contain the real non-distorted original polylines

and lines. This is the case of the work of Lu in [26],

where 3D reconstruction is performed from CAD floor

plans. First they extract parallel overlapped lines to

find T, X, and L shapes. Later they find their connec-

tions to construct walls and then the 3D reconstruction
of the structure. Once the structure is extracted their
lines are deleted in order to segment graphical sym-

bols as furniture or stairs. Their method is based on

the recognition of typical features as geometrical ones,

attributes of the lines, relational attributes among com-

ponents, etc. The 3D building model is reconstructed

4 Llúıs-Pere de las Heras et al.

based on the integration of the recognition results and

are specific for a single CAD file notation.

Also, the work of Zhi et al. in [37] takes as input a

CAD file. It extracts automatically the geometrical and

topological information from a 2D architectural draw-

ing and transforms it into a building fire evacuation

simulator. Firstly, they semiautomatically filter out re-

dundant information such as furniture, text, specifica-

tion notes, and dimensions, and only keep the essential

entities: walls, doors, windows, lifts, etc. Then, they

transform the plan into an attributed graph and look

for loops, that accordingly to their attributes, are clas-

sified into different types: spatial loops (rooms, corri-

dors), physical loops (walls, columns), door loops, win-

dow loops, and unidentified loops. Even this procedure

is easy to use, leads to some classification errors and

further reasoning is needed. Finally, plan units (com-
partments) are identified and the system is integrated
in a model that simulates emergency evacuations from
complex buildings.

Works based on hand-sketched input like [5] and
[23] analyze hand-sketched floorplans. In [5] a hand-

sketched floorplan is analyzed to transform it into a

CAD file. They extract the lines that model the building

structure, that are sketched on a preprinted paper with

a grid of lines in drop out color. The method describes

line elements, such as walls and windows, and closed

region elements, such as doors. On the other hand, [23]

uses subgraph isomorphism and Hough transform to

recognize different building elements and their topolog-

ical properties. Subgraph isomorphism is used to rec-

ognize symbols and Hough transform to detect walls

made by hatched patterns. It is worth to mention that

in both, [5] and [23], the drawing conventions are set

beforehand.

Floor plan structural retrieval is one of the recent

interests for architects. The works of Weber et al. in

[4,35] and Wessel et al. in [36] are two examples in

this domain. In the case of [35], the query is a sketch
drawn on-line by the user. Their system allows the
user to sketch a schematic abstraction of floor plan

and searches for floor plans that are structurally sim-

ilar. The sketch is translated into a graph enclosing

the structure of the plan and it is compared with the

graphs representing plans in a repository using sub-

graph
matching algorithms. In [36] the input is a polygon soup
representing a 3D plan, so they do not need to vectorize

the plan. From this polygon soup, the authors extract

the structural polygons of each floor stage by group-

ing that ones that are parallel to the floor at a deter-

mined height. The rest are considered furniture. Then,

the rooms, doors, and windows are detected by cutting

the horizontal plane of each floor. Finally a graph is

constructed where attributed nodes are rooms and at-
tributed edges are connections between them: doors or
windows. Based on this connectivity graph a fast and

efficient shape retrieval from an architectural database

can be achieved.

All these systems, either focused on interpretation,
3D reconstruction, or floor plan retrieval, need to ex-

tract the structure of the buildings at some point of the

process. These techniques are very specific to a prede-

fined graphical styles and useless for completely differ-

ent drawing styles. Our group has been working in the

last years to obtain a style drawn invariant method to

extract structure and semantics from a floor plan. A

first approach is presented in [18] where a structural,

hierarchical, and semantic interpretation of a floor plan

is done using a set of labeled plans. First, the model

is learned automatically generating both: the stochas-

tic grammar represented by an And-Or graph model-

ing the whole plan and the set of patches forming the

structural components of the plan (walls, doors, and

windows). The model of structural elements is learned
using a patch based approach combined with Condi-
tional Random Fields. In a first stage of the recognition
approach, a bottom-up process is done to detect struc-

tural elements and relate them to construct a candi-

date And-Or graph. In a second step, a top-down pro-

cess is done to prune the graph leading to the most

probable representation of the floor plan. In [16] an im-
proved way to detect walls in a plan independently of
their style is presented. There, a patch based approach
(Bag-of-Visual-Words) is used. A visual vocabulary of

the graphical notation for walls is learned, from anno-

tated data also and, this vocabulary is used to detect

patches containing walls in a floor plan. Although some

works exist that apply the BoVW framework to sym-

bol recognition [7,33], to the best of our knowledge,

this is the first time that is applied to the segmenta-

tion of structural elements in floor plans. In both ap-

proaches we use the binarization and text-graphic sep-

aration presented in [34]. A modification of our wall

detector [17], to also detect doors and windows, com-

bined with a post-structural process to detects rooms,

arrange into our new floor interpretation system that is

able to deal with multiple drawing styles.

3 Pixel-based segmentation

This section explains in detail the pixel-based

method used for the detection of walls, doors, and win-

dows. Firstly, images are pre-processed to filter out the

non-relevant information and to normalize the scale of

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 5

the symbols of interest in the different plans. Then, the

patch-based recognition works at pixel level and per-

mits to segment those pixels that correspond to the

three basic entities involved in room detection (walls,

doors, and windows). This method, whose pipeline is

shown in Fig. 2, is an extension of the wall segmenta-

tion method [16], that not only is used to segment walls,

but also doors and windows.

3.1 Image pre-processing

In real floor plans, textual information (dimensions, an-

notations, etc.) might appear or not. We cannot rely on

it for room detection. Therefore, text is separated from

the graphical layer using the text/graphic separation

method proposed by Tombre et al. [34] (see Fig. 3b and
Fig. 3c).

In addition to that, some of the recently presented
works on room detection [2,18,27] assumed that all
floor plan images have the same resolution and line
thickness. This was the case of the datasets used to

evaluate these methods. However, this is not necessarily

true. Resolution and line thickness will strongly depend

on the device used to capture the images (scanner or

camera) and on the resolution of acquisition. This can
result in a larger variability that can be a problem for
approaches working at pixel level as it is the case of
our system. For this reason, images are automatically

normalized regarding their line thickness.

This process is based on regularizing the resolution

of the floor plans regarding the most basic structural el-

ement: the thinnest line. A histogram based on count-

ing the consecutive black pixels in both vertical and

horizontal directions, is created for each floor plan. As-

suming that the thinnest line is the most common type

of structural element, the histograms maxima should

indicate the width of the thinnest lines in each image.

Finally, all plans are resized taking the plan with the

thinnest lines as a reference and using bilinear interpo-

lation. In this way we get more similar symbol repre-

sentations for all the plans.

3.2 BoVW-based wall, door, and window detection

In order to be able to extract the rooms of a floor plan,

first we focus on the detection of the basic structural

elements: walls, door, and windows.

Most of the approaches in the literature concerning

this task are based on the extraction of primitives af-

ter vectorization. These strategies have demonstrated

to work fine only if two critical issues are assumed a

priori:

– The notation of the floor plans is invariable and

known.

– The resolution and/or image quality of the input
images is acceptable and constant from plan to plan.

If these assumptions do not hold, it is necessary to

redefine the primitive extraction techniques used in this

kind of approaches in order to adapt to the change of

notation and/or quality of the images.

To skip over the assumptions that vectorization-

based methods bear in mind, the authors presented an

in deep study in [17] of a statistical-based system in-

spired on the Bag of Visual Words pipeline (BoVW) to

extract walls when a ground-truth is available for train-

ing. The method used in this paper is the best config-

uration according to the conclusions of that analysis in

[17]. After image preprocessing, firstly, images are di-

vided into overlapped squared patches. Secondly, every

patch is described with local features. In the learning

stage, these features are clustered into a vocabulary of

visual words. Each of the visual words defines the prob-

ability of a patch of belonging to each of the classes

(in our case, wall, door or window). Finally, the in-

put patches of the test images are classified using the
vocabulary and assigned to the class with the highest
probability. The method is summarized in the follow-
ing for clarity. However, we address the reader to the

original paper for further details.

3.2.1 Grid Creation

All the images are split into overlapped squared patches
in order to extract and describe common information
concerning neighbor pixels. The use of an overlapping

grid provides two main advantages with respect to a

non-overlapped one. Firstly, context is added. Every

pixel is contained into several image patches and con-

sequently, its classification will be determined by the

class probabilities of all them. Secondly, since patches
are denser than in a non-overlapped grid, there is a
fewer dependency on how the grid is placed into the im-

age and, therefore, how symbols are distributed along

the patches. This results in a better detection of sym-

bol boundaries. It is worth to say that in contrast, as

images are represented with more patches, the com-

putation time is also higher. The overlapping of the

grid is defined by the parameter φ, which specifies the

pixel distance between the centers of neighbor patches

and it has to be a natural factor of the patch size. The

smaller φ, the higher overlapping among the patches. In

our experiments this parameter is determined by cross-

validation.

6 Llúıs-Pere de las Heras et al.

Fig. 2: Pixel-based segmentation pipeline.

3.2.2 Feature Extraction

The use of different patch descriptors have been ana-

lyzed in the original paper – Pixel Intensity Descrip-
tor (PID), Principle Component Analysis (PCA), and
Blurred Shape Model (BSM) [13] – being BSM the one

which obtains the best performance. In addition to that,

the authors have also studied the performance of the

system using current state-of-the-art descriptors such as

SIFT [25] and SURF [6]. These descriptors are based

on key-point detection for a later local description of
the surrounding areas. However, symbols in plans are
mainly composed of structured straight lines, where no

keypoints can be found. On the contrary, BSM is able

to take into consideration the linear structure of the

elements since it is based on pixel density description.

Basically, the BSM descriptor divides the patch into a

set of cells and counts the pixel density of every cell, but
taking also into account the pixels of the neighboring
cells. Consequently, BSM is used as patch-descriptor in

the system.

3.2.3 Model Learning

Once all of the patch-descriptors for training images are

obtained, those which belong to complete white pieces

of the images are ruled out from the training set. The

rest are clustered using a fast version of K-means [12]

to create a vocabulary of representative visual words.

Then, to every word is assigned a probability of rep-

resenting each of the object classes. The learning of the

probabilities for each word wj ∈ W = {w1, ..., wN} re-

garding every object class ci ∈ C ={Wall, Door, Win-

dow, Background} is computed as follows. Initially, ev-

ery pixel in the training images is labeled with one

of the object classes. Note, however, that patches do

not necessarily respect object boundaries and there-

fore, a patch pt can contain pixels belonging to more

than one class. Besides, classes can be overlapped in

the groundtruth causing one single pixel to be assigned

to more than one class. In both cases, every patch con-

tributes to the probability of all the classes that its

pixels are labeled by. Taking into account that every

patch is assigned to the closest word in the dictionary,

we can compute the conditional probability for a class

given a word in the following way:

p(ci|wj) =
#(ptwj

, ci)

#ptwj

, ∀i, j, (1)

where #(ptwj
, ci) states for the total number of patches

assigned to the codeword wj which contain pixels of

class ci according to the ground-truth. #ptwj
is the

number of patches assigned to wj . The summation of

the class conditional probabilities given a codeword is

one:

M
∑

i=1

p(ci|wj) = 1, ∀j. (2)

For walls, doors, and windows only one pixel of that
class is needed to consider the patch as belonging to

the class. Contrarily, a patch is only considered as back-

ground if all of its pixels belong to the class Background.

3.2.4 Model Classification

In the classification step, all the input images are also

divided into overlapped patch-descriptors using the same

strategy explained in Sect. 3.2.1 and Sect. 3.2.2. Each

one of these patch-descriptors is classified to the nearest

codeword, using hard assignment 1-NN, and inheriting

the class probabilities of the corresponding codeword.

Due to the overlapped grid, every pixel in the image be-

longs to a definite number of image patches. Thus, af-

ter patch classification every pixel is assigned different

probabilities for every patch it belongs to. Therefore,

in order to get a final classification of every pixel all

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 7

probabilities are combined using the Mean Rule as pro-

posed by Kittler et al. in [22]. Every pixel px contained
in different patches pt is classified to class ci by:

C(px) = argmax
i

(

mean(P (ci|pt))
)

, ∀pt | px ∈ pt. (3)

As a result of this process, three different binary im-

ages for each plan are created depending on the final

labels of the pixels: the wall-image (with pixels labeled

as wall), the door-image (pixels labeled as door) and
the window-image (pixels labeled as window). An ex-

ample of a wall-image is shown in Fig. 3d.

4 Structural Recognition

Up to here, the pixel-based approach has segmented

and labeled the image pixels as belonging to walls, doors
and windows. The structural-based recognition, whose

pipeline is shown in Fig. 4, firstly groups the basic
graphical segmentation into these three types of struc-
tural entities – walls, doors, and windows entities–. Then,

rooms are detected by finding cycles in a plane graph

of entities.

4.1 Wall recognition

A wall-entity is the semantic definition of a real wall in a

building: a continuous structure which is used to divide

the space into different areas. It is usually delimited

by windows, doors, and intersections with other walls.

Thus, in order to extract a realistic structure of a floor

plan, the system should be able to detect these entities
from the wall-images obtained after Sect. 3.2.

The reader might wonder at this point why wall

entities are sought before door and window entities.
There are mainly two reasons for this. Firstly, walls
–and rooms– are the elements which mainly define the
structure of a building. Almost all the rest of elements

can be easily located using semantic assumptions based

on wall location, e.g. usually doors and windows are

placed between walls. This will lead to an easier door

and window entity recognition afterwards. Secondly,
walls are usually modeled by a highlighted uniform tex-
ture, which makes them a big deal easier to detect than
doors and windows.

This process is divided in three different stages.
Firstly, wall-images are vectorized and post-processed
to reduce the noise. Secondly, a planar graph is built

out from the vectorization. Finally, wall-entities are ex-

tracted after analyzing the wall-graph.

4.1.1 Wall-image vectorization

In this step we want to extract a vectorial representa-

tion of the wall-image in Fig. 3d. Since this image is

obtained after classifying squared structures –patches–

to detect linear elements –walls–, a raw vectorization

of the image leads to encounter multiple corners and

small unaligned segments for completely straight walls.
This issue is solved by applying a morphological open-
ing after closing the wall-image, which allows to delete

small noise and join unconnected pixels, and a logical

AND with the original opened image to make borders

straighter. The result is shown in 3e. This modified wall-

image is vectorized over its skeleton using QGAR Tools

[31].

4.1.2 Wall-segment-graph creation

After vectorization, an attributed graph of line seg-

ments is created using the open source graph library

called JGraphT2, which is based on JAVA and includes

a sort of complete modules for graph management al-

ready implemented.

In this attributed graph, the nodes are the segments

obtained from the vectorization, and the edges repre-

sent binary junctions among connected nodes. The at-

tributes of the nodes are the thickness of the line seg-
ment extracted from the skeletonization and the geo-
metrical coordinates of the end-points of the segment.
In this way, geometric computations among nodes –

such as distances or angles – can be performed easily.

On the other hand, edges contain two attributes: the

coordinate of the junction point between the two seg-

ments, and the relative angle between them. This graph
is called wall-segment-graph.

4.1.3 Wall entity recognition

The final task for wall entity recognition is based on the
grouping of nodes that presumably belong to the same

wall in the wall-segment-graph. With this aim, three

different kind of junctions within nodes are considered

as being natural borders among walls:

1. N -junctions for N > 2: The intersection of three

or more different wall-segments at a certain point

can be considered as the intersection of N different
walls.

2. L-junctions: Two wall-segments that are connected

by a rectangle angle with a certain tolerance margin

are considered to belong to two different walls.

2 http://jgrapht.org/

8 Llúıs-Pere de las Heras et al.

(a) Original Floor plan. (b) Text-layer after Text/Graphics
segmentation.

(c) Graphic-layer after Text/Graphics
segmentation.

(d) Segmented wall image. (e) Logical AND between the original
image and segmented wall image.

(f) Graph containing the wall-
entities.

Fig. 3: Complete flow of wall recognition process.

3. 0-junctions: Any wall-segment which is not

connected to any other in one of its end-points is

considered as a natural delimiter for a wall.

The algorithm for wall-entity recognition firstly

deletes the edges from the wall-segment-graph which

are involved in N -junctions and L-junctions.

N -junctions are easily found by consulting the degree of

connectivity of the nodes at their ending points. If the

connectivity degree is higher than 2, then that point is

a N -junction. Regarding L-junctions, the process per-

formed is the same but, this time, the degree has to

be equal to 1, and also the angle attribute of the edge

has to be close to 90◦. Finally, the disconnected sub-

graphs are found using the Depth First Search (DFS)

algorithm. The complete process is shown in algorithm

1 and the result is visually shown in Fig. 5.

The graph obtained after this process is called for

clarity wall-graph. Here, nodes are wall-entities, which

can be seen as groups of connected wall-segments, at-

tributed with the geometric coordinates of their end-
points. Edges are connections among walls at these end-
points.

4.2 Door and Window entity recognition

It is hard to imagine in the real world that a door or

a window is not located between, at least, two walls.

In floor plan documents, door and window symbols are

modeled by lines that are incident with wall lines. If we

take a look at the graph obtained after vectorizing the

original floor plan image, and we focus our attention

on a window –or a door– and the surrounding walls,

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 9

Fig. 4: Structural recognition pipeline

(a) Vectorization of sub-wall entities in
a part of a real input image.

(b) Indicated N and L junctions with each of the
Wall entities in different color.

Fig. 5: Wall entity recognition.

Algorithm 1 Wall-entity recognition

auxWallGraph := wallGraph
interestEdges ← searchEdges(auxWallGraph,Njuctions ∪
Ljuctions)
delete(auxWallGraph,interestEdges)
for all 0junction ∈ auxWallGraph do

if notContains(visitedNodes,0junction) then
var newWall := {}
while DFSiterator.hasNextNode do

add(visitedNodes, nextNode)
add(newWall, nextNode)

end while
createWall(wallGraph,newWall))

end if
end for

it exists at least one path that only contains window

–or door– line-nodes connecting one terminal of each

wall, see Fig. 6. Hence, we can take advantage out from

this assumption in order to enhance the detection of

these entities. Here, graph connections between walls

are explored in the locations where doors and windows

have been found after Sect. 3. This search is driven by

Fig. 6: Left: three different windows from real floor
plans with dissimilar notations. Right: the respective
vectorization. Black vectors belong to walls and gray to

windows.

the algorithm A*. Lately, a post-process heuristically

seeks for windows and doors between well-aligned walls.

10 Llúıs-Pere de las Heras et al.

4.2.1 A* for Door and Window detection

As it is shown in Fig. 7a, every vector in the original

vectorized image which overlaps a region classified as
door3, by the system explained in Sect. 3, is considered

as candidate door entity vector. For each of these re-
gions, the center of mass (centroid) is computed, and

taken as a reference point, see Fig. 7b. Then, the clos-

est wall entities to the centroid of the region in the

wall-graph are retrieved. For each couple of walls close

to a centroid, the respective lines in the original image

graph, obtained after vectorization, are found. Then, a

path between the two walls is optimally searched using

A*, see Fig. 7c.

There are mainly two reasons that explain the use
of A*. First, we need an efficient search algorithm un-

der the consideration that multiple paths between two

wall nodes are possible, but only few of them are of real

interest. A* is a path finder algorithm which is optimal

when an appropriate monotonic heuristic is used. Sec-

ond, we need to define an extra-cost of traversing nodes

which are not candidates of being door vectors accord-

ing to the areas of interest. This extra-cost can be easily
added to the already traversed path at a certain point
in A*.

Assume that we have detected two walls which are

sufficiently close to a centroid that defines an area of in-
terest. We consider arbitrarily one wall to be the start-

ing node s and the other to be the goal node q. Then,
the heuristic considered as the expected path distance

from any node n to q is the Euclidean Distance:

h(n) = d(n, q), (4)

Since the distance from a node m to itself is h(m) =
d(m,m) = 0, then we can assert

h(n) ≤ d(n,m) + h(m), (5)

wherem is any adjacent node to the actual node already

explored n. The equation 5 implies that h is monotonic

and thus, the search is optimal.

The goal function to be minimized at each certain
node n in the search is defined by the summation of the

real cost of the traversed path g(n) and the expected

distance to the goal h(n):

f(n) = g(n) + h(n). (6)

The cost function g(n) is given by summation of the

cost traversed till its father p, and its own length |n|.

Nevertheless, an extra-cost is given when crossing over

3 In the rest of this section, all the process explained for
door detection is also valid for window detection. However,
we will only refer to doors for clarity and to avoid unnecessary
repetitions.

those nodes which are not in the area of interest or are

already labeled as walls:

g(n) =

g(p) + (|n| ∗W) if n /∈ {Ninterestarea ∪Nwall}

g(p) + |n| otherwise,

whereW is an heuristically defined cost. This extra-cost

pushes the algorithm to prioritize the search on nodes
which are door candidates and allows to avoid problem-
atic situations as the one shown in Fig. 8. In addition to
that, a experimentally defined threshold allows a max-

imum number of node expansions to keep the memory
use under control. This is of a great importance when
there is not a real path between two walls.

Finally, for each resulting connection between walls,

a virtual node is added to the wall-graph with the re-
spective attribute; door or window. This process is
shown graphically in Fig. 7d. The resulting graph, since

it contains nodes attributed as walls, doors, and win-
dows, is now called wdw-graph.

4.2.2 Wall well-aligned connections

The loss of any door or window entity at this point

is a critical issue for the later room detection. Rooms
are detected by finding closed regions in a wdw-graph.
Therefore, when a door or a window is lost, the sup-

posed room formed by these elements is lost. For this

reason, a post-process to reduce the impact of losing

any of these elements is carried out.

This process firstly looks for couples of walls that

have a geometric gap between them and are sensibly

well-aligned in orientation; the tolerance on both, gap

distance and orientation angle, is experimentally learned

from the ground-truth. A path among each of these cou-

ples of walls is searched using the A*, as explained in

4.2.1, but with a slightly modified cost function g(n).

Now, an extra-cost is given only to that nodes which

already belong to walls:

g(n) =

g(p) + (|n| ∗W) if n /∈ Nwall

g(p) + |n| otherwise

(7)

If a path exists, a new node of type connection is

added to the graph and connected to the two correspon-
dent wall terminals. The use of this technique not only
results in a better room detection, but also helps on
finding abstract boundaries between rooms that have

no physical separation. The final graph is called wdwc-

graph.

4.3 Room detection

Finally, closed regions are found from the plane wdwc-

graph using the optimal algorithm from Jiang et al. in

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 11

(a) (b) (c) (d)

Fig. 7: Process for finding a door entity. In (a) shows the detection of the door by the statistical approach presented

in Sect. 3 over the real image. The centroid of the area where the door is found is shown as a red point in (b).
The node expansion by A* for finding the path between the two walls in the graph is shown in red in (c). Finally,

both walls are connected in (d) by means of a door node.

(a) (b) (c)

Fig. 8: A problematic situation is shown in (a) for finding door lines between the blue wall candidates. In this case
a ceiling line traverses the door symbol. The nodes expanded (red) by a pure implementation of A* algorithm in

(b) shows that the final retrieved path does not traverses the complete door lines. Contrarily, in (c), additional
cost for traversing wall nodes is added, and the final retrieved path is correct.

[21]. Before applying the algorithm, all the terminals of
the graph are erased recursively. This leads to a bet-

ter computation of the closed regions as unnecessary
terminal paths are not taken into account when search-
ing for closed regions. After obtaining the regions, their
area is calculated and used to rule out impossible rooms

regarding their absolute size, such as small regions rep-

resenting holes for pipes in the plan.

5 Results

One of the two main drawbacks on the evaluation of

floor plans is that there is not any public dataset avail-

able to perform evaluation neither comparison among

the existing methodologies, according to the knowledge

of the authors. Thus, the impartial evaluation of the

approaches existing in the literature becomes an ex-

tremely difficult task. Therefore, and with the aim of

giving a solution to this problem, we have recently cre-

ated four datasets of groundtruthed floor plans which

are shared4 freely for research purposes. All of them

have been already used in the evaluation of previous

systems [2,3,15–19,27]. We present these datasets in

this section.

The second big issue in floor plan analysis is that,

the big majority of the systems in the literature do not

show clear quantitative results or use unspecific eval-

uation protocols. This issue turns the objective com-

parison between approaches into a really hard task. In

this section, we describe in deep the two different pro-

tocols adopted respectively for the evaluation of wall

and room extraction. Our intention is that these proto-

4 http://www.cvc.uab.es/floorplans

12 Llúıs-Pere de las Heras et al.

cols could be used by any researcher to easily evaluate

new contributions and establish a fair comparison of

the results.

Finally, we conclude the section presenting our quan-

titative and qualitative results for wall and room detec-

tion including an in deep analysis and discussion of the

whole system.

5.1 The dataset

Four datasets of real floor plans, each one containing

documents from different single architecture offices, are

used to evaluate our method. Among these datasets,

the graphical notation varies substantially due to the

standards of each office. Two of these collections are

completely groundtruthed at pixel level for the struc-

tural elements Wall, Door, Window, and Room, and

they are used to evaluate both, wall and room detec-

tion. The other two have been recently collected and

labeled at pixel level for walls. Therefore, they will be

used to evaluate wall detection.

The ground-truth has been manually generated by

an upgraded version of the tool used in [27] and [18],

in which a sequence of clicks allows to select the filled

area of the element to be labeled. This process has been

headed by several experts and the average time on gen-

erating the complete groundtruth for an image, that

is to label the walls, the doors, the windows, and the

rooms, is up to 30 minutes. The specific characteristics

of each dataset are summarized below:

– BlackSet contains 90 fully groundtruthed documents

from a period of more than ten years. It was primar-

ily introduced for floor plan analysis in [27]. The size

of the images is 3508x2480 and as a significant issue,

most of the walls are modeled with thick black lines.

A plan example of this dataset is shown in Fig. 9a.

– TexturedSet contains 10 real images that are fully

groundtruthed. Even if the plans contained have

the same notation, elements are modeled at differ-

ent sizes depending on the global image resolution:

the smallest image is 1098×905 pixels meanwhile

the largest is 2218×2227. This dataset was firstly

introduced in [16]. The notation is barely different
from Blackset in the case of walls, which here are

modeled with textured lines. An example of a floor
plan of this dataset is shown in Fig. 9c.

– TexturedSet2 is only labeled for walls. It contains 18

high resolution (7383×5671 pixels) floor plans that

are downscaled for efficiency purposes to 3600×2766

pixels using a bicubic interpolation. Its walls contain
multiple thickness for interior, exterior, and main

walls. All of them are drawn by a hatched pattern

Table 1: Definition of True-positives, False-positives

and False-Negatives for Wall segmentation evaluation.

Black pixels in an image are considered as 1 and white

ones as 0

Original-image GT-image Output-image
TP 1 1 1
FP 1 0 1
FN 1 1 0

between two parallel lines. This dataset has been

very recently introduced by the authors in [15,19]

for unsupervised wall segmentation. An example im-

age of this dataset is shown in Fig. 9e.

– ParallelSet is also labeled for walls only. It consists

of 4 real floor plans of 2500×3300 pixels whose walls

are drawn by parallel lines, without any textual pat-

tern in between. As TexturedSet2, this dataset has

been recently introduced in [15,19]. One instance of

this dataset is shown in Fig. 9g.

All floor plans are binarized using [29] to ensure that

only structural information of the floor plans is used for
the analysis (and not the color information).

5.2 Evaluation Method for Wall detection

The protocol used for the evaluation of wall detection

is the same used in some previous papers about wall

extraction [16,17]. This evaluation, which is at pixel

level, is calculated over the three images obtained for

a plan: the result-wall-image, the ground-truth-image,

which contains the labeled wall bounding-boxes, and

the original-image. The use of the original image is jus-

tified because we only consider in the score those pixels

that are black in the original-image, since only black

pixels convey relevant information for segmentation.

The results of our experiments in wall segmentation
are expressed using the Jaccard Index (JI). JI is cur-

rently popular in Computer Vision since it is used in
the well-known Pascal Voc segmentation challenge [14]
as evaluation index. It is an objective manner of pre-

senting the results because it takes into account both,

false positives and negatives, experimented by the sys-

tem. It is compressed in the interval [0,1] and the closer

to 1, the better is the segmentation. JI is calculated as:

JI =
TruePos

TruePos+ FalsePos+ FalseNeg
, (8)

where TruePos, FalsePos and FalseNeg are defined

in Table 1 regarding the three images used in the eval-

uation.

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 13

5.3 Evaluation Method for Room detection

In order to report the accuracy of room detection, an
adaptation of the protocol introduced by [30] for the

evaluation of vectorization is used. It allows to present

an in deep analysis of the recognition system by report-

ing exact as well as partial match.

First, a match score table is constructed using the

ground truth and the detected rooms. Each entry in the

match score table provides the overlapping between a

room in the ground truth and a room detected by the

system. The degree of overlapping is calculated using

equation 9 as specified in [30]:

match score(i, j) =
area(d[i]

⋂

g[j])

max(area(d[i]), area(g[j]))
(9)

where match score(i, j) represent the overlapping be-
tween ith detected room and jth ground truth room

(1 = maximum overlap, 0 = no overlap).

In addition, a match count table is constructed to

calculate the exact match between detected and ground

truth rooms using the following rule;

match count(i,j)=1
if match score(i,j)>acceptance threshold &
there are no more entries in the ith row and jth column.

For each pair(i, j) where match count(i,j)> 0, we

set match score(i,j)=0. This substitution is necessary
to make sure that the rooms with an exact match, do

not contribute in the calculation of partial matches.
The partial matches are divided into the following cat-

egories.

– g one2many : A room in the ground truth overlaps
with more than one detected rooms.

– g many2one: More than one room in the ground

truth overlaps with a detected room.

– d one2many : A detected room overlaps with more

than one room in the ground truth.

– d many2one: More than one detected rooms overlap

with a room in the ground truth.

The values for each of the above-mentioned cate-

gory can be calculated using the match score table as

specified in [30].
Finally, detection rate and recognition accuracy is

calculated using the equation 10 and 11 respectively.

Detect. Rate =
one2one

N
+

g one2many

N
+

g many2one

N
(10)

Rec. Accuracy =
one2one

M
+

d one2many

M
+

d many2one

M
(11)

where N and M be the total number of ground truth

and detected rooms respectively.

Table 2: Quantitative parameters on wall detection

Patch-size Voc. Size Overlapping
BlackSet 10×10 100 5

TexturedSet 18×18 2000 3
TexturedSet2 20×20 1000 5
ParallelSet 42×42 1000 12

5.4 Results on wall detection

The system is only influenced by three parameters, the
patch-size, the overlapping-factor φ, and the size of the

vocabulary, all three learned in validation time. For

BlackSet, 30 images are used for validation following

a 5-fold strategy, while the 60 remaining are used for

testing, with a 10-fold strategy. This procedure is re-

peated by exchanging some of the validation images for

testing ones until all the 90 images in the dataset are

tested. Similarly, the parameter validation in Textured-

Set2 has been performed using 6 images following a

Leave-One-Out strategy. The rest are used for learn-

ing and testing using a 3-fold procedure. On the other

hand, regarding the TexturedSet and ParallelSet, due to

the low number of instances, all of the images are used

at once for parameter validation and testing following

a Leave-One-Out strategy.

When we analyze the influence of the parameters

in the different datasets it turns out that three aspects

require the addition of more context to the final wall

pixel-based classification: a low resolution, a big intra-

class variability, and a hight similarity with other floor

plan elements. These are the cases of TexturedSet, Tex-

turedSet2, and ParallelSet respectively, in which bigger
patches and more overlapped among them are used to

deal with their respective problems. Moreover, a big-
ger vocabulary is needed to represent accurately the
different textures existing for modeling exterior and in-
terior walls in the TexturedSet. In contrast, in BlackSet

a small vocabulary constructed from small patches is
able to cope with the regularity of the black walls con-
tained in this dataset. In Table 2, the parameters used

in each dataset are shown numerically.

Our results on Wall segmentation are shown numer-

ically in Table 3 and graphically in Fig 9. They are com-

pared with the recent works on floor plan analysis in [2]

and in floor plan wall detection in [16]. Since [2] is based

on thick, medium, and thin line separation for walls de-
tection, the method is useless in its baseline for textured
wall segmentation, as it is the case of TexturedSet, Tex-

turedSet2 and ParallelSet. On BlackSet, walls are al-

most perfectly detected by our system, outperforming
the approach from Ahmed et al. [2] in 7%. On the other
hand, wall segmentation on the rest o the datasets is a

big deal more challenging and therefore, not that ac-

14 Llúıs-Pere de las Heras et al.

Table 3: Wall detection results

[2] [16] Proposed
BlackSet 0.90 0.97 0.97

TexturedSet – 0.83 0.86
TexturedSet2 – 0.81 0.82
ParallelSet – 0.70 0.71

curate. The lower resolution and the slightly different

notation for exterior and interior walls increase the false

positives rate, mainly given by the detection of symbols

that are modeled similarly to interior walls in the Tex-

turedSet. Again, the lack of texture in ParallelSet leads

to wrongly segment other symbols that are also mod-

eled by parallel lines. In the case of the TexturedSet2,

the downscaling procedure brakes the original regular-

ity of the hatched pattern producing multiple textural

possibilities for a single wall. With all, the results are

still satisfactory. The JI score is over 0.8 in TexturedSet

and TexturedSet2 and up to 0.71 in ParallelSet. The

recall scores for all the datasets are very high –almost
1 for BlackSet, TexturedSet and TexturedSet2 and 0.86

for ParallelSet–, a fact that is strongly desirable since
false positives are easily treated in a postprocess than
false negatives.

In summary, our system is able to detect walls in

four completely different collections of floor plans re-
gardless their wall notation. This notation invariance is

achieved at relatively low cost: the short time to label
the data and the few images needed for learning –only
3 in ParallelSet while achieving good results– leads the

generation of the groundtruth to be a big deal shorter

and more straightforward step than reformulating tra-

ditional techniques based on vectorization for every new

notation. In addition to that, walls are not supposed to

be aligned –diagonal and curved walls are also detected
as it can be seen in Fig. 9–, and they do not need to
be at the same resolution –plans are rescaled automat-
ically regarding line thickness–.

5.5 Results on room detection

The quantitative results obtained on BlackSet and Tex-

turedSet for room detection based on the evaluation
strategy explained in 5.3 are shown in Table 4. This

Table reports both, the exact matches (one to one) in
terms of accuracy and detection rate, and the partial
matches (one to many and many to one) for BlackSet

and TexturedSet. The performance of the system can

be directly compared with the systems described in [2]
and [27] on BlackSet, since only the 80 images from

this dataset used in the evaluation of these methods
are considered here.

An example illustrating the rooms detected in a

BlackSet image is shown in Fig. 10b. Each one of the
isolated regions corresponds to a detected room. Ac-
cording to Table 4 on this dataset, our approach highly

outperforms the reference system [27] and achieves al-

most the same performance as [2] regarding detection

rate. At the same time, it remarkably surpasses the

recognition accuracy for both systems; more than 25%

compared to [27] and almost 13% compared to [2]. In

addition to that, our approach presents a lower one to

many score, which confirms that the system is able to

detect correctly the doors and windows that act as nat-

ural boundaries among rooms. Nevertheless, the many

to one count score is higher than [27] and almost the

same as [2]. The reason is that, as in [2], rooms are not

separated when there is a lack of physical boundary

between them.

On TextureSet, which is more challenging due to the

lower and multiple resolution of images and the differ-

ent notations for walls, the system performs slightly

worse but still satisfactory, see Fig. 10d. The detection

rate is 4% lower than the one obtained for the Black-
Set, mainly caused by loops generated by false detected

walls that are finally considered as rooms. On the other

hand, recognition accuracy is 4 points higher than [2],

but still moderately far from the one obtained on the

BlackSet. The main critical point is the high many to
one score. Since inner walls are poorly recognized, some

of the doors closing the room regions are not detected,
provoking that some neighbor rooms are not well sepa-
rated.

There are several key reasons, beyond the perfor-
mance and notation independence, which make our sys-
tem even more attractive for floor plan interpretation.

Firstly, the big majority of the existing techniques as-

sume that walls, doors, and windows are oriented hor-

izontally and vertically and they are not supposed to

be curved shaped, which obviously, does not fit into the

real world of architectural drawings. Contrarily, our ap-

proach does not consider any of these assumptions, and

walls, doors, and windows are detected independently of

whether they are diagonally oriented or curved shaped.

Secondly, in previous approaches, windows and doors

are usually detected by filling gaps between relatively

close walls according to an experimental threshold. On
the contrary, our method provides a fuzzy approxima-
tion of the locations for doors and windows in the sta-
tistical step, with an automatic learning step, and are

confirmed by an heuristic search in the structural phase.

Finally, rooms are regions in the graph formed by walls,

doors, windows and abstract connections. Therefore,

under a taxonomically point of view, it is straightfor-

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 15

(a) Original image from BlackSet. (b) Segmented walls from BlackSet.

(c) Original image from Tex-
turedSet.

(d) Segmented walls from Tex-
turedSet.

(e) Original image from TexturedSet2. (f) Segmented walls from TexturedSet2.

(g) Original image from Parallel. (h) Segmented walls from ParallelSet.

Fig. 9: Wall segmentation results for the 4 different datasets.

16 Llúıs-Pere de las Heras et al.

Table 4: Room Detection results

BlackSet TexturedSet
[27] [2] Proposed Proposed

Detection rate (%) 85 94.88 94.76 90.74
Rec. accuracy (%) 69 81.3 94.29 85.65
One to many count 2 1.48 1.34 1.4
Many to one count 0.76 2.14 2.24 3.4

(a) Original image from BlackSet. (b) Detected/Segmented Rooms.

(c) Original image from TexturedSet. (d) Detected/Segmented Rooms.

Fig. 10: Room segmentation Results.

ward to retrieve the structural elements which belong
to a certain room and vice-versa.

6 Conclusion and Future work

In this paper we present a system to automatically

extract the structure of floor plans. Contrarily to the

big majority of the existing approaches, the main con-

tribution of our method is that it is not oriented to

any specific graphical notation; it is able to extract the

structural elements without any prior knowledge of the

graphical modeling convention for the floor plans. It

only needs a little corpus of ground-truthed documents

for learning each new notation. Moreover, our system

does not assume the floor plans to be aligned, nor ori-

ented, nor having structural elements only modeled by

straight shapes, as many of the literature approaches

do. This is achieved thanks to the benefits of combin-
ing statistical and structural approaches. The statistical
approaches allow high flexibility on learning new floor

Statistical Segmentation and Structural Recognition for Floor Plan Interpretation 17

plan notations, whereas structural context is used to

finally recognize the element entities.

On top of that, the results on room detection, which

is the element which better defines the structural com-

position of buildings, highly outperforms the recent pub-

lished approaches in this framework.

In addition to that, due to the difficulty of objec-
tively comparing different floor plan interpretation ap-

proaches, mainly due to the lack of a public corpus, we

present four groundtruthed datasets which are shared

freely for research purposes. Furthermore, two evalua-

tion protocols, for wall and room detection, are in de-

tail described and automatically implemented, to facili-

tate the comparison among systems for new researchers

working in this topic.

Concerning the future work, we have multiple pos-

sible directions for improving our system. In a short

term, we will add textual information to the system

not only to improve the room detection, specifically,

those ones that are not physically separated, but also

to be able to label each room according to their seman-

tic functionality. In a middle term, symbol spotting for

furniture would be combined with OCR information to

improve the room labeling problem. Finally, in a long

term, we already started to introduce to the system a

syntactic model over an And-Or-Graph, combined with

structural stochastic models, which will drive the sys-

tem to an improved interpretation in terms of the hier-

archical, structural and semantic information contained
in these documents.

Finally, due to the generality of our system, we plan

to adopt it to solve in further challenges when dealing
with line-drawing structured documents, such as elec-
trical circuit recognition or map interpretation.

Acknowledgement

This work has been partially supported by the Spanish
projects TIN2009-14633-C03-03 and TIN2011-24631, and
by the research grant of the Universitat Autònoma de

Barcelona (471-02-1/2010).

References

1. Ah-soon, C., Tombre, K.: Variations on the analysis of
architectural drawings. In: Proceedings of Fourth Inter-
national Conference on Document Analysis and Recog-
nition, pp. 347–351 (1997)

2. Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved
automatic analysis of architectural floor plans. In: Pro-
ceedings of the International Conference on Document
Analysis and Recognition, pp. 864–869 (2011)

3. Ahmed, S., Liwicki, M., Weber, M., Dengel., A.: Auto-
matic room detection and room labeling from architec-
tural floor plans. In: Proceedings of the IAPR Inter-
national Workshop on Document Analysis Systems, pp.
339–343. IEEE (2012)

4. Ahmed, S., Weber, M., Liwicki, M., Langenhan, C., Den-
gel, A., Petzold, F.: Automatic analysis and sketch-based
retrieval of architectural floor plans. Pattern Recognition
Letters pp. pre–print (2013)

5. Aoki, Y., Shio, A., Arai, H., Odaka, K.: A prototype sys-
tem for interpreting hand-sketched floor plans. In: Pro-
ceedings of the 13th International Conference on Pattern
Recognition, vol. 3, pp. 747–751 (1996)

6. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up
robust features. In: Proceedings of the European Confer-
ence on Computer Vision, pp. 404–417 (2006)

7. Boumaiza, A., Tabbone, S.: Impact of a codebook filter-
ing step on a galois lattice structure for graphics recog-
nition. In: Pattern Recognition (ICPR), 2012 21st Inter-
national Conference on, pp. 278–281 (2012)

8. Cherneff, J., Logcher, R., Connor, J., Patrikalakis, N.:
Knowledge-based interpretation of architectural draw-
ings. Research in Engineering Design 3, 195–210 (1992)

9. Dosch, P., Masini, G.: Reconstruction of the 3d structure
of a building from the 2d drawings of its floors. In: Pro-
ceedings of the International Conference on Document
Analysis and Recognition, pp. 487–490 (1999)

10. Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A com-
plete system for the analysis of architectural drawings.
International Journal on Document Analysis and Recog-
nition 3, 102–116 (2000)

11. Dutta, A., Lladós, J., Pal, U.: Symbol spotting in line
drawings through graph paths hashing. In: Proceedings
of the 11th International Conference on Document Anal-
ysis and Recognition, pp. 982–986 (2011)

12. Elkan, C.: Using the triangle inequality to accelerate k-
means. In: Proceedings of the 20th International Confer-
ence on Machine Learning, pp. 147–153 (2003)

13. Escalera, S., Fornes, A., Pujol, O., Escudero, A., Radeva,
P.: Circular blurred shape model for symbol spotting in
documents. In: Proceedings of the 26th IEEE Interna-
tional Conference on Image Processing, pp. 2005–2008
(2009)

14. Everingham, M., Van Gool, L., Williams, C., Winn, J.,
Zisserman, A.: The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision 88, 303–
338 (2010)

15. de las Heras, L.P., Fernández, D., Valveny, E., Lladós,
J., Sánchez, G.: Unsupervised wall detector in architec-
tural floorplans. In: Proceedings of the 12th International
Conference on Document Analysis and Recognition, pp.
1277–1281 (2013)

16. de las Heras, L.P., Mas, J., Sánchez, G., Valveny, E.: Wall
patch-based segmentation in architectural floorplans. In:
Proceedings of the 11th International Conference on Doc-
ument Analysis and Recognition, pp. 1270–1274 (2011)

17. de las Heras, L.P., Mas, J., Sánchez, G., Valveny, E.:
Notation-invariant patch-based wall detector in architec-
tural floor plans. In: Graphic Recognition, Lecture Notes
in Computer Science, vol. 7423, pp. 79–88 (2012)

18. de las Heras, L.P., Sánchez, G.: And-or graph gram-
mar for architectural floorplan representation, learning
and recognition. a semantic, structural and hierarchical
model. In: Proceedings of the 5th Iberian Conference on
Pattern Recognition and Image Analysis, vol. 6669, pp.
17–24 (2011)

18 Llúıs-Pere de las Heras et al.

19. de las Heras, L.P., Valveny, E., Sánchez, G.: Combin-
ing structural and statistical strategies for unsupervised
wall detection in floor plans. In: Proceedings of the 10th
IAPR International Workshop on Graphics Recognition,
pp. 123–128 (2013)

20. Hori, O., Tanigawa, S.: Raster-to-vector conversion by
line fitting based on contours and skeletons. In: Proceed-
ings of the Second International Conference on Document
Analysis and Recognition, pp. 353–358 (1993)

21. Jiang, X., Bunke, H.: An optimal algorithm for extracting
the regions of a plane graph. Pattern Recognition Letters
14(7), 553–558 (1993)

22. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining
classifiers. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 20(3), 226–239 (1998)

23. Lladós, J., López-Krahe, J., Mart́ı, E.: A system to un-
derstand hand-drawn floor plans using subgraph isomor-
phism and hough transform. Machine Vision and Appli-
cations 10, 150–158 (1997)

24. Lladós, J., Sánchez, G., Mart́ı, E.: A string based method
to recognize symbols and structural textures in architec-
tural plans. In: Graphics Recognition Algorithms and
Systems, Lecture Notes in Computer Science, vol. 1389,
pp. 91–103. Springer Berlin Heidelberg (1998)

25. Lowe, D.: Object recognition from local scale-invariant
features. In: Proceedings of the Seventh IEEE Interna-
tional Conference on Computer Vision, pp. 1150–1157
vol.2 (1999)

26. Lu, T., Yang, H., Yang, R., Cai, S.: Automatic analysis
and integration of architectural drawings. International
Journal on Document Analysis and Recognition 9, 31–47
(2007)

27. Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A sys-
tem to detect rooms in architectural floor plan images.
In: Proceedings of the 9th IAPR International Workshop
on Document Analysis Systems, DAS ’10, pp. 167–174
(2010)

28. Or, S.H., Wong, K.H., Yu, Y.K., Chang, M.M.Y.: Highly
automatic approach to architectural floorplan image un-
derstanding & model generation. Proceedings of the Vi-
sion, Modeling, and Visualization p. 2532 (2005)

29. Otsu, N.: A threshold selection method from gray level
histograms. IEEE Transactions of Systems, Man and Cy-
bernetics 9, 62–66 (1979)

30. Phillips, I., Chhabra, A.: Empirical performance evalu-
ation of graphics recognition systems. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 21(9),
849–870 (1999)

31. Rendek, J., Masini, G., Dosch, P., Tombre, K.: The search
for genericity in graphics recognition applications: Design
issues of the qgar software system. In: Document Analy-
sis Systems VI, Lecture Notes in Computer Science, vol.
3163, pp. 366–377 (2004)

32. Ryall, K., Shieber, S., Marks, J., Mazer, M.: Semi-
automatic delineation of regions in floor plans. In: Pro-
ceedings of the Third International Conference on Docu-
ment Analysis and Recognition, pp. 964–983 (1995)

33. Santosh, K., Lamiroy, B., Wendling, L.: Integrating vo-
cabulary clustering with spatial relations for symbol
recognition. International Journal on Document Anal-
ysis and Recognition (IJDAR) pp. 1–18 (2013)

34. Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B.,
Dosch, P.: Text/graphics separation revisited. In: Doc-
ument Analysis Systems V, Lecture Notes in Computer
Science, pp. 615–620 (2002)

35. Weber, M., Liwicki, M., Dengel, A.: a.SCAtch - A Sketch-
Based Retrieval for Architectural Floor Plans. In: Pro-
ceedings of the 12th International Conference on Fron-
tiers of Handwriting Recognition, pp. 289–294 (2010)

36. Wessel, R., Blümel, I., Klein, R.: The room connectivity
graph: Shape retrieval in the architectural domain. In:
Proceedings of the 16th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and
Computer Vision (2008)

37. Zhi, G., Lo, S., Fang, Z.: A graph-based algorithm for
extracting units and loops from architectural floor plans
for a building evacuation model. Computer-Aided Design
35(1), 1–14 (2003)

