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Introduction: Statistical shape modeling (SSM) is a valuable and powerful tool to
generate a detailed representation of complex anatomy that enables quantitative
analysis of shapes and their variations. SSM applies mathematics, statistics, and
computing to parse the shape into some quantitative representation (such as
correspondence points or landmarks) which can be used to study the covariance
patterns of the shapes and answer various questions about the anatomical variations
across the population. Complex anatomical structures have many diverse parts with
varying interactions or intricate architecture. For example, the heart is a four-
chambered organ with several shared boundaries between chambers. Subtle
shape changes within the shared boundaries of the heart can indicate potential
pathologic changes such as right ventricular overload. Early detection and robust
quantification could provide insight into ideal treatment techniques and intervention
timing. However, existing SSM methods do not explicitly handle shared boundaries
which aid in a better understanding of the anatomy of interest. If shared boundaries
are not explicitly modeled, it restricts the capability of the shapemodel to identify the
pathological shape changes occurring at the shared boundary. Hence, this paper
presents a general and flexible data-driven approach for building statistical shape
models of multi-organ anatomies with shared boundaries that explicitly model
contact surfaces.

Methods: This work focuses on particle-based shape modeling (PSM), a state-of-art
SSM approach for building shape models by optimizing the position of
correspondence particles. The proposed PSM strategy for handling shared
boundaries entails (a) detecting and extracting the shared boundary surface and
contour (outline of the surface mesh/isoline) of the meshes of the two organs, (b)
followed by a formulation for a correspondence-based optimization algorithm to
build a multi-organ anatomy statistical shape model that captures morphological
and alignment changes of individual organs and their shared boundary surfaces
throughout the population.

Results: We demonstrate the shared boundary pipeline using a toy dataset of
parameterized shapes and a clinical dataset of the biventricular heart models. The
shared boundary model for the cardiac biventricular data achieves consistent
parameterization of the shared surface (interventricular septum) and identifies the
curvature of the interventricular septum as pathological shape differences.
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1 Introduction

It has long been recognized in the anatomical sciences that the
human body exhibits various morphological patterns and
configurations, referred to as anatomical variation. Variations are
prevalent throughout the body and may cause or be a factor resulting
in a significant medical condition. To carry out a wide range of surgical
and other medical procedures and therapeutic modalities, it is essential
to have a thorough understanding of natural anatomical variation
(Smith, 2021). Primitively, the morphometric variations of anatomies
were commonly reported through observational studies that inspect
large numbers of cadavers, and medical images (Alraddadi, 2021). By
permitting in-depth, non-invasive investigation of the human body,
recent advancements in medical imaging, such as Magnetic Resonance
Imaging (MRI) and computed tomography (CT) scans, have
significantly increased the understanding of the complexity of
human anatomy. Owing to the growing interest in studying
anatomical variations, statistical shape modeling (SSM) has
emerged as an essential computational tool that discovers
significant shape parameters directly from medical data (such as
MRI and CT scans) that can fully quantitatively describe complex
anatomy in the context of a population.

Statistical shape models are used to perform wide range of tasks in
biomedical research ranging from visualizing organs (Orkild et al.,
2022), bones (Lenz et al., 2021), and tumors (Krol et al., 2013), to
aiding surgical planning (Borghi et al., 2020), monitoring disease
progression (Uetani et al., 2015; Faber et al., 2020), and implant
design (Goparaju et al., 2022). Shapes can be represented using an
implicit (deformation fields (Durrleman et al., 2014), level set methods
(Samson et al., 2000)) or explicit (set of ordered landmarks/points)
representation. For explicit representations, points of the same
anatomical position must be established consistently across shape
populations to enable shape comparisons and obtain population-level
shape statistics in an ensemble of shapes. These points are called
correspondences. Explicit parameterization, such as correspondence
points, is one of the most popular techniques used to represent shapes
because of their simplicity and ability to represent multiple objects
easily (Cerrolaza et al., 2019). Hence, in this work, we focus on point
distribution models (PDM), which are a dense set of correspondences
for shape representation. Multiple methods for correspondence
generation have been proposed, which include non-optimized
landmark estimation, parametric and non-parametric
correspondence optimization. Non-optimized methods entail
manually annotating the reference shape and warping the
annotated landmarks on the population data using image-based or
shape-based registration (McInerney and Terzopoulos, 1996; Paulsen
et al., 2002; Heitz et al., 2005). Such non-optimized methods employ
hard surface constraints to distribute points on a shape. Parametric
methods use fixed geometrical basis (e.g., spheres (Styner et al., 2006))
to parameterize objects and generate correspondences.
Correspondence models obtained using manual or parametric
techniques are not optimal and can be incapable of handling
complex shapes as the expressivity of the models is limited by
choice of the fixed geometrical basis or template. On the other
hand, non-parametric automatic methods provide a robust and

general framework as they generate PDMs without relying on a
specific geometric basis. Methods that follow a group-wise non-
parametric approach find the correspondence by considering the
variability of the entire cohort in the optimization process (e.g.,
particle-based optimization (Cates et al., 2017) and Minimum
Description Length - MDL (Davies, 2002)).

Traditional SSM methods started by creating single-organ
anatomy models particular to an organ or disease. However, the
human body comprises intricate organs and systems that are
physically, functionally, and spatially interrelated (Sanfilippo et al.,
1990; Cates et al., 2014; Marrouche et al., 2014). For example, the hip
joint is a ball and socket joint, with articular cartilage covering the
articulating surfaces of the femur and pelvis. Similarly, the sacroiliac
joint is a diarthrodial auricular joint between the sacrum and the ilium
that allows bipedal movement. Due to the nature of these joints,
subject-specific bone and cartilage anatomy drive the contact
mechanics of the joint. Even subtle variations in anatomy may
result in abnormal cartilage contact mechanics and lead to
osteoarthritis (Dreyfuss et al., 2004; Andriacchi et al., 2009).
Simultaneous quantification of the shape of the cartilage surface
and the shared subchondral bone surface may help elucidate the
joint’s complex, dynamic articulation and diagnose biomechanical
pathologies (Li et al., 2013; Jesse et al., 2017; Postacchini et al., 2017).
Another example of interconnected anatomy is the heart, a four-
chambered organ with several shared boundaries between chambers.
Coordinated and efficient contraction of the chambers of the heart is
necessary to adequately perfuse end organs throughout the body.
Subtle shape changes within these shared boundaries of the heart can
indicate potential pathological changes that lead to uncoordinated
contraction and poor end-organ perfusion. Thorough examination
and understanding of various interconnected organ systems are
paramount to diagnosing and providing prompt therapeutic
support (Bartsch et al., 2015). Hence, the attention of recent
computational anatomy research has shifted from single-organ to
multi-organmodels (Cerrolaza et al., 2019). Multi-organ shapemodels
perform joint statistical shape analysis to quantify meaningful shape
variations and contextual information when studying the group
differences and identifying the shape differences occurring due to a
particular pathology affecting multiple interacting organs.

The group-wise SSM approaches mentioned previously have been
extended to model multi-organ anatomies. These approaches either
parameterize each object separately, sacrificing anatomical integrity
(Cerrolaza et al., 2019), or minimize the combined cost function to
generate correspondences assuming a global statistical model (Cates
et al., 2008; Durrleman et al., 2014). However, these multi-organ
models often fail to incorporate nuanced interactions such as shared
surfaces (cartilage of the hip joint or the sacroiliac joint or
interventricular septum of the heart) between multiple anatomies
that can reveal critical features that might not be observable when
the individual organs are modeled independently.

To address this issue, we propose a new shape modeling workflow
that entails a method for extracting shared boundary surfaces and a
correspondence-based optimization scheme to parameterize multi-
organ anatomies and their shared surfaces consistently. We
demonstrate the entire workflow using a cardiac biventricular
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dataset, where we model the right ventricle (RV), left ventricle wall
(LVW), and interventricular septum (IVS). We build upon the group-
wise, non-parametric particle-based optimization method proposed
by Cates et al., (Cates et al., 2007; Cates et al., 2008; Cates et al., 2017),
to generate PDM and modify the framework to support multi-organ
anatomies with shared boundaries.

The preliminary results of this work have been published in a
workshop paper (Iyer et al., 2022). Here we significantly expand this
work as follows.

1. Detailed experiments to convey the proof-of-concept with a
synthetically generated parameterized set of shapes (the peanut
dataset).

2. Study the necessity and effectiveness of modeling the shared
boundary by comparing the modes of variations and group
differences inferred using the shared boundary model of the
biventricular anatomy with multi-organ shape models without
explicitly shared boundary parameterization.

3. Perform multi-level analysis for the multi-organ shape models to
disentangle pose from shape variations.

4. Perform ablation experiments to study the effect of class imbalance
on the shape model generation process.

2 Methods

With a PDM, a shape can be represented as a vector that contains
the coordinates of all of its surface correspondences. This concept can
be broadened to encompass an ensemble of shapes, allowing for the
representation of all shapes in a high-dimensional vector space, the
shape space, and aiding in the investigation of how shapes are
distributed to identify geometric variation patterns between the
structures of interest. Statistical shape models are, in their most
basic form, concise mathematical representations of objects that
successfully parameterize every shape in the shape space. Herein
we leverage the particle-based shape modeling (PSM) approach
(Cates et al., 2007; Cates et al., 2017) for automatically constructing
PDMs by optimizing point (or particle) distributions over a cohort of
shapes using an entropy-based optimization method.

There are two essential considerations for modeling
interconnected anatomical structures with surface openings and
shared boundaries. First, it is necessary to explicitly characterize
the statistics of the exterior (contour) and the interior of the
shared surface to build statistical shape models that are aware of
the interactions of the organs. This requires a consistent point
distribution on the shared boundary across the multi-organ
anatomies. To meet these needs, we develop methods for detecting
and extracting shared boundaries and their edges (i.e., contour
information) from multi-organ anatomies (see Section 2.2). Second,
we need to optimize a PDM that includes joint statistics of the multi-
organ anatomies, shared boundary interior, and contour. The PSM
method proposed by Cates et al., which forms the foundation of our
proposed method, uses a system of interacting particles with mutually
repelling forces that learn the most compact statistical descriptors of
the anatomy (Cates et al., 2008; Cates et al., 2017). For consistent
parameterization on the shared boundary, we modify the surface
sampling objective of the PSM method to accommodate the
interaction between the anatomies and the shared surface. A brief
overview of the PSM entropy optimization method for single anatomy

is provided in Section 2.1 and the proposed surface cost function
modifications for multi-organ anatomies with shared boundary
surfaces is provided in Section 2.3.

2.1 Background: Particle-based shape
modeling (PSM)

PDMs offer a framework for quantifying statistical relations
between several factors representing the morphology of anatomy
(Cootes et al., 1995). Using principal component analysis (PCA) on
PDMs, it is possible to quantify population-level morphological
variations. Therefore, an anatomical mapping across all anatomical
(shape) samples in the given cohort should be established to obtain
meaningful statistical shape variations. PSM offers a data-driven
approach to establishing such mapping by establishing dense
surface correspondences without needing an initial atlas or
template. PSM learns the shape parameters by optimizing the
position of a system of interacting particles such that the shape
model can completely describe the variability of the population
using the most compact statistical model that still preserves
geometrical accuracy. In this section, we briefly describe the PSM
method proposed by Cates et al., (Cates et al., 2007; Cates et al., 2008),
that will be later modified in Section 2.3 to capture meaningful and
consistent shape models for multi-organ anatomies with shared
boundaries.

Consider a cohort of shapes S � {z1, z2, . . . , zN} of N surfaces,
each with its set of M corresponding particles zn �
[x1, x2, . . . , xM] ∈ RdM where each particle xm ∈ Rd lives in
d−dimensional Cartesian (i.e., configuration) space. This work uses
surface meshes where d = 3. The ordering of the particles implies
correspondence among shapes. Each correspondence particle is
constrained to lie on the shape’s surface. Collectively, the set of M
particles is known as the configuration, and the space of all possible
configurations is known as the configuration space. The particle
positions are samples (i.e., realizations) of a random variable
X ∈ Rd in the configuration space with an associated probability
distribution function (PDF) p (X = x). Each configuration of M
particles can be mapped to a single point in dM−dimensional
shape space by concatenating the correspondence coordinate
positions into a single vector zn. The vector zn is modeled as an
instance of random variable Z in the shape space with PDF p (Z = z)
assuming shapes are Gaussian distributed in the shape space,
i.e., Z ~ N (μ,Σ). The optimization proposed by Cates et al., (Cates
et al., 2007; Cates et al., 2017), to establish correspondence minimizes
the energy function

Q � H Z( ) −∑N
n�1

H Xn( ) (1)

where H is an estimation of differential entropy. The differential
entropy of p(X) is given as

H X( ) � −∫
S
p X( ) logp X( )dx � −E logp X( ){ } ≈ − 1

M
∑M
m�1

logp xm( )

(2)
where H(X) is by calculating by estimating the density function p(X)
using a nonparametric, Parzen windowing estimationmethod with the
help of the particles. The entropy in the shape space for the Gaussian
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distribution is calculated as H(Z) � 1
2 log |Σ|. More details regarding

entropy terms can be found in (Cates et al., 2007; Cates et al., 2017).
Gradient descent is used to minimize the cost function Q.
Minimization of the first term in Q from Eq 1 produces a compact
distribution of samples in shape space and encourages particles to be
in correspondence across shapes. The second term seeks uniformly-
distributed correspondence positions on the shape surfaces for a
geometrically accurate shape representation (Cates et al., 2007;
Cates et al., 2017). The negative gradient −zH(Z)

zZ provides an
update vector for the entire particle system, which is computed
once per iteration, i.e., assuming lagging shape statistics for
optimization stability. The individual shape-based updates zH(Xn)

zXn

are combined with the negative gradient term to provide the
update for each particle. Further details regarding the optimization
and gradient updates can be found in (Cates et al., 2007; Cates et al.,
2017).

A common coordinate system must be used to perform
statistical analysis of the PDMs. Hence, the PDMs are built by
factoring out global scaling, rotation, and translation. Typically the
input shape data (volume segmentations or surface meshes) are
aligned as a pre-processing step using iterative closed point
alignment (Arun et al., 1987; Besl and McKay, 1992) that
registers the shapes to an unbiased coordinate system by
iteratively minimizing the pairwise least squares difference
between the individual shapes and a reference shape. Once the
similarity transformations have been removed, the statistical shape
model can be easily constructed and analyzed.

2.2 Shared boundary extraction

To demonstrate the shared boundary extraction pipeline, consider
two adjoining organs A and B, with a shared boundary (Figure 1). The
steps for shared boundary extraction entail the following.

1. Isotropic Explicit Re-meshing: This generates a new mesh
triangulation that conforms to the original data but contains
more uniformly sized triangles. Re-meshing improves the
quality of the mesh while preserving the original geometrical
features. Re-meshing also has the benefit of ensuring equivalent
average edge lengths across the two shapes, which is useful in
ensuing steps (Valette et al., 2008).

2. Extracting Shared Boundary: In this step, we pass the two adjacent
organs to the extraction tool that then outputs three new shapes,
two of which correspond to the original shapes (without the shared
boundary surface) and one for the shared boundary. To look into
the overview of the algorithmic steps involved in the extraction
tool, let us designate the original meshes of the adjoining organs as
Ao and Bo (Figures 2A, B) then:

a. Find all the triangles in Ao that are close to Bo and construct a mesh
with these triangles called As. A triangle with vertices (v0, v1, v2) is
considered close to another mesh if the shortest Euclidean distance
between all three vertices and the other mesh is less than a specific
threshold. The threshold must be experimentally tuned for the data
to ensure the extracted shared surfaces are clinically relevant.

b. We similarly find all the triangles in Bo that are close to Ao and
designate this mesh as Bs.

c. Find the remainder of the mesh in Ao after removing the triangles
inAs and designate this asAr. Similarly, we designate the remainder
of the mesh in Bo after removing the triangles in Bs as Br.

d. Since, As = Bs, we arbitrarily designate Bs as the shared surface M
e. Copy all the points on the boundary loop of Ar to the boundary

loop of M and return three new shapes Ar, M, and Br (Figure 2C).
3. Laplacian Smoothing: At this point, the resulting triangulation

typically contains jagged edges. We apply Laplacian smoothing to
correct for this (Field, 1988). Laplacian smoothing reduces noisy
edges/artifacts found on the mesh surface with minimal changes to
its shape. This results in cells with better shapes and evenly
distributed vertices.

4. Extract Contour: The boundary loop of the shared surface M is
computed using LibIGL boundary_loop tool (Jacobson and
Panozzo, 2018) and designate this contour as C (Figure 2D).

The input consisting of two adjoining organs Ao and Bo with a
shared surface has been converted into input with four separate parts,
the organs Ar and Br, the shared surface M, and the contour C using
the pipeline (Figure 2D; Figure 1).

2.3 Particle-based shape modeling with
shared boundaries

A shape model built for multi-organ anatomies with shared
boundaries requires a shape model that faithfully captures the joint
statistics of all the interacting organs while consistently representing
the individual organs. In order to capture the joint statistics of the
multi-organ system, particle-based optimization should be capable of
handling multi-organ anatomies. The optimization set up in Eq 1 was
extended for multiple organs in (Cates et al., 2008). From the PSM
formulation for single anatomies mentioned in the Section 2.1, it is
important to note that p (xm) in Eq 2 was estimated from the particle
position using non-parametric kernel density estimation method
(Cates et al., 2007; Cates et al., 2017). This results in a set of points
on the surface that repel each other with Gaussian-weighted forces.

FIGURE 1
Extracting shared boundary between two meshes. The regions in
green have Euclidean distances that fall within the threshold and are
extracted as a shared boundary as per step 2. The green arrows show the
distances within the threshold for the vertices included in the
shared boundary. The red arrows show distances greater than the
threshold for the vertices excluded from the shared boundary. The
contour is extracted from the green region as per step 4. Note: the
meshes are farther apart, and the threshold is larger for visualization
purposes.
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For multi-organ anatomy, the optimization is extended so that if one
organ has a distinct unconnected surface, the spatial interactions
between particles on different organs are decoupled, and particles
are constrained to lie on a single organ (surface). This is enforced by
considering the entropy of the correspondences in the configuration
space (second term in Eq. 1) of each organ of each anatomy separately.
This separation ensures that the particles are uniformly distributed on
each organ independently. At the same time, the covariance Σ of the
random variable Z in the space includes all particle positions across the
multiple organs. This ensures the optimization takes place on the
multi-organ shape space and the shape statistics remain coupled
(Cates et al., 2008) resulting in an overall compact model and
particles in correspondence on all organs and across anatomies.
For K organs in anatomy, the cost function as in (10) is

Q � H Z( ) −∑K
k�1

∑N
n�1

H Xk
n( )⎡⎣ ⎤⎦ (3)

where Xk
n represents the particle random variable associated with the

nth anatomy (or subject) and the kth organ.
From Eq. 3, the second term, representing the sampling objective,

is summed over all the shape samples. The sampling is restricted to the
particles within the individual organs. As a result, when two organs
have a shared boundary and sampling is done independently, it raises
concerns about the statistics captured for the shared boundary surface
using two particle systems. As there is no explicit representation of the
common shared boundary, when the statistical analysis is performed
for anatomies with shared boundaries, there is no mechanism to

prevent the particles from penetrating other organs while studying the
modes of variations. Such shape models with poorly parameterized
anatomies and their interactions lead to a clinically incorrect statistical
representation of morphological variations and observation. Hence,
the shared boundary has to be explicitly parameterized into two parts -
the interior (shared boundary surface) and exterior (shared boundary
contour) of the surface. The extracted shared boundary has to be
modeled as a separate entity from the two organs to avoid capturing
the same statistics from multiple particle systems of the multi-organ
anatomy. Another important consideration is that we need to ensure
that the particles do not clutter around the edges of the organs and the
shared boundary surface and contour. Hence, the interaction between
the organs and the extracted shared boundary surface and contour has
to be introduced during the optimization process. The sampling
objective needs to be modified to introduce the interaction so that
the particles on the shared boundary contour repel the particles of
other organs to present each organ faithfully. This will result in a
buffer distance between particles of the multiple organs leading to a
uniform correspondence model and discouraging particles from
moving into other organs during the representation of
morphological variations.

The proposed objective function is:

Q � H Z( ) − ∑
k∈ Ar,M,Br( )

∑N
n�1

H
Xk

n

XC
n

( ) +∑N
n�1

H XC
n( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (4)

where XC is the matrix of particle positions located in the contour.
Effectively, this means that all the particles on the Ar, M and Br are

FIGURE 2
An example of output obtained after shared boundary extraction. Meshes representing (A) RV and LVW show that they have a shared boundary surface,
and (B) RV and LVWmeshes are pried apart. The meshes and contour obtained after shared boundary extraction (C) RV, LVW, shared surface and contour (D)
all outputs pried apart for visualization. The red color indicates the contour. The image shows 2D slices of the endocardial segmentation for the RV (blue) and
epicardial segmentation for the LV (violet) at end-diastole in the (E) axial view and (F) coronal view.
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repelled by particles on the contour C. Similar to the original PSM
formulation mentioned in Section 2.1, the cost function Q from Eq
4 is minimized using gradient descent. As a general assumption, the
surface area and circumference of the shared boundary surface are
smaller than the anatomy’s individual organs. The number of
particles required to describe the shared boundary and contour
is much lower than the number of particles required to describe the
organs. Hence, we do not change the sampling objective for the
contour (∑N

n�1H(XC
n ) term in Eq 4. This is because the large

magnitude of gradients from more particles of the meshes could
cause the particles on the contour to swap places. Since there is only
one degree of freedom on a contour, it is almost impossible to
recover from this situation.

3 Dataset and shape modeling

3.1 Synthetic peanut dataset

We demonstrate the proposed pipeline for shared boundary
extraction and optimization of models with shared surfaces by
considering a synthetic peanut dataset. Each sample in this dataset
consists of surface meshes of two spheres, but one of the spheres is
subtracted from the other. There exists a shared surface between the
two spheres (Figure 3C). The radii of the two spheres vary inversely,
i.e., as one gets bigger, the other gets smaller (Figure 3A). Pathological
shape changes are emulated by converting one of the spheres to
ellipsoids where the radii in the y and z direction are varied
(Figure 3B). The dataset is balanced and consists of 15 controls
(i.e., where both the shapes are spheres) and 15 pathology
(i.e., where one of the shapes is an ellipsoid.) All the shapes are
alignment and are centered at [0, 0, 0] during the data generation
process.

3.2 Cardiac biventricular dataset

We evaluated our method on a real world cardiac biventricular
dataset, comparing how well the resulting correspondence model
captures variability in shape for cardiovascular clinic patients and
healthy volunteer groups. The dataset consists of MRIs of six healthy
volunteers and 23 patients treated at a cardiovascular clinic. In the
patient group, tricuspid regurgitation was secondary to pulmonary
hypertension in one patient; congestive heart failure (CHF) in
10 patients; and other causes (atrial fibrillation, pacemaker lead
injury, pacemaker implantation, congenital heart disease) in
12 patients. The healthy volunteers had no diagnosis of cardiac
disease and no cardiovascular risk factors. The 23 patients were
retrospectively identified from the University of Utah medical data
warehouse after verification of the patient charts. Healthy volunteer
images were obtained during a previous study at Weill-Cornell
Medical College, after IRB approval (Orkild et al., 2022). These
studies involving human participants were reviewed and approved
by the University of Utah Internal Review Board committee.

RV and LVW shapes were generated from manual segmentations
performed on reconstructed 3D image volumes from end-diastole
CINE MRI. From each CINE short axis time stack, an image of the
heart at end diastole was extracted to create a 3D volume image stack.
Image extraction was performed using a custom MATLAB image
processing code. The volume stacks were then segmented using the
open-source Seg3D software (SCI Institute, University of Utah, SLC
UT). The volume stack was segmented semi-automatically by
inserting seed points along the edge of each slice. After that, the
segmentation was manually modified to remove any flaws or artifacts.
A binary mask volume of the completed segmentation was exported
for further analysis. The segmentations were then isotropically
resampled and converted to meshes using the open software
ShapeWorks. In order to align the shapes, the meshes were

FIGURE 3
Synthetic Peanut Dataset: Surface meshes representing the two groups included in the peanut dataset- (A) Controls group: two spheres with varying
radii, (B) pathalogical changes are emulated by changing one of the spheres to ellipsoid. (C) Samples from the controls and pathalogy groups show casing the
shared boundary surface, (D) sample outputs obtained after extracting the shared boundary surface and contour. The meshes are pried apart for visualization.
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centered and rigidly aligned to a representative reference sample
selected from the population. The reference sample is selected by
first computing the mean (average) mesh, then selecting the sample
closest to that mean (i.e., medoid). The rigid alignment was done by
calculating the transformations only using the RV meshes of the
population due to their complex shapes. These transformations were
then applied to the RV and the LVWmeshes. The average edge length
(given as mean ± std in mm) of the right ventricle meshes was .8224 ±
.3987, left ventricle wall meshes was .9438 ± .3399, the IVS meshes
.5196 ± .4047, and the contours 21.469 ± 26.205.

3.3 Shape model construction

We used ShapeWorks, an open-source software that
implements the particle-based entropy optimization (Cates et al.,
2007; Cates et al., 2017) described in Section 2.1. We modified the
optimization with the proposed cost function (Eq. 4) to support
multi-organ anatomies with shared boundaries. First, the shared
boundary surface and contour were extracted for both the datasets
before building shape models using the tool described in Section 2.2.
During the extraction process, Laplacian smoothing was performed as
per step 3 mentioned in Section 2.2 for 30 iterations with relaxation
parameter set to 1. Figure 2 shows an example output for one
sample of the cardiac biventricular dataset and Figure 3D shows
example output for the peanut dataset. For the peanut dataset, a
shape model was built using 512 particles for each shape (sphere
and ellipsoid), and 64 particles each for the shared boundary
surface and contour. For the cardiac dataset, a shape model was
built using 512 particles for the RV and LVW, and 64 particles were
used for the IVS surface and contour. We also generated a multi-
organ anatomy shape model for the cardiac dataset without
performing the shared boundary extraction and optimization as
a baseline model for comparison. This shape model was generated
using the optimization cost function specified in Eq 3 (already a
part of ShapeWorks) and will be referred to as the multiple-domain
shape model.

4 Results and discussions

4.1 Synthetic peanut dataset

We use the peanut dataset as proof of concept. Figures 3C, D
show the extracted shared boundary and contour for a control
sample with two spheres and a patient sample with a sphere and
ellipsoid. A shape model was then generated using the proposed
optimization. We use PCA to simplify the complexity of the high-
dimensional correspondence model while identifying the patterns
learned by the PSM. Using PCA, we rank the independent modes
of shape variation according to the proportion of variance that is
explained (measured by eigenvalues) to the overall variance. The
modes that account for the most form variability are called the
dominant modes. The generated shape model was used to identify
the group-level shape differences shown in Figures 4A, B. The
shape model correctly identified the relative increase and decrease
in size as modes of variation while appropriately representing the
shared boundary surface and contour. It can be seen from the
particle distribution models shown in Figure 4A that the proposed
shared boundary optimization ensures that the particles from one
object do not penetrate other objects while visualizing the modes
of variations. From Figure 4B, we can see that the shared
boundary models correctly identified partial ellipsoids as the
shared surface in the case of pathology samples and partial
spheres in the case of control samples as group-level shape
difference. The observations made using the synthetic peanut
dataset shared boundary model have successfully showcased the
proof of concept and the feasibility of implementing the proposed
tools.

FIGURE 4
(A) Two viewpoints of the point distribution models and the
reconstructed meshes of the modes of variations of the peanut dataset
discovered by the shared boundary model. (B) Group-level shape
differences observed by the shared boundary shape model. The
arrows indicate the direction of shape change, the yellow mesh
represents the extracted shared boundary, and the white represents one
of the shapes of the peanut.
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4.2 Cardiac biventricular dataset

For the cardiac biventricular dataset, we compare the following two
models - shared boundary and multiple domains. Both shape models are
assessed on their capability to identify the underlying morphometric
variations. Like the peanut dataset, PCAwas used to identify themodes of
variations identified by the shape models. Figure 5 shows the five
dominant modes of variation discovered by the multiple domains and
shared boundary model for the cardiac dataset. As multiple domain
models lack the explicit parameterization of the shared boundary surface
between the LVW and RV, the modes of variations show anatomical
inconsistencies visible in Figures 5A, C. The particles penetrate the
adjacent organs (indicated with red boxes) in the identified modes of
variations rendering the learned statistics of the data clinically irrelevant.
On the other hand, the shared boundary model produces clinically useful
modes of variation with a consistent representation of the IVS, i.e., the

shared boundary surface. The multiple domain model also generated
modes of variations with that introduced gaps between the LVW and RV.
This anatomical inconsistency is seen with the multiple domains shape
model because the model does not consider the interactions between the
two organs and fails to account for the joint statistics of the shared surface
in the optimization process. In contrast, the proposed method directly
models the joint statistics.

We also compared the performance of the shared boundary model
and the multiple domain model for the cardiac dataset to identify the
group-level differences between pathology and controls. Figure 6A shows
the group differences identified by the shared boundary model, and
Figure 6B shows multiple domains. There is a marked difference in the
curvature of IVS of the healthy group as compared to the patient group as
identified by the shared boundary model in the first row of Figure 6A.
Multiple domain model group differences show anatomical
inconsistencies as the shared surface is not explicitly modeled. The

FIGURE 5
Two different views of the same reconstructed meshes and the point distribution models of the modes of variations discovered by (A)multiple domains
model and (B) the proposed shared boundary model. The red boxes indicate shapemodeling inconsistencies of multiple domain model - particle overlap and
gaps between organs. (C) Examples of shapes with overlapping particles and shapes with gaps between organs in the multiple domains model and (D)
examples of shapes with consistent parameterization in the proposed shared boundary model.
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anatomical inconsistencies are in the form of a gap introduced between
the two organs, which is visible in the first row of Figure 6. The shared
boundary removed the anatomical inconsistencies and correctly identified
the shape difference describing the pathology and control group. In
contrast, the multiple domains model identifies size differences correctly
but fails to model the curvature of the IVS as there is no explicit
representation of the IVS in the model.

4.3 Multi-level analysis of morphology and
alignment

Statistical shape modeling aims to identify subtle variations within
a population. The data acquisition process plays an essential role in
determining data quality. Due to manual and system errors, the image
acquisition process can introduce pose variations that result in the
variation of the relative position of the organs in the anatomy. Most
modeling pipelines rely on iterative closed point alignment (Arun
et al., 1987; Besl andMcKay, 1992) to rigidly align the cohort of shapes
in the population. However, these alignment techniques cannot
robustly eliminate variations in the relative pose. Therefore, we
need tools that identify the pose variations and separate them from
clinically relevant shape variations of the multi-organ anatomy.

The cardiac biventricular dataset is challenging as it contains some
misalignments that could not be resolved by using rigid alignment in the
pre-processing step. Hence, the modes of variation identified by using
PCA for the shared boundary shape model and multiple domain model
include variations in alignment and shape entangled together. The
entangled observations can be seen in the first mode shown in Figures
5A, B where the right ventricle moves around the left ventricle wall. Such
observations render the learned statistics clinically insignificant as these
variations do not naturally occur in the anatomy. In order to mitigate the
problem of entangled mode of variations, we use the multi-level
component analysis (MLCA) technique (Timmerman, 2006). MLCA is
an extension to PCA, where the analysis is done at different levels in which
the data is observed. PCA is done on the joint shape space for the shape
model having multiple organs under consideration. MLCA, on the other
hand, applies PCA to capture the individual subspace of each organ under
consideration that encodes the within-organ shape variations across the

population and the between-organ subspace capturing the relative
alignment variations across the population. Thus, applying this multi-
level analysis technique helps disentangle the mode of variations into
shape variations and pose (relative positioning of the organs) variations,
whichwas not seen otherwise using PCAonly. Figure 7 shows the top four
dominant modes of pose variations where the arrows indicate the
direction of the movement of the organs. Figure 8 shows the top four
dominant modes of shape variations discovered by multi-level analysis.
Comparing the disentangled shape variations in Figure 8 with the PCA
modes of variations in Figure 5B, we can see that the two organs no longer
showcase translation or rotation with respect to each other.

4.4 Data imbalance

In order to study statistically significant geometric group differences
learned by the shared boundary model, we performed linear
discrimination of variation. The linear discrimination between the two
groups is defined as the difference vector between the particle-wise mean
shapes of the two groups. The shape of each subject is then mapped/
projected onto this difference vector by taking the dot product between
the subject-specific shape representation (the particle correspondences)
and this difference vector. The mapping results in a single scalar value (or
a “shape-based score”) that places subject-specific anatomy on a group-
based shape difference that is statistically derived from the shape
population. The particle-wise mean shape for the cardiac patients is
set as -1, and controls are set as 1. The mappings of all the other subjects
are then similarly normalized relative to these values, giving a shape
distribution of individual members of the population relative to the mean
shapes of their respective groups. A univariate Gaussian distribution is
then fitted to the normalized mapping of each group to define the
probability density function of the shape scores for each group.

Since the number of samples in the patient group and control group
are not the same, we performed hypothesis testing to identify if the shape-
based score assigned to each sample is statistically significant and agnostic
to the data imbalance. We generated the shape-based scores for each
sample by building a shared boundary shape model with six randomly
selected samples from the patient group and all six control group samples
and use these samples to generate the particle wise mean shapes and the

FIGURE 6
Group shape differences identified by (A) the proposed shared boundary and (B) the multiple domains model. Each row shows the samples from a
different view to visualize the differences. The black arrows indicate the direction of the variation of shape.
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difference vector. We then used this model to predict the particle position
on the remaining samples without optimizing the shapemodel again. The
predicted particle positions for all samples are then mapped to the
difference vector to generate the shape based scores. This experiment
was repeated ten times, and a shape-based score was generated for all the
samples for each experiment. The shape-based scores from the
experiment were then compared to those shape-based scores generated
by using the shape model built with the complete dataset. We use a t-test
to test for the null hypothesis that the expected value (mean) of a sample
of independent observations from the ten trials equals the given
population mean, i.e., the scores generated using the complete dataset.
Figure 9 shows the box-and-whisker plot of the distribution of scores of
each sample obtained from the experiment, and the table above the color
indicates the p-values. We select the alpha value to be .01. Hence, if the
p-values are smaller than .01, the null hypothesis holds (shown in green),
and if the p-value is greater than .01, we can reject the null hypothesis and
assume that the scores are affected by the imbalance (shown in red). As
mentioned previously, the cardiac biventricular dataset is challenging and
the misalignments could not be resolved with rigid alignments and the

variability in scale is also high. Due to these conditions, the shape-based
score for the samples are not centered around the means of patients and
controls set at -1 and 1. Although it can be seen from box-whisker plots of
Figure 9 that the imbalance does not affect the shape-based scores, the
study of group shape differences and pathological changes can benefit
from the addition of more samples and better shape alignment strategies
for the biventricular database.

4.5 Clinical importance of shared
boundary SSM

The observations from the shared boundary model confirm what
has been observed in the cardiology literature: a decrease in
interventricular septal curvature during prolonged right ventricular
dysfunction (Marcu et al., 2006; Kochav et al., 2015; Addetia et al.,
2018; Mauger et al., 2019). A healthy heart has a significant pressure
gradient between the right and left ventricles (Dawes et al., 2017;
Morgan et al., 2018). However, in many cardiac diseases, the pressure

FIGURE 7
Alignment variations identified using multi-level component analysis for the cardiac dataset. The surface meshes in yellow represent the mean
reconstructed shape, and the surface meshes in red represent the shapes at μ+2σ and μ−2σ. The black arrows indicate the direction of the variation of the
pose.
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gradient dissipates because right ventricular pressure increases
(Kochav et al., 2015). As the pressure increases, a distortion occurs
at the interventricular septum, and the original septal curvature
matching the left ventricular becomes flattened. This signifies the
structural remodeling that occurs with severe cardiac pathologies
(Farrar et al., 2016; Addetia et al., 2018).

4.6 Limitations

For the shared boundary extraction tool from Section 2.2, the
threshold used in step 2 needs to be tuned for all the samples with high
variability in the dataset. As the threshold is changed, the shape of the
shared surface changes. Hence, the shared boundary extraction

FIGURE 8
Shape variations identified using multi-level analysis for the cardiac dataset visualized from two different views.

FIGURE 9
The box whisker plot shows the distribution of the shape-based scores for each sample from ten different shapemodels generated to study the effect of
data imbalance. The table at the top of the plot shows the p-values of the shape-based scores.
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mechanism of the proposed tool has to be robust and needs to be
improved such that the extraction is carried out based on the statistics
of the entire population rather than operating on a sample level. The
extracted shared boundary surfaces and contours can also showcase a
very high level of variability compared to the rest of the organs,
making it challenging to produce a stable shape model with
meaningful modes of variations. Hence, we cannot rely on the
Gaussian assumption for generating compact PDMs. In the future,
the proposed PSM optimization method from Section 2.3 could be
modified to incorporate non-linear shape variations for a compact and
generalizable model.

5 Conclusion

We demonstrated that our approach preserves the integrity of the
multiple-organ PDM while offering a reliable and consistent
representation of the shared boundary. The unique shape changes
of the IVS that are not captured when modeling the ventricles alone
were demonstrated using our method on a cardiac biventricular
dataset. The initial structural changes of the heart are an adaptation
to overcome changes in cardiac physiology secondary to various
pathologies. Prolonged exposure to these pathological changes
results in chronic maladaptations that increase morbidity, and
mortality (Leary et al., 2012). Patients often do not have
symptoms of cardiac disease, such as shortness of breath or
decreased exercise tolerance, at this stage because of the initially
compensatory changes in cardiac function (Dreyfuss et al., 2004).
However, structural changes, such as the IVS curvature change, are
frequently visible and simple to spot. Therefore, IVS curvature
changes could be used as an early identification tool to detect
abnormalities before the patient develops symptoms. Shape
analysis also has other clinical advantages, including being non-
invasive. The current gold standard approach for assessing cardiac
pressure differences is via invasive cardiac catheterization, which
puts the patient at significant procedural risk for a diagnostic test. In
conclusion, our novel approach for extracting and generating shape
models of multi-organ anatomy with shared boundaries could pave
the way for using statistical shape modeling from non-invasive
imaging as a powerful diagnostic tool.
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