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Abstract

Background: The aim was to develop statistical shape models of the main human tarsal bones that would result in

novel representations of cuboid, navicular and talus.

Methods: Fifteen right and 15 left retrospectively collected computed tomography data sets from male individuals,

aged from 17 to 63 years, with no known foot pathology were collected. Data were gathered from 30 different

subjects. A process of model building includes image segmentation, unifying feature position, mathematical shape

description and obtaining statistical shape geometry.

Results: Orthogonal decomposition of bone shapes utilising spherical harmonics was employed providing means for

unique parametric representation of each bone. Cross-validated classification results based on parametric spherical

harmonics representation showed high sensitivity and high specificity greater than 0.98 for all considered bones.

Conclusions: The statistical shape models of cuboid, navicular and talus created in this work correspond to

anatomically accurate atlases that have not been previously considered. The study indicates high clinical potential of

statistical shape modelling in the characterisation of tarsal bones. Those novel models can be applied in medical

image analysis, orthopaedics and biomechanics in order to provide support for preoperative planning, better

diagnosis or implant design.
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Background
The statistical shape model (SSM) has been established

as a powerful tool for medical image analysis [1–6]. The

goal of constructing a statistical shape model is to obtain

a mean shape and description of variation from a collec-

tion of samples [7–10]. The methods employed strongly

depend on the chosen shape representation, which can

be landmarks and meshes, medial models, Fourier sur-

faces, spherical harmonics, deformable models, wavelets

description, non-uniform rational B-Splines and others

[11, 12]. The choice of the shape representation influ-

ences further processing and calculation and in that

context landmark-based point distribution models have

become popular and commonly used methods. Statisti-

cal shape models are usually used for the task of seg-
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mentation [13, 14], but they could also be considered

for finite element (FE) modelling [15, 16] and automatic

detection of shape and feature correspondences [17, 18].

The SSM based techniques of medical image analysis

have been applied to segmentation of bones [19–22] but

only few studies considered statistical shape of the cal-

caneus, cuboid, navicular and talus that constitute the

four largest tarsal bones [23–26]. There have been many

studies considering modelling of foot bones. For example,

Camancho et al. [27] generated an anatomically detailed,

three-dimensional reconstruction of a human foot from

computed tomography (CT) images. They proposed an

accurate representation of bone and soft tissues of foot.

The presented method became a base for further develop-

ment of a FE model of the human foot that could be used

in quantifying morphometric characteristics between dif-

ferent foot types [28]. Also, Liu et al. [29] described rigid

model-based 3D segmentation of joints imaged using
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magnetic resonance (MR) and CT images in order to

examine their kinematics. Of all tarsal bones, talus has

received most of attention. Leardini et al. [30] pro-

posed a geometric two-dimensional model of the ankle

joint, which allows examining ankle stability. The pre-

sented model showed the path of calcaneus, ligament

orientations, instantaneous axis of rotation, and conju-

gate talus surface profile as observed in the experiments.

In their following work, [31] they aimed at develop-

ing a model of the intact human ankle complex. The

goal was to design the total ankle replacement which

would better reproduce the physiological function of

the joint. Such a model was used for FE analysis of

total ankle replacement during the stance phase of gait

[32]. Contrarily, cuboid, and navicular were only broadly

considered [33].

All of the works mentioned above did not employ the

SSM analysis. Recently, a SSM for calcaneus has been

described, where an accurate SSM of calcaneus was pro-

posed [24]. The aim of this work was to extend that

methodology to the case of the other three tarsal bones,

namely cuboid, navicular, and talus. Additionally, it was

of interest to ascertain whether SSM parametric charac-

terisation can be used for classifying the particular tarsal

bones.

Methods
Amethod for automatically building a morphometric and

anatomically accurate model of calcaneus was described

in our previous work [24]. We follow that methodology

aiming at developing SSMs for cuboid, navicular and talus.

Retrospective volume data of 15 left and 15 right feet of

male subjects were used. Scans were gathered from 30 dif-

ferent subjects. All subject records were anonymised and

de-identified prior to processing according to the stan-

dard data release procedures. The Review Board of the

Department of Radiology, Wroclaw Medical University,

Wroclaw has approved the study. The study has been con-

ducted according to the principles of the Declaration of

Helsinki.

The particular steps of building the SSMs are: bones seg-

mentation, land-marking, unifying feature position and

orientation and SSM calculation. They consist of:

• Image pre-processing: The volume CT registered

image is decomposed in order to prepare a series of

2D images in sagittal plane. For each 2D image the

contrast is enhanced.
• Contour extraction: The region growing algorithm

is applied to extract the contour [34]. A starting point

was manually marked by an experienced operator.
• 3D point cloud to surface: In order to obtain a

surface from contours points the oriented normals

are calculated. This is followed by Poisson surface

reconstruction method for which the mesh is

generated. Meshlab (Pisa, Italy) software was used to

generate meshes [35, 36].
• Land-marking: For each bone, three anatomical

landmarks were automatically marked on bone

surface mesh. However, expert validation was still

maintained to ensure that all points were correctly

marked. In few cases an expert operator intervention

was needed to correctly assign the points. The

marked points are (see Fig. 1):

For cuboid: the lowest point of the surface for the

fourth metatarsal (Point aC), the highest point of the

surface for the fourth metatarsal (Point bC) and the

most posterior point of the cuboid tuberosity which

was the same as the lowest point of calcaneocuboid

joint (Point cC).

For navicular: the highest point on the superior edge

of the navicular tuberosity (Point aN ), the most

posterior point of the navicular tuberosity

articulating to medial cuneiform (point bN ) and the

most posterior point of the navicular tuberosity

articulating to lateral cuneiform (point cN ).

For talus: the highest point of the trochlea (Point aT ),

the most posterior point of the head for navicular

bone (Point bT ) and the most posterior point of the

posterior calcaneal articular surface (Point cT ).
• Averaging feature position and orientation:

Unification of models was prerequisite to further

shape description. The subjects were scanned in the

same feet-first, supine (FFS) position, but feet

placement for each subject was slightly different. To

unify the position of each bone the following steps

are applied (see Fig. 2):

Fig. 1 Anatomical landmarks for cuboid, navicular and talus Bone drawings adapted from [60]
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Fig. 2 Averaging feature position and orientation. The illustration of the concept for averaging feature position and orientation, showed on cuboid

example (bone drawings adapted from [60])

Fig. 3 SPHARM estimates. The statistics of SPHARM estimates (box-plots) of the first 25 coefficients for the group of 15 left and 15 right models.

Crosses indicate outliers
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1. Rotation of the model by an angle α between the

plane π0 : z = 0 and the plane πabc that includes

points a, b, c of each considered bone.

2. Translation of the model by the vector
−→
C =[ xc, yc, zc] to set the selected point (point c
for all bones) in the origin.

3. Rotation of the model about the x axis by the

angle β which is between x axis and vector
−→
A =[ xa, ya, za] .

• Spherical harmonics (SPHARM) decomposition:

The calculation of shape description is obtained by

the SPHARM application [37–39].
• Model and model order selection: To estimate the

optimal model order for SPHARM decomposition,

the Minimum Distance Length (MDL) criterion [40]

was used. The product of SPHARM decomposition,

i.e., the set of coefficients estimated in the SPHARM

expansion characterises the shape of bone. For the

SSM descriptive statistics of SPHARM coefficients

were calculated.

Two-way parametric ANOVA was used to test for

changes between tarsal bones in SPHARM coefficients

[41]. This was followed by an application of a machine

learning technique, the Random Forest [42], to the 4-class

recognition problem of tarsal bones. For that, the total

of 120 samples of either left or right tarsal bone models

(15 individuals × 4 bones × 2 left/right) were used. 10-

fold cross-validation method [43] was used to assess the

Fig. 4 Descriptive statistics of SPHARM coefficients. The statistics of SPHARM estimates (the first, second, third quartile and mean) of the first 25

coefficients for the group of 15 left and 15 rightmodels
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misclassification error. Sensitivity and specificity for each

classified group was also calculated.

Results
Figure 3 shows the box-plots for the first 25 SPHARM

coefficients for left and right bones while Fig. 4 shows the

first, second, and the third quartile as well as the mean of

the 25 considered SPHARM coefficients. A 3D model of

bones (see Fig. 5) is generated based on the mean estimate

of coefficients for the right foot. Note that models shown

in the figure are parted in order to exhibit the articular

facets.

Figure 6 presents the results of correlation between

mean values of SPHARM coefficients for the right and left

foot. The asymmetrical nature of bone can be assessed

through examining the distribution of coefficients. The

right/left foot correlation of estimated shapes is as follow:

for cuboid (r2 = 0.88), for navicular (r2 = 0.99), for talus

(r2 = 0.98), for calcaneus (r2 = 0.94), and statistically

significant (p ≪ 0.001) for all bones. Those correlations

remain moderate when the highest coefficient is omit-

ted, amounting to: for cuboid (r2 = 0.72), for navicular

(r2 = 0.92), for talus (r2 = 0.84), for calcaneus (r2 = 0.54),

and statistically significant (p ≪ 0.001) for all bones (see

Fig. 6 zoom).

Two-way ANOVA showed statistically significant differ-

ences between considered bones, coefficients, and inter-

actions between the bones and coefficients (all p ≪

0.001). Two tests were considered. One for all coefficients

and the other one in which the third SPHARM coefficient

was excluded (see Fig. 3), as it was substantially greater

than the other coefficients and could influence the test.

Nevertheless, similar statistically significant results (all

p ≪ 0.001) were obtained for the reduced set of SPHARM

Fig. 5 Reconstruction of models. An example of reconstructed SSM of

cuboid, navicular, talus and calcaneus for the right foot (blue -

calcaneus, green - cuboid,magenta - navicular , cyan -talus)

coefficients. The distribution of SPHARM coefficients

was found to uniquely characterise each bone and so this

distribution could be used for bone classification.

Further, the random forest algorithm was applied to

develop a tarsal bone classifier. Considering data cross val-

idation, the optimal number of decision trees was 40 and

for that the misclassification rate was 1.02%. Sensitivity

and specificity was estimated: for calcaneus 0.9600 and

0.9953, for cuboid 0.9960 and 0.9878, for navicular 1 and

0.9996, and for talus 0.9793 and 0.9958, respectively.

Discussion
Statistical shape modelling is a useful tool for feature

extraction in medical imaging [12, 44]. The goal is to pro-

vide efficient information about the shape of an object

of interest and its variability, often to build the so-called

statistical atlas of particular body part, including bones

[19, 45, 46]. Quantitative and accurate evaluation requires

an appropriate representation used in shape modelling.

The choice of the particular descriptors used in shape

representation is important for further processing and

analysis. The SPHARM description, used in this paper,

provides quantitative information about the shape directly

[47–49]. This paper contributes to this area by providing,

for the first time, statistical anatomically accurate shape

models for cuboid, navicular and talus.

Describing a shape using orthogonal polynomials, an

inherent feature of SPHARM representation, allows for

easy comparison of shapes through analysis of model

coefficients. Further, it provides basis for classification

of shapes based on testing for differences in the repre-

sentative SPHARM coefficients. Using this methodology,

our study shows that all considered tarsal bones can be

uniquely represented by SPHARM.

Automated anatomical shape detection and classifica-

tion have been considered in several applications of vol-

umetric medical image analysis [32, 50–52]. Automated

shape detection explores and applies the construction of

algorithms that can learn from and make predictions on

data. They are known as machine learning techniques

and could assist in providing representative shape mod-

els as recently demonstrated by Cootes et al. [53], who

used random forest regression voting for robust and accu-

rate shape modelling. Among the many possible machine

learning techniques we also employed the random forest

algorithm but for the purpose of classification, which in

our case showed high sensitivity and high specificity (both

greater than 0.98) for all considered bones. The random

forest technique is characterised by good accuracy for a

relatively small number of samples (120 in our case) and

containing a relatively high number of features (49 coeffi-

cients in the studied case). Also, it is robust to outliers in

the input space and can rank the importance of variables

considered in classification.
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Fig. 6 Correlation between the SPHARM coefficients. Correlation between the SPHARM coefficients of the left and the right models of cuboid,

navicular, talus and calcaneus

Another interesting aspect of statistical shape mod-

elling is reconstruction [54–56]. The advantage of apply-

ing SPHARM to the shape reconstruction problem is their

low complexity. Using estimated SPHARM coefficients

it is possible to reconstruct one particular bone shape

as well as create descriptive statistics for the examined

group, say mean or median shape (see Fig. 5). It is worth

noting that sexual dimorphism [57–59] was not consid-

ered in the study. The goal of the study was to develop

anatomically accurate statistical models of tarsal bones

and at that stage of research the size of bones was of con-

cern. In other words, the statistical shape models of male

bones are not necessarily scaled versions of their female

equivalents.

Conclusions
Summarising, the SSMs of cuboid, navicular and

talus created in this work correspond to anatomically

accurate morphometric atlases (SSM which includes

morphological characteristics and provides mathemat-

ical representation of the shape) that have not been

previously considered. They extend the considerable

amount of 3D SSMs that are already employed in

medical imaging. The new models of the considered

tarsal bones are of interest in medical image analy-

sis, orthopaedics and biomechanics and could provide

additional information for automated identification

of pathologies, better diagnostics and treatment, pre-

operative planning, as well as for implant design and

procedures.

Additional file

Additional file 1: SPHARM coefficients for calcaneus, cuboid, navicular

and talus bones. (XLS 127 KB)
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