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We propose a method for constructing p-values for general hypotheses in a high-dimensional linear model.
The hypotheses can be local for testing a single regression parameter or they may be more global involving
several up to all parameters. Furthermore, when considering many hypotheses, we show how to adjust for
multiple testing taking dependence among the p-values into account. Our technique is based on Ridge
estimation with an additional correction term due to a substantial projection bias in high dimensions. We
prove strong error control for our p-values and provide sufficient conditions for detection: for the former,
we do not make any assumption on the size of the true underlying regression coefficients while regarding
the latter, our procedure might not be optimal in terms of power. We demonstrate the method in simulated
examples and a real data application.
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1. Introduction

Many data problems nowadays carry the structure that the number p of covariables may greatly
exceed sample size n, i.e., p � n. In such a setting, a huge amount of work has been pursued
addressing prediction of a new response variable, estimation of an underlying parameter vector
and variable selection, see for example the books by Hastie, Tibshirani and Friedman (2009),
Bühlmann and van de Geer (2011) or the more specific review article by Fan and Lv (2010). With
a few exceptions, see Section 1.3.1, the proposed methods and presented mathematical theory do
not address the problem of assigning uncertainties, statistical significance or confidence: thus, the
area of statistical hypothesis testing and construction of confidence intervals is largely unexplored
and underdeveloped. Yet, such significance or confidence measures are crucial in applications
where interpretation of parameters and variables is very important. The focus of this paper is the
construction of p-values and corresponding multiple testing adjustment for a high-dimensional
linear model which is often very useful in p � n settings:

Y = Xβ0 + ε, (1.1)

where Y = (Y1, . . . , Yn)
T , X is a fixed design n × p design matrix, β0 is the true underlying

p × 1 parameter vector and ε is the n × 1 stochastic error vector with ε1, . . . , εn i.i.d. having
E[εi] = 0 and Var(εi) = σ 2 < ∞; throughout the paper, p may be much larger n.

We are interested in testing one or many null-hypotheses of the form:

H0,G : β0
j = 0 for all j ∈ G, (1.2)
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where G ⊆ {1, . . . , p} is a subset of all the indices of the covariables. Of substantial interest
is the case where G = {j} corresponding to a hypothesis for the individual j th regression pa-
rameter (j = 1, . . . , p). At the other end of the spectrum is the global null-hypothesis where
G = {1, . . . , p}, and we allow for any G between an individual and the global hypothesis.

1.1. Past work about high-dimensional linear models

We review in this section an important stream of research for high-dimensional linear models.
The more familiar reader may skip Section 1.1.

1.1.1. The Lasso

The Lasso (Tibshirani, 1996)

β̂Lasso = β̂Lasso(λ) = argminβ

(‖Y − Xβ‖2
2/n + λ‖β‖1

)
,

has become tremendously popular for estimation in high-dimensional linear models. The three
main themes which have been considered in the past are prediction of the regression surface (and
for a new response variable) with corresponding measure of accuracy

∥∥X
(
β̂Lasso − β0)∥∥2

2/n, (1.3)

estimation of the parameter vector whose quality is assessed by∥∥β̂Lasso − β0
∥∥

q

(
q ∈ {1,2}), (1.4)

and variable selection or estimating the support of β0, denoted by the active set S0 = {j ; β0
j �=

0, j = 1, . . . , p} such that

P[Ŝ = S0] (1.5)

is large for a selection (estimation) procedure Ŝ.
Greenshtein and Ritov (2004) proved the first result closely related to prediction as measured

in (1.3). Without any conditions on the deterministic design matrix X, except that the columns are
normalized such that (n−1XT X)jj ≡ 1, one has with high probability at least 1 − 2 exp(−t2/2):

∥∥X
(
β̂Lasso(λ) − β0)∥∥2

2/n ≤ 3/2λ
∥∥β0

∥∥
1,

(1.6)

λ = 4σ

√
t2 + 2 log(p)

n
,

see Bühlmann and van de Geer (2011, Cor. 6.1). Thereby, we assume Gaussian errors but such an
assumption can be relaxed (Bühlmann and van de Geer, 2011, formula (6.5)). From an asymptotic
point of view (where p and n diverge to ∞), the regularization parameter λ 
 √

log(p)/n leads
to consistency for prediction if the truth is sparse with respect to the �1-norm such that ‖β0‖1 =
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o(λ−1) = o(
√

n/ log(p)). The convergence rate is then at best OP (λ) = OP (
√

log(p)/n) assum-
ing ‖β0‖1 
 1.

Such a slow rate of convergence can be improved under additional assumptions on the de-
sign matrix X. The ill-posedness of the design matrix can be quantified using the concept of
“modified” eigenvalues. Consider the matrix �̂ = n−1XT X. The smallest eigenvalue of �̂ is

λmin(�̂) = min
β

βT �̂β.

Of course, λmin(�̂) equals zero if p > n. Instead of taking the minimum on the right-hand side
over all p × 1 vectors β , we replace it by a constrained minimum, typically over a cone. This
leads to the concept of restricted eigenvalues (Bickel, Ritov and Tsybakov 2009; Koltchinskii
2009a, 2009b; Raskutti, Wainwright and Yu 2010) or weaker forms such as the compatibility
constants (van de Geer, 2007) or further slight weakening of the latter (Sun and Zhang, 2012).
Relations among the different conditions and “modified” eigenvalues are discussed in van de
Geer and Bühlmann (2009) and Bühlmann and van de Geer (2011, Ch. 6.13). Assuming that
the smallest “modified” eigenvalue is larger than zero, one can derive an oracle inequality of the
following prototype: with probability at least 1 − 2 exp(−t2/2) and using λ as in (1.6):∥∥X

(
β̂Lasso(λ) − β0)∥∥2

2/n + λ
∥∥β̂Lasso − β0

∥∥
1 ≤ 4λ2s0/φ

2
0 , (1.7)

where φ0 is the compatibility constant (smallest “modified” eigenvalue) of the fixed design ma-
trix X (Bühlmann and van de Geer, 2011, Cor. 6.2). Again, this holds by assuming Gaussian
errors but the result can be extended to non-Gaussian distributions. From (1.7), we have two
immediate implications: from an asymptotic point of view, using λ 
 √

log(p)/n and assuming
that φ0 is bounded away from 0,∥∥X

(
β̂Lasso(λ) − β0)∥∥2

2/n = OP

(
s0 log(p)/n

)
, (1.8)∥∥β̂Lasso(λ) − β0

∥∥
1 = OP

(
s0

√
log(p)/n

)
, (1.9)

i.e., a fast convergence rate for prediction as in (1.8) and an �1-norm bound for the estima-
tion error. We note that the oracle convergence rate, where an oracle would know the active
set S0, is OP (s0/n): the log(p)-factor is the price to pay by not knowing the active set S0.
An �2-norm bound can be derived as well: ‖β̂Lasso(λ) − β0‖2 = OP (

√
s0 log(p)/n) assuming

a slightly stronger restricted eigenvalue condition. Results along these lines have been estab-
lished by Bunea, Tsybakov and Wegkamp (2007), van de Geer (2008) who covers generalized
linear models as well, Zhang and Huang (2008), Meinshausen and Yu (2009), Bickel, Ritov and
Tsybakov (2009) among others.

The Lasso is doing variable selection: a simple estimator of the active set S0 is ŜLasso(λ) =
{j ; β̂Lasso;j (λ) �= 0}. In order that ŜLasso(λ) has good accuracy for S0, we have to require that
the non-zero regression coefficients are sufficiently large (since otherwise, we cannot detect the
variables in S0 with high probability). We make a “beta-min” assumption whose asymptotic form
reads as

min
j∈S0

∣∣β0
j

∣∣ � √
s0 log(p)/n. (1.10)
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Furthermore, when making a restrictive assumption for the design, called neighborhood stability,
or assuming the equivalent irrepresentable condition, and choosing a suitable λ � √

log(p)/n:

P
[
ŜLasso(λ) = S0

] → 1,

see Meinshausen and Bühlmann (2006), Zhao and Yu (2006), and Wainwright (2009) estab-
lishes exact scaling results. The “beta-min” assumption in (1.10) as well as the irrepresentable
condition on the design are restrictive and non-checkable. Furthermore, these conditions are es-
sentially necessary (Meinshausen and Bühlmann 2006; Zhao and Yu 2006). Thus, under weaker
assumptions, we can only derive a weaker yet useful result about variable screening. Assuming a
restricted eigenvalue condition on the fixed design X and the “beta-min” condition in (1.10) we
still have asymptotically that for λ 
 √

log(p)/n:

P
[
Ŝ(λ) ⊇ S0

] → 1 (n → ∞). (1.11)

The cardinality of the estimated active set (typically) satisfies |Ŝ(λ)| ≤ min(n,p): thus if p � n,
we achieve a massive and often useful dimensionality reduction in the original covariates.

We summarize that a slow convergence rate for prediction “always” holds. Assuming some
“constrained minimal eigenvalue” condition on the fixed design X, we obtain the fast conver-
gence rate in (1.8), and an estimation error bound as in (1.9); with the additional “beta-min”
assumption, we obtain the practically useful variable screening property in (1.11). For consis-
tent variable selection, we necessarily need a (much) stronger condition on the fixed design, and
such a strong condition is questionable to be true in a practical problem. Hence variable selec-
tion might be a too ambitious goal with the Lasso. That is why the original translation of Lasso
(Least Absolute Shrinkage and Selection Operator) may be better re-translated as Least Abso-
lute Shrinkage and Screening Operator. We refer to Bühlmann and van de Geer (2011) for an
extensive treatment of the properties of the Lasso.

1.1.2. Other methods

Of course, the three main inference tasks in a high-dimensional linear model, as described
by (1.3), (1.4) and (1.5), can be pursued with other methods than the Lasso.

An interesting line of proposals include concave penalty functions instead of the �1-norm in
the Lasso, see for example Fan and Li (2001) or Zhang (2010). The adaptive Lasso (Zou, 2006),
analyzed in the high-dimensional setting by Huang, Ma and Zhang (2008) and van de Geer,
Bühlmann and Zhou (2011), can be interpreted as an approximation of some concave penaliza-
tion approach (Zou and Li, 2008). A related procedure to the adaptive Lasso is the relaxed Lasso
(Meinshausen, 2007). Another method is the Dantzig selector (Candes and Tao, 2007) which
has similar statistical properties as the Lasso (Bickel, Ritov and Tsybakov, 2009). Other algo-
rithms include orthogonal matching pursuit (which is essentially forward variable selection) or
L2Boosting (matching pursuit) which have desirable properties (Tropp 2004; Bühlmann 2006).

Quite different from estimation of the high-dimensional parameter vector are variable screen-
ing procedures which aim for an analogous property as in (1.11). Prominent examples include
the “Sure Independence Screening” (SIS) method (Fan and Lv, 2008), and high-dimensional
variable screening or selection properties have been established for forward variable selection
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(Wang, 2009) and for the PC-algorithm (Bühlmann, Kalisch and Maathuis, 2010) (“PC” stands
for the first names of its inventors, Peter Spirtes and Clark Glymour).

1.2. Assigning uncertainties and p-values for high-dimensional regression

At the core of statistical inference is the specification of statistical uncertainties, significance
and confidence. For example, instead of having a variable selection result where the probability
in (1.5) is large, we would like to have measures controlling a type I error (false positive selec-
tions), including p-values which are adjusted for large-scale multiple testing, or construction of
confidence intervals or regions. In the high-dimensional setting, answers to these core goals are
challenging.

Meinshausen and Bühlmann (2010) propose Stability Selection, a very generic method which
is able to control the expected number of false positive selections: that is, denoting by V = |Ŝ ∩
Sc

0|, Stability Selection yields a finite-sample upper bound of E[V ] (not only for linear models but
also for many other inference problems). To achieve this, a very restrictive (but presumably non-
necessary) exchangeability condition is made which, in a linear model, is implied by a restrictive
assumption for the design matrix. On the positive side, there is no requirement of a “beta-min”
condition as in (1.10) and the method seems to provide reliable control of E[V ].

Wasserman and Roeder (2009) propose a procedure for variable selection based on sample
splitting. Using their idea and extending it to multiple sample splitting, Meinshausen, Meier and
Bühlmann (2009) develop a much more stable method for construction of p-values for hypothe-
ses H0,j : β0

j = 0 (j = 1, . . . , p) and for adjusting them in a non-naive way for multiple testing
over p (dependent) tests. The main drawback of this procedure is its required “beta-min” as-
sumption in (1.10). And this is very undesirable since for statistical hypothesis testing, the test
should control type I error regardless of the size of the coefficients, while the power of the test
should be large if the absolute value of the coefficient would be large: thus, we should avoid
assuming (1.10).

Up to now, for the high-dimensional linear model case with p � n, it seems that only Zhang
and Zhang (2011) managed to construct a procedure which leads to statistical tests for H0,j

without assuming a “beta-min” condition.

1.3. A loose description of our new results

Our starting point is Ridge regression for estimating the high-dimensional regression parame-
ter. We then develop a bias correction, addressing the issue that Ridge regression is estimating
the regression coefficient vector projected to the row space of the design matrix: the corrected
estimator is denoted by β̂corr.

Theorem 1 describes that under the null-hypothesis, the distribution of a suitably normalized
an,p|β̂corr| can be asymptotically and stochastically (componentwise) upper-bounded:

an,p|β̂corr| as� (|Zj | + 	j

)p

j=1,

(1.12)
(Z1, . . . ,Zp) ∼ Np

(
0, σ 2n−1


)
,
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for some known positive definite matrix 
 and some known constants 	j . This is the key to
derive p-values based on this stochastic upper bound. It can be used for construction of p-
values for individual hypotheses H0,j as well as for more global hypotheses H0,G for any sub-
set G ⊆ {1, . . . , p}, including cases where G is (very) large. Furthermore, Theorem 2 justifies
a simple approach for controlling the familywise error rate when considering multiple test-
ing of regression hypotheses. Our multiple testing adjustment method itself is closely related
to the Westfall–Young permutation procedure (Westfall and Young, 1993) and hence, it offers
high power, especially in presence of dependence among the many test-statistics (Meinshausen,
Maathuis, and Bühlmann, 2011).

1.3.1. Relation to other work

Our new method as well as the approach in Zhang and Zhang (2011) provide p-values (and the
latter also confidence intervals) without assuming a “beta-min” condition. Both of them build on
using linear estimators and a correction using a non-linear initial estimator such as the Lasso.
Using e.g., the Lasso directly leads to the problem of characterizing the distribution of the es-
timator (in a tractable form): this seems very difficult in high-dimensional settings while it has
been worked out for low-dimensional problems (Knight and Fu, 2000). The work by Zhang and
Zhang (2011) is the only one which studies (sufficiently closely) related questions and goals as
in this paper.

The approach by Zhang and Zhang (2011) is based on the idea of projecting the high-
dimensional parameter vector to low-dimensional components, as occurring naturally in the hy-
potheses H0,j about single components, and then proceeding with a linear estimator. This idea
is pursued with the “efficient score function” approach from semiparametric statistics (Bickel
et al., 1998). The difficulty in the high-dimensional setting is the construction of the score vector
zj from which one can derive a confidence interval for β0

j : Zhang and Zhang (2011) propose it as

the residual vector from the Lasso when regressing X(j) against all other variables X(\j) (where
X(J ) denotes the design sub-matrix whose columns correspond to the index set J ⊆ {1, . . . , p}).
They then prove the asymptotic validity of confidence intervals for finite, sparse linear com-
binations of β0. The difference to our work is primarily a rather different construction of the
projection where we make use of Ridge estimation with a very simple choice of regularization.
A drawback of our method is that, typically, it is not theoretically rate-optimal in terms of power.

2. Model, estimation and p-values

Consider one or many null-hypotheses as in (1.2). We are interested in constructing p-values for
hypotheses H0,G without imposing a “beta-min” condition as in (1.10): the statistical test itself
will distinguish whether a regression coefficient is small or not.

2.1. Identifiability

We consider model (1.1) with fixed design. Without making additional assumptions on the design
matrix X, there is a problem of identifiability. Clearly, if p > n and hence rank(X) ≤ n < p,
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there are different parameter vectors θ such that Xβ0 = Xθ . Thus, we cannot identify β0 from
the distribution of Y1, . . . , Yn (and fixed design X).

Shao and Deng (2012) give a characterization of identifiability in a high-dimensional linear
model (1.1) with fixed design. Following their approach, it is useful to consider the singular value
decomposition

X = RSV T ,

R n × n matrix with RT R = In,

S n × n diagonal matrix with singular values s1, . . . , sn,

V p × n matrix with V T V = In.

Denote by R(X) ⊂ R
p the linear space generated by the n rows of X. The projection of R

p onto
R(X) is then

PX = XT
(
XXT

)−X = V V T ,

where A− denotes the pseudo-inverse of a squared matrix A.
A natural choice of a parameter θ0 such that Xβ0 = Xθ0 is the projection of β0 onto R(X).

Thus,

θ0 = PXβ0 = V V T β0. (2.1)

Then, of course, β0 ∈ R(X) if and only if β0 = θ0.

2.2. Ridge regression

Consider Ridge regression

β̂ = argminβ ‖Y − Xβ‖2
2/n + λ‖β‖2

2 = (
n−1XT X + λIp

)−1
n−1XT Y, (2.2)

where λ = λn is a regularization parameter. By construction of the estimator, β̂ ∈ R(X); and
indeed, as discussed below, β̂ is a reasonable estimator for θ0 = PXβ0. We denote by

�̂ = n−1XT X.

The covariance matrix of the Ridge estimator, multiplied by n, is then


 = 
(λ) = (�̂ + λnI)−1�̂(�̂ + λnI)−1

(2.3)

= V diag

(
s2

1

(s2
1 + λ)2

, . . . ,
s2
n

(s2
n + λ)2

)
V T ,

a quantity which will appear at many places again. We assume that


min(λ) := min
j∈{1,...,p}
jj (λ) > 0. (2.4)
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We do not require that 
min(λ) is bounded away from zero as a function of n and p. Thus,
the assumption in (2.4) is very mild: a rather peculiar design would be needed to violate the
condition, see also the equivalent formulation in formula (2.5) below. Furthermore, (2.4) is easily
checkable.

We denote by λmin�=0(A) the smallest non-zero eigenvalue of a symmetric matrix A. We then
have the following result.

Proposition 1. Consider the Ridge regression estimator β̂ in (2.2) with regularization parameter
λ > 0. Assume condition (2.4), see also (2.5). Then,

max
j∈{1,...,p}

∣∣E[β̂j ] − θ0
j

∣∣ ≤ λ
∥∥θ0

∥∥
2λmin�=0(�̂)−1,

min
j∈{1,...,p} Var(β̂j ) ≥ n−1σ 2
min(λ).

A proof is given in Section A.1, relying in large parts on Shao and Deng (2012). We now
discuss under which circumstances the estimation bias is smaller than the standard error. Qual-
itatively, this happens if λ > 0 is chosen sufficiently small. For a more quantitative discussion,
we study the behavior of 
min(λ) as a function of λ and we obtain an equivalent formulation
of (2.4).

Lemma 1. We have the following:

1.


min(λ) = min
j

n∑
r=1

s2
r

(s2
r + λ)2

V 2
jr .

From this we get:

(2.4) holds if and only if min
1≤j≤p

max
1≤r≤n,sr �=0

V 2
jr > 0. (2.5)

2. Assuming (2.4),


min
(
0+) := lim

λ↘0+ 
min(λ) = min
j

n∑
r=1;sr �=0

1

s2
r

V 2
jr > 0.

3.

if (2.4) holds: 0 < LC ≤ lim inf
λ∈(0,C]
min(λ) ≤ MC < ∞, (2.6)

for any 0 < C < ∞, and where 0 < LC < MC < ∞ are constants which depend on C and
on the design matrix X (and hence on n and p).

The proof is straightforward using the expression (2.3). The statement 3. says that for a given
data-set, the variances of the β̂j ’s remain in a reasonable range even if we choose λ > 0 arbitrarily
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small; the statement doesn’t imply anything for the behavior as n and p are getting large (as the
data and design matrix change). From Proposition 1, we immediately obtain the following result.

Corollary 1. Consider the Ridge regression estimator β̂ in (2.2) with regularization parameter
λ > 0 satisfying

λ
min(λ)−1/2 ≤ n−1/2σ
∥∥θ0

∥∥−1
2 λmin�=0(�̂). (2.7)

In addition, assume condition (2.4), see also (2.5). Then

max
j∈{1,...,p}

(
E[β̂j ] − θ0

j

)2 ≤ min
j∈{1,...,p} Var(β̂j ).

Due to the third statement in Lemma 1 regarding the behavior of 
min(λ), (2.7) can be fulfilled
for a sufficiently small value of λ (a more precise characterization of the maximal λ which ful-
fills (2.7) would require knowledge of ‖θ0‖2).

2.3. The projection bias and corrected Ridge regression

As discussed in Section 2.1, Ridge regression is estimating the parameter θ0 = PXβ0 given
in (2.1). Thus, in general, besides the estimation bias governed by the choice of λ, there is an
additional projection bias Bj = θ0

j − β0
j (j = 1, . . . , p). Clearly,

Bj = (
PXβ0)

j
− β0

j = (PX)jjβ
0
j − β0

j +
∑
k �=j

(PX)jkβ
0
k .

In terms of constructing p-values, controlling type I error for testing H0,j or H0,G with j ∈ G,
the projection bias has only a disturbing effect if β0

j = 0 and θ0
j �= 0, and we only have to consider

the bias under the null-hypothesis:

BH0;j =
∑
k �=j

(PX)jkβ
0
k . (2.8)

The bias BH0;j is also the relevant quantity for the case under the non null-hypothesis, see the
brief comment after Proposition 2. We can estimate BH0;j by

B̂H0;j =
∑
k �=j

(PX)jkβ̂init;k,

where β̂init is an initial estimator such as the Lasso which guarantees a certain estimation accu-
racy, see assumption (A) below. This motivates the following bias-corrected Ridge estimator for
testing H0,j , or H0,G with j ∈ G:

β̂corr;j = β̂j − B̂H0;j = β̂j −
∑
k �=j

(PX)jkβ̂init;k. (2.9)

We then have the following representation.
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Proposition 2. Assume model (1.1) with Gaussian errors. Consider the corrected Ridge regres-
sion estimator β̂corr in (2.9) with regularization parameter λ > 0, and assume (2.4). Then,

β̂corr;j = Zj + γj (j = 1, . . . , p)

Z1, . . . ,Zp ∼ Np

(
0, n−1σ 2


)
, 
 = 
(λ),

γj = (PX)jjβ
0
j −

∑
k �=j

(PX)jk

(
β̂init;k − β0

k

) + bj (λ),

bj (λ) = E
[
β̂j (λ)

] − θ0
j .

A proof is given in Section A.1. We infer from Proposition 2 a representation which could be
used not only for testing but also for constructing confidence intervals:

β̂corr;j
(PX)jj

− β0
j = Zj

(PX)jj
−

∑
k �=j

(PX)jk

(PX)jj

(
β̂init;k − β0

k

) + bj (λ)

(PX)jj
.

The normalizing factors for the variables Zj bringing them to the N (0,1)-scale are

an,p;j (σ ) = n1/2σ−1

−1/2
jj (j = 1, . . . , p)

which are also depending on λ through 
 = 
(λ). We refer to Section 4.1 where the unusually
fast divergence of an,p;j (σ ) is discussed. The test-statistics we consider are simple functions of
an,p;j (σ )β̂corr;j .

2.4. Stochastic bound for the distribution of the corrected Ridge estimator:
Asymptotics

We provide here an asymptotic stochastic bound for the distribution of an,p;j (σ )β̂corr;j under
the null-hypothesis. The asymptotic formulation is compact and the basis for the construction of
p-values in Section 2.5, but we give more detailed finite-sample results in Section 6.

We consider a triangular array of observations from a linear model as in (1.1):

Yn = Xnβ
0
n + εn, n = 1,2, . . . , (2.10)

where all the quantities and also the dimension p = pn are allowed to change with n. We make
the following assumption.

(A) There are constants 	j = 	j,n > 0 such that

P

[
pn⋂

j=1

{∣∣∣∣an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)∣∣∣∣ ≤ 	j,n

}]
→ 1 (n → ∞).
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We will discuss in Section 2.4.1 constructions for such bounds 	j (which are typically not
negligible). Our next result is the key to obtain a p-value for testing the null-hypothesis H0,j or
H0,G, saying that asymptotically,

an,p;j (σ )|β̂corr;j | as.� |W | + 	j,

where W ∼ N (0,1), and similarly for the multi-dimensional version with β̂corr;G (where � de-
notes “stochastically smaller or equal to”).

Theorem 1. Assume model (2.10) with fixed design and Gaussian errors. Consider the corrected
Ridge regression estimator β̂corr in (2.9) with regularization parameter λn > 0 such that

λn
min(λn)
−1/2 = o

(
min

(
n−1/2

∥∥θ0
∥∥−1

2 λmin�=0(�̂)
))

(n → ∞),

and assume condition (A) and (2.4) (while for the latter, the quantity does not need to be bounded
away from zero). Then, for j ∈ {1, . . . , pn} and if H0,j holds: for all u ∈ R

+,

lim sup
n→∞

(
P
[
an,p;j (σ )|β̂corr;j | > u

] − P
[|W | + 	j > u

]) ≤ 0,

where W ∼ N (0,1). Similarly, for any sequence of subsets {Gn}n, Gn ⊆ {1, . . . , pn} and if
H0,Gn holds: for all u ∈ R

+,

lim sup
n→∞

(
P

[
max
j∈Gn

an,p;j (σ )|β̂corr;j | > u
]
− P

[
max
j∈Gn

(
an,p;j (σ )|Zj | + 	j

)
> u

])
≤ 0,

where Z1, . . . ,ZP are as in Proposition 2.

A proof is given in Section A.1. As written above already, due to the third statement in Lemma 1,
the condition for λn is reasonable. We note that the distribution of maxj∈Gn(an,p;j (σ )|Zj |+	j)

does not depend on σ and can be easily computed via simulation.

2.4.1. Bounds 	j in assumption (A)

We discuss an approach for constructing the bounds 	j . As mentioned above, they should not
involve any unknown quantities so that we can use them for constructing p-values from the
distribution of |W | + 	j or maxj∈Gn(an,p;j (σ )|Zj | + 	j), respectively.

We rely on the (crude) bound∣∣∣∣an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)∣∣∣∣ ≤ an,p;j (σ )max
k �=j

∣∣(PX)jk

∣∣∥∥β̂init − β0
∥∥

1. (2.11)

To proceed further, we consider the Lasso as initial estimator. Due to (1.7) we obtain∣∣∣∣an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)∣∣∣∣ ≤ max
k �=j

∣∣an,p;j (σ )(PX)jk

∣∣4λLassos0φ
−2
0 , (2.12)
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where the last inequality holds on a set with probability at least 1 − 2 exp(−t2/2) when choosing
λLasso as in (1.6). The assumptions we require are summarized next.

Lemma 2. Consider the linear model (2.10) with fixed design, having normalized columns
�̂jj ≡ 1, which satisfies the compatibility condition with constant φ2

0 = φ2
0,n. Consider the

Lasso as initial estimator β̂init with regularization parameter λLasso = 4σ
√

C log(pn)/n for
some 2 < C < ∞. Assume that the sparsity s0 = s0,n = o((n/ log(pn))

ξ ) (n → ∞) for some
0 < ξ < 1/2, and that lim infn→∞ φ2

0,n > 0. Then,

	j :≡ max
k �=j

∣∣an,p;j (σ )(PX)jk

∣∣(log(p)/n
)1/2−ξ (2.13)

satisfies assumption (A).

A proof follows from (2.12). We summarize the results as follows.

Corollary 2. Assume the conditions of Theorem 1 without condition (A) and the conditions of
Lemma 2. Then, when using the Lasso as initial estimator, the statements in Theorem 1 hold.

The construction of the bound in (2.13) requires the compatibility condition on the design and
an upper bound for the sparsity s0. While the former is an identifiability condition, and some
form of identifiability assumption is certainly necessary, the latter condition about knowing the
magnitude of the sparsity is not very elegant. When assuming bounded sparsity s0,n ≤ M < ∞
for all n, we can choose ξ = 0 with an additional constant M on the right-hand side of (2.13). In
our practical examples in Section 5, we use ξ = 0.05.

2.5. P -values

Our construction of p-values is based on the asymptotic distributions in Theorem 1. For an
individual hypothesis H0,j , we define the p-value for the two-sided alternative as

Pj = 2
(
1 − �

((
an,p;j (σ )|β̂corr;j | − 	j

)
+
))

. (2.14)

Of course, we could also consider one-sided alternatives with the obvious modification for Pj .
For a more general hypothesis H0,G with |G| > 1, we use the maximum as test statistics (but
other statistics such as weighted sums could be chosen as well) and denote by

γ̂G = max
j∈G

an,p;j (σ )|β̂corr;j |,

JG(c) = P

[
max
j∈G

(
an,p;j (σ )|Zj | + 	j

) ≤ c
]
,

where the latter is independent of σ and can be easily computed via simulation (Z1, . . . ,Zp are
as in Proposition 2). Then, the p-value for H0,G, against the alternative being the complement
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Hc
0,G, is defined as

PG = 1 − JG(γ̂G). (2.15)

We note that when 	j ≡ 	 is the same for all j , we can rewrite PG = 1−P[maxj∈G an,p;j (σ )×
|Zj | ≤ (γ̂G − 	)+] which is a direct analogue of (2.14).

Error control follows immediately by the construction of the p-values.

Corollary 3. Assume the conditions in Theorem 1. Then, for any 0 < α < 1,

lim sup
n→∞

P[Pj ≤ α] − α ≤ 0 if H0,j holds,

lim sup
n→∞

P[PG ≤ α] − α ≤ 0 if H0,G holds.

Furthermore, for any sequence αn → 0 (n → ∞) which converges sufficiently slowly, the state-
ments also hold when replacing α by αn.

A discussion about detection power of the method is given in Section 4. Further remarks about
these p-values are given in Section A.4.

2.5.1. Estimation of σ

In practice, for the p-values in (2.14) and (2.15), we use the normalizing factor an,p;j (σ̂ ) with an
estimate σ̂ . These p-values are asymptotically controlling the type I error if P[σ̂ ≥ σ ] → 1 (n →
∞). This follows immediately from the construction.

We propose to use the estimator σ̂ from the Scaled Lasso method (Sun and Zhang, 2012).
Assuming s0 log(p)/n = o(1) (n → ∞) and the compatibility condition for the design, Sun and
Zhang (2012) prove that |σ̂ /σ − 1| = oP (1) (n → ∞).

3. Multiple testing

We aim to strongly control the familywise error rate P[V > 0] where V is the number of false
positive selections. For simplicity, we consider first individual hypotheses H0,j (j ∈ {1, . . . , p}).
The generalization to multiple testing of general hypotheses H0,G with |G| > 1 is discussed in
Section 3.2.

Based on the individual p-values Pj , we want to construct corrected p-values Pcorr;j corre-
sponding to the following decision rule:

reject H0,j if Pcorr;j ≤ α (0 < α < 1).

We denote the associated estimated set of rejected hypotheses (the set of significant variables)
by Ŝα = {j ; Pcorr;j ≤ α}. Furthermore, recall that S0 = {j ; β0

j �= 0} is the set of true active
variables. The number of false positives using the nominal significance level α is the denoted by

Vα = Ŝα ∩ Sc
0 .
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The goal is to construct Pcorr;j such that P[Vα > 0] ≤ α, or that the latter holds at least in an
asymptotic sense. The method we describe here is closely related to the Westfall–Young proce-
dure (Westfall and Young, 1993).

Consider the variables Z1, . . . ,Zp ∼ Np(0, σ 2n−1
) appearing in Proposition 2 or Theo-
rem 1. Consider the following distribution function:

FZ(c) = P

[
min

1≤j≤p
2
(
1 − �

(
an,p;j (σ )|Zj |

)) ≤ c
]

and define

Pcorr;j = FZ(Pj + ζ ), (3.1)

where ζ > 0 is an arbitrarily small number, e.g. ζ = 0.01 for using the method in practice.
Regarding the choice of ζ = 0 (which we use in all empirical examples in Section 5), see the
Remark appearing after Theorem 2 below. The distribution function FZ(·) is independent of σ

and can be easily computed via simulation of the dependent, mean zero jointly Gaussian variables
Z1, . . . ,Zp . It is computationally (much) faster than simulation of the so-called minP-statistics
(Westfall and Young, 1993) which would require fitting β̂corr many times.

3.1. Asymptotic justification of the multiple testing procedure

We first derive familywise error control in an asymptotic sense. For a finite sample result, see
Section 6. We consider the framework as in (2.10).

Theorem 2. Assume the conditions in Theorem 1. For the p-value in (2.14) and using the cor-
rection in (3.1) with ζ > 0 we have: for 0 < α < 1,

lim sup
n→∞

P[Vα > 0] ≤ α.

Furthermore, for any sequence αn → 0 (n → ∞) which converges sufficiently slowly, it holds
that lim supn→∞ P[Vαn > 0] − αn ≤ 0.

A proof is given in Section A.1.

Remark (Multiple testing correction in (3.1) with ζ = 0). We could modify the correction
in (3.1) using ζ = 0: the statement in Theorem 2 can then be derived when making the addi-
tional assumption that

sup
n∈N

sup
u

∣∣F ′
n,Z(u)

∣∣ < ∞, (3.2)

where Fn,Z(·) = FZ(·) is the distribution function appearing in (3.1) which depends in the
asymptotic framework on n and (mainly on) p = pn. Verifying (3.2) may not be easy for general
matrices 
 = 
n,pn . However, for the special case where Z1, . . . ,Zp are independent,

F ′
Z(u) = pϕ(u)

(
1 − �(u)

)p−1
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which is nicely bounded as a function of u, over all values of p.

3.2. Multiple testing of general hypotheses

The methodology for testing many general hypotheses H0,Gj
with |Gj | ≥ 1, j = 1, . . . ,m is the

same as before. Denote by S0,G = {j ; H0,Gj
does not hold} and by Sc

0,G = {j ; H0,Gj
holds};

note that these sets are determined by the true parameter vector β0. Since the p-value in (2.15)
is of the form PGj

= 1 − JGj
(γ̂Gj

), we consider

FG,Z = P

[
min

j=1,...,m

(
1 − JGj

(γGj ,Z)
) ≤ c

]
, γG,Z = max

j∈G

(
an,p;j (σ )|Zj |

)
which can be easily computed via simulation (and it is independent of σ ). We then define the
corrected p-value as

Pcorr;Gj
= FG,Z(PGj

+ ζ ),

where ζ > 0 is a small value such as ζ = 0.01; see also the definition in (3.1) and the corre-
sponding discussion for the case where ζ = 0 (which now applies to the distribution function
FG,Z instead of FZ). We denote by ŜG,α = {j ; Pcorr;Gj

≤ α} and VG,α = ŜG,α ∩ Sc
0,G.

If JGj
(·) has a bounded first derivative, for all j , we can obtain the same result, under the

same conditions, as in Theorem 2 (and without making a condition on the cardinalities of Gj ).
If JGj

(·) has not a bounded first derivative, we can get around this problem by modifying the

p-value PGj
in (2.15) to P̃Gj

= 1−JGj
(γ̂Gj

−ν) for any (small) ν > 0 and proceeding with P̃Gj
.

4. Sufficient conditions for detection

We consider detection of alternatives Hc
0,j or Hc

0,G with |G| > 1. We use again the notation S0
as in Section 3 and denote by an � bn that an/bn → ∞ (n → ∞).

Theorem 3. Consider the setting and assumptions as in Theorem 1.

1. When considering individual hypotheses H0,j : if j ∈ S0 with

∣∣β0
j

∣∣ � an,p;j (σ )−1
∣∣(PX)jj

∣∣−1 max(	j ,1)

there exists an αn → 0 (n → ∞) such that

P[Pj ≤ αn] → 1 (n → ∞),

while we still have for j ∈ Sc
0: lim supn→∞ P[Pj ≤ αn] − αn ≤ 0 (see Corollary 3).

2. When considering individual hypotheses H0,G with G = Gn and |Gn| > 1: if Hc
0,G holds,

with

max
j∈Gn

∣∣an,p;j (σ )(PX)−1
jj β0

j

∣∣ � max
(

max
j∈Gn

|	j |,
√

log
(|Gn|

))
,
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there exists an αn → 0 (n → ∞) such that

P[PGn ≤ αn] → 1 (n → ∞),

while if H0,G holds, lim supn→∞ P[PGn ≤ αn] − αn ≤ 0 (see Corollary 3).
3. When considering multiple hypotheses H0,j : if for all j ∈ S0,

∣∣β0
j

∣∣ � an,p;j (σ )−1
∣∣(PX)jj

∣∣−1 max
(
	j,

√
log(pn)

)
there exists an αn → 0 (n → ∞) such that

P[Pcorr;j ≤ αn] → 1 (n → ∞) for j ∈ S0

while we still have that lim supn→∞ P[Vαn > 0] − αn ≤ 0 (see Theorem 2).
4. If in addition, an,p;j (σ ) → ∞ for all j appearing in the conditions on β0

j , we can replace
in all the statements 1–3 the “�” relation by “≥C”, where 0 < C < ∞ is a sufficiently
large constant.

A proof is given in Section A.1. Under the additional assumption of Lemma 2, where the Lasso
is used as initial estimator and using the bounds in (2.13), we obtain the bound (for statement 1
in Theorem 3):

∣∣β0
j

∣∣ ≥ C max

(
maxk �=j |(PX)jk|

|(PX)jj |
(

log(pn)

n

)1/2−ξ

,
1

|(PX)jj |an,p;j (σ )−1
)

, (4.1)

where 0 < ξ < 1/2. This can be sharpened using the oracle bound, assuming known order of
sparsity:

	orac;j = Ds0,n max
k �=j

an,p;j (σ )
∣∣(PX)jk

∣∣√log(pn)/n

for some D > 0 sufficiently large (for example, assuming s0,n is bounded, and replacing s0,n by 1
and choosing D > 0 sufficiently large). It then suffices to require

∣∣β0
j

∣∣ ≥ C max

(
maxk �=j |(PX)jk|

|(PX)jj | s0,n

(
log(pn)

n

)1/2

,
1

|(PX)jj |an,p;j (σ )

)
for 1. in Th. 3,

(4.2)∣∣β0
j

∣∣≥ C max

(
maxk �=j |(PX)jk|

|(PX)jj | s0,n

(
log(pn)

n

)1/2

,

√
log(pn)

|(PX)jj |an,p;j (σ )

)
for 3. in Th. 3,

and analogously for the second statement in Theorem 3.

4.1. Order of magnitude of normalizing factors

The order of an,p;j (σ ) is typically much larger than
√

n since in high dimensions, 
jj is very
small. This means that the Ridge estimator β̂j has a much faster convergence rate than 1/

√
n
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for estimating the projected parameter θ0
j . This looks counter-intuitive at first sight: the reason

for the phenomenon is that ‖θ0‖2 can be much smaller than ‖β0‖2 and hence, Ridge regression
(which estimates the parameter θ0) is operating on a much smaller scale. This fact is essentially
an implication of the first statement in Lemma 1 (without the “minj ” part). We can write


jj =
n∑

r=1

s2
r

(s2
r + λ)2

V 2
jr =

p∑
r=p−n+1

s2
r−p+n

(s2
r−p+n + λ)2

U2
jr ,

where the columns of U = [Ujr ]j,r=1,...,p contain the p eigenvectors of XT X, satisfying∑p

j=1 U2
jr = 1. For n � p, only very few, namely n terms, are left in the summation while

the normalization for U2
jr is over all p terms. For further discussion about the fast convergence

rate an,p;j (σ )−1, see Section A.4.
While an,p;j (σ )−1 is usually small, there is compensation with (PX)−1

jj which can be rather
large. In the detection bound in e.g., the first part of (4.2), both terms appearing in the maximum
are often of the same order of magnitude; see also Figure 3 in Section A.4. Assuming such a
balance of terms, we obtain in e.g., the first part of (4.2):

∣∣β0
j

∣∣ ≥ C
maxk �=j |(PX)jk|

|(PX)jj | s0,n

√
log(pn)/n.

The value of κj = maxk �=j |(PX)jk|/|(PX)jj | is often a rather small number between 0.05 and 4,
see Table 1 in Section 5. For comparison, Zhang and Zhang (2011) establish under some condi-
tions detection for single hypotheses H0,j with β0

j in the 1/
√

n range. For the extreme case with
Gn = {1, . . . , pn}, we are in the setting of detection of the global hypotheses, see for example
Ingster, Tsybakov and Verzelen (2010) for characterizing the detection boundary in case of inde-
pendent covariables. Here, our analysis of detection is only providing sufficient conditions, for
rather general (fixed) design matrices.

5. Numerical results

As initial estimator for β̂corr in (2.9), we use the Scaled Lasso with scale independent regular-
ization parameter λScaled-Lasso = 2

√
log(p)/n: it provides an initial estimate β̂init as well as an

estimate σ̂ for the standard deviation σ . The parameter λ for Ridge regression in (2.2) is always
chosen as λ = 1/n, reflecting the assumption in Theorem 1 that it should be small.

For single testing, we construct p-values as in (2.14) or (2.15) with 	j from (2.13) with
ξ = 0.05. For multiple testing with familywise error control, we consider p-values as in (3.1)
with ζ = 0 (and 	j as above).

5.1. Simulations

We simulate from the linear model as in (1.1) with ε ∼ Nn(0, I ), n = 100 and the following
configurations:
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(M1) For both p ∈ {500,2500}, the fixed design matrix is generated from a realization of n

i.i.d. rows from Np(0, I ). Regarding the regression coefficients, we consider active sets S0 =
{1,2, . . . , s0} with s0 ∈ {3,15} and three different strengths of regression coefficients where
β0

j ≡ b (j ∈ S0) with b ∈ {0.25,0.5,1}.
(M2) The same as in (M1) but for both p ∈ {500,2500}, the fixed design matrix is generated

from a realization of n i.i.d. rows from Np(0,�) with �jk ≡ 0.8 (j �= k) and �jj = 1.

The resulting signal to noise ratios SNR = ‖Xβ0‖2/σ are rather small:

p ∈ {500,2500} (3,0.25) (3,0.5) (3,1) (15,0.25) (15,0.5) (15,1)

(M1) 0.46 0.93 1.86 1.06 2.13 4.26
(M2) 0.65 1.31 2.62 3.18 6.37 12.73

Here, a pair such as (3,0.25) denotes the values of s0 = 3, b = 0.25 (where b is the value of the
active regression coefficients).

We consider the decision-rule at significance level α = 0.05

reject H0,j if Pj ≤ 0.05, (5.1)

for testing single hypotheses where Pj is as in (2.14) with plugged-in estimate σ̂ . The considered
type I error is the average over non-active variables:

(p − s0)
−1

∑
j∈Sc

0

P[Pj ≤ 0.05] (5.2)

and the average power is

s−1
0

∑
j∈S0

P[Pj ≤ 0.05]. (5.3)

For multiple testing, we consider the adjusted p-value Pcorr;j from (3.1): the decision is as
in (5.1) but replacing Pj by Pcorr;j . We report the familywise error rate (FWER) P[V0.05 > 0]
and the average power as in (5.3) but the latter with using Pcorr;j . The results are displayed
in Figure 1, based on 500 simulation runs per setting (with the same fixed design per setting).
The subfigure (d) shows that the proposed method exhibits essentially four times a too large
familywise error rate in multiple testing: it happens for scenarios with strongly correlated vari-
ables (model (M2)) and where the sparsity s0 = 15 is large with moderate or large size of the
coefficients (scenario (M2) with s0 = 15 and coefficient size b = 0.25 is unproblematic). The
corresponding number of false positives are reported in Table 3 in Section A.3.

5.2. Values of PX

The detection results in (4.1) and (4.2) depend on the ratio κj = maxk �=j |(PX)jk|/|(PX)jj |. We
report in Table 1 summary statistics of {κj }j for various datasets. We clearly see that the values
of κj are typically rather small which implies good detection properties as discussed in Section 4.
Furthermore, the values maxk �=j |(PX)jk| occurring in the construction of 	j in Section 2.4.1 are
typically very small (not shown here).
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(a) (b)

(c) (d)

Figure 1. Simulated data as described in Section 5.1. (a) and (b): Single testing with average type I er-
ror (5.2) on x-axis (log-scale) and average power (5.3) on y-axis. (c) and (d): Multiple testing with family-
wise error rate on x-axis (log-scale) and average power (5.3), but using Pcorr;j , on y-axis. Vertical dotted
line is at abscissa 0.05. Each point corresponds to a model configuration. (a) and (c): 12 model configu-
rations generated from independent covariates (M1); (b) and (d): 12 model configurations generated from
equi-dependent covariates (M2). When an error is zero, we plot it on the log-scale at abscissa 10−8.

5.3. Real data application

We consider a problem about motif regression for finding the binding sites in DNA sequences
of the HIF1α transcription factor. The binding sites are also called motifs, and they are typically
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Table 1. Minimum, maximum and three quartiles of {κj }p
j=1 for various designs X from different datasets.

The first four are from the simulation models in Section 5.1. Although not relevant for the table, “Motif”
(see Section 5.3) and “Riboflavin” have a continuous response while the last six have a class label (Dettling,
2004)

dataset, (n,p) minj κj 0.25q{κj }j med{κj }j 0.75q{κj }j maxj κj

(M1), (100,500) 0.21 0.27 0.29 0.31 0.44
(M1), (100,2500) 0.27 0.34 0.36 0.39 0.54
(M2), (100,500) 0.20 0.26 0.29 0.32 0.45
(M2), (100,2500) 0.26 0.33 0.36 0.39 0.59
Motif, (143,287) 0.05 0.10 0.13 0.18 0.47
Riboflavin, (71,4088) 0.29 0.54 0.65 0.77 1.73
Leukemia, (72,3571) 0.32 0.44 0.50 0.58 1.57
Colon, (62,2000) 0.28 0.50 0.57 0.67 1.36
Lymphoma, (62,4026) 0.34 0.52 0.63 0.78 1.49
Brain, (34,5893) 0.51 0.63 0.67 0.74 2.44
Prostate, (102,6033) 0.26 0.45 0.57 0.74 3.67
NCI, (61,5244) 0.37 0.52 0.61 0.79 1.76

6–15 base pairs (with categorical values ∈ {A,C,G,T }) long.
The data consists of a univariate response variable Y from CHIP-chip experiments, measuring

the logarithm of the binding intensity of the HIF1α transcription factor on coarse DNA segments.
Furthermore, for each DNA segment, we have abundance scores for p = 195 candidate motifs,
based on DNA sequence data. Thus, for each DNA segment i we have Yi ∈ R and Xi ∈ R

p , where
i = 1, . . . , ntot = 287 and p = 195. We consider a linear model as in (1.1) and hypotheses H0,j

for j = 1, . . . , p = 195: rejection of H0,j then corresponds to a significant motif. This dataset
has been analyzed in Meinshausen, Meier and Bühlmann (2009) who found one significant motif
using their p-value method for a linear model based on multiple sample splitting (which assumes
the unpleasant “beta-min” condition in (1.10)).

Since the dataset has ntot > p observations, we take one random subsample of size n = 143 <

p = 195. Figure 2 reports the single-testing as well as the adjusted p-values for controlling
the FWER. There is one significant motif with corresponding FWER-adjusted p-value equal to
0.007, and the method in Meinshausen, Meier and Bühlmann (2009) based on the total sample
with ntot found the same significant variable with FWER-adjusted p-value equal to 0.006. Inter-
estingly, the weakly significant motif with p-value 0.080 is known to be a true binding site for
HIF1α, thanks to biological validation experiments.

When compared to the Bonferroni–Holm procedure for controlling FWER based on the raw
p-values as shown in Figure 2(a), we have for the variables with smallest p-values:

method as in (3.1): 0.007, 0.080, 0.180,

Bonferroni–Holm: 0.011, 0.098, 0.242.

Thus, for this example, the multiple testing correction as in Section 3 does not provide large
improvements in power over the Bonferroni–Holm procedure; but our method is closely related
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(a) (b)

Figure 2. Motif regression with n = 143 and p = 195. (a) Single-testing p-values as in (2.14); (b) Adjusted
p-values as in (3.1) for FWER control. The p-values are plotted on the log-scale. Horizontal line is at
y = 0.05.

to the Westfall–Young procedure which has been shown to be asymptotically optimal for a broad
class of high-dimensional problems (Meinshausen, Maathuis, and Bühlmann, 2011).

6. Finite sample results

We present here finite sample analogues of Theorem 1 and 2. Instead of assumption (A), we
assume the following:

(A′) There are constants 	j > 0 such that

P

[⋂
j=1

{
an,p;j (σ )

∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)| ≤ 	j

}]
≥ 1 − κ

for some (small) 0 < κ < 1.

We then have the following result.

Proposition 3. Assume model (1.1) with Gaussian errors. Consider the corrected Ridge regres-
sion estimator β̂corr in (2.9) with regularization parameter λ > 0, and assume (2.4) and condi-
tion (A′). Then, with probability at least 1 − κ , for j ∈ {1, . . . , p} and if H0,j holds:

an,p;j (σ )|β̂corr;j | ≤ an,p;j (σ )|Zj | + 	j + ∥∥an,pb(λ)
∥∥∞,

∥∥an,pb(λ)
∥∥∞ = max

j=1,...,p
an,p;j (σ )

∣∣bj (λ)
∣∣ ≤ λ


min(λ)1/2
n1/2σ−1

∥∥θ0
∥∥

2λmin�=0(�̂)−1.
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Similarly, with probability at least 1 − κ , for any subset G ⊆ {1, . . . , p} and if H0,G holds:

max
j∈G

an,p;j (σ )|β̂corr;j | ≤ max
j∈G

(
an,p;j (σ )|Zj | + 	j

) + ∥∥an,pb(λ)
∥∥∞.

A proof is given in Section A.1. Due to the third statement in Lemma 1, 
min(λ)−1/2 is
bounded for a bounded range of λ ∈ (0,C]. Therefore, the bound for ‖an,pb(λ)‖∞ can be made
arbitrarily small by choosing λ > 0 sufficiently small.

Theorem 2 is a consequence of the following finite sample result.

Proposition 4. Consider the event E with probability P[E ] ≥ 1 − κ where condition (A′) holds.
Then, when using the corrected p-values from (3.1), with ζ ≥ 0 (allowing also ζ = 0), we obtain
approximate strong control of the familywise error rate:

P[Vα > 0] ≤ FZ

(
F−1

Z (α) − ζ + 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞
) + (

1 − P[E ]).
A proof is given in Section A.1. We immediately get the following bound for ζ ≥ 0:

P[Vα > 0] ≤ α + sup
u

∣∣F ′
Z(u)

∣∣2(2π)−1/2
∥∥an,pb(λ)

∥∥∞ + (
1 − P[E ]).

7. Conclusions

We have proposed a novel construction of p-values for individual and more general hypotheses
in a high-dimensional linear model with fixed design and Gaussian errors. We have restricted
ourselves to max-type statistics for general hypotheses but modifications to e.g., weighted sums
are straightforward using the representation in Proposition 2. A key idea is to use a linear, namely
the Ridge estimator, combined with a correction for the potentially substantial bias due to the fact
that the Ridge estimator is estimating the projected regression parameter vector onto the row-
space of the design matrix. The finding that we can “succeed” with a corrected Ridge estimator
in a high-dimensional context may come as a surprise, as it is well known that Ridge estimation
can be very bad for say prediction. Nevertheless, our bias corrected Ridge procedure might not
be optimal in terms of power, as indicated in Section 4.1. The main assumptions we make are
the compatibility condition for the design, i.e., an identifiability condition, and knowledge of an
upper bound of the sparsity (see Lemma 2). A related idea of using a linear estimator coupled
with a bias correction for deriving confidence intervals has been earlier proposed by Zhang and
Zhang (2011).

No tuning parameter. Our approach does not require the specification of a tuning parameter,
except for the issue that we crudely bound the true sparsity as in (2.13); we always used ξ = 0.05,
and the Scaled Lasso initial estimator does not require the specification of a regularization pa-
rameter. All our numerical examples were run without tuning the method to a specific setting, and
error control with our p-value approach is often conservative while the power seems reasonable.
Furthermore, our method is generic which allows to test for any H0,G regardless whether the size
of G is small or large: we present in the Section A.2 an additional simulation where |G| is large.
For multiple testing correction or for general hypotheses with sets G where |G| > 1, we rely
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on the power of simulation since analytical formulae for max-type statistics under dependence
seem in-existing: yet, our simulation is extremely simple as we only need to generate dependent
multivariate Gaussian random variables.

Small variance of Ridge estimator. As indicated before, it is surprising that corrected Ridge
estimation performs rather well for statistical testing. Although the bias due to the projection PX
can be substantial, it is compensated by small variances σ 2n−1
jj of the Ridge estimator. It is
not true that 
jj ’s become large as p increases: that is, the Ridge estimator has small variance for
an individual component when p is very large, see Section 4.1. Therefore, the detection power of
the method remains reasonably good as discussed in Section 4. Viewed from a different perspec-
tive, even though |(PX)jjβ

0
j | may be very small, the normalized version an,p;j (σ )|(PX)jj β

0
j |

can be sufficiently large for detection since an,p;j (σ ) may be very large (as the inverse of the
square root of the variance). The values of PX can be easily computed for a given problem: our
analysis about sufficient conditions for detection in Section 4 could be made more complete by
invoking random matrix theory for the projection PX (assuming that X is a realization of i.i.d.
row-vectors whose entries are potentially dependent). However, currently, most of the results on
singular values and similar quantities of X are for the regime p ≤ n (Vershynin, 2012), which
leads in our context to the trivial projection PX = I , or for the regime p/n → C with 0 ≤ C < ∞
(El Karoui, 2008).

Extensions. Obvious but partially non-trivial model extensions include random design, non-
Gaussian errors or generalized linear models. From a practical point of view, the second and
third issue would be most valuable. Relaxing the fixed design assumption makes part of the
mathematical arguments more complicated, yet a random design is better posed in terms of iden-
tifiability.

Appendix

A.1. Proofs

Proof of Proposition 1. The statement about the bias is given in Shao and Deng (2012) (proof
of their Theorem 1). The covariance matrix of β̂ is

n−1
 = n−1(�̂ + λI)−1�̂(�̂ + λI)−1.

Then, for the variance we obtain Var(β̂j ) = n−1σ 2
jj ≥ n−1σ 2
min(λ). �

Proof of Proposition 2. We write

β̂corr;j = (
β̂j − E[β̂j ]

) + θ0
j −

∑
k �=j

(PX)jkβ̂init;k + (
E[β̂j ] − θ0

j

)
.

The result then follows by defining Zj = β̂j −E[β̂j ] and using that θ0
j = (PXβ0)j = (PX)jjβ

0
j +∑

k �=j (PX)jkβ
0
k . �
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Proof of Proposition 3 (basis for proving Theorem 1). The bound from Proposition 1 for the
estimation bias of the Ridge estimator leads to:∥∥an,pb(λ)

∥∥∞ = max
j=1,...,p

an,p;j (σ )
∣∣E[β̂j ] − θ0

j

∣∣
≤ λ‖θ0‖2λmin �=0(�̂)−1

σn−1/2

1/2
jj

≤ λ
∥∥θ0

∥∥
2λmin�=0(�̂)−1σ−1n1/2
min(λ)−1/2.

By using the representation from Proposition 2, invoking assumption (A′) and assuming that the
null-hypothesis H0,j or H0,G holds, respectively, the proof is completed. �

Proof of Theorem 1. Due to the choice of λ = λn we have that ‖an,pb(λn)‖∞ = o(1) (n →
∞). The proof then follows from Proposition 3 and invoking assumption (A) saying that the
probabilities for the statements in Proposition 3 converge to 1 as n → ∞. �

Proof of Proposition 4 (basis for proving Theorem 2). Consider the set E where assumption
(A′) holds (whose probability is at least P[E ] ≥ 1 − κ). Without loss of generality, we consider
Pj = 2(1−�(an,p;j (σ )|β̂corr;j |−	j)) without the truncation at value 1 (implied by the positive
part (an,p;j (σ )|β̂corr;j | − 	j)+); in terms of decisions (rejection or non-rejection of a hypothe-
sis), both versions for the p-value are equivalent. Then, on E and for j ∈ Sc

0:

Pj = 2
(
1 − �

(
an,p;j (σ )|β̂corr;j | − 	j

))
≥ 2

(
1 − �

(
an,p;j (σ )

∣∣∣∣β̂corr;j −
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)∣∣∣∣
))

≥ 2
(
1 − �

(
an,p;j (σ )|Zj |

)) − 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞,

where in the last inequality we used Proposition 2 and Taylor’s expansion. Thus, on E :

min
j∈Sc

0

Pj ≥ min
j∈Sc

0

2
(
1 − �

(
an,p;j (σ )|Zj |

)) − 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞

≥ min
j=1,...,p

2
(
1 − �

(
an,p;j (σ )|Zj |

)) − 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞.

Therefore,

P

[
min
j∈Sc

0

Pj ≤ c
]

≤ P

[
E ∩

{
min
j∈Sc

0

Pj ≤ c
}]

+ P
[

E c
]

≤ P

[
min

j=1,...,p
2
(
1 − �

(
an,p;j (σ )|Zj |

)) ≤ c + 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞
]
+ P

[
E c

]
= FZ

(
c + 2(2π)−1/2

∥∥an,pb(λ)
∥∥∞

) + P
[

E c
]
.
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Using this we obtain:

P[Vα > 0] = P

[
min
j∈Sc

0

Pcorr;j ≤ α
]

= P

[
min
j∈Sc

0

Pj ≤ F−1
Z (α) − ζ

]

≤ FZ

(
F−1

Z (α) − ζ + 2(2π)−1/2
∥∥an,pb(λ)

∥∥∞
) + P

[
E c

]
.

This completes the proof. �

Proof of Theorem 2. Due to the choice of λ = λn we have that ‖an,pb(λn)‖∞ = o(1) (n → ∞).
Furthermore, using the formulation in Proposition 4, assumption (A) translates to a sequence of
sets En with P[En] → 1 (n → ∞). We then use Proposition 4 and observe that for sufficiently
large n: FZ(F−1

Z (α) − ζ + 2(2π)−1/2‖an,pb(λn)‖∞) ≤ FZ(F−1
Z (α)) ≤ α. The modification for

the case with αn → 0 sufficiently slowly follows analogously: note that the second last inequality
in the proof above follows by monotonicity of FZ(·) and ζ > 2(2π)−1/2‖an,pb(λn)‖∞ for n

sufficiently large. This completes the proof. �

Proof of Theorem 3. Throughout the proof, αn → 0 is converging sufficiently slowly, possi-
bly depending on the context of the different statements we prove. Regarding statement 1: it is
sufficient that for j ∈ S0,

an,p;j (σ )|β̂corr;j | � max(	j ,1).

From Proposition 2, we see that this can be enforced by requiring

an,p;j (σ )

(∣∣(PX)jj β
0
j

∣∣ −
∣∣∣∣∑
k �=j

(PX)jk

(
β̂init;k − β0

k

)∣∣∣∣ − |Zj | −
∣∣bj (λ)

∣∣) � max(	j ,1).

Since |an,p;j (σ )
∑

k �=j (PX)jk(β̂init;k − β0
k )| ≤ 	j , this holds if

∣∣β0
j

∣∣ � 1

|(PX)jj |an,p;j (σ )
max

(
	j,an,p;j (σ )Zj , an,p;j (σ )bj (λ),1

)
. (A.1)

Due to the choice of λ = λn (as in Theorem 1), we have an,p;j (σ )bj (λ) ≤ ‖an,p(σ )b(λ)‖∞ =
o(1). Hence, (A.1) holds with probability converging to one if

∣∣β0
j

∣∣ � 1

|(PX)jj |an,p;j (σ )
max(	j ,1),

completing the proof for statement 1.
For proving the second statement, we recall that

1 − JG(c) = P

[
max
j∈G

(
an,p;j (σ )|Zj | + 	j

)
> c

]
.

Denote by W = maxj∈G(an,p;j (σ )|Zj | + 	j) ≤ W̃ = maxj∈G an,p;j (σ )|Zj | + maxj∈G 	j .
Thus,

P[W > c] ≤ P[W̃ > c].
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Therefore, the statement for the p-value P[PG ≤ αn] is implied by

PW̃
[W̃ > γ̂G] ≤ αn. (A.2)

Using the union bound and the fact that an,p;j (σ )|Zj | ∼ N (0,1) (but dependent over different
values of j ), we have that

max
j∈G

an,p;j (σ )|Zj | = OP

(√
log

(|G|)).
Therefore, (A.2) holds if

γ̂G = max
j∈G

an,p;j (σ )|β̂corr;j | � max
(

max
j∈G

	j ,

√
log

(|G|)).

The argument is now analogous to the proof of the first statement above, using the representation
from Proposition 2.

Regarding the third statement, we invoke the rough bound

Pcorr;j ≤ pPj ,

with the non-truncated Bonferroni corrected p-value at the right-hand side. Hence,

max
j∈S0

Pcorr;j ≤ αn

is implied by

max
j∈S0

pPj = max
j∈S0

2p
(
1 − �

((
an,p;j (σ )|β̂corr;j | − 	j

)
+
)) ≤ αn.

Since this involves a standard Gaussian two-sided tail probability, the inequality can be enforced
(for certain slowly converging αn) by

max
j∈S0

2 exp
(
log(p) − (

an,p;j (σ )|β̂corr;j | − 	j

)2
+/2

) = oP (1).

The argument is now analogous to the proof of the first statement above, using the representation
from Proposition 2.

The fourth statement involves slight obvious modifications of the arguments above. �

A.2. P -values for H0,G with |G| large

We report here on a small simulation study for testing H0,G with G = {1,2, . . . ,100}. We con-
sider model (M2) from Section 5.1 with 4 different configurations and we use the p-value
from (2.15) with corresponding decision rule for rejection of H0,G if the p-value is smaller
or equal to the nominal level 0.05. Table 2 describes the result based on 500 independent simula-
tions (where the fixed design remains the same). The method works well with much better power
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Table 2. Testing of general hypothesis H0,G with |G| = 100 using the p-value in (2.15) with significance
level 0.05. Second column: type I error; Third column: power; Fourth column: comparison with power using
multiple individual testing and average power using individual testing without multiplicity adjustment (both
for all p hypotheses H0,j (j = 1, . . . , p))

Model P[false rejection] P[true rejection] (power mult., power indiv.)

(M2), p = 500, s = 3, b = 0.5 0.00 0.10 (0.01,1.00)
(M2), p = 500, s = 3, b = 1 0.00 0.91 (0.37,1.00)
(M2), p = 2500, s = 3, b = 0.5 0.01 0.02 (0.00,1.00)
(M2), p = 2500, s = 3, b = 1 0.00 0.83 (0.17,1.00)

than multiple testing of individual hypotheses but worse than average power for testing individ-
ual hypotheses without multiplicity adjustment (which is not a proper approach). This is largely
in agreement with the theoretical results in Theorem 3. Furthermore, the type I error control is
good.

A.3. Number of false positives in simulated examples

We show in Table 3 the number of false positives V = V0.05 in the simulated scenarios where
the FWER (among individual hypotheses) was found too large. Although the FWER is larger
than 0.05, the number of false positives is relatively small, except for the extreme model (M2),
p = 2500, s = 15, b = 1 which has a too large sparsity and a too strong signal strength. For the
latter model, we would need to increase ξ in (2.13) to achieve better error control.

A.4. Further discussion about p-values and bounds �j in assumption (A)

The p-values in (2.14) and (2.15) are crucially based on the idea of correction with the bounds
	j in Section 2.4.1. The essential idea is contained in Proposition 2:

an,p;j (σ )β̂corr;j

= an,p;j (σ )(PX)jj − an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

) + an,p;j (σ )Zj + negligible term.

Table 3. Probabilities for false positives for simulation models from Section 5.1 in scenarios where the
FWER is clearly overshooting the nominal level 0.05

Model P[V = 0] P[V = 1] P[V = 2] P[V = 3] P[V = 4] P[V ≥ 5]
(M2), p = 500, s = 15, b = 1 0.482 0.336 0.138 0.028 0.010 0.006
(M2), p = 500, s = 15, b = 0.5 0.746 0.218 0.034 0.000 0.002 0.000
(M2), p = 2500, s = 15, b = 1 0.012 0.044 0.098 0.126 0.172 0.548
(M2), p = 2500, s = 15, b = 0.5 0.504 0.328 0.132 0.032 0.004 0.000
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There are three cases. If

an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

) = oP (1), (A.3)

a correction with the bound 	j would not be necessary, but of course, it does not hurt in terms
of type I error control. If

an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

) 
 V, (A.4)

for some non-degenerate random variable V , the correction with the bound 	j is necessary and
assuming that 	j is of the same order of magnitude as V , we have a balance between 	j and
the stochastic term an,p;j (σ )Zj . In the last case where

an,p;j (σ )
∑
k �=j

(PX)jk

(
β̂init;k − β0

k

) → ∞, (A.5)

the bound 	j would be the dominating element in the p-value construction. We show in Figure 3
that there is empirical evidence that (A.4) applies most often.

Case (A.5) is comparable to a crude procedure which makes a hard decision about relevance
of the underlying coefficients:

if an,p;j (σ )|β̂corr;j | > 	j holds, then H0,j is rejected,

and the rejection would be “certain” corresponding to a p-value with value equal to 0; and in
case of a “≤” relation, the corresponding p-value would be set to one. This is an analogue to the
thresholding rule:

if |β̂init;j | > 	init holds, then H0,j is rejected, (A.6)

where 	init ≥ ‖β̂init − β0‖∞, e.g. using a bound where 	init ≥ ‖β̂init − β0‖1. For example, (A.6)
could be the variable selection estimator with the thresholded Lasso procedure (van de Geer,
Bühlmann and Zhou, 2011). An accurate construction of 	init for practical use is almost impos-
sible: it depends on σ and in a complicated way on the nature of the design through e.g. the
compatibility constant, see (1.7).

Our proposed bound 	j in (2.13) is very simple. In principle, its justification also de-
pends on a bound for ‖β̂init − β0‖1, but with the advantage of “robustness”. First, the bound
an,p;j (σ )maxk �=j |(PX)jk|‖β̂init − β0‖1 appearing in (2.11) is not depending on σ anymore
(since ‖β̂init − β0‖1 scales linearly with σ ). Secondly, the inequality in (2.11) is crude imply-
ing that 	j in (2.13) may still satisfy assumption (A) even if the bound of ‖β̂init − β0‖1 is
misspecified and too small. The construction of p-values as in (2.14) and (2.15) is much better
for practical purposes (and for simulated examples) than using a rule as in (A.6).
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Figure 3. Histogram of projection bias an,p;j (σ )
∑

k �=j (PX)jk(β̂init;k − β0
k
) over all values j = 1, . . . , p

and over 100 independent simulation runs. Left: model (M2), p = 2500, s = 3, b = 1; Right: model (M2),
p = 2500, s = 15, b = 1.
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