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Medical researchers commonly report the effects 
of a treatment or describe relationships between 
variables. Treatment effects or associations can be 

quantified using measures like mean differences, risk ratios, 
or correlations. Null hypothesis (Ho) significance tests (eg, 
t tests or χ2 tests) are commonly used to determine the “sta-
tistical significance” of the observed effect, usually defined 
by a P value of <.05. However, P values are often misin-
terpreted and provide no information on the magnitude or 
importance of the effect.1–3 Hence, rather than merely focus-
ing on statistical significance, researchers should provide 
plausible estimates about the magnitude of the effect in the 
population from which the data were sampled.4,5

Previous statistical tutorials in this series initially discussed 
P values, confidence intervals (CIs), and effect size.6–8 The aim 
of the present basic statistical tutorial is to discuss in greater 

detail how a treatment effect or association can be quanti-
fied using the effect size, and how a CI can help to assess the 
statistical but especially also the clinical significance of the 
observed effect. Moreover, we discuss what P values actually 
represent and how they should be interpreted.

We will recurrently use a study by Frey et al,9 which ana-
lyzed perioperative temperature management in 79 patients 
undergoing open colon surgery, to illustrate these concepts. 
These study patients were randomly assigned to standard 
temperature management, or standard management in 
combination with insufflation of warm, humidified carbon 
dioxide into the wound cavity. While these authors report 
several outcomes, we specifically focus here on the differ-
ence in core temperature at the end of surgery.

EFFECT SIZE
Effect size describes the magnitude of the quantitative rela-
tionship between one variable (eg, a variable that defines 
a treatment group) and another variable (eg, a specific 
outcome).4,5,10–12 Note that while the term “effect” implies 
a causal relationship, calculation of an effect size does not 
imply or require causality, and the reported effect size pro-
vides no information on whether there is actually a direct 
effect of 1 variable on another.4,5

Bias is especially possible in observational studies, yet 
is potentially present in all study designs. It can distort the 
relationship between variables, such that the estimated 
effect size does not necessarily reflect the actual, true effect 
in the population. Different types of study design, impli-
cations of bias and confounding, as well as the distinction 
between association and causation have previously been 
reviewed in this current series of statistical tutorials.13–15

Effect size measures are used to quantify treatment effects or associations between variables. 
Such measures, of which >70 have been described in the literature, include unstandardized 
and standardized differences in means, risk differences, risk ratios, odds ratios, or correlations. 
While null hypothesis significance testing is the predominant approach to statistical inference 
on effect sizes, results of such tests are often misinterpreted, provide no information on the 
magnitude of the estimate, and tell us nothing about the clinically importance of an effect. 
Hence, researchers should not merely focus on statistical significance but should also report 
the observed effect size. However, all samples are to some degree affected by randomness, 
such that there is a certain uncertainty on how well the observed effect size represents the 
actual magnitude and direction of the effect in the population. Therefore, point estimates of 
effect sizes should be accompanied by the entire range of plausible values to quantify this uncer-
tainty. This facilitates assessment of how large or small the observed effect could actually be in 
the population of interest, and hence how clinically important it could be. This tutorial reviews 
different effect size measures and describes how confidence intervals can be used to address 
not only the statistical significance but also the clinical significance of the observed effect 
or association. Moreover, we discuss what P values actually represent, and how they provide 
supplemental information about the significant versus nonsignificant dichotomy. This tutorial 
intentionally focuses on an intuitive explanation of concepts and interpretation of results, rather 
than on the underlying mathematical theory or concepts.   (Anesth Analg 2018;126:1068–72)
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Types of Effect Size Measures
Effect sizes can be classified into 2 categories: (1) effect sizes 
that describe differences between groups and (2) effect sizes 
that describe the strength of an association.10,16

The difference between groups is often reported as the dif-
ference in means when the outcome variable is continuous. 
In the study by Frey et al,9 the core temperature at the end 
of surgery was 36.9°C in the intervention group and 36.3°C 
in the control group. The difference in mean temperature of 
0.6°C was the observed point estimate of the magnitude of 
the treatment effect in the overall population of patients from 
which the sample was taken.6 We will discuss CIs below as a 
type of interval estimate of the observed effect size.

Raw differences in means can be easily interpreted when 
meaningful units of measurement (eg, temperature in °C) 
are used. However, when the measurement scale does not 
have an intrinsic meaning (eg, a patient satisfaction score 
from 0 to 100), standardized differences are more informa-
tive.16 Such effect size measures are usually scaled to the 
standard deviation (SD), such that a standardized differ-
ence of 0.5 equates to 0.5 SDs. These measures (eg, Cohen’s 
d, Glass’ ∆) mainly differ by the type of SD that is used for 
scaling (eg, pooled SD, control group SD).11

When the outcome variable is categorical, compari-
sons between the groups can be based on the proportion 
of group members being classified in an outcome category. 
Frey et al9 compared the percentage of patients being hypo-
thermic (core temperature <36.5°C) at the end of surgery. 
In the control group, 24 of 39 (62%) of patients were hypo-
thermic, whereas in the intervention group, 8 of 40 (20%) 
of patients were hypothermic. The authors report the dif-
ference in percentages (42%), but differences in proportions 
are also commonly reported. Because the proportion can be 
viewed as a risk of belonging to a certain outcome group, 
this effect size is often referred to as the risk difference.17 
Alternatively, the ratio of the risks can be reported, which is 
termed the risk ratio or relative risk. In the example by Frey 
et al,9 a relative risk of 0.62/0.20 = 3.1 means that the risk of 
being hypothermic is 3.1 times greater in the control group. 
A related effect size is the odds ratio. We refer the reader to 
a previous tutorial on risks, odds, and their ratios.18

Among the effect sizes that address the association 
between variables, Pearson correlation coefficient is probably 
the most common. It describes the strength of a linear relation-
ship between 2 continuous, normally distributed variables.19 
Other measures such as Spearman’s ρ or Cramer’s V are used 
to assess associations between nonnormal continuous, rank-
ordered or nominal data.12 Correlation will be addressed in 
more detail in a subsequent tutorial in this series.

PART 1 FROM SAMPLE TO POPULATION: P 
VALUES
As in most studies, Frey et al9 used a sample from a popula-
tion to make inferences or draw conclusions about the entire 
population. We are less concerned about the temperatures 
in the study sample of 79 patients, but far more so whether 
the study intervention is generally useful for temperature 
management during open colon surgery.

Any sample is inevitably affected to some extent by 
randomness, and even if there was absolutely no effect of 
the treatment, we would still likely—in fact certainly, if 

the measurements are precise enough—observe some dif-
ference between the groups. However, what would be the 
probability of observing an effect as large as or maybe 
even larger than the one observed in the sample, if there 
was actually no true effect in the population? The P value 
addresses this question.

P values are calculated in the context of null hypoth-
esis significance testing. The null hypothesis (Ho) usually 
states that there is no effect (eg, the difference in the means 
between groups is 0), while the alternative hypothesis (Ha) 
states that there is some effect and difference.20 Hypothesis 
testing aims to reach a dichotomous decision as to whether 
or not the null hypothesis can be rejected in favor of the 
alternative hypothesis. Null hypothesis significance testing, 
including type I and type II errors, as well as α and β levels, 
was previously reviewed in Anesthesia & Analgesia.8 Here, 
we focus on the interpretation of the P value itself.

The P value is the probability to observe a result at least 
as extreme as the one that was observed, under the assump-
tion that the null hypothesis was actually true.1,2,21 Frey et 
al9 report a P value of <.001 for the difference in tempera-
ture between the groups. This means that the probability 
of observing a difference of 0.6°C or more is <0.1% if there 
was actually no true difference between the groups (with the 
same sample size, data variability, and lack of bias). Hence, 
such a small P value suggests that the observed data are quite 
incompatible with the null hypothesis of no group difference.

Researchers commonly reject the null hypothesis (Ho) in 
favor of the alternative hypothesis (Ha) when the P value 
is below some threshold (traditionally 0.05). Such a result 
is termed “statistically significant,” but it should be noted 
that this threshold is arbitrary and there is no clear divid-
ing line between a probable and an improbable result. 
Moreover, a simple dichotomy (significant versus non-
significant) ignores the fact that a lower P value provides 
more convincing evidence against the null hypothesis.22 We 
therefore advocate that the P value can be used not only 
as a dichotomous decision instrument with some arbitrary 
threshold but also as an indicator of the strength of the evi-
dence against the null hypothesis.

P values are commonly misinterpreted.1–3,23 The P value 
is calculated assuming that the null hypothesis is true, and 
it is therefore not the probability that the null hypothesis is 
true. Another misconception is that a nonsignificant result 
demonstrates that there is no effect. A nonsignificant result 
simply indicates that there is no sufficient evidence against 
the null hypothesis. This must not be misinterpreted as 
proof that the null hypothesis is true. Importantly, P val-
ues also do not convey any information about the effect size 
or the clinical importance of the observed effect. The fol-
lowing section describes how this information gap can be 
addressed with CIs.

We finally emphasize that P values are used in the con-
text of hypothesis testing, and it makes no sense to report P 
values when no hypothesis is being tested. A classic exam-
ple of a misuse is the baseline comparison of study groups 
in a randomized controlled trial. With adequate random-
ization, participants in study groups are sampled from the 
same population, and irrespective of the P value, any dif-
ferences between the groups at baseline are due to chance.24 
Nonetheless, baseline imbalances can affect the results 



1070     www.anesthesia-analgesia.org� ANESTHESIA & ANALGESIA

E E Special Article

and should be considered, but again, irrespective of the 
P value.24 Therefore, the instructions for author of several 
journals, including Anesthesia & Analgesia, request report-
ing standardized differences instead of P values for baseline 
comparisons in a randomized controlled trial.25

PART 2 FROM SAMPLE TO POPULATION: CIs
Frey et al9 observed a difference in temperature of 0.6°C 
between their sampled study groups. However, this pro-
vides only limited information on how large the actual 
effect in the population might be. In this context, a CI pro-
vides a range of plausible values for the estimate. Actually, 
a CI can not only be calculated for an effect size (eg, mean 
difference, risk ratio, or odds ratio) but also for a wide range 
of estimates of population parameters, including means and 
proportions.

Formally, a CI is an interval that contains the true pop-
ulation parameter in a fixed percentage of samples with 
repeated sampling.26 The fixed percentage is termed the 
confidence level, which is often (though again arbitrarily) 
chosen as 95%. This indicates that when samples are repeat-
edly taken over and over again from the same population, 
and if we would calculate the 95% CI for each sample, about 
95% of them will contain the true population parameter 
(Figure 1).

A common misinterpretation is that there is a 95% prob-
ability that a given 95% CI contains the true population 
parameter.27 The parameter is a fixed albeit unknown value. 
The 95% CI either contains the parameter or does not, and 
the probability is either 100% or 0%. This becomes clear when 
looking at an example with actual numbers. In Figure 1, the 
first 95% CI ranges from 29.4 to 34.8. While the true popula-
tion parameter is usually unknown, we know that it is 30 in 
this simulated example. Now, it does not make any sense to 
say that the probability is 95% that 30 falls within the range 

between 29.4 and 34.8. While in this particular case we defi-
nitely know that the CI contains the true population parame-
ter value, there is no way to know whether any CI estimated 
from a sample contains the parameter.

Given this limitation, some authors argue against the 
usefulness of CIs.27 However, as the vast majority of the 
estimated 95% CIs will contain the unknown population 
parameter, it is plausible to believe that a particular 95% 
CI contains the true value of interest. Accordingly, the CI 
is often interpreted as the best estimate from a study of the 
range of plausible values of the parameter, and narrower 
CIs (with the same confidence level) are considered to indi-
cate a higher precision of the estimate.28,29

Note that the width of a CI is inversely related to sample 
size,30 such that studies with a large number of subjects usu-
ally (but not always, as the width of the CI also depends on 
the variability of the data) provide more precise estimates 
than smaller sample studies. The choice of the confidence 
level also affects the width, as the CI widens when the con-
fidence level increases.30 This means that a 99% CI provides 
a higher confidence of including the true parameter value 
(ie, contains it more often) than a 95% or 90% CI, however, 
at the “cost” of a wider total range of values.

Applying CIs to effect sizes provides a range of plausible 
values of the effect size in the population. Note that there is 
a close relationship between CIs and significance testing.28 
If the 95% CI of the effect size contains the value that indi-
cates “no effect” (eg, the null value of 0 for a difference, or 
1 for a risk ratio or odds ratio), this means that the data are 
compatible with no effect, corresponding to a nonsignificant 
result with a 0.05 significance cut-point level. In the study 
by Frey et al,9 the 95% CI of the difference in core tempera-
ture was 0.4°C–0.8°C. Because this interval does not contain 
0, the result is statistically significant at the 0.05 significance 
level. However, is this finding also clinically significant?

This question cannot be exclusively answered by statis-
tics, but it instead needs to be addressed by clinical judg-
ment. The data are compatible with an actual difference of as 
little as 0.4°C, and we are not sure whether this is important.

Researchers need to define and to support what they 
consider a minimal clinically important effect, and jour-
nal editors, reviewers, and readers need to assess whether 
this seems reasonable. Note that an important effect does 
not necessarily have to be large. For example, a small effect 
on mortality can make a huge difference not only for indi-
vidual patients but also for society if a large percentage of 
patients is affected by the condition.

Whenever the confidence limits contain a clinically 
important effect, a clinically significant effect cannot be 
ruled out irrespective of the statistical significance. Vice 
versa, a CI that does not contain an important effect ques-
tions the clinical significance, even if the result is statisti-
cally significant. Figure 2 provides several examples from 
hypothetical studies, in which the CIs allow for a more 
detailed interpretation of the results than significance tests.

PART 3 FROM SAMPLE TO POPULATION: OTHER 
CONSIDERATIONS
For CIs and P values to be valid, it is crucial that they have 
been calculated by appropriate methods, as different statistical 
models have different underlying assumptions, for example, 

Figure 1. Ninety-five percent confidence intervals (vertical lines) and 
means (dots) calculated from a simulation of 25 samples (sample 
size of 30 each) drawn from a normally distributed population with a 
mean of 30 and a standard deviation of 10. One could think of this 
as a population of patients with a mean age of 30 y and a standard 
deviation of 10 y, from which we sample n = 30 patients to estimate 
the mean age in the population, and we repeat this experiment 25 
times. Note that 23 of the confidence intervals (23/25 = 92%) cover 
the “true” population mean of 30. If we (infinitely) keep repeating 
this simulation, we would expect that 95% of the confidence inter-
vals contain the true population parameter value.
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concerning the distribution and independence of data. Even if 
the analysis methods are appropriate, real-world data seldom 
perfectly meet all assumptions, and real-world P values and 
CIs are therefore not exactly what that they claim to be.

We mentioned earlier that bias can substantially distort 
effect sizes, and it is crucial to consider sources of poten-
tial bias in the interpretation of study results. As all bias 
can hardly ever be excluded, and as statistics never provide 
definitive answers, we suggest interpreting research results 
carefully, rather than viewing them as conclusive evidence.

SUMMARY
Like previous tutorials in this series in Anesthesia & Analgesia, 
this one intentionally focuses on an intuitive explanation 

of concepts and interpretation of results rather than on the 
underlying mathematical theory or concepts. Effect sizes 
describe the magnitude of a quantitative relationship 
between variables. CIs and P values show 2 sides of the same 
coin. A CI provides a range of plausible values of the effect 
size estimate. While a CI can be used to determine whether 
a finding is statistically significant or not, it is especially use-
ful for determining clinical significance (or relevance). The 
P value provides additional information on the statistically 
significant versus not significant dichotomy, and it can be 
viewed as a measure of the strength of evidence against the 
null hypothesis. Sources of bias should be considered when 
determining whether the observed treatment effects are 
actually present in the population of interest. E
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