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Statistical Simulation Models for Rayleigh and Rician Fading
Chengshan Xiao, Yahong R. Zheng, and Norman C. Beaulieu†

Dept. of ECE, University of Missouri, Columbia, MO 65211, USA
†Dept. of ECE, University of Alberta, Edmonton, Canada T6G 2G7

Abstract—New simulation models are proposed for Rayleigh
and Rician fading channels. First, the statistical properties of
Clarke’s fading model with a finite number of sinusoids are
analyzed. An improved Clarke’s model is then proposed for
the simulation of Rayleigh fading channels. Based on this im-
proved Rayleigh fading model, a novel simulation model is
proposed for Rician fading channels. The new Rician fading
model employs a zero-mean stochastic sinusoid as the specu-
lar (line-of-sight) component, in contrast to all existing Ri-
cian fading simulators that utilize a non-zero mean determin-
istic specular component. The statistical properties of the
proposed Rician fading model are analyzed in detail. It is
shown that the probability density function of the Rician fad-
ing phase is not only independent of time but also uniformly
distributed over [−π, π). This property is different from that
of existing Rician fading models. The statistical properties of
the new simulators are confirmed by extensive simulation re-
sults, finding good agreement with theoretical analysis in all
cases. An explicit formula for the level crossing rate is de-
rived for general Rician fading when the specular component
has non-zero Doppler frequency.

I. Introduction

Mobile radio channel simulators are commonly used in the
laboratory because they make system tests and evaluations
less expensive and more reproducible than field trials. Many
different techniques have been proposed for the modeling and
simulation of mobile radio channels [1]-[16]. Among them,
the well known Jakes’ model [3], which is a simplified simu-
lation model of Clarke’s model [1], has been widely used for
frequency nonselective Rayleigh fading channels for about
three decades. Recently, various modifications [5], [9]-[12]
and improvements [14], [16] of Jakes’ simulator have been re-
ported in the literature for generating multiple uncorrelated
fading waveforms needed for frequency selective fading chan-
nels and multiple-input multiple-output (MIMO) channels.
Since Jakes’ simulator needs only one fourth the number of
low-frequency oscillators than needed in Clarke’s model, it
is commonly perceived that Jakes’ simulator (and its mod-
ifications) is more computationally efficient than Clarke’s
model. However, it was recently pointed out by Pop and
Beaulieu in [13] that “reduction in the number of simulator
oscillators based on azimuthal symmetries is meritless”, and
they proposed a Clarke’s model-based simulator in [13]. In
the first part of this paper, we give a statistical analysis of
Clarke’s model with a finite number of sinusoids and show
that the simulator proposed in [13] has deficiencies in some
of its higher-order statistics. We then propose an improved
Clarke’s model for the simulation of Rayleigh fading chan-
nels.

All the existing Rician channel models in the literature
assume that the specular (line-of-sight) component is either
constant and non-zero [7], or time-varying and determinis-
tic [2], [9]. These assumptions may not reflect the physical

nature of the specular components, particularly when the
specular component is random, changing from time to time
and from mobile to mobile. Furthermore, according to [2],
all these Rician fading models are nonstationary in the wide
sense and the probability density function (PDF) of the fad-
ing phase is a function of time [2], [9]. In the second part of
this paper, a novel statistical simulation model will be pro-
posed for Rician fading channels. The specular component
will employ a zero-mean stochastic sinusoid with a pre-chosen
angle of arrival and a random initial phase. This assumption
implies that different specular components in different chan-
nels may have different initial phases.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the statistical properties of Clarke’s model
with a finite number of sinusoids and show that the model
reported in [13] has limitations in its higher-order statistics.
An improved Clarke’s model for Rayleigh fading channels is
proposed. In Section III, we present a novel statistical sim-
ulation model for Rician fading channels, and analyze the
statistical properties of the new Rician fading model. Sec-
tion IV gives extensive performance evaluations of the new
Rayleigh and Rician fading simulators. Section V concludes
the paper.

II. An Improved Rayleigh Fading Simulator

Clarke’s Rayleigh fading model is sometimes referred to
as a mathematical reference model, and is commonly con-
sidered as a computationally inefficient model compared to
Jakes’ Rayleigh fading simulator. In this section, we show
that Clarke’s model with a finite number of sinusoids can
be directly used for Rayleigh fading simulation, and that its
computational efficiency and second-order statistics are as
good as those of improved Jakes’ simulators. We then briefly
show that the model described in [13] contains higher-order
statistical deficiencies and better the model by introducing
randomness to the angle of arrival, which leads to improved
higher-order statistics.

A. Clarke’s Rayleigh Fading Model

The baseband signal of the normalized Clarke’s 2-D
isotropic scattering Rayleigh fading model is given by [1],
[19]

g(t) =
1√
N

N∑

n=1

exp[j(wdt cosαn + φn)], (1)

where N is the number of propagation paths, wd is the max-
imum radian Doppler frequency and αn and φn are, respec-
tively, the angle of arrival and initial phase of the nth propa-
gation path. Both αn and φn are uniformly distributed over
[−π, π) for all n and they are mutually independent.
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The central limit theorem justifies that the real part,
gc(t) = Re[g(t)], and the imaginary part, gs(t) = Im[g(t)],
of the fading g(t) can be approximated as Gaussian random
processes for large N . Some desired second-order statistics
for fading simulators are manifested in the autocorrelation
and cross-correlation functions which are given in [19] for
the case when N approaches infinity. However, the statisti-
cal properties of Clarke’s model with a finite N (number of
sinusoids) are not available in the literature. These properties
are very important for justifying the suitability of Clarke’s
model as a valid Rayleigh fading simulator. Thus, we present
some of these key statistics here.

Theorem 1: The autocorrelation and cross-correlation
functions of the quadrature components, and the autocor-
relation functions of the complex envelope and the squared
envelope of fading signal g(t) are given by

Rgcgc
(τ) = E[gc(t)gc(t+ τ)] =

1
2
J0(wdτ) (2a)

Rgsgs
(τ) =

1
2
J0(wdτ) (2b)

Rgcgs
(τ) = 0 (2c)

Rgsgc
(τ) = 0 (2d)

Rgg(τ) = E[g∗(t)g(t+ τ)] = J0(wdτ) (2e)

R|g|2|g|2(τ) = 1 + J2
0 (wdτ) +

1
N

, (2f)

where E[·] denotes expectation and J0(·) is the zeroth-order
Bessel function of the first kind [18].

Proof: Omitted for brevity.

In simulation practice, time-averaging is often used in place
of ensemble averaging. For example, the autocorrelation of
the real part of the fading signal for one trial is given by

R̂gcgc
(τ) = lim

T→∞

1
T

∫ T

0
gc(t)gc(t+ τ)dt

=
1
2N

N∑

n=1

cos(wdτ cosαn).

Clearly, this time averaged autocorrelation changes from
trial to trial due to random angle of arrival. Note
that the variance of the time average Var{Rgcgc

(τ)} =

E
[
|R̂gcgc

(τ)−0.5J0(wdτ)|2
]
, carries important information

indicating the closeness between a single trial with finite N
and the ideal case with N = ∞. We now present the time-
averaged variances of the aforementioned correlation statis-
tics.

Theorem 2: The variances of the autocorrelation and
cross-correlation of the quadrature components, and the vari-
ance of the autocorrelation of the complex envelope of the

fading signal g(t) are given by

Var{Rgcgc
(τ)} =

1 + J0(2wdτ) − 2J2
0 (wdτ)

8N
(3a)

Var{Rgsgs
(τ)} =

1 + J0(2wdτ) − 2J2
0 (wdτ)

8N
(3b)

Var{Rgcgs
(τ)} =

1 − J0(2wdτ)
8N

(3c)

Var{Rgsgc
(τ)} =

1 − J0(2wdτ)
8N

(3d)

Var{Rgg(τ)} =
1 − J2

0 (wdτ)
N

. (3e)
Proof: Omitted for brevity.

As can be seen from Theorems 1 and 2, Clarke’s model
using a number of sinusoids, N ≥ 8, can be usefully employed
as a Rayleigh fading simulator. Its computational efficiency
and statistics are similar to those of the recently improved
Jakes models [14], [16], which have removed some statistical
deficiencies of Jakes’ original model [3] and various modified
Jakes’ models proposed in [5], [9]-[12].

B. Pop and Beaulieu’s Simulator

Based on Clarke’s model given by (1), Pop and Beaulieu
[12], [13] recently developed a Rayleigh fading simulator by
setting αn = 2πn

N in g(t). Thus, the lowpass fading process
becomes

X(t) = Xc(t) + jXs(t) (4a)

Xc(t) =
1√
N

N∑

n=1

cos
(
wdt cos

2πn
N

+ φn

)
(4b)

Xs(t) =
1√
N

N∑

n=1

sin
(
wdt cos

2πn
N

+ φn

)
. (4c)

In [12] and [13], Pop and Beaulieu gave excellent and de-
tailed discussion on the PDF of the fading envelope, and the
autocorrelation of the complex envelope of this model. They
warned, however, that while their improved simulator is wide
sense stationary, it may not model some higher-order statis-
tical properties accurately. To further reveal the statistical
properties of this model, we present the following correlation
statistics of this model.

RXcXc
(τ) =

1
2N

N∑

n=1

cos
(
wdτ cos

2πn
N

)
(5a)

RXsXs
(τ) =

1
2N

N∑

n=1

cos
(
wdτ cos

2πn
N

)
(5b)

RXcXs
(τ) =

1
2N

N∑

n=1

sin
(
wdτ cos

2πn
N

)
(5c)

RXsXc
(τ) = − 1

2N

N∑

n=1

sin
(
wdτ cos

2πn
N

)
(5d)

RXX(τ) = 2RXcXc
(τ) + j2RXcXs

(τ) (5e)

R|X|2|X|2(τ) = 1 + 4R2
XcXc

(τ) + 4R2
XcXs

(τ) +
1
N

. (5f)
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We make three remarks based on (5): 1) The statistics of
this modified model with N = ∞ are the same as the de-
sired ones of the original Clarke’s model. However, when N
is finite, the statistics of this model are different from the
desired ones derived from Clarke’s model; 2) the statistics
of this model do not converge asymptotically to the desired
ones when N increases as discussed in [13] for the real part
of RXX(τ); 3) when N is finite and odd, the imaginary part
of RXX(τ), along with RXcXs

(τ) and RXsXc
(τ), can signifi-

cantly deviate from zero (the desired values), which implies
that the quadrature components of this model are statisti-
cally correlated when N is odd.

C. An Improved Rayleigh Fading Channel Simulator

Based on the statistical analysis of Clarke’s model and
Pop and Beaulieu’s modified model, we propose an improved
Clarke’s simulation model as follows.

Definition 1: The normalized lowpass fading process of a
new statistical simulation model is defined by

Y (t) = Yc(t) + jYs(t) (6a)

Yc(t) =

√
1
N

N∑

n=1

cos(wdt cosαn + φn) (6b)

Ys(t) =

√
1
N

N∑

n=1

sin(wdt cosαn + φn) (6c)

with

αn =
2πn+ θn

N
, n = 1, 2, · · · , N, (7)

where φn and θn are statistically independent and uniformly
distributed over [−π, π) for all n. It is noted that the differ-
ence between this improved model and Pop and Beaulieu’s
model is the introduction of random variables θn to the angle
of arrival.

It can be shown that the first-order statistics of this im-
proved model are the same as those of Pop and Beaulieu’s
model. However, some second-order statistics of this im-
proved model are different, and they are presented below.

Theorem 3: The autocorrelation and cross-correlation
functions of the quadrature components, and the autocor-
relation functions of the complex envelope and the squared
envelope of fading signal Y (t) are given by

RYcYc
(τ) =

1
2
J0(wdτ) (8a)

RYsYs
(τ) =

1
2
J0(wdτ) (8b)

RYcYs
(τ) = 0 (8c)

RYsYc
(τ) = 0 (8d)

RY Y (τ) = J0(wdτ) (8e)

R|Y |2|Y |2(τ) = 1 + J2
0 (wdτ) +

1
N

. (8f)
Proof: The proof is similar to those of Theorems 1 and

2 given in [15], details are omitted for brevity.
As can be seen from Theorems 1 and 3, the correlation

statistics of the improved model are the same as those of

Clarke’s model when both models have the same number of
sinusoids. However, the variances of these correlations of the
improved model are smaller than those of Clarke’s model be-
cause the variance of the angle of arrival of the improved
model is smaller than that of Clarke’s model. Unfortunately,
there are no closed-form expressions for the variances of these
correlations of the improved model. Fig. 1 shows, as an exam-
ple, some simulation results for the correlation variances of
Clarke’s model and the improved Clarke’s model. Obviously,
the variance of the autocorrelation of the complex envelope
of our improved model is smaller than that of Clarke’s model.
This implies that the improved model converges faster than
Clarke’s model for a finite number of simulation trials. It
is pointed out here that if we choose θn = θ for all n, all
the second-order statistics of Y (t) will be the same as shown
above, but the convergence of the ensemble average in simu-
lation is slower.

0 1 2 3 4 5 6 7 8 9 10
0
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0.16

0.18

0.2
Variance of autocorrelation of the complex envelope (N=8)

V
ar

{R
gg

(τ
)}

Normalized time: f
d
τ

Var{R
gg

(τ)}: Simulation Clarke’s model
Var{R

gg
(τ)}: Theory Clarke’s model

Var{R
YY

(τ)}: Simulation Improved model

Fig. 1. Variances of autocorrelations of the complex envelope of Clarke’s
model and our improved model.

Before concluding this section, it is important to point out
that the new simulation model can be directly used to gen-
erate uncorrelated fading samples for simulating frequency
selective Rayleigh channels, MIMO channels, and diversity
combing techniques. Let Yk(t) be the kth Rayleigh fading
sample sequence given by

Yk(t) =

√
1
N

N∑

n=1

exp
[
jwdt cos

(
2πn+ θn,k

N

)
+ jφn,k

]
, (9)

where θn,k and φn,k are mutually independent and uniformly
distributed over [−π, π) for all n and k. Then, Yk(t) retains
all the statistical properties of Y (t) defined by eqns. (6).
Furthermore, Yk(t) and Yl(t) are uncorrelated for all k 	= l,
due to the mutual independence of θn,k, φn,k, θn,l and φn,l

when k 	= l.

III. A Novel Rician Fading Simulator

In this section, we present a statistical Rician fading sim-
ulation model and its statistical properties.

Definition 2: The normalized lowpass fading process of a
new statistical simulation model for Rician fading is defined
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by

Z(t) = Zc(t) + jZs(t) (10a)

Zc(t) =
[
Yc(t) +

√
K cos(wdt cos θ0 + φ0)

]
/
√
1 +K (10b)

Zs(t) =
[
Ys(t) +

√
K sin(wdt cos θ0 + φ0)

]
/
√
1 +K, (10c)

whereK is the ratio of the specular power to scattered power,
θ0 and φ0 are the angle of arrival and the initial phase, re-
spectively, of the specular component, and φ0 is a random
variable uniformly distributed over [−π, π).
We present the correlation statistics of the fading signal,

Z(t), in the following theorem. The proofs are omitted.
Theorem 4: The autocorrelation and cross-correlation

functions of the quadrature components, and the autocor-
relation functions of the complex envelope and the squared
envelope of fading signal Z(t) are given by

RZcZc (τ) = [J0(wdτ) +K cos(wdτ cos θ0)] /(2 + 2K) (11a)

RZsZs (τ) = [J0(wdτ) +K cos(wdτ cos θ0)] /(2 + 2K) (11b)

RZcZs (τ) = K sin(wdτ cos θ0)/(2 + 2K) (11c)

RZsZc (τ) = −K sin(wdτ cos θ0)/(2 + 2K) (11d)

RZZ(τ) = [J0(wdτ) +K exp(jwdτ cos θ0)] /(1 +K) (11e)

R|Z|2|Z|2 (τ) =
{
1+J2

0 (wdτ)+2K [1+J0(wdτ) cos(wdτ cos θ0)]

+K2 +
1
N

}
/(1 +K)2. (11f)

We now present the PDF’s of the fading envelope |Z| and
phase Ψ(t) = arctan [Zc(t), Zs(t)]1.

Theorem 5: When N approaches infinity, the envelope |Z|
is Rician distributed and the phase Ψ(t) is uniformly dis-
tributed over [−π, π), and their PDF’s are given by

f|Z|(z) = 2(1 +K)z · exp
[
−K − (1 +K)z2]

×I0

[
2z

√
K(1 +K)

]
, z ≥ 0 (12a)

fΨ(ψ) =
1
2π

, ψ ∈ [−π, π), (12b)

where I0(·) is the zero-order modified Bessel function of the
first kind [18].

Proof: Since the sinusoids in the sums of Yc(t)
and Ys(t) are statistically independent and identically dis-
tributed, Yc(t) and Ys(t) tend to Gaussian random processes
as the number of sinusoids, N , increases without limit, ac-
cording to the central limit theorem [20]. Moreover, since
RYcYs

(τ) = 0 and RYsYc
(τ) = 0, Yc(t) and Ys(t) are inde-

pendent. Therefore, Zc(t) and Zs(t) defined by (10) are also
independent.
When the initial phase φ0 of the specular component is

chosen, the conditional joint PDF of Zc(t) and Zs(t) is given
by

f
Zc,Zs

(zc, zs|φ0) =
1 +K

π
exp

{
−(1 +K) [zc − mc(t)]

2

−(1 +K) [zs − ms(t)]
2
}
,

where mc(t) =
√

K
1+K cos(wdt cos θ0 + φ0) and ms(t) =

√
K

1+K sin(wdt cos θ0 + φ0).

1The function arctan(x, y) maps the arguments (x, y) into a phase in
the correct quadrant in [−π, π).

Since the initial phase φ0 is uniformly distributed over
[−π, π), the joint PDF of Zc(t) and Zs(t) is given by

f
Zc,Zs

(zc, zs) =
∫ π

−π

f
Zc,Zs

(zc, zs|φ0) · 1
2π

· dφ0.

Transforming the Cartesian coordinates (zc, zs) to polar
coordinates (z, ψ) with zc = z · cosψ and zs = z · sinψ,
we obtain the joint PDF of the envelope |Z| and the phase
Ψ = arctan(zc, zs),

f|Z|,Ψ(z, ψ) =
(1 +K)z

π
· exp

[
−K−(1+K)z2]

×I0

[
2z

√
K(1 +K)

]
, z ≥ 0, ψ ∈ [−π, π).

Then, the marginal PDF’s of the envelope and the phase
can be obtained by the following two equations

f|Z|(z)=
∫ π

−π

f|Z|,Ψ(z, ψ)dψ, fΨ(ψ)=
∫ ∞

0
f|Z|,Ψ(z, ψ)dz.

This completes the proof.

We now highlight Theorem 5 with two remarks. First, both
the fading envelope and the phase are stationary because
their PDF’s are independent of time t. This is very different
from the previous Rician models [2], [9], where the PDF of
the fading phase is a very complicated function of time t,
and therefore the fading phase is not stationary as pointed
out in [2]. Here, the fading phase of our new model is not
only stationary but also uniformly distributed over [−π, π).
Secondly, the fading envelope and phase of our new Rician
model are independent. As usual, the PDF’s of the envelope
and the phase of our Rician channel model include Rayleigh
fading (K = 0) as a special case.

Two other important properties associated with the fad-
ing envelope are the level crossing rate (LCR) and the av-
erage fade duration (AFD). The LCR is defined as the rate
at which the envelope crosses a specified level with positive
slope. The AFD is the average time duration that the fading
envelope remains below a specified level. We now present
explicit formulas for the LCR and AFD for a general Ri-
cian fading channel whose specular component has non-zero
Doppler frequency.

Theorem 6: When N approaches infinity, the level cross-
ing rate L|Z| and the average fade duration T|Z| of the new
simulator output are given by

L|Z| =

√
2(K + 1)

π
ρfd · exp

[
−K − (K + 1)ρ2]

×
∫ π

0
dα ·

[
1 +

2
ρ

√
K

K + 1
cos2 θ0 · cosα

]

× exp
[
2ρ

√
K(K + 1) cosα−2K cos2 θ0 · sin2 α

]
, (13a)

T|Z| =
1− Q

[√
2K,

√
2(K + 1)ρ2

]

L|Z|
, (13b)

where ρ is the normalized fading envelope level given by
|Z|/|Z|rms with |Z|rms being the root-mean-square envelope
level, and Q(·) is the first-order Marcum Q-function [21].
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Proof: WhenN approaches infinity, the fading envelope
is Rician distributed as shown in Theorem 5. Using similar
methods to those given in [17] for determining the LCR and
in [19] for the AFD, one can prove eqns (13a) and (13b),
respectively.
It is noted here that if θ0 = π/2, which means that the

specular component has zero Doppler frequency, then the
LCR given by (13a) has a closed-form solution. If K = 0,
Z(t) = Y (t) becomes a Rayleigh fading process; then both
the LCR and the AFD have closed-form solutions.

IV. Empirical Testing

Verification of the proposed fading simulator is carried out
by comparing the corresponding simulation results for finite
N with those of the theoretical limit when N approaches
infinity. Throughout the following discussions, the newly
proposed statistical simulators have been implemented by
choosing N = 8 unless otherwise specified and all the ensem-
ble averages for simulation results are based on 500 random
samples unless otherwise specified.

A. Evaluation of Correlation Statistics

We have conducted extensive simulations of the autocor-
relations and cross-correlations of the quadrature compo-
nents, and the autocorrelation of the complex envelope of
both Rayleigh and Rician (with various Rice factors) fading
signals. The simulation results of these correlation statistics
match the theoretically calculated results with high accuracy.
Therefore, we do not show these results here due to space lim-
itations. The simulation results and the theoretically calcu-
lated results for the autocorrelation of the squared envelope
of the fading signals are slightly different when N = 8 as can
be seen in Fig. 2. The differences decrease if we increase the
value of N .
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Fig. 2. The autocorrelation of the squared envelope |Z(t)|2 and θ0 =
π/4 for K = 1 and K = 3 Rician cases.

B. Evaluation of Envelope and Phase PDF’s

Figs. 3 and 4 show that the PDF’s of the fading envelope
and phase of the simulator with N = 8 are in very good

agreement with the theoretical ones. It is also noted that
when N > 8, these PDF’s will have even better agreement
with the theoretically desired ones.
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Fig. 3. The PDF of the fading envelope |Z(t)|.
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Fig. 4. The PDF of the fading phase Ψ(t).

C. Evaluation of the LCR and the AFD

The simulation results for the normalized level crossing
rate (LCR), L|Z|

fd
, and the normalized average fade duration

(AFD), fdT|Z|, of the new simulators are shown in Figs. 5
and 6, respectively, where the theoretically calculated LCR
and AFD for N = ∞ are also included in the figures for
comparison, indicating good agreement in both cases. Again,
if we increase the number of sinusoids, N , the simulation
results for the case of finite N approach the theoretical N =
∞ results.

For the region of ρ < 0 dB, it is interesting to note here
that the average fade duration for θ0 = 0 (or θ0 < π/4) tends
to be smaller for larger values of the Rice factor K. This is
different from the AFD for θ0 = π/2, which tends to be larger
with larger Rice factors.
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Fig. 5. The normalized LCR of the fading envelope |Z(t)|, where θ0 =
π/4 for all K > 0 Rician fading.
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Fig. 6. The normalized AFD of the fading envelope |Z(t)|, where θ0 = 0
for all K > 0 Rician fading.

V. Conclusion

In this paper, it was shown that Clarke’s model with a fi-
nite number of sinusoids can be directly used for simulating
Rayleigh fading channels, and its computational efficiency
and second-order statistics are better than those of Jakes’
original model [3] and as good as those of the recently im-
proved Jakes’ Rayleigh fading simulators [14], [16]. An im-
proved Clarke’s model was proposed to minimize the variance
of the time averaged correlations of a fading realization from
a single trial. A novel simulation model employing a random
specular component was proposed for Rician fading channels.
The specular (line-of-sight) component of this Rician fading
model is a zero-mean stochastic sinusoid with a pre-chosen
Doppler frequency and a random initial phase. Compared to
all the existing Rician fading models, which have a non-zero
mean deterministic specular component, the new model bet-
ter reflects the fact that the specular component is random
from time to time and from mobile to mobile. Additionally

and importantly, the fading phase PDF of the new Rician fad-
ing model is independent of time and uniformly distributed
over [−π, π). All the theoretically predicted statistical prop-
erties of the new simulators have been verified by extensive
simulation results. Excellent agreement was obtained in all
cases.
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