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Abstract

Statistical Software Debugging

by

Alice Xiaozhou Zheng

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Statistical debugging is a combination of statistical machine learning and software

debugging. Given sampled run-time profiles from both successful and failed runs, our

task is to select a small set of program predicates that can succinctly capture the

failure modes, thereby leading to the locations of the bugs. Given the diverse nature

of software bugs and coding structure, this is not a trivial task.

We start by assuming that there is only one bug in the program. This allows us to

concentrate on the problem of non-deterministic bugs. We design a utility function

whose components may be adjusted based on the suspected level of determinism of

the bug. The algorithm proves to work well on two real world programs.

The problems becomes much more complicated once we do away with the single-

bug assumption. The original single-bug algorithm does not perform well in the

presence of multiple bugs. Our initial attempts at clustering fall short of an effective

solution. After identifying the main problems in the multi-bug case, we present an

iterative predicate scoring algorithm. We demonstrate the algorithm at work on

five real world programs, where it successfully clusters runs and identifies important

predicates that clearly point to many of the underlying bugs.
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Chapter 1

Introduction

Machines have been inextricably linked with our lives since the beginning of history.

From the simple flint hunting tools to the modern computer, machines have become

smarter over time. They have become more automated, and their tasks increasingly

abstract. In the field of machine learning, researchers concentrate on the goal of

making self-reliant machines that are able to learn from data and perform detail

analysis work that is often difficult for the human eye.

Machine learning algorithms utilize tools from statistics, optimization theory, and

engineering. From a certain perspective, machine learning as a discipline is funda-

mentally application-oriented. On the one hand, it has the rigorous theoretical un-

derpinnings from statistics and applied mathematics. On the other hand, it is useful

in fields as diverse as bioinformatics, text, image, and music analysis, social network

analysis, astrophysics, and many more. Machine learning researchers continue to find

exciting application niches in emerging fields.

All machines eventually fail. For example, software program users are familiar

with failures caused by software bugs. Programs often crash in the middle of an

important task, or, more commonly, they may return incorrect output. Not only are
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Chapter 1. Introduction

software bugs inconvenient for the user, they also adversely affect productivity and

delay the completion of important tasks. Persistent software bugs and system failures

may have profound social, economic, and security impacts on our society.

No one wants to release buggy software, but software companies often lack the

time and resources to catch all of the major bugs prior to release. Thus we have the

situation where, on the one hand, there are software users who need bug-free software,

and on the other hand, there are programmers and companies who need their help.

It would be advantageous for both sides to join their efforts in battling software bugs.

Test engineers would be able to find more bugs with less time, and users would be

able to direct debugging efforts towards important bugs effecting the most people.

There have been previous attempts at user-assisted bug-finding. Both Microsoft

Windows and the Mozilla web browser have deployed crash report feedback mecha-

nisms on their software. Each time the program crashes, a crash report is sent back to

a server. The report contains basic information such as the stack trace and names of

loaded library modules at the time of crash. Programs with a large user base can thus

obtain thousands of crash reports everyday, many of which reveal the same problems.

Companies have used these reports to guide their debugging efforts.

But we can do much more. With statistical debugging, we can take user-assisted

debugging one step further. We collect reports of incorrect behavior, as well as those

of correct behavior. Through statistical analysis and comparison of the two sets, we

aim to automatically isolate the locations of bugs in the program.

In this thesis, I present some findings in the statistical debugging project. It has

been a collaborative effort between software engineering (Ben Liblit, Alex Aiken, and

Mayur Naik), and machine learning (Michael Jordan and myself). In the span of two

and a half years, we have set up a small public deployment of our program report

collection framework, and have wrestled with the complicated task of finding multiple

bugs in real world programs.
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Chapter 1. Introduction

The thesis is organized as follows. chapter 2 presents a brief survey of existing

work in the realm of automatic software debugging. I introduce the run-time report

collection framework in chapter 3, emphasizing on the nature of the data we obtain. In

chapter 4, I present an algorithm that is useful for locating single bugs. We observe

that the algorithm works well on programs containing only one bug, but does not

work as well in the presence of multiple bugs. I describe important characteristics of

the multi-bug problem in chapter 5, which lead to specific requirements of the multi-

bug analysis algorithm. I present a multi-bug algorithm in chapter 6, and discuss

empirical results on real-world programs in chapter 8. I conclude with a discussion

of possible extensions and future work in chapter 9.
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Chapter 2

Related Work

The work presented in this thesis falls under the category of dynamic program anal-

ysis. At the other end of the spectrum, there is currently a great deal of interest in

applying static analysis to improve software quality [Gould et al., 2004; Johnson and

Wagner, 2004; Flanagan et al., 2002; Henzinger et al., 2002]. While we firmly believe

in the use of static analysis to find and prevent bugs, our dynamic approach has

advantages as well. A dynamic analysis can observe actual run-time values, which is

often better than either making a very conservative static assumption about run-time

values for the sake of soundness or allowing some very simple bugs to escape unde-

tected. Another advantage of dynamic analysis, especially one that mines actual user

executions for its data, is the ability to assign an accurate importance to each bug.

Additionally, a dynamic analysis that does not require an explicit specification of the

properties to check can find clues to a very wide range of errors, including classes of

errors not considered in the design of the analysis.

The Daikon project [Ernst et al., 2001] monitors instrumented applications to

discover likely program invariants. It collects extensive trace information at run time

and mines traces offline to accept or reject any of a wide variety of hypothesized
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Chapter 2. Related Work

candidate predicates. The DIDUCE project [Hangal and Lam, 2002] tests a more

restricted set of predicates within the client program, and attempts to relate state

changes in candidate predicates to manifestation of bugs. Both projects assume

complete monitoring, such as within a controlled test environment. Our goal is to use

lightweight partial monitoring, suitable for either testing or deployment to end users.

Software tomography as realized through the GAMMA system [Bowring et al.,

2002; Orso et al., 2003] shares our goal of low-overhead distributed monitoring of

deployed code. GAMMA collects code coverage data to support a variety of code

evolution tasks. Our instrumentation exposes a broader family of data- and control-

dependent predicates on program behavior and uses randomized sparse sampling to

control overhead. Our predicates do, however, also give coverage information: the

sum of all predicate counters at a site reveals the relative coverage of that site.

Delta Debugging [Zeller and Hildebrandt, 2002] compares inputs of instances of

successful runs with those of failing runs. It repeatedly tests the program with differ-

ent inputs until it narrows down the input string to a minimum set that causes the

program to fail. Zeller has extended the same technique to internal program states,

thereby identifying cause-effect chains of failure [Zeller, 2002]. Recently, Holger and

Zeller have begun to further analyze cause-effect chains in order to better isolate

causes of program failures [Zeller, 2002].

Efforts to directly apply statistical modeling principles to debugging have met

with mixed results. Early work in this area by Burnell and Horvitz [Burnell and

Horvitz, 1995] uses program slicing in conjunction with Bayesian belief networks to

filter and rank the possible causes for a given bug. Empirical evaluation shows that

the slicing component alone finds 65% of bug causes, while the probabilistic model

correctly identifies another 10%. This additional payoff may seem small in light of

the effort, measured in man-years, required to distill experts’ often tacit knowledge

into a formal belief network. However, the approach does illustrate one strategy for
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Chapter 2. Related Work

integrating information about program structure into the statistical modeling process.

In more recent work, Podgurski et al. [2003] apply statistical feature selection,

clustering, and multivariate visualization techniques to the task of classifying software

failure reports. The intent is to bucket each report into an equivalence group believed

to share the same underlying cause. Features are derived offline from fine-grained

execution traces without sampling; this approach reduces the noise level of the data

but greatly restricts the instrumentation schemes that are practical to deploy outside

of a controlled testing environment. As in our own earlier work, Podgurski uses

logistic regression to select features that are highly predictive of failure. Clustering

tends to identify small, tight groups of runs that do share a single cause but that are

not always maximal. That is, one cause may be split across several clusters. This

problem is similar to covering a bug profile with sub-bug predictors (see section 5.2).

In contrast, current industrial practice uses stack traces to cluster failure reports

into equivalence classes. Two crash reports showing the same stack trace, or perhaps

only the same top-of-stack function, are presumed to be two reports of the same

failure. This heuristic works to the extent that a single cause corresponds to a single

point of failure, but our experience with several real world programs suggests that

this assumption may not often hold. In the MOSS program, we find that only bugs

#2 and #5 have truly unique “signature” stacks: a crash location that is present if

and only if the corresponding bug was actually triggered. These bugs are also our

most deterministic. Bugs #4 and #6 also have nearly unique stack signatures. The

remaining bugs are much less consistent: each stack signature is observed after a

variety of different bugs, and each triggered bug causes failure in a variety of different

stack states. In the programs RHYTHMBOX and EXIF, bugs caused crashes so

long after the bad behavior that stacks were of limited use or no use at all.

Studies that attempt real-world deployment of monitored software must address a

host of practical engineering concerns, from distribution to installation to user support
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Chapter 2. Related Work

to data collection and warehousing. Elbaum and Hardojo [2003] have reported on

a limited deployment of instrumented Pine binaries. Their experiences have helped

to guide our own design of a wide public deployment of applications with sampled

instrumentation, presently underway [Liblit et al., 2004].

For some highly available systems, even a single failure must be avoided. Once

the behaviors that predict imminent failure are known, automatic corrective measures

may be able to prevent the failure from occurring at all. The Software Dependability

Framework (SDF) [Gross et al., 2003] uses multivariate state estimation techniques

to model and thereby predict impending system failures. Instrumentation is assumed

to be complete and is typically domain-specific. Our algorithm could also be used to

identify early warning predicates that predict impending failure in actual use.

Our bug-finding algorithm has evolved over the course of this project. The single-

bug algorithm has been previously published at PLDI and NIPS. Earlier versions of

the multi-bug algorithm are very different from that presented in this thesis and have

been published at PLDI. These papers have generated some interest in this area of

research. Notably, Liu et al. [2005] apply a hypothesis test on the truth frequency

of predicates in failed vs. successful runs. Their algorithm yielded better results on

a different set of programs with complete observations (no down-sampled predicate

counts). Up to now we have assumed that binary true/false predicate counts are more

suited for bug-finding than the actual number of truth counts. Their experiments,

however, may serve as evidence to the contrary.
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Chapter 3

Data Generation and Collection

We begin the description of our automatic debugging system with the predicate sam-

pling framework. The sampling process generates truth counts of program predicates,

which are analyzed in subsequent parts of the system.

In existing crash feedback systems, crash reports include information such as the

program stack at the time of crash and the set of loaded libraries. Such coarse-

grained information may be easy to record and store, but they often do not contain

enough details to be useful. Finer-grained debugging information would be able

to indicate the problems more precisely. Thus the ultimate goal of our predicate

sampling framework is to collect detailed information that presents an unbiased view

of the run-time internal states of the program.

We would like to gather as much information as possible from the program while it

is running. But the data collection must not incur too much cost to the user, because it

is ultimately up to the user to adopt the system and provide us with program reports.

Few users would tolerate a run-time information-collection system that greatly effects

the speed of the program. To save time we must sample the predicates. This means

the collected data from a single run will be sparse. To counter the effects of sampling,
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Chapter 3. Data Generation and Collection

we will need more runs of the program, as well as good analysis algorithms that take

sampling into effect.

3.1 Instrumentation Schemes

The program report collection process begins with a source-to-source transformation

of the program. Given the original source code, a long list of “questions” is automat-

ically generated and inserted into appropriate places in the source. These questions

query the state of program variables. The instrumented program then executes these

queries and collects the answers.

There are many kinds of questions one might ask the program. Often times,

the flow of the program contains important debugging information. For instance, at

branch statements, it might be useful to know which branch was ultimately taken.

However, recording the details of each branch decision would require a lot of storage

space. Instead it might be sufficient to record only the number of times a certain

branch conditional returns the answer TRUE vs. FALSE. We can insert a line of code

for each branch statement and record this information.

Return values of functions can also be important problem indicators. In particular,

C functions often use return values to indicate success or failure. For example, the

fopen() function either returns a valid file pointer, or the value zero if an error occurs.

Such error indicators are often neglected by careless programmers. Thus, a record

of the return values of each and every function call may yield important clues about

what went wrong during a run of the program. Again, due to space considerations, we

settle for a record of the total number of times each function returns a value greater

than, equal to, and less than zero.

Array access out-of-bounds errors are common programming mistakes with far-

reaching consequences. The Java programming language automatically checks every

9



Chapter 3. Data Generation and Collection

array access, but C programs have no protection against attempts to read or write

beyond the correct boundaries of an array. When a piece of memory is overwritten

by mistake, the consequences may not be apparent until much later. This delay

in time makes such mistakes very difficult to track down. To catch such mistakes,

a programmer might add checks for all array indices to ensure that they are within

their legal range. But this is labor-intensive. Our statistical debugging framework, on

the other hand, can automatically insert questions at appropriate places, but would

have a difficult time identifying array indices and the correct array lengths. Thus

instead, we opt to compare every pair of integer valued program variables, and record

the number of times one is greater than, equal to, or less than another. This gives us

very detailed information that may also be useful for catching other types of bugs.

To recapitulate, we introduce three instrumentation schemes, or general suites of

queries.

branches: at each branch statement, record the number of times the program takes

the true branch and the false branch;

return values: for each function call returning a character, integer, or pointer,

record the number of times the return value is greater than, less than, or equal

to zero;

scalar-pairs: at each integer-valued assignment of the form x = ..., compare x to

each integer variable and program constant in scope, and record the number of

times it is greater than, equal to, or less than x.

While other instrumentation schemes have been considered, the three listed above

form the backbone of the bulk of our experiments. Once the instrumentation scheme

is chosen, all queries are generated automatically. The branch scheme checks every

10



Chapter 3. Data Generation and Collection

branch statement, the return value scheme every function call, and so on. No man-

ual effort is involved. The test engineer need only to decide which instrumentation

schemes to include, and the rest is done automatically.

We define each line of inserted instrumentation code to be an instrumentation

site. Each instrumentation site contains a query to the program, such as “did the

last branch conditional statement evaluate to true or false.” The answer to the

query is used to update one of several predicate counters. For instance, each branch

instrumentation site is associated with two predicates: TRUE and FALSE. If the query

returned TRUE, then the TRUE predicate counter is incremented by one, otherwise the

FALSE predicate counter is incremented.

3.2 The Predicate Sampling Framework

Depending on the size and complexity of the original program, the instrumented

version might contain thousands to millions of instrumentation sites. The program

might take several times longer to run if it were to execute every query it encounters.

One way to save time is to execute only a subset of the queries in each run. We

devise the following random instrumentation site sampling process, which guarantees

an unbiased view of the internal states of the program.

Imagine that the program tosses a random coin every time it comes across an

instrumentation site. If the coin comes up heads, then the program executes the

query and records the answer; otherwise the site is skipped. Thus, as the program

runs, a Bernoulli trial of independent coin tosses decides whether or not to take each

sample. Suppose that the coin has a Ber(d) distribution, and suppose that a certain

site is reached exactly once in every run of the program. Then on average, we would

expect to see one sample of the site per 1/d runs.

Generating a random bit every time we reach an instrumentation site still requires

11



Chapter 3. Data Generation and Collection

a lot of computation resources. Recall that, in a Bernoulli trial, the arrival time of

the next head is geometrically distributed. Hence instead of generating individual

random bits, we can generate a Geo(d) distributed counter. Each site decrements the

counter by one. When the counter reaches zero, a sample is taken and a new counter

is generated.

Furthermore, there are ways of decrement the counter in bulk when necessary. For

example, we determine, at compile time, that there are n sites contained in a basic

block (i.e., a block of code with no branches or function calls to the outside). Upon

reaching the block at run time, if the current value of the counter is greater than n,

then the program may simply decrement the counter by n and execute a fast version

of the code that does not contain instrumentation. Only when the counter value is

smaller than or equal to n would the program need to step through each site individ-

ually. (Interested readers may refer to Liblit [2004] for details on implementation.)

The sampling rate d controls the trade-off between run time overhead and data

sparsity. Smaller values of d incur less overhead, but result in sparser data. In Liblit

[2004], Liblit experiments with various sampling rates on a set of twelve benchmark

programs. Some of those results are included here. Table 3.1 summarizes the amount

of additional CPU time taken by the instrumented program compared with the un-

instrumented version.

This experiment demonstrates an interesting phenomenon. When the sampling

rate is not sparse enough, it is better to just always take the sample, i.e., setting the

sampling rate to 1. This is because when a sample is always taken, the program does

not need to generate the geometric counters or check to see if it has reached zero.

Such checks involve costly branch statements. In some cases, decreasing the sampling

rate down to 1/1000 keeps the overhead at a tolerable level.
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Table 3.1: Instrumentation overhead in benchmark programs [Liblit, 2004].

Overhead for Sampling Rate

Benchmark 1/1 1/10 1/100 1/1000 1/10000

bh 576% 5205% 731% 126% 28%
bisort 570% 2309% 301% 69% 44%
compress 2049% 9075% 1202% 191% 74%
em3d 226% 1118% 136% 35% 25%
health 41% 230% 22% 5% 1%
ijpeg 1422% 6627% 869% 149% 46%
mst 86% 452% 62% 15% 10%
perimeter 209% 1565% 246% 99% 76%
power 23% 406% 55% 19% 16%
treeadd 69% 524% 62% 12% 7%
tsp 140% 359% 51% 9% 4%
vortex 804% 4708% 679% 130% 60%

3.3 Non-Uniform Sampling

Sampling reduces run time overhead, but leads to sparse data. Such effects are espe-

cially apparent at rarely reached instrumentation sites. However, in many situations,

such rarely reached sites may provide particularly important clues about the bug.

Thus the quality of the recorded data may be greatly improved through non-uniform

sampling of the sites. With non-uniform sampling, rare sites may be given a much

higher sampling rate than sites that are often reached. Since they are seldom reached,

an increase in sampling rate would likely have little consequence for the run-time over-

head.

There are a few different implementation choices for non-uniform sampling. For

example, one might employ multiple countdown counters, each with a different geo-

metric distribution. Alternatively, each site may choose to decrement the countdown

by a number other than 1. Sites with higher weight would have a higher sampling

probability. Either way, non-uniform sampling requires a sampling plan for each in-
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strumentation site. Such a plan may be gathered from a few training runs where the

sampling probability set to 1. The sampling probability of each site can then be set

to the inverse of its observed frequency.

The run time overhead of non-uniform sampling depends on the particular sam-

pling plan of the sites. We have not systematically investigated the effects of non-

uniform sampling on run time overhead. But due to the potential benefits for the

analysis algorithm, all the datasets used in our experiments are generated with non-

uniform sampling.

3.4 The Cooperative Bug Isolation Project

There is an on-going public deployment of our program sampling framework. The

Cooperative Bug Isolation project (CBI) (http://www.cs.wisc.edu/cbi/) directly dis-

tributes instrumented binaries of open source programs to end-users [Liblit et al.,

2004]. This is an opt-in system where users have the option of choosing to send a

compressed run-time profile back to our server at the end of every program run.

Currently, six open-source programs are instrumented and ready for download.

Evolution is an email-calender program; Gaim is an instant messaging tool; The

GIMP is an image manipulation program much like Adobe Photoshop; Nautilus

is a session-management and file-navigation tool; RHYTHMBOX is an MP3 music

player; SPIM is an assembly language interpreter.

To date, we have collected a number of run-time profiles for these programs, but

the dataset is not yet large enough for comprehensive testing of our algorithms. The

bulk of our experiments are conducted on generated data from five programs.

14

http://www.cs.wisc.edu/cbi/
http://www.cs.wisc.edu/cbi/


Chapter 3. Data Generation and Collection

Table 3.2: Summary statistics for debugging datasets.

Runs

Lines of Code Successful Failing Sites Predicate Counts

CCRYPT 5276 20,684 10,316 9948 58,720
BC 14,288 23,198 7802 50,171 298,482
MOSS 6001 26,239 5505 35,223 202,998
RHYTHMBOX 56,484 12,530 19,431 14,5176 857,384
EXIF 10,588 30,789 2211 27,380 156,476

3.5 The Datasets

For our experiments, we generate data from five real-world programs: BC, CCRYPT,

MOSS, RHYTHMBOX, and EXIF. All three instrumentation schemes are in-

cluded. For each run, a sequence of valid command-line arguments are chosen ran-

domly to simulate actual user choices. The instrumented program binary collects

data with the sampling probability set to 1 for all sites. The predicates counts are

down sampled afterwards according to non-uniform sampling rates gathered based on

1000 training runs. All of our experiments are performed on sampled data.

Table 3.2 contains some relevant statistics of the dataset. We will introduce each

of the programs in turn.

3.5.1 CCRYPT

CCRYPT is a command-line tool for file encryption and decryption. CCRYPT 1.2

has a known input validation bug. At one point in the code the program attempts to

write a file. If the file already exists, the user is presented with a prompt asking for

confirmation that the file should be overwritten; if the user input is EOF (i.e., the

user hits Enter without typing anything) the program will crash. Compared to the

non-deterministic bug in BC, this bug is deterministic and much easier to find for a
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human. Thus it should also be an easy target for the statistical debugging algorithm.

3.5.2 BC

BC is a Unix command-line calculator program. GNU BC 1.06 has a previously

reported buffer overrun bug. In the memory reallocation routine more_arrays(), one

of the memory-writing loops uses the wrong array length. When this bug is triggered,

the program overwrites memory area outside of its legal limit, which crashes the

program in a non-deterministic fashion. Sometimes the program hits the overwritten

area and crashes. But in about four out of ten runs, the program gets lucky and never

re-uses the trampled memory again, and thus manages to complete successfully. We

call this a non-deterministic bug because it does not trigger a certain outcome.

3.5.3 MOSS

MOSS is a widely used service for detecting plagiarism in software [Schleimer et al.,

2003]. As a validation experiment for our multi-bug algorithm, we add nine bugs to

MOSS. Six of these were previously discovered and repaired bugs in MOSS that we

reintroduced. The other three were variations on three of the original bugs, to see if

our algorithms could discriminate between pairs of bugs with very similar behavior

but distinct causes. We briefly describe each of these nine bugs.

1. We reintroduced a bug that causes the number of lines in C-style multi-line

comments to be counted incorrectly. This bug causes incorrect output in certain

circumstances: an option to match comments must be on (normally MOSS

ignores comments) and there must be matching multi-line comments that affect

the output.

2. We removed a check for a null FILE pointer. This is not originally a MOSS
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bug; it is exactly analogous to the CCRYPT bug (subsection 3.5.1).

3. We removed an array bounds update in the routine for loading preprocessed data

from disk. The program behaves normally unless the function is called a second

time, in which case previously loaded data may be partially overwritten. This

bug has unpredictable effects and was particularly difficult to find originally.

4. We removed a size check that prevents users from supplying command-line

arguments that could cause the program to overrun the bounds of an array.

5. For historical reasons, MOSS handles Lisp programs differently from all other

languages. We removed a end-of-list check in the Lisp-specific code.

6. For efficiency MOSS preallocates a large area of memory for its primary data

structure. When this area of memory is filled, the program should fail gracefully.

We removed an out-of-memory check.

7. MOSS has a routine that scans an array for multiple copies of a data value.

We removed the limit check that prevents the code from searching past the end

of the array. This bug did not occur in MOSS; it is intended to be a more

frequently occurring version of bug 8.

8. A buffer overrun, this bug was never known to have caused a failure in MOSS.

It was discovered originally by a code review.

9. This bug is a variant of bug 4, but involves a different command-line argument

and a different array.

In summary, there are eight various crashing bugs: four buffer overruns, a null

file pointer dereference in certain cases, a missing end-of-list check in the traversal

of a hash table bucket, a missing out-of-memory check, and a violation of a subtle
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invariant that must be maintained between two parts of a complex data structure.

In addition, some of these bugs are non-deterministic and may not even crash when

they should.

The first bug—incorrect comment handling in some cases—only causes incorrect

output, not a crash. We include this bug in our experiment in order to show that bugs

other than crashing bugs can also be isolated using our techniques, provided there

is some way, whether by automatic self-checking or human inspection, to recognize

failing runs. In particular, for our experiment we also ran a correct version of MOSS

and compared the output of the two versions. This oracle provides a labeling of

runs as “success” or “failure,” and the resulting labels are treated identically by our

algorithm as those based on program crashes.

3.5.4 RHYTHMBOX

RHYTHMBOX is an interactive, graphical, open source music player. Its code

structure is complex, multi-threaded, and event-driven. Event-driven systems use

event queues; each event performs some computation and possibly adds more events

to some queues. This is an application where our approach has a definitely advantage

over other static program analysis techniques. Most of the interesting things are hap-

pening in the event queues, which can only be captured using a run-time framework

like our own.

RHYTHMBOX 0.6.5 contains at least two previously unknown bugs. The first

bug is a race condition, where a previously freed object is called on by another event.

This is probably due to mis-synchronization between different threads of the program.

In some cases, the RHYTHMBOX shell player object continues receiving signals

even after it has been destroyed. The bug manifests itself when the function call

monkey_media_player_get_uri() returns NULL.
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The second bug we uncovered has to do with dangling pointers. At some point,

an timer object used in animating a disclosure widget is destroyed, but a pointer

to the timer object is never updated. The program later tries to destroy the event

pointed to by the old pointer, and subsequently crashes if the event ID has already

been reclaimed by another object. This bug in fact uncovers a whole set of incorrect

coding practices that occur over and over again in RHYTHMBOX. Often times, the

event is destroyed, but the pointer remains, potentially wreaking havoc later on.

These bugs were previously unknown. We discovered both of them using an

earlier version of our statistical debugging algorithm [Liblit et al., 2005]. We have

reported the bugs to the RHYTHMBOX developers and the reports have been

enthusiastically received.

3.5.5 EXIF

EXIF is an open-source image processing program. We discovered three bugs in

EXIF 0.6.9 using a statistical debugging algorithm [Liblit et al., 2005]. First, the

program crashes in the “-m” (machine readable) mode when a NULL value is passed to

the fprintf() function. Secondly, removing the thumbnail from a non-JPEG image

leads to a negative byte count being passed to memmove(), which in turn causes a

crash. Thirdly, manipulating thumbnails in Canon images causes the program to

crash. In the last case, the branching condition o + s > buf_size being true causes

the function exif_mnote_data_canon_load() to return without allocating space for

certain data structures. The program crashes later on when those data structures are

to be used.
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Catching a Single Bug

4.1 Possible Simplifications

Software bugs can occur in many forms and under diverse circumstances. A few sim-

plifying assumptions are necessary before we can start designing statistical debugging

algorithms.

Simplification is possible along several directions. For example, we may be tempted

to assume that sampling has no qualitative effect on the data, and hope that an algo-

rithm that works well on full data may work equally well on a larger set of sampled

data. But this is not the case. Through our experiments, we learned that sampling

causes numerous unanticipated problems for the analysis algorithm. A statistical de-

bugging algorithm needs to compare predicates against each other and pick out the

most “informative” ones. But because each instrumentation site is reached a different

number of times during the run, sampling affects each predicate differently. Thus we

must take care when comparing predicates against each other. In our experience,

it is often very easy to design algorithms that work for unsampled data, but such

algorithms become a lot less effective when given sampled data.
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One may also make simplifying assumptions about the type of bugs to catch. This

is implicitly determined by the instrumentation schemes we choose. The scalar-pairs

scheme, for example, is designed to catch array-overrun type bugs. We cannot catch

bugs that cannot be detected by the instrumentation.

Lastly, we can make assumptions about the number of bugs in the program. We

start with a single-bug assumption: all the failed runs are caused by the same bug.

This is by no means a realistic assumption. But such homogeneity makes the problem

much easier to solve. By starting out on the single-bug path, we hope to be able to

extrapolate about the more general multi-bug case. Whether this is possible remains

to be seen. For now, we work on catching a single bug.

4.2 The Approach

We choose to approach the problem under the classification and feature selection

setting. This is a classic setup in machine learning. But we find that a few changes

are necessary in order to navigate the twists and turns of software debugging. We

choose to work under a decision-theoretic framework because it is flexible enough to

adapt to the particular requirements of the problem at hand.

We can easily set up a classification task based on the crash and success labels.

Our primary goal, however, is that of feature selection [Blum and Langley, 1997]. It

has been noted that the goals of feature selection do not always coincide with that

of classification [Guyon and Elisseeff, 2003]. In our case, classification is but the

means to an end. Good classification performance assures the user that the system is

working correctly, but one still has to examine the selected features to see that they

make sense. In the debugging problem, we only care about features that correctly

predict failures. Hence, instead of working in the usual maximum likelihood setting for

classification and regularization, we define and maximize a more appropriate utility

21



Chapter 4. Catching a Single Bug

function.

4.3 Characteristics of the Single-Bug Problem

We concentrate on isolating the bugs that are caused by the occurrence of a small set

of features, i.e., predicates that are always true when a crash occurs.1 Thus we want to

identify the predicate counts that are positively correlated with the program crashing.

In contrast, we do not care much about the features that are highly correlated with

successes. This makes our feature selection an inherently one-sided process.

Due to sampling effects, it is quite possible that a feature responsible for the

ultimate crash may not have been observed in a given run. This is especially true in

the case of “quick and painless” deaths, where a program crashes very soon after the

actual bug occurs. Normally this would be an easy bug to find, because one wouldn’t

have to look very far beyond the crashing point at the top of the stack. However,

this is a challenge for our approach, because there may be only a single opportunity

to sample the buggy feature before the program dies. Thus many crashes may have

an input feature profile that is very similar to that of a successful run. From the

classification perspective, this means that false negatives are quite likely.

At the other end of the spectrum, if we are dealing with a deterministic bug2,

false positives should have a probability of zero: if the buggy feature is observed

to be true, then the program has to crash; if the program did not crash, then the

bug must not have occurred. Therefore, for a deterministic bug, any false positives

during the training process should incur a much larger penalty compared to any false

negatives.

1There are bugs that are caused by non-occurrence of certain events, such as forgotten initializa-
tions. We choose not to deal with this kind of bugs here.

2A bug is deterministic if it crashes the program every time it is observed. For example, deref-
erencing a null pointer would crash the program without exception.
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4.4 Designing the Utility Function

We need to design a utility function that can handle all of the above stated charac-

teristics. Let crashes be labeled with a 1, and successes 0. Let (x, y) denote a data

point, where x is an input vector of non-negative integer counts, and y ∈ {0, 1} is

the output label. Let f(x; θ) denote a classifier with parameter vector θ. There are

four possible decision outcomes: the true positive (y = 1 and f(x; θ) = 1), the true

negative (y = 0 and f(x; θ) = 0), the false negative (y = 1 and f(x; θ) = 0), and the

false positive (y = 0 and f(x; θ) = 1). In the general form of utility maximization for

classification (see, e.g., [Lehmann, 1986]), we can define separate utility functions for

each of the four cases.

We first select the functional form of the classifier. The actual distribution of input

features X is determined by the software under examination, hence it is difficult to

specify and highly non-Gaussian. We choose f(x; θ) to be a discriminative classifier.

Assuming that the more abnormalities there are, the more likely it is for the program

to crash, it is reasonable to use a classifier based on a linear combination of features.

Let z = θT x, where the x vector is now augmented by a trailing 1 to represent

the intercept term. We use the logistic function µ(z) to model the class conditional

probability:

P (Y = 1 | z) := µ(z) = 1/(1 + e−z).

The decision boundary is set to 1/2, so that f(x; θ) = 1 if µ(z) > 1/2, and f(x; θ) = 0

if µ(z) ≤ 1/2.

Let u1, u2, u3, and u4 denote the utility functions for each of the four decision

scenarios. We choose the functional form to be logistic for all of the utilities, but add
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an extra linear penalty term to u4 for the case of false positives:

u1(x; θ) := u2(x; θ) := δ1 log µ(x; θ) (4.1)

u3(x; θ) := δ2 log(1− µ(x; θ)) (4.2)

u4(x; θ) := δ2 log(1− µ(x; θ))− δ3θ
T x . (4.3)

The constants δ1, δ2, and δ3 adjust the relative importance of the performance of the

classifier in each decision scenario. We will discuss their interpretation in section 4.5.

The overall utility function is:

U(X, Y ; θ) = u1(X; θ)Y I{f(X;θ)=1} + u2(X; θ)Y I{f(X;θ)=0}

+ u3(X; θ)(1− Y )I{f(X;θ)=0} + u4(X; θ)(1− Y )I{f(X;θ)=1} + v(θ),

where IW denotes the indicator function for event W , and v(θ) is a regularization

term, which may be interpreted in terms of a prior over the classifier parameters θ.

In our experiments, we choose the regularization term to be the `1-norm of θ, which

has the sparsifying effect of driving θ towards zero:

v(θ) := −λ|θ|11 = −λ
∑

i

|θi|.

We maximize the empirical estimate of the expected utility:

EP (X,Y ) U = δ1y log µ + δ2(1− y) log(1− µ)− δ3θ
T x(1− y)I{µ>1/2} − λ‖θ‖1

1 . (4.4)

When δ1 = δ2 = 1 and δ3 = 0, Equation (4.4) is akin to the Lasso [Hastie et al., 2001]

(standard logistic regression with ML parameter estimation and `1-norm regulariza-

tion). In general, however, our expected utility function weighs each class separately
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via δi, and includes an additional penalty term for false positives.

Parameter learning is done using stochastic (sub)gradient ascent on the objective

function. Besides being space efficient, such on-line methods also improve user pri-

vacy. Once the sufficient statistics are collected, the trial run can be discarded, thus

obviating the need to permanently store any user’s private data on a central server.

Equation (4.4) is concave in θ, but the `1-norm and the indicator function are

non-differentiable at θi = 0 and θT x = 0, respectively. This can be handled by

subgradient ascent methods3. In practice, we jitter the solution away from the point

of non-differentiability by taking a very small step along any subgradient. This means

that the values of θi will never be exactly zero during optimization. In practice,

weights close enough to zero are essentially taken as zero. Only the few features with

the most positive weights are selected at the end.

4.5 Interpretation of the Utility Function

Let us take a look at the utility functions defined in Equation (4.1), Equation (4.2),

and Equation (4.3). They are essentially weighted logistic utilities with an added

linear penalization for false positives. For the case of Y = 1, Figure 4.1(a) plots

the function log2 µ(z) + 1, a shifted and scaled version of u1 and u2. It is positive

when z is positive, and approaches 1 as z approaches +∞. It is a crude but smooth

approximation of the indicator function for a true positive, yI{µ>1/2}. On the other

hand, when z is negative, the utility function is negative, acting as a penalty for false

negatives. Similarly, Figure 4.1(b) plots the shifted and scaled utility functions for

Y = 0. In both cases, the utility function has an upper bound of 1, so that the

3Subgradients are a generalization of gradients that are also defined at non-differentiable points.
A subgradient for a convex function is any sublinear function pivoted at that point, and minorizing
the entire convex function. For convex (concave) optimization, any subgradient is a feasible descent
(ascent) direction. For more details, see, e.g., [Hiriart-Urruty and Lemarechal, 1993].
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Figure 4.1: (a) Plot of the true positive indicator function and the utility func-
tion log2 µ(z) + 1. (b) Plot of the true negative indicator function, utility function
log2(1− µ(z)) + 1, and its asymptotic slopes −z/ log 2 and −z/2 log 2.

effect of correct classifications is limited. On the other hand, incorrect classifications

are undesirable, thus their penalty is an unbounded (but slowly deceasing) negative

number.

Taking the derivative d
dz

log2(1 − µ(z) + 1) = −µ(z)/ log 2, we see that, when z

is positive, −1 ≤ −µ(z) ≤ −1/2, so log2(1 − µ(z)) + 1 is sandwiched between two

linear functions −z/ log 2 and −z/2 log 2. It starts off being closer to −z/2 log 2,

but approaches −z/ log 2 asymptotically (see Figure 4.1(b)). Hence, when the false

positive is close to the decision boundary, the additional penalty of θT x = z in

Equation (4.3) is larger than the default false positive penalty, though the two are

asymptotically equivalent.

Let us turn to the roles of the multiplicative weights. δ1 and δ2 weigh the relative

importance of the two classes, and can be used to deal with imbalanced training sets

where one class is disproportionately larger than the other [Japkowicz and Stephen,

2002]. Most of the time a program exits successfully without crashing, so we have

to deal with having many more successful runs than crashed runs (see section 4.7).

26



Chapter 4. Catching a Single Bug

Furthermore, since we really only care about predicting class 1, increasing δ1 beyond

an equal balance of the two data sets could be beneficial for feature selection per-

formance. Finally, δ3 is the knob of determinism: if the bug is deterministic, then

setting δ3 to a large value will severely penalize false positives; if the bug is not de-

terministic, then a small value for δ3 allows for the necessary slack to accommodate

runs which should have failed but did not. As we shall see in section 4.7, if the bug is

truly deterministic, then the quality of the selected features will be higher for larger

δ3 values.

Our proposed solution to the single-bug problem is inspired by one of our earlier

experiments [Liblit et al., 2003]. We started with a few simple feature elimination

heuristics and found them to be useful in locating bugs:

〈Elimination by universal falsehood〉: Discard any counter that is always zero, be-

cause it most likely represents an assertion that can never be true. This is a

very common data preprocessing step.

〈Elimination by lack of failing example〉: Discard any counter that is zero on all

crashes, because what never happens cannot have caused the crash.

〈Elimination by successful counterexample〉: Discard any counter that is non-zero

on any successful run, because these are assertions that can be true without a

subsequent program failure.

In the setting of our learning algorithm, 〈elimination by universal falsehood〉 is nat-

urally incorporated as a preprocessing step. The other two heuristics are represented

as well. If a feature xi is never positive for any crashes, then its associated weight θi

will only decrease in the maximization process. Thus it will not be selected as a crash-

predictive feature. This handles 〈elimination by lack of failing example〉. Lastly, if a

heavily weighted feature xi is positive on a successful run in the training set, then the
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classifier is more likely to result in a false positive. The false positive penalty term will

then decrease the weight θi, so that such a feature is unlikely to be chosen at the end.

Thus utility maximization also handles 〈elimination by successful counterexample〉.

4.6 Two Case Studies

We test our algorithm on CCRYPT and BC. CCRYPT serves as an example of a

deterministic bug, and BC a non-deterministic bug. For simpler bugs, we need fewer

runs to debug the program. We conduct our experiments on smaller datasets than

those introduced in section 3.5. The quality of the datasets are the same, but here

we pick the instrumentation scheme according to the suspected bug.

CCRYPT’s sensitivity to EOF inputs suggests that the problem has something

to do with its interactions with standard file operations. Thus the function return

value instrumentation scheme may be the most helpful here. There are 570 call sites

of interest which makes 570 × 3 = 1710 counters. We use the reports from 7204

trial runs, taken at a sampling rate of 1/100. 1162 of the runs result in a crash. 6516

(≈ 90%) of these trial runs are randomly selected for training, and the remaining 688

held aside for cross-validation. Out of the 1710 counter features, 1542 are constant

across all runs, leaving 168 counters to be considered in the training process.

In the case of BC, we are interested in the behavior of all pointers and buffers.

All pointers and array indices are scalars, hence we compare all pairs of scalar values.

There are 30150 such scalar-pairs predicates, of which 2908 are not constant across

all runs. Our small BC data set consists of 3051 runs with distinct random inputs,

sampled at a uniform rate of 1/1000. 2729 of these runs are randomly chosen as training

set, 322 for cross-validation.
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4.7 Results

We maximize the utility function in Equation (4.4) using stochastic subgradient ascent

with a learning rate of 10−5. In order to make the magnitude of the weights θi

comparable to each other, the feature values are shifted and scaled to lie between

[0, 1], then normalized to have unit variance. There are four learning parameters, δ1,

δ2, δ3, and λ. Since only their relative scale is important, the regularization parameter

λ can be set to some fixed value (we use 0.1). For each setting of δi, the model is set to

run for 60 iterations through the training set, though the process usually converges

much sooner. For BC, this takes roughly 110 seconds in MATLAB on a 1.8 GHz

Pentium 4 CPU with 1 GB of RAM. The smaller CCRYPT dataset requires just

under 8 seconds.

The values of δ1, δ2, and δ3 can all be set through cross-validation. However,

this may take a long time, plus we would like to leave the ultimate control of the

values to the users of this tool. The more important knobs are δ1 and δ3: the former

controls the relative importance of classification performance on crashed runs, the

latter adjusts the believed level of determinism of the bug. We find that the following

guidelines for setting δ1 and δ3 work well in practice.

1. In order to counter the effects of imbalanced datasets, the ratio of δ1/δ2 should

be at least around the range of the ratio of successful to crashed runs. This

is especially important for the CCRYPT data set, which contains roughly 32

successful runs for every crash.

2. δ3 should not be higher than δ1, because it is ultimately more important to

correctly classify crashes than to forbid false positives.

As a performance metric, we look at the hold-out set confusion matrix and define

the score as the sum of the percentages of correctly classified data points for each
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Figure 4.2: (a,b) Cross-validation scores for the CCRYPT data set; (c,d) Cross-
validation scores for the BC data set. All scores shown are the maximum over free
parameters.

class. Figure 4.2(a) shows a plot of cross-validation score for the CCRYPT data set at

various δ1 values, maximized over δ2 and δ3. It is clear from the plot that any δ1 values

in the range of [10, 50] are roughly equivalent in terms of classification performance.

Specifically, for the case of δ1 = 30 (which is around the range suggested by our

guidelines above), Figure 4.2(b) shows the cross-validation scores plotted against

different values for δ3. In this case, as long as δ3 is in the rough range of [3, 15], the

classification performance remains the same.4

Furthermore, settings for δ1 and δ3 that are safe for classification also select high

quality features for debugging. The “smoking gun” predicate that directly indicates

the CCRYPT bug is:

traverse.c:122: xreadline() return value == 0

This call to xreadline() returns 0 if the input terminal is at EOF. In all of the above

mentioned safe settings for δ1 and δ3, this predicate is returned as the top feature.

4In Figure 4.2(b), the classification performance for δ1 = 30 and δ3 = 0 is deceptively high. In
this case, the best δ2 value is 5, which offsets the cross-validation score by increasing the number
of predicted non-crashes, at the expense of worse crash-prediction performance. The top feature
becomes a necessary but not sufficient condition for a crash – a false positive-inducing feature!
Hence the lesson is that if the bug is believed to be deterministic then δ3 should always be positive.
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The rest of the high ranked features are sufficient, but not necessary, conditions for a

crash. The only difference is that, in more optimal settings, the separation between

the top feature and the rest can be as large as an order of magnitude; in non-optimal

settings (classification score-wise), the separation is smaller.

For BC, the classification results are even less sensitive to the particular settings

of δ1, δ2, and δ3. (See Figure 4.2(c,d).) The classification score is roughly constant

for δ1 ∈ [5, 20], and for a particular value of δ1, such as δ1 = 5, the value of δ3 has

little impact on classification performance. This is to be expected: the bug in BC

is non-deterministic, and therefore false positives do indeed exist in the training set.

Hence any small value for δ3 should do.

As for the feature selection results for BC, for all reasonable parameter settings

(and even those that do not have the best classification performance), the top features

are a group of correlated counters that all point to the index of an array being

abnormally big. Below are the top five features for δ1 = 10, δ2 = 2, δ3 = 1:

1. storage.c:176: more arrays(): indx > optopt

2. storage.c:176: more arrays(): indx > opterr

3. storage.c:176: more arrays(): indx > use math

4. storage.c:176: more arrays(): indx > quiet

5. storage.c:176: more arrays(): indx > f count

These features immediately point to line 176 of the file storage.c. They also indicate

that the variable indx seems to be abnormally large. Indeed, indx is the array index

that runs over the actual array length, which is contained in the integer variable

a_count. The program may crash long after the first array bound violation, which

means that there are many opportunities for the sampling framework to observe the

abnormally big value of indx. Since there are many comparisons between indx and

other integer variables, there is a large set of inter-correlated counters, any subset of

which may be picked by our algorithm as the top features. In the training run shown

31



Chapter 4. Catching a Single Bug

above, the smoking gun of indx > a_count is ranked number 8. But in general its

rank could be much smaller, because the top features already suffice for predicting

crashes and pointing us to the right line in the code.
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The Multi-Bug Problem

The single bug problem is relatively simple. The challenge mainly lies in the existence

of non-deterministic bugs, which, as we have shown, can be handled effectively. The

problem becomes much more complex in the presence of multiple bugs. We find that

the single-bug algorithm becomes ineffective in the multi-bug case. Our efforts in

reducing the multi-bug problem to a set of simpler single-bug problems have also

been unsuccessful. In the following sections, we illustrate key problems in the multi-

bug case, and demonstrate why many natural-sounding ideas do not work.

5.1 Univariate Hypothesis Tests

We first illustrate why simple solutions like univariate hypothesis testing may not

yield satisfactory results.

Univariate tests are simple feature selection methods that are often used as a

preprocessing step. In text processing, for example, people often perform univariate

feature selection to discard unimportant words before proceeding to the real analysis

task [Yang and Pedersen, 1997]. Pre-filtering the data results in a smaller feature set,

which leads to computational savings in later stages.
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Table 5.1: MOSS predicate rankings via two-sample T test on inferred truth probabilities
of failures vs. successes.

Bug Histogram of Runs where Predicate is True

Rank Predicate #1 #2 #3 #4 #5 #6 #7 #9

1 min_index == lineno 932 10 12 1 0 2 6 44
2 min_index == lineno 985 10 12 1 0 5 7 59
3 i___0 == lineno 1085 13 36 1 0 13 13 720
4 files[filesindex].language > 16 0 0 25 57 1572 0 0 70
5 strcmp > 0 0 0 25 57 1571 0 0 69
6 tmp___3 == 0 is TRUE 0 0 25 56 1570 0 0 70
7 strcmp == 0 0 0 25 57 1569 0 0 69
8 min_index > lineno 1079 18 35 2 0 7 14 685
9 strcmp > 0 0 0 25 57 1568 0 0 70

10 files[filesindex].language == 17 0 0 25 57 1567 0 0 70
...

Computational advantages aside, we find that univariate hypothesis tests have

limited usefulness for bug-finding. However, in the multi-bug case, the interaction

between predicates makes it difficult for univariate algorithms to isolate useful bug

predictors.

As a demonstration, let us apply a two-sample T test to the MOSS dataset with

non-uniform sampling. We list the top predicates as ranked by the statistic

T =
π̂F − π̂S√

VarF ,S
,

where F and S respectively denote the set of failing and successful runs, and πF

and πS are the average inferred truth probabilities of the predicate in failed and

successful runs, respectively. (See chapter 7 for details about how the inferred truth

probability is computed.) The denominator is a variance term for the two class:

VarF ,S = σ2
F/|F|+ σ2

S/|S|.

The left hand portion of Table 5.1 lists the top-ranked predicates. The right hand

portion contains bug histograms. A bug histogram for a predicate shows the counts

of the number of runs in which the predicate is true, binned by the bug that occurred
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in that run.1 We can compute the bug histogram in MOSS because we have the true

identification of the bugs that occurred in each run of our dataset.

The bug histograms in Table 5.1 give us a first peek at the phenomena of predicate

redundancy and super-bug and sub-bug predictors. We shall clarify the two concepts

in subsequent sections. Predicate redundancy manifests itself through the inclusion of

predicates 4, 5, 6, 7, 9, and 10 in the ranked list; these are all equally good predictors

of bug #5. They directly reveal the fact that, in these failing runs, the input is a

Lisp program. Indeed bug #5 lies on the Lisp processing path, and is separated from

the rest of the bugs in MOSS. Bug #5 predictors are often the easiest ones for an

analysis algorithm to distinguish.

The rest of the top-ranked predicates are not so useful for bug-finding. Predicates

1 and 2 are sub-bug predictors for bug #1. Predicates 3 and 8 are super-bug predictors

for bugs #1 and #9.

Based on these results, it appears that simple univariate tests cannot yield succinct

bug-predictor lists. Table 5.1 contains a few good predictors for bug #5. But it

is difficult to separate the wheat from the chaff without manually examining each

predicate – an arduous task that would be too labor-intensive for the users of our

system.

5.2 Super-Bug and Sub-Bug Predictors

Our next example again demonstrates that the multi-bug problem cannot be solved

by naively applying the single-bug solution. It also reveals the problem of what we

call super-bug and sub-bug predictors. Table 5.2 lists the top ten predicates selected

by the single-bug algorithm. All the predicates starting with i > ... are what we

1In the MOSS experiments, multiple bugs could occur in the same failing run. Hence the sum
of the histogram counts may sum to a number larger than the total number of failing runs.
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Table 5.2: Results of applying the single-bug algorithm on MOSS. (δ1 = 1, δ2 = 1, δ3 =
0)

Rank Function Predicate

1 process_file_pass1() (p + passage_index)->last_line < 4

2 process_file_pass1() (p + passage_index)->first_line < i

3 handle_options() i > 20

4 handle_options() i > 26

5 process_file_pass1() (p + passage_index)->last_line < i

6 handle_options() i > 23

7 process_file_pass1() (p + passage_index)->last_line == next

8 handle_options() i > 22

9 handle_options() i > 25

10 handle_options() i > 28

call super-bug predictors, and the rest of the predicates are all sub-bug predictors for

bug number 1. Neither set is helpful in locating the bugs.

A super-bug predictor is a predicate that is mildly correlated with many failed runs,

but does not predict any of them very well. All the i > ... predicates in Table 5.2

are super-bugs. The variable i is the length of the command-line. As a side-effect of

our data generation process, MOSS runs with a longer command-line have a higher

probability of containing a bug. But there are also many successful runs with a long

command-line. A super-bug predictor is often true in many failed runs as well as

successful runs. The sheer number of failed runs in which they occur can strengthen

their failure prediction power, making them appear better than they are.

A sub-bug predictor, on the other hand, is a predicate that is highly correlated with

a small subset of failed runs with the same bug. For instance, the (p + passage_index) ... pred-

icates in Table 5.2 each predict a small subset of bug 1. Sub-bug predictors hone in

on specific failure modes within a certain bug, but are not helpful in locating the

actual bug itself.

When we apply the single-bug algorithm to a program containing multiple complex

36



Chapter 5. The Multi-Bug Problem

bugs, we tend to see a mixture of super-bug and sub-bug predictors. The former count

for a large number of failed runs, and the latter takes care of leftover small subsets

of bugs.

The problem of super-bug and sub-bug predictors can be thought of in terms of

a trade-off between sensitivity and specificity.2 Let Fi denote the set of failed runs

in which predicate i is observed and true, and F the entire set of failed runs. Let

S̄i denote the set of successful runs where predicate i is observed to be false, and S

the entire set of successful runs. The sensitivity of a predicate is defined as the true

positive rate, while specificity is the true negative rate:

Sens(i) =
|Fi|
|F|

(5.1)

Spec(i) =
|S̄i|
|S|

. (5.2)

Sensitivity measures how well a predicate covers the set of failed runs. Specificity

measures how well its complement covers successful runs. Super-bug predictors have

high sensitivity but low specificity. Sub-bug predictors have high specificity but low

sensitivity. What we want are predictors with both high sensitivity and specificity.

5.3 Redundancy

Our second problem in the multi-bug case is redundancy. We’ve already witnessed

redundancy at work in the single bug results in section 4.7. The top predicates

for BC all contain essentially the same information: the variable indx at line 176

of storage.c is unusually large. The “smoking gun” of that bug is the predicate

indx > a_count, which is ranked at number 8. Given the smoking gun predicate,

2Sensitivity and specificity are analogous to concepts of recall and precision commonly used in
information retrieval.
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all the other predicates are redundant, because they do not contain more information

than what is already given.

The problem becomes more pronounced in the presence of multiple bugs. In

Table 5.1, predicates 4, 5, 6, 7, 9, and 10 all indicate that the input language is

Lisp. The strengths of these predictors are all roughly equal. Furthermore, the bug

histograms shows that, with the exception of a few runs, these predicates are all either

all true or all false.

Even the sub-bug and super-bug predictors in Table 5.2 form redundant sets.

Hence redundancy is a separate issue from super-bug and sub-bug predictors. The

entanglement of these two problems makes them much more difficult to solve in the

case of multiple bugs.

We attempt to resolve the redundancy issue through the following heuristic: given

a set of mutually-redundant predicates, we pick the strongest bug predictor to present

to the user. If the predictors are all equally strong, then we would pick one at random.

Assuming we have a good metric for the strength of a predictor, the problem is to

group the predicates into mutually non-redundant sets that would correspond to

distinct bugs. We can then pick one representative out of each set as the main bug

predictor. By this line of reasoning, it seems that predicate clustering is a natural

approach to solving the problem of redundancy.

5.3.1 A Co-Occurrence Similarity Measure

First, we need a similarity measure for predicates. Intuitively speaking, predicates

that behave similarly in the same runs should fall into one cluster. Thus we choose to

measure predicate similarity via correlation coefficients computed using co-occurrence

statistics.

It is often the case that the actual value of the predicate count is not as important
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as the fact that it is true at all. For example, when there is an array overrun, we do

not need to know whether the predicate index > array_length is true five times or

fifty times; the fact that the predicate is true already indicates the presence of a bug.

Hence from now on we assume that, for the types of bugs that we consider, it is safe

to first binarize the predicate counts before computing the co-occurrence statistics.

We also need to deal with the artifacts of sampling. If sampling is sparse, then

the predicate may not even be observed in many runs. Unobserved predicates have

a count of zero by default. We need to account for this fact by conditioning on the

observed values when computing the co-occurrence statistics. Otherwise there would

be no way to differentiate a true zero count from something that was simply not

observed.

Recall that each predicate accounts for one of a few possible scenarios at an instru-

mentation site. In fact, the set of predicates at each instrumentation site partitions

the outcome space. For example, an integer function return value can be either less

than, equal to, or greater than zero. Each site sample increases the truth count of

exactly one predicate at that site. Therefore, the sum of these predicate counts gives

us the number of times the site is sampled. Thus a non-observed site would have a

combined site count of zero. Conditioning on the site count would take the sampling

bias out of the individual predicate counts.

This raises a practical concern with the sparsity of data for pairwise statistics.

Suppose two sites are both reached exactly once per run. At a sampling rate of d,

one would expect to observe individual sites once in 1/d runs, and would expect to

observe both sites together once in every 1/d2 runs. In practice, the sampling rates

may differ for different sites, and there may be multiple opportunities to sample a

site in each run. But in general, the predicate reports becomes an order of magnitude

more sparse for second-order statistics than for univariate statistics. The number of

runs we need may also increase by an order of magnitudes. This may be a serious
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limitation for methods that use higher order statistics.

We will re-visit the sparsity issue later. For now, let us continue with the investi-

gation of predicate clustering. The correlation coefficient ρ(X,Y ) measures the linear

correlation strength between two random variables X and Y .

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
.

The denominator ensures that −1 ≤ ρ(X, Y ) ≤ 1. If X and Y are binary random

variables, ρ measures how much more likely is X to be true when Y is true, and vice

versa.

Given two predicates a and b, let A0 and B0 denote binary random variables indi-

cating whether they are observed in a particular run; let A and B represent whether

or not they are true. We want to estimate the conditional correlation coefficient:

ρ(A, B | A0 = 1, B0 = 1) =
Cov(A, B | A0 = 1, B0 = 1)√

Var(A | A0 = 1)Var(B | B0 = 1)

=
E(AB | A0 = 1, B0 = 1)− E(A | A0 = 1, B0 = 1)E(B | A0 = 1, B0 = 1)√
(E(A2 | A0 = 1)− [E(A | A0 = 1)]2)(E(B2 | B0 = 1)− [E(B | B0 = 1)]2)

.

(5.3)

Let pa := P (A = 1 | A0 = 1), pb := P (B = 1 | B0 = 1), pab := P (A = 1, B = 1 | A0 =

1, B0 = 1). We assume that A is independent from B0 given A0 whenever A0 6= B0.

When A0 = B0, A0 = 1 and B0 = 1 are the same event, hence no independence

assumption is needed. Equation (5.3) can be rewritten as:

ρ(A, B | A0 = 1, B0 = 1) =
pab − papb√

pa(1− pa)pb(1− pb)
.

Thus the correlation coefficient can be efficiently computed from data based on plug-in

estimates of pab, pa, and pb.
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5.3.2 Spectral Clustering

Clustering algorithms can be roughly divided into two categories. Metric-based clus-

tering algorithms such as K-means often form round clusters in metric space. Other

clustering algorithms, such as spectral clustering methods, are good at picking out

contiguous chain clusters in the original data space. Our decision about which clus-

tering algorithm to use depends on the shape of clusters we expect to find.

Recall our discussion about the effect of sampling on the sparsity of co-occurrence

data. Suppose predicates a, b, and c are mutually redundant. At a sampling rate of

d, it takes O(1/d2) runs for each predicate pair to be co-observed, and O(1/d3) runs

for all three to be observed together. In practice, there may not be enough runs in

the dataset for all redundant predicates to have a small observed distance to each

other. It is much more probable that we would observe, for instance, a being close to

b, and b being close to c, but not a being close to c. In this situation, our clustering

algorithm should take transitivity into account, and group a, b, and c in the same

cluster.

We choose to use spectral clustering methods (see, e.g., [Chung, 1997]). Under

the balls-and-springs interpretation of spectral clustering, the predicates are the balls,

and their pairwise connection strength are spring constants. If one ball is picked up,

then all the other balls in the same cluster should follow. From this perspective, it is

easy to see that spectral clustering respects transitivity.

The following spectral clustering algorithm is described in Ng et al. [2002]. Let

there be n predicates.

1. Given a pairwise similarity matrix S ∈ Rn×n, form the affinity matrix A ∈ Rn×n

defined by Aij = exp(−Sij/2σ
2), where σ is a scale parameter.

2. Form the graph Laplacian matrix L = D−1/2AD−1/2, where D is a diagonal

matrix containing A’s row sums.
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3. Let K be the number of desired clusters. Compute Y ∈ Rn×K , the matrix of

the K largest eigenvectors of L.

4. Take the i-th row of Y as the new representation of the i-th predicate. Normalize

each row to have unit norm, and cluster them using K-means.

We take S to be the predicate correlation coefficient matrix. Correlation coefficient

can be negative, but the affinity matrix A guarantees positive entries. We run spectral

clustering with K ranging from 5 to 20 and repeat K-means clustering in step 4 ten

times for each setting of K, each time starting with random initial conditions. We

pick the clustering with the smallest average intra-cluster distance. Note that in this

particular clustering algorithm, the dimension of data (the number of eigenvectors

used) increases as K increases. Hence a larger K would not necessarily correspond

to a smaller average intra-cluster distance.

The model selection process determines the best K to be 9. Figure 5.1 contains

bar graphs of the average bug histograms for this clustering. For each cluster, we

take the predicates in that cluster and tally the bugs that occur in the runs in which

the predicate is true. The resulting bug histogram is then averaged over the number

of predicates in each cluster.

An ideal set of bug histograms would contain exactly one peak for each of the

bugs. The bug histograms in Figure 5.1 are not very clean. Most of them do not

contain a single predominant peak. The exception is cluster 4, which contains most

of the predictors for bug #5. Cluster 3 contains some of the predictors for bug #3,

but the rest fall under cluster 5 together with a few predictors for bug #1. Predictors

for bug #4 are mixed together with predictors for bugs #1 and #9 in cluster 7. The

rest of the clusters are mixtures of the rest of the bugs.

The predicate clustering outcome does not seem very promising. Investigation of

the clusters reveal that part of the problem stems from what we have called super-bug
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Figure 5.1: Average bug histograms of MOSS predicate clusters.
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and sub-bug predictors. A super-bug predictor acts as a liaison between two or more

bugs, thus smoothing out the cluster bug histograms. This effect is independent of the

particular clustering algorithm we choose. In MOSS, there are some prominent super-

bug predictors for bug #1 and bug #9. We have seen examples of these predictors in

Table 5.1, and will see a few other examples in section 5.2. These super-bug predictors

cause the true predictors of these two bugs to be mixed together and split across many

of the predicate clusters.

5.4 Missing Correspondence

Up to now we have discussed the problems of super-bug/sub-bug predictors and

redundancy. The former is particular to the multi-bug case, but the latter is a problem

for both single-bug and multi-bug programs. The fundamental problem in the multi-

bug case is the missing correspondence problem between the failed runs and the

underlying bug. Suppose there are K bugs in the program. If each failed run could

be labeled with a number from 1 to K,3 then each class of runs can be analyzed

separately, which would avoid the problem with super-bug and sub-bug predictors.

If one could separately compare each failure class to the set of successful runs, the

multi-bug problem would reduce to K single-bug problems.

Unfortunately, we do not have accurate bug labels for all runs. There are a

few pieces of potentially useful programmatic information for identifying the bugs:

program exit code, fatal signal, stack trace and/or crash site. None of them are reliable

enough for bug identification. The exit code is not reliable because, for example, C

programmers often default to calling exit(1) when there is an unknown error. The

fatal signal is not reliable because a single bug may be associated with multiple signals.

3More generally, since multiple bugs could occur in the same run, the label could be a set of
numbers. In that case, a multi-labeled run would count as an instance of each of the bugs it
contains.
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In the case of a non-deterministic memory corruption bug, for example, the program

may fail at different points in each run, throwing out different fatal signals. The

stack trace and/or crash site information could be useful on occasion, but throughout

our experimentation we have observed cases where different bugs lead to the same

stack trace. Lastly, sometimes the program does not even crash, but still behaves

incorrectly. In summary, commonly available debugging information is very coarse.

Even combining all of the above information, each distinct evidence vector still would

not uniquely identify a bug.

The Missing Correspondence problem appears to be another natural application

for clustering. We test this intuition by applying K-means to the MOSS dataset.

Each run is represented by a vector of (non-binary) predicate counts. We include

only predicates with non-zero variance. Let xij denote the count of predicate i in

run j, we center and normalize each predicate dimension by subtracting its mean and

dividing by its standard deviation:

x̃ij =
xij − x̄i

σ̄i

,

where x̄i and σ̄i are the empirical mean and standard deviation, respectively.

We test the clustering algorithm under the ideal situation where the true number

of clusters is known and equals the true number of underlying bugs. We repeat

K-means several times with random initialization, and pick the clustering with the

smallest intra-cluster distance.

Figure 5.2 contains the results. Some of the clusters clearly focus on individual

bugs. In particular, clusters 1, 3 and 4 capture bugs #3, #6, and #5, respectively.

However, the rest of the clusters are much less distinct. Cluster 2 contains only a small

subset of bug #9; cluster 5 contains most of bugs #2 and #4, as well as chunks of

bugs #1 and #9. Overall, some clusters contain multiple bugs, while others contain
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Figure 5.2: Bug histograms of run clusters returned by K-means.
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subsets of a single bug. Certain bugs seem prone to be scattered across K-means

clusters.

Out of all the MOSS bugs, the Lisp bug (bug #5) is the most easy to isolate,

because it lies on a unique branch of the program separate from all other bugs. Bugs

#4 and #9 are array overrun bugs that could potentially crash at any point during

execution. This may explain why bug #9 is scattered across clusters. The C comment

bug (bug #1) is particularly difficult to cluster; it does not cause a failure at all, but

produces incorrect output.

A closer analysis of the runs in each cluster reveals why naive clustering does not

work on predicate counts. It turns out that these clusters capture usage modes of the

program as opposed to failure modes. In hindsight, it seems obvious that the outcome

of clustering should be decided by the overall trend of usage modes, as opposed to

failure modes which form a much smaller part of the program run-time reports. Any

reasonable clustering algorithm would focus on patterns found in the dominant view

of the data.

5.5 Summary

Our exploration of the multi-bug problem rules out several naive algorithms. Based on

our failed attempts, we make the following observation: runs should clustered by their

predictors, and bug predictors should be selected and clustered based on the failing

runs they predict. This setup is not unlike the bi-clustering problem [Hartigan, 1972;

Tibshirani et al., 1999; Madeira and Oliveira, 2004]. In its basic form, bi-clustering

algorithms try to simultaneously cluster both the columns and rows of a data matrix.

In recent years there has been much work on applying bi-clustering to applications

in bioinformatics [Madeira and Oliveira, 2004]. In our application, however, we have

the added advantage of domain knowledge about the program itself. Thus we form

47



Chapter 5. The Multi-Bug Problem

specific constraints about how the predicates should be used to cluster runs, and vice

versa.

An alternative to the symmetric approach is to attack one side first. For example,

we may choose to focus on first obtaining good run clusters. Runs should be clus-

tered based on a few select bug-predictors. This setup is similar to that of the COSA

framework for clustering on select subsets of features. Friedman and Meulman [2004]

explored several possible formulations of the problem. Finding good clusters on un-

specified subsets of attributes is a difficult optimization problem in general. But here

we can again use our knowledge about predicate behavior to direct the search pro-

cess. By defining a set of predicate update equations, we tailor our algorithm toward

specific types of bugs. We introduce the multi-bug algorithm in the next chapter.
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The Multi-Bug Algorithm

In the previous chapter, we identified three difficult problems in the case of multiple

bugs: super-bug and sub-bug predictors, redundancy of predicates, and missing cor-

respondence between crashes and the underlying bug. In this chapter, we propose a

solution based upon the following symmetry principle:

Predicates should group by the runs that they predict; runs should group

by the predicates that predict them.

Our multi-bug algorithm aims to find the right balance between predicate clusters

and run clusters, which would in turn lead to the right balance between sensitivity

and specificity of the selected predicates.

We start with the pre-filtering stage of our multi-bug algorithm in section 6.1.

While the univariate predcate filter has meaningful program analysis motivations,

its main purpose is to discard uninteresting predicates and lighten the computation

burden on subsequent stages of the algorithm. In section 6.2, we lay out the criteria

for a good bug predictor that incorporate the notions of sensitivity and specificity.

The overall goal of our multi-bug algorithm is to identify important predicates

that are useful in predicting large sets of failed runs. We define predicate quality and
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run attribution functions, and iterate the set of update equations until reaching a

fixed point. section 6.4 presents the predicate and run update equations. Predicate

quality is defined in accordance with the bug predictor criteria, with an emphasis

on balancing the tension between sensitivity and specificity. The run attribution

functions allow the runs to cast votes for each predicate. The amount of vote received

by a predicate depends on the quality of the predicate itself, and is also influenced

by the quality of other predicates competing for the vote. This setup encodes the

notion of redundancy, and attempts to minimize its effect through mutual competition

amongst the predicates.

The update equations are iterated. After a fixed point is reached, the runs go

through an additional round of voting, this time settling on only one predicate. We

conclude section 6.4 with an analogy to the disjunction-learning problem.

The predicate and run updates are iterated on a complete bipartite graph. Overall

we have found it more handy to represent this algorithm using a non-probabilistic

graphical model rather than a probabilistic one. In section 6.3, we go into more details

about our modeling choice, and explain why the problem is not naturally amenable

to, say, a QMR-DT-like noisy-or model.

We conclude the chapter with a summary of the algorithm in section 6.5.

6.1 Predicate Pre-Filter

Our first step is a predicate pre-filter. The filter retains only a small subset of poten-

tially interesting predicates, thereby easing the computational burden for later stages

of the algorithm. We motivate the predicate pre-filter from a program analysis per-

spective. As it turns out, the filtering criterion is also akin to a conservative likelihood

ratio test.

Consider the following C code fragment:
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f = ...; (a)

if (f == NULL) { (b)

x = 0; (c)

*f; (d)

}

The branch-conditional predicate f == NULL on line (b) is clearly highly correlated

with failure. In fact, whenever it is true this program inevitably crashes.1 In general,

it is useful to look at the probability of crashing when a predicate is true:

P̂ (Crash | predicate i is true) =
|F i|

|F i|+ |S i|
,

where F i and S i respectively denote the sets of failed and successful runs in which

predicate i is true.

However, this is not the only probability of interest. Take a look at line (c)

above. The scalar-comparison predicate x == 0 on line (c) is also true whenever

the program crashes. But it has nothing to do with the bug. It is just an “innocent

bystander” on the path of failure. In fact, even if the predicate is false, the program

would still crash. The fact that it is even observed already spells trouble for the

program. Hence we postulate that the following probability is also of interest:

P̂ (Crash | predicate i is observed) =
|F i

obs|
|F i

obs|+ |S i
obs|

,

where F i
obs and S i

obs respectively denote the sets of failed and successful runs in which

predicate i is observed.

Our code example illustrates a particular case of cause-effect redundancy. Redun-

dancy occurs because many predicates are correlated with the same bug. In some

1The converse is not true in multi-bug programs even for the best bug predictors: it is not the
case that a bug predictor would be true in all crashed runs.
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cases, such correlation is a manifestation of cause and effect. Often times, all predi-

cates that lie down stream from the first major indication of failure can be interpreted

as effects of the bug. It may be possible to construct cause-effect chains via static

analysis of the program source code. But such cause-effect information is often im-

perfect and incomplete. Furthermore, predicate chain cause-effect graphs would be

of staggering size and complexity. Due to these considerations, we have chosen not

to take the causal analysis approach in this project.

However, it is possible to deal with the cause-effect confusion and eliminate some

correlated predicates in certain code patterns. Specifically, when a “wrong” decision

(e.g., f == NULL in our example) leads the program down an erroneous path, we can

separate the initial decision from the subsequent innocent bystander predicates.

Based on observations from our example, we say that predicate i is interesting if

and only if

P̂ (Crash | predicate i is true) > P̂ (Crash | predicate i is observed). (6.1)

This condition is equivalent to a simple hypothesis test. Consider the two classes

of runs: failed runs F and successful runs S. For each class, we can treat predicate i

as a Bernoulli random variable with heads probabilities πi
f and πi

s, respectively. We

take π to be the probability that the predicate is true, conditioned on the fact that

it is observed. πi
f and πi

s can be estimated as:

π̂i
f =

|F i|
|F i

obs|
π̂i

s =
|S i|
|S i

obs|
.

If a predicate is indeed a bug predictor, then πi
f should be bigger than πi

s. Our null

hypothesis is H0 : πi
f ≤ πi

s, and the alternate hypothesis is H1 : πi
f > πi

s. We calculate
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the two-sample mean T test statistic:

T =
π̂i

f − πi
s

V i
f,s

,

where V i
f,s is a sample variance term [Lehmann, 1986]. A necessary (but not sufficient)

condition for rejecting the null hypothesis is that π̂i
f > π̂i

s. This is equivalent to the

condition in Equation (6.1).

Lemma 1. The condition

P (Crash | predicate i is true) > P (Crash | predicate i is observed)

is equivalent to the naive test π̂i
f > π̂i

s.

Proof. For simplicity, let a = |F i|, b = |S i|, c = |F i
obs|, and d = |S i

obs|. We have:

P̂ (Crash | predicate i is true) > P (Crash | predicate i is observed)

⇐⇒ a

a + b
>

c

c + d

⇐⇒ a(c + d) > (a + b)c

⇐⇒ ad > bc

⇐⇒ a

c
>

b

d

⇐⇒ π̂i
f > π̂i

s.

6.2 Definition of Bug Prediction Strength

In order to define predicate quality, we need a good definition for the bug prediction

strength of a predicate. A bug predictor should be something that is true when a
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failure occurs.2 But there are a few additional requirements that are also reasonable.

Recall our code fragment example:

f = ...; (a)

if (f == NULL) { (b)

x = 0; (c)

*f; (d)

}

The predicate f == NULL on line (b) is the correct bug predictor. If the program

fails due to this bug, then f == NULL must be true; if the program makes a successful

exit, then either its complement predicate f != NULL is true, or the program simply

never traverses this path and neither f == NULL nor its complement is observed. The

example illustrates a common phenomenon. Hence we say that a good bug predictor is

a predicate that is true whenever the program fails and is not true when the program

succeeds.3 Its complement should always be true when the program succeeds, and

should not be true when the program fails.

Definition 1. Let P be a predicate, and let P̄ be the logical complement of P (e.g., if

P denotes the predicate x > y, then P̄ denotes x <= y). If P is a good bug predictor,

then

• P should be true in many failed runs;

2 For computational purposes we must make certain modeling assumptions. But there is no
universally true assumption that works for all types of bugs. For instance, certain types of bugs
violate the “true-when-fail” assumption here. Forgotten initialization bugs occur when programmers
forget to initialize variables before using them. Shared memory race conditions occur if one of the
program threads forgets to lock the area before attempting access. In both cases, the relevant
predicates would be false.

3 The criteria listed here work for a deterministic bug, but may be violated by a non-deterministic
one. Even in the latter case, it may be enlightening to see the most deterministic predictor. In
subsequent sections, we will see that these criteria are used not as hard constraints, but rather
as penalization. Our experimental results in chapter 8 confirm that this definition works for non-
deterministic bugs.
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• P should not be true in many successful runs;

• P̄ should be true in many successful runs;

• P̄ should not be true in many failed runs.

These conditions are not redundant of each other. An instrumentation site may be

reached multiple times during a single run of the program. Hence P and P̄ may both

be true in a run. In fact, this happens very frequently. Under 1, the bug-prediction

strengths of P and P̄ would work against each other.

In previous work [Liblit et al., 2005], we found that the harmonic mean between

sensitivity and specificity is helpful in resolving the confusion between super-bug

and sub-bug predicates. Recall our definition of sensitivity and specificity in Equa-

tion (5.1) and Equation (5.2). The measurement of sensitivity depends on both the

true probability and the observation probability of a predicate. Specificity, on the

other hand, depends on the truth probability and observatino probability of the com-

plement of the predicate. Our definition above directly incorporates the concepts

of sensitivity and specificity by accounting for the behavior of both the predicate

itself and its complement. In section 6.4, we present predicate update equations

that attempts to balance the tension between sensitivity and specificity, much like a

harmonic mean.

6.3 Graphical Representation of the Model

Given the interlocking relationship between predicates and runs, it is natural to model

our problem using a bipartite graph. Figure 6.1 contains a bipartite graphical repre-

sentation of our model. The top row contains n runs, colored and labeled with their

exit status of failure or success. The bottom row lists m predicates. Every predicate

is connected to every run. The connection strengths are represented by the affinity
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Figure 6.1: A model for the multi-bug constraint-satisfaction model. Runs in the top row
are labeled and colored according to their exit status of either failure or success.

matrix A ∈ Rm×n. For now we assume that all entries in A are either 0 or 1, where

Aij = 1 if and only if predicate i is true in run j. In chapter 7, we discuss how to

extend these binary weights to real-valued weights.

Note that Figure 6.1 is not a probabilistic graphical model. At first glance, it may

look like an upside-down and undirected version of the QMR-DT network [Jaakkola

and Jordan, 1999]. But the noisy-or model is not suitable for our problem.

Figure 6.2 contains a noisy-or representation of the debugging problem. P1, . . . , Pm

represent predicate counts and R represents the run outcome, all of which are ob-

served. Each Pi is associated with an inhibition probability Zi, whose value is not

known and must be learned. S specifies the parameters of a prior distribution on the

Zi’s. The joint probability may be rewritten as:

P (s,p, z, r) = P (s)P (z | s)
m∏

i=1

P (pi)P (r | p, z),

where

P (r = 0 | p, z) =
m∏

i=1

(1− zi)
pi .

Our goal is to use as few predicates as possible in predicting the outcome of a run.
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Figure 6.2: A noisy-or representation of the multi-bug problem.

In the noisy-or model, this is equivalent to setting the values of Zi so that only a few

of them have non-zero values. In order to achieve this, P (z | s) would have to act as

a sparsifying prior. For each run, then, inference based on observed evidence would

activate only a few Zi’s. It is far from clear how such a prior should be specified so

as to obtain the desired effects. Overall, the constraint satisfaction framework built

upon a non-probabilistic bipartite graph allows for a much more natural and direct

predicate selection process.
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6.4 Predicate and Run Update Equations

We are now ready to define the predicate and run update equations. Let Qi and Qī

denote the quality of predicate i and its complement, respectively:

Qi =
Fi

Si

· Sī

Fī

,

Qī =
1

Qi

.

The precise mathematical definitions of Fi, Fī, Si, and Sī will be given later on in

this section. Fi represents the contribution of predicate i to the set of failed runs,

and Fī the contribution of the complement of predicate i to the set of failed runs. Si

and Sī have analogous interpretations. In accordance with Definition 1, Qi is large

only when the predicate contributes more to failing runs than successful runs and its

complement contributes more to successful runs than failing runs.

Our algorithm is essentially a collective voting process. The quality of a predicate

depends on the amount of votes it receives from the runs; the amount of vote given by a

run in turn depends on the quality of the predicate and all of its competitors. Thus the

definitions of Fi, Si, Fī and Sī involves the following three quantities: the predicate-

run connection weight Aij, the predicate-run contribution Rij, and the residual weight

of a run.

Aij: Each predicate and run connection in our graph is associated with an edge

weight. The weights can be binary indicators of whether or not the predicate was

true in that run, or it can be a posterior predicate-run truth probability. Either

way, they can be interpreted as an objective measurement of “qualification.”

If the weight is zero, then the predicate should have no effect on this run.

Otherwise the effect should be proportional to the connection weight.

58



Chapter 6. The Multi-Bug Algorithm

Rij: Rij is the residual contribution of predicate i to run j. It is defined using the

predicate-run connection weight Aij and the predicate quality score Qi. Recall

that the larger Qi is, the more effect predicate i has over failing runs, and the

less effect it has over successful runs. Thus, Rij should be directly proportional

to Qi in failing runs, and inversely proportional to Qi in successful runs.

Rij =

AijQi, if j ∈ F

Aij/Qi, if j ∈ S

where F denotes the set of failed runs, and S the set of successful runs. Similarly,

we define the residual contribution of the complement of predicate i to run j:

Rīj =

AījQī, if j ∈ F

Aīj/Qī, if j ∈ S .

Run residual weight: Recall the redundancy problem discussed in the previous

chapter. Each run can be predicted by many predicates. In order to reduce

redundancy, we need to set up the update equations so that predicates compete

with each other for the coverage of each run. If a run has already been accounted

for by other predicates, then there should not be much left for the current

predicate to predict. We set the total weight of each run to 1, and define the

residual weight of run j for predicate i to be (1 −
∑

k 6=i Rkj). This definition

ensures that predicate i can only account for the leftover portion of run j that

has not yet been accounted for by any other predicate.

We are now ready to give the definitions of Fi, Fī, Si, and Sī. We take the

contribution of a predicate to a set of runs to be the sum of its contribution to each

individual run. The contribution of a predicate to a single run is directly proportional
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to the run residual weight and the predicate-run connection weight. Thus Fi is defined

as:

Fi =
∑
j∈F

Aij(1−
∑
k 6=i

Rkj).

Similarly, Fī is defined as:

Fī =
∑
j∈F

Aīj(1−
∑
k 6=i

Rk̄j).

Si and Sī are defined analogously.

The multi-bug problem is closely related to the problem of disjunction learning.

The update equations can be interpreted through an analogy to set-covering machines.

A set-covering machine [Marchand and Shawe-Taylor, 2002; Haussler, 1988; Valiant,

1984] tries to learn a sparse disjunction or conjunction of a set of Boolean-valued

features based on positive and negative examples. The machine starts out with the

set of features that are consistent with all the negative examples, i.e., features that

are never true whenever the outcome is zero. This set is then reduced to a sparse set

of features that cover all positive examples. More generally, the merit of a feature is

defined as a trade-off between its influence on positive and negative examples. The

learning process alternates between computing the feature merit function based on

the positive examples that have not yet been covered, and selecting the best feature

left in the candidate set.

In our case, the failed runs are positive examples of a bug, and successful runs

negative examples. The predicates are the features that must cover the set of failed

runs while being consistent with the successful runs. The merit of a predicate can

be defined iteratively, based on the set of runs it covers and whether there are other

predicates competing for that cover.
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6.5 The Algorithm

The multi-bug algorithm is summarized in Algorithm 1. The first stage (lines

2–4) is the predicate pre-filtering step. We next initialize necessary quantities in lines

7–10. The third stage (lines 13–22) iterates the predicate-run update equations until

convergence. The fourth stage (lines 25–27) assigns each failed run to the predicate

that makes the most contribution, where the single predicate contribution is weighted

by the contributions towards the successful runs. The final stage (line 30) ranks the

predicates by the number of failed runs they account for.

The algorithm is essentially a collective voting process. Each run has one vote to

cast for which predicate it prefers. At the beginning, all predicates are equal, and

the runs can give fractions of their votes to each of the candidates, depending on

how attractive they seem. In this stage of the algorithm, the runs can influence each

other’s vote distributions through the predicate update equations. Popular candidates

receive even more votes. After this process converges, each run must now cast the

entire vote toward their favorite candidate. The predicates are then ranked by the

number of votes they receive.

The iterative updates are designed to find a natural equilibrium between sensitiv-

ity and specificity. A highly specific predicate would have a high contribution towards

certain runs, whereas a sensitive predicate would have some contribution towards a

large set of runs. The strongest predicates would naturally enjoy both advantages,

thus beating its competition in the voting game.

Note that this algorithm makes no explicit use of high order statistics other than

the run-predicate connection weight Aij. The score of each predicate influences the

scores of all other predicates through the update equations, but there is no direct

interaction between predicates. The sufficient statistics required by the algorithm

(including those for the truth-value model described in chapter 7) can be collected
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Algorithm 1 Algorithm for finding bug predictors in the presence of multiple bugs.

1: // Pre-filter predicates
2: for all predicate i do
3: retain predicate i iff

P (Crash | predicate i is true) > P (Crash | predicate i is observed)

4: end for
5:
6: // Initialize
7: Set ε to a small number, say 1e−12

8: for all retained predicate i do
9: Q0

i ⇐ 1, Q0
ī ⇐ 1, t ⇐ 0

10: end for
11:
12: // Run updates
13: repeat
14: for all retained predicate i do
15: for all run j do
16:

Rt
ij ⇐

{
AijQ

t−1
i , if j ∈ F

Aij/Q
t−1
i , if j ∈ S

Rt
īj ⇐

{
AījQ

t−1
ī

, if j ∈ F
Aīj/Q

t−1
ī

. if j ∈ S

17: end for
18: F t

i ⇐
∑

j∈F Aij(1−
∑

k 6=i R
t
kj), F t

ī ⇐
∑

j∈F Aīj(1−
∑

k 6=i R
t
k̄j

)

19: St
i ⇐

∑
j∈S Aij(1−

∑
k 6=i R

t
kj), St

ī ⇐
∑

j∈S Aīj(1−
∑

k 6=i R
t
k̄j

)

20: Qt
i ⇐ (F t

i S
t
ī )/(S

t
iF

t
ī ), Qt

ī = 1/Qt
i

21: end for
22: until

∑
i(Q

t
i −Qt−1

i )2 < ε
23:
24: // Cast votes
25: for all run j ∈ F do

26: Assign run j to predicate `, where ` = argmaxi

Aij(1−
P

k 6=i Rkj)

Aīj(1−
P

k 6=ī Rkj)
· Sī

Si
.

27: end for
28:
29: // Rank predicates
30: Sort predicates by the number of runs they account for.
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individually for each predicate. In this sense Algorithm 1 is a univariate algorithm.

Because we no longer need higher-order statistics, we no longer need to worry about

the data sparsity issue that had plagued our previous predicate clustering attempt in

section 5.3. This is not unlike the justification for belief propagation for approximate

inference on general graphical models. We harness the power of iterative updates

to simulate direct interaction between predicates and runs, something that would

otherwise be expensive to compute.
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Inferring Predicate Truth Probabilities

In this chapter, we focus on computing the predicate-run connection weights Aij in

our multi-bug model. Recall our bipartite graphical representation of the problem,

reproduced in Figure 7.1 for convenience. We associate a weight Aij with the edge

between predicate i and run j. The weights can be as simple as the observed binary

predicates truth counts, i.e., Aij = 1 iff predicate i is true in run j. However, these

binary counts may become overly sparse in sampled data. Sampled data is also biased

towards predicates that are reached more often during a run of the program: all else

being equal, predicates that are reached more often have a higher chance of being

observed to be true.

The predicates truth counts that we observe are but fragments of the underlying

reality. The ideal Aij weights are the unobserved real predicate truth counts. But

based on the observed counts and what we know about the sampling process, we can

infer the probability that the predicate was true in any particular run. We can think

of this as imputing the predicate-run connection weight that may be missing due to

sampling. In doing so, we hope to ameliorate the data sparsity problem, and also

correct biasness caused by sampling.
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Figure 7.1: A model for the multi-bug constraint-satisfaction model. Runs in the top row
are labeled and colored according to their exit status of either failure or success.

7.1 The Truth Probability Model

Figure 7.2 is a graphical model for the truth probability of a single predicate. M

is a random variable representing the number of times a predicate is observed in a

particular run of the program. Y denotes the number of times it is found to be true.

X is the actual number of times that the predicate was true in that run, and N is

the number of times the instrumentation site was reached. We observe M and Y ,

but not N and X. Our ultimate goal is to compute the posterior truth probability

P (X > 0 | M, Y ) for each predicate in each run.

In the MOSS dataset, the number of times a site is reached often follows a Poisson

distribution. Occasionally, the site may not be reached at all during a certain run.

Hence we endow N with a prior that is a mixture of a Poisson distribution and a

spike at zero.

One may naively model the conditional probability of X given N as a binomial.

This corresponds to the assumption that the predicate truth counts come from a

Bernoulli process. While this assumption is not entirely unreasonable, closer exam-

inations of model fitness on the MOSS dataset shows that there is also a “sticky”

mode in the truth values. In certain runs, it may be impossible for the predicate to
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Figure 7.2: Predicate truth probability model.

be true, while in other runs, it may always be true. Hence we model the conditional

probability of X given N as a mixture of a binomial distribution, a spike at zero, and

a spike at N .

The rest of the conditional probabilities may be directly specified based on our

knowledge of the sampling process. P (M | N) is a binomial distribution with param-

eter d, and Y has a hypergeometric distribution given M , N , and X.

Thus the conditional probabilities of the predicate truth probability model are:

N ∼ γPoi(λ) + (1− γ)δ(0)

X | N ∼ β1Bin(α, N) + β2δ(0) + β3δ(N)

M | N ∼ Bin(d,N)

Y | M, N, X ∼ Hypergeo(M, N, X),

where δ(c) denotes a delta function at c.

66



Chapter 7. Inferring Predicate Truth Probabilities

We endow the hyperparameters α, β, λ, and γ with conjugate priors. Thus, α

and γ are beta-distributed, β has a Dirichlet prior distribution, and λ has a Gamma

distribution.

α ∼ Beta(s, t),

β ∼ Dir(c1, c2, c3),

γ ∼ Beta(j, k),

λ ∼ Gam(u, v).

The hyperparameters t, s, {ci}, j, k, u, and v are set so that the mean and variance

of α, β, γ, and λ equal their empirical means and variances.

t = (total # truth counts) + 1

s = (total # false counts) + 1 = (total # obs)− (total # true) + 1

c1 = (# runs where m > y > 0) + 1

c2 = (# runs where m > y = 0) + 1

c3 = (# runs where y = m > 0) + 1

j = (# runs where m = 0) + 1

k = (# runs where m > 0) + 1

u =
(average # obs per run)2

(variance of # obs per run)

v =
(variance of # obs per run)

(average # obs per run)

67



Chapter 7. Inferring Predicate Truth Probabilities

7.2 MAP Estimates of Hyperparameters

We need to compute either the posterior distribution of the hyperparameters α, β, γ,

and λ, or set them to some specific values following the empirical Bayes methodology.

We take the latter approach and set the parameters to their maximum-a-posteriori

estimates given the observations. Suppose the dataset contains r runs. Let m =

{m1, . . . ,mr} and y = {y1, . . . , yr} be the sequence of observed counts and truth

counts of a single predicate. The MAP estimates α̂, β̂, γ̂, and λ̂ are taken to be:

{α̂, β̂, λ̂, γ̂} = argmax{α,β,λ,γ}P (α, β, λ, γ | m,y)

= argmax{α,β,λ,γ}P (α)P (β)P (γ)P (λ)P (y | m, α,β)P (m | λ, γ, d)

= argmax{α,β,λ,γ}P (α, β,y | m)P (λ, γ,m | d), (7.1)

where P (α, β,y | m) := P (α)P (β)P (y | m, α,β), and P (λ, γ,m | d) := P (λ)P (γ)P (m |

γ, λ, d).

To obtain the MAP estimates, we maximize Equation (7.1) using Newton-Raphson.

Note that the probability is factorizable, which means that we can estimate {α̂, β̂}

separately from {γ̂, λ̂}. Appendix A contains detailed calculations of the gradients

and Hessians for use in Newton-Raphson. In the remainder of this section, we derive

the closed form formulas for P (y | m, α,β) and P (m | γ, λ, d), both of which are

needed in Equation (7.1).

To simplify notation, we do not explicitly condition on irrelevant hyperparameters

in the following derivations. We start by marginalizing out X. This turns out to affect
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only the conditional distribution of Y :

P (n, m, y | α, β) =
∑

x

P (n, m, x, y | α, β)

= P (n)P (m | n)

·
∑

x

(β1Bin(x; n, α) + β2δ(x = 0) + β3δ(x = n)) Hypergeo(y | m, n, x)

= P (n)P (m | n) ·

(β1

n−(m−y)∑
x=y

n!

x!(n− x)!

x!

y!(x− y)!

(n− x)!

(m− y)!(n− x− (m− y))!
αx(1− α)n−x

+β2δ(y = 0) + β3δ(y = m))

= P (n)P (m | n)(β1

(
m

y

)
αy(1− α)m−y

n−(m−y)∑
x=y

(
n−m

x− y

)
αx−y(1− α)n−x−(m−y)

+β2δ(y = 0) + β3δ(y = m)) (7.2)

= P (n)P (m | n)(β1Bin(y; m, α) + β2δ(y = 0) + β3δ(y = m)) (7.3)

= P (n)P (m | n)P (y | m, α, β).

The term under the summation in Equation (7.2) forms a binomial distribution of

(x − y) given (n − m) and α and thus sums to one. The new marginal conditional

probability P (y | m, α, β) is a mixture of a binomial distribution and delta functions

at 0 and M .

Next we marginalize out N , which induces a distribution on M that is a mixture

69



Chapter 7. Inferring Predicate Truth Probabilities

of a Poisson and a delta function at zero:

P (m, y | α, β, λ, γ, d) =
∞∑

n=m

P (n,m, y | α, β, λ, γ, d)

= P (y | m, α, β)
∞∑

n=m

P (n | λ, γ)Bin(m; n, d)

= P (y | m, α, β)
∞∑

n=m

n!

m!(n−m)!
dm(1− d)n−m ·

(
γ
λn

n!
e−λ + (1− γ)δ(n = 0)

)

= P (y | m, α, β)

(
γ
dmλm

m!
e−λd

∞∑
n=m

λn−m(1− d)n−m

(n−m)!
e−λ(1−d) + (1− γ)δ(m = 0)

)

= P (y | m, α, β)

(
γ

(λd)m

m!
e−λd + (1− γ)δ(m = 0)

)
(7.4)

= P (y | m, α, β)PoiMix(m; λd, γ). (7.5)

Equation (7.4) gives us the marginal distribution of a single value of m and y.

To compute the posterior probability of the hyperparameters, we need the likelihood

P (m,y | α, β, λ, γ) of all the observed m and y values. Let N := {i : mi > 0},

Z := {i : mi = 0}, and S =
∑r

i=1 mi. The joint probability of the mi’s can be

somewhat simplified:

P (m | λ, γ) =
∏

i

P (mi | λ, γ)

=
∏

i

[
γ

(λd)mi

mi!
e−λd + (1− γ)δ(mi = 0)

]
=

∏
i∈N

γ
(λd)mi

mi!
e−λd · (1− (1− e−λd)γ)|Z|

= γ|N |e−λd|N | (λd)S∏
i mi!

(1− (1− e−λd)γ)|Z|. (7.6)
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The joint probability P (y | m, α,β) can also be simplified:

P (y | m, α,β) =
∏

i

[β1Bin(yi; mi, α) + β2δ(yi = 0) + β3δ(yi = mi)]

=
∏
i∈A

β1

(
mi

yi

)
αyi(1− α)mi−yi

∏
i∈B

[β1(1− α)mi + β2]∏
i∈C

[β1α
mi + β3] ,

where

A := {i : mi > yi > 0}

B := {i : mi > yi = 0}

C := {i : mi = yi > 0}.

Note that the index sets A, B, and C are the same as the ones used in setting the

hyperparameters c1, c2, and c3.

7.3 Predicate Truth Posteriors

After setting the hyperparameters to their MAP estimates, we can proceed to our

ultimate goal of computing the posterior truth probability P (X > 0 | m, y).

The case where y > 0 is trivial since P (X > 0 | m,Y > 0) = 1. Hence we only

need to examine the case where Y = 0. It is easier to first compute P (X = 0 | m, Y =

0), from which we then obtain P (X > 0 | m, Y = 0) = 1− P (X = 0 | m,Y = 0).

We first compute the joint probability P (X = 0, m, Y = 0), which is divided by

P (m,Y = 0) (Equation (7.4)) to get the desired answer. Keep in mind that the
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hyperparameters have now been set to their MAP estimates.

P (X = 0, m, Y = 0) =
∞∑

n=m

P (n)P (m | n)P (X = 0 | n)P (Y = 0 | m,n,X = 0)

=
∞∑

n=m

P (n)P (m | n)[β̂1Bin(x = 0; n, α̂) + β̂2δ(x = 0) + β̂3δ(x = n)] · 1

=
∞∑

n=m

P (n)P (m | n)[β̂1(1− α̂)n + β̂2 + β̂3δ(n = 0)]

= β̂1P1(X = 0, m, Y = 0) + β̂2PoiMix(m; λ̂d, γ̂) + β̂3δ(m = 0)P (n = 0),

where

P1(X = 0, m, Y = 0) =
∞∑

n=m

P (n)P (m | n)P (X = 0 | n)P (Y = 0 | X = 0, m, n)

=
∞∑

n=m

P (n)P (m | n)

(
n

0

)
α̂0(1− α̂)n

(
0
0

)(
n
m

)(
n
m

)
=

∞∑
n=m

P (n)P (m | n)(1− α̂)n

=
∞∑

n=m

n!

m!(n−m)!
dm(1− d)n−m(1− α̂)n

(
γ̂
λ̂n

n!
e−λ̂ + (1− γ̂)δ(n = 0)

)

= γ̂
(λ̂d(1− α̂))m

m!
e−λ̂

∞∑
n=m

(λ̂(1− d)(1− α̂))n−m

(n−m)!
+ (1− γ̂)δ(m = 0)

= γ̂
(λ̂d(1− α̂))m

m!
e−λ̂(1−(1−α̂)(1−d)) + (1− γ̂)δ(m = 0). (7.7)

We plug Y = 0 into Equation (7.4) to obtain

P (m, Y = 0) = [β̂1(1− α̂)m + β̂2 + β̂3δ(m = 0)] · [γ̂ (λ̂d)m

m!
e−λ̂d + (1− γ̂)δ(m = 0)].

(7.8)

72



Chapter 7. Inferring Predicate Truth Probabilities

Finally, dividing Equation (7.8) into Equation (7.7), we get

P (X = 0 | m, Y = 0) =


β̂1(1−α̂)me−λ̂α̂(1−d)+β̂2

β̂1(1−α̂)m+β̂2
, if m > 0,

(β̂1e−λ̂α̂(1−d)+β̂2+β̂3e−λ̂(1−d))γ̂e−λ̂d+(1−γ̂)

γ̂e−λ̂d+(1−γ̂)
, if m = 0.

We can also compute P (X > 0 | n,m, Y = 0), which is useful in validating our

model.

P (n,m, Y = 0, X = 0) = P (n)P (X = 0 | n)P (m | n)P (Y = 0 | X = 0, m, n)

= P (n)Bin(m; n)[β̂1(1− α̂)n + β̂2 + β̂3δ(n = 0)],

P (X = 0 | n, m, Y = 0) =
P (n, m, Y = 0, X = 0)

P (n, m, Y = 0)
(7.9)

=
β̂1(1− α̂)n + β̂2 + β̂3δ(n = 0)

β̂1Bin(y; m, α) + β̂2δ(y = 0) + β̂3δ(y = m)

=
β̂1(1− α̂)n + β̂2 + β̂3δ(n = 0)

β̂1(1− α̂)m + β̂2 + β̂3δ(m = 0)

=


1, if m = n = 0

β̂1(1− α̂)n + β̂2, if m = 0, n > 0

β̂1(1−α̂)n+β̂2

β̂1(1−α̂)m+β̂2
, if m > 0, n > 0.

In deriving Equation (7.9), we made use of the formula for P (n,m, y) from Equa-

tion (7.3).
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Multi-Bug Results

After inferring the predicate truth probabilities, we plug them into the predicate-run

connection weight matrix Aij and run the multi-bug algorithm. In this chapter, we

present experimental results on the programs BC, CCRYPT, MOSS, RHYTHM-

BOX, and EXIF. Details of the datasets, including program size, deployed instru-

mentation schemes, as well as information regarding the bugs, may be found in sec-

tion 3.5.

Table 8.1 summarizes the number of predicates selected in each stage of our multi-

bug algorithm. The first column on the right hand side lists the initial number

of predicates contained in each program. The second column lists the number of

predicates left after pre-filtering. The third column lists the number of predicates

that received a non-zero vote in the final voting stage of Algorithm 1. The last

column lists the number of predicates needed to account for over 90% of the failed

runs for each program.

In the typical usage scenario, the ranked predicate list would be examined manu-

ally by a test engineer who may quickly lose her patience the farther down the list she

goes. Thus a good bug analysis algorithm should return a predicate list that is as con-
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Table 8.1: Summary statistics for multi-bug algorithm results.

Predicate Counts

Initial Pre-Filtered Voted 90% Failures

CCRYPT 58,720 50 1 1
BC 298,482 147 14 1
MOSS 202,998 2645 62 14
RHYTHMBOX 857,384 537 82 6
EXIF 156,476 272 7 2

cise as possible, with the most important bugs listed at the top. In our experiments,

Algorithm 1 filters out over 99.9% of predicates for all of the tested programs. In the

results for RHYTHMBOX and MOSS, however, there are still tens of predicates

that received a vote in the final stage of the multi-bug algorithm. However, as the

last column of the table indicates, over 90% of failed runs in all five test programs

were accounted for by the top few predicates. Hence a test engineer who uses our

system probably would not have to examine too many predicates to find the bulk of

failure-inducing bugs.

Let us examine the results in detail. For each dataset, we list as many of the top

predicates as is necessary to cover 90% of the failed runs, ranked by the number of

failed runs it accounts for. For each test program, the first column of the results table

lists the number of failed runs attributed to that predicate. The rest of the columns

contain additional information about the predicates.

8.1 CCRYPT

There are 10316 failed runs in the CCRYPT dataset, all of which are accounted for

by a single predicate. The predicate line <= outfile___0 in Table 8.2 is equiva-

lent to the one selected by the single-bug algorithm. In the prompt() function, the
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Table 8.2: CCRYPT failure predictors given by the multi-bug algorithm.

# Failures Predicate Function

10,316 line <= outfile___0 prompt()

Table 8.3: BC failure predictors given by the multi-bug algorithm.

# Failures Predicate Function

7153 a_names < v_names more_arrays()

return value to xreadline() is stored in the pointer variable line. The variable

outfile___0 represents the value zero. The selected CCRYPT predicate indicates

that line being less than or equal to zero can account for all of the failed runs. Indeed,

the CCRYPT bug occurs because the function xreadline() returns null when the

user inputs EOF. This null return value is unchecked; the program subsequently fails

when it tries to access the string that xreadline() supposedly returned.

8.2 BC

Table 8.3 indicates that 7135 out of 7802 of the BC failed runs are accounted for

by the predicate a_names < v_names. This predicate signifies an anomaly that only

occurs along with the array overrun. As a bug predictor, it is not as direct as, say,

the predicate index > a_count. But it is in fact a more deterministic predictor for

this non-deterministic bug, and one that accounts for more failed runs.

8.3 MOSS

Table 8.4 contains the failure predictors for MOSS. The left hand side lists the ranked

predicates along with the number of failed runs they account for. The right hand side
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is a bug histogram showing the bug counts of the failed runs where the predicates

are true. Note that this bug histogram tallies all the runs in which the predicate is

true, not just those attributed to this predicate. Later on we will see that there is an

important difference between the two sets of bug histograms.

The first predicate indicates that the input file language is LISP. This is a direct

predictor for bug #5. We can verify from the bug histogram that all 1572 runs

attributed to this predicate crashed due to bug #5. There are few other bugs with

non-zero counts in this histogram, but that is because a single run may trigger multiple

bugs. What is important is that all the crash due to bug #5 are correctly attributed

to the right predicate.

As mentioned in subsection 3.5.3, bug #5 is the easiest bug to isolate in MOSS

because it lies on a completely different code path from the rest of the bugs. Hence our

success at selecting the right predicate for bug #5, while comforting, is not altogether

surprising.

Continuing down the list, the second predicate is a direct predictor for bug #4,

and it is shown to account for most of the runs containing the bug. The relevant code

fragment is reproduced below:

config.tile_size = atoi(argv[++i]);

config.token_window_size = config.tile_size+1;

The variable config.tile_size is an integer representing the size of tiles in MOSS.

The size of the token window is set to be one larger than the size of the tile. Bug

#4 is an array overrun bug that could occur if config.token_window_size is larger

than the maximum allowed token window size, which is set to 500. Thus the second

predicate, config.tile_size > 500 signifies a direct violation of the size constraint;

it is a direct predictor of the bug.

The third predicate in the list accounts for a subset of bug #1, the C comment-
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matching bug. Strictly speaking, predicate 3 a sub-bug predictor for bug #1, because

it does not account for all runs with the bug. Predicate 7 further down the list is

another sub-bug predictor for bug #1. The two predicates are located on different

lines in the source code. Together, they account for most of the bug #1 runs. Bug

#1 occurs in C-style comment-matching mode: newlines within comments are erro-

neously ignored, resulting in incorrect line numbers in the output file. Even though

they are sub-bug predictors, the selected predicates are clearly indicate the location

of the bug and are therefore acceptable predictors for the bug.

Predicates 4 and 6 are both sub-bug predictors of bug #9. Bug #9 is an array

overrun bug that is very similar to bug #4: the size of a window is set to be larger

than the allow maximum of 100. Predicate 4 (__lengthofp == 200) indicates that

the length of the window p is too long, whereas predicate 6 (i___0 > 500) is true

when a the window index i is large. Both predicates clearly point out the problem

with this window array, and are thus useful predictors for bug #9.

Predicate 5 (i > 52) accounts for bug #3. This bug occurs when more than

one database is open. Each database contains multiple files. The predicate indicates

that the number of processed files is larger than usual, a fact that is correlated with

multiple databases being open.

Predicate 8 (f < yyout) accounts for bug #2, which is a bug similar to the one in

CCRYPT. The program opens a file for writing, but neglects to check the outcome

of the function fopen() to ensure that the file is writable. When there is an error,

the variable f is zero, which is less than the value of yyout. Predicate 8 is a direct

predictor for bug #2.

We now come to predicate 9. A glance at the bug histogram should raise imme-

diate concern. The bug histogram indicates that this is a super-bug predictor. The

predicate is true when the command-line contains more than 8 elements, a condition

shared by a large number of failed runs as well as successful runs.
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Table 8.4: MOSS failure predictors with overall bug histogram.
Bug Histogram of Runs where Predicate is True

# Failures Predicate #1 #2 #3 #4 #5 #6 #7 #9

1572 files[filesindex].language > 16 0 0 25 57 1572 0 0 70
880 config.tile_size > 500 26 0 12 940 57 0 0 51
626 config.match_comment is TRUE 796 6 9 6 0 7 3 45
489 __lengthofp == 200 40 5 13 6 10 5 8 577
391 i > 52 13 0 436 0 0 0 2 23
301 i___0 > 500 25 4 10 0 0 0 1 350
222 config.match_comment is TRUE 1155 11 14 2 0 7 6 65
146 f < yyout 11 146 3 0 0 1 0 10
134 i >= 8 1194 146 497 120 211 259 9 212
70 ((*(fi + i)))->this.last_line < 4 761 0 9 0 0 0 7 9
58 __lengthofp > 500 26 5 10 7 8 0 1 430
34 ((*(fi + i)))->other.last_line == yy_start 710 0 8 0 0 0 5 3
28 ((*(fi + i)))->this.last_line == 1 720 0 7 0 0 0 5 7
28 ((*(fi + i)))->this.last_line < 2 721 0 7 0 0 0 6 7

To understand why this predicate was chosen by the algorithm, let us take a look

at a different set of bug histograms. In Table 8.5, we tally only the runs attributed

to each predicate. Notice that this set of bug histograms is a lot cleaner than the

previous one. This indicates that, while the selected predicates may be true in runs

that fail due to various bugs, the runs attributed to each predicate contain roughly

the same bugs. Exceptions are bugs 1 and 9, each of which are fragmented across a

few distinct predicates. But overall, these bug histograms reveal fairly tight clusters

for the failed runs.

Let us examine the bug histogram for predicate 9 (i > 8). Even though this

predicate is a super-bug predictor, here it only accounts for runs crashing due to

bug #6. This is somewhat comforting. But why didn’t the algorithm pick a better

predictor for bug #6? The answer lies in our definition of a good bug predictor.

Bug #6 occurs when the “-p” option is passed to the command-line. Thus a good

predictor for bug # 6 is a branch statement in function handle_options() testing

for the “-p” option. However, even if this condition is FALSE, there is still a good

chance that the program would fail, because other command-line options may still

trigger other bugs. This violates our assumption that predicates P and P̄ cannot
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Table 8.5: MOSS failure predictors with bug histogram of accounted runs.
Bug Histogram of Runs Attributed to Predicate

# Failures Predicate #1 #2 #3 #4 #5 #6 #7 #9

1572 files[filesindex].language > 16 0 0 25 57 1572 0 0 70
880 config.tile_size > 500 26 0 11 880 0 0 0 46
626 config.match_comment is TRUE 626 0 0 0 0 0 3 44
489 __lengthofp == 200 0 0 0 0 0 4 8 489
391 i > 52 0 0 391 0 0 0 2 18
301 i___0 > 500 0 0 0 0 0 0 1 301
222 config.match_comment is TRUE 222 0 0 0 0 2 3 20
146 f < yyout 11 146 3 0 0 1 0 10
134 i >= 8 0 0 0 0 0 134 1 0
70 ((*(fi + i)))->this.last_line < 4 70 0 0 0 0 0 0 0
58 __lengthofp > 500 0 0 0 0 0 0 0 58
34 ((*(fi + i)))->other.last_line == yy_start 34 0 0 0 0 0 0 0
28 ((*(fi + i)))->this.last_line == 1 28 0 1 0 0 0 0 0
28 ((*(fi + i)))->this.last_line < 2 28 0 0 0 0 0 0 0

both be good bug predictors.

This also explains why none of the predictors in handle_options() was selected

by the algorithm. For example, bug #1 could have been predicted by the “-c” option,

but is now predicted instead by the two afore-mentioned sub-bug predictors. In the

case of bug #6, the strength of the “-p” predicate is offset by the strength of its

complement. In comparison, the super-bug i > 8 appeared stronger, and was chosen

by the algorithm.

This caveat underscores the fact that there is no safe assumption one can make

about all possible types of bugs. In many cases, our definition of a good bug predictor

works well. But there are situations where it is less appropriate.

8.4 Obtaining Predicate Clusters from Run Clusters

Our multi-bug algorithm picked a non-ideal predictor for bug #6 in MOSS. But

all is not lost. Notice that the algorithm nevertheless yields very good run clusters.

Thus the constituency of runs for each selected predicate can be treated as a single

bug cluster. The availability of good run clusters allows us to reduce the multi-bug
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Table 8.6: Predicate rankings based on predicate 9 of original MOSS results with overall
bug histogram.

Bug Histogram of Runs where Predicate is True

Rank Predicate #1 #2 #3 #4 #5 #6 #7 #9

1 tmp___8 == 0 is TRUE 11 1 0 11 4 259 1 15
2 strcmp == 0 11 1 0 11 4 259 1 15
3 i == 9 0 129 0 65 106 227 1 98
4 i == 7 0 129 0 65 106 227 1 98

...

problem into single-bug cases. We can compare each cluster separately against the

set of successful runs, ranking the predicates using, say, a simple univariate test.

Doing so would also demonstrate predicate correlation patterns. Thus we can obtain

predicate clusters from the run clusters.

We use the same two-sample T-test from our earlier attempt in section 5.1, this

time with the aid of single-bug run clusters. Let Fi denote the set of failed runs

attributed to predicate i, as determined by the multi-bug algorithm. Let S denote

the set of successful runs. For each top predicate i, we rank all the predicates based

on the two-sample T statistic

T (Fi,S) =
π̂Fi

− π̂S
VarFi,S

,

where π̂Fi
=
∑

j∈Fi
P (Xij > 0 | mij, yij)/|Fi| and π̂S =

∑
j∈S P (Xij > 0 | mij, yij)/|S|

are the average inferred truth probabilities. We rank the predicates in the cluster by

the value of their T statistic.

Table 8.6 contains the predicate ranking based on the run cluster of predicate 9,

the super-bug predictor for bug #6 in Table 8.4. The first two predicates are direct

predictors for bug #6 that indicate that the commandline flag “-p” is set. The rest

are super-bug predictors having to do with the length of the command-line.

We can also take a look at some of the other predicate clusters. Table 8.7 gives us
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Table 8.7: Predicate rankings based on predicate 3 of original MOSS results with overall
bug histogram.

Bug Histogram of Runs where Predicate is True

Rank Predicate #1 #2 #3 #4 #5 #6 #7 #9

1 config.match_comment is TRUE 796 6 9 6 0 7 3 45
2 i == 3 1194 13 18 43 79 12 6 87
3 i == 5 1194 13 18 43 79 12 6 87
4 i == 7 1194 13 18 43 79 12 6 87
5 i == 9 1194 13 18 43 79 12 6 87
6 tmp___0 == 0 is TRUE 1194 13 18 43 79 12 6 87
7 strcmp == 0 1194 13 18 43 79 12 6 87
8 i == lineno 1183 13 18 42 79 0 6 87
9 i == yy_init 1183 13 18 42 79 0 6 87

10 i == 1 1183 13 18 42 79 0 6 87
11 i < 2 1183 13 18 42 79 0 6 87
12 config.match_comment is TRUE 1155 11 14 2 0 7 6 65
...

the cluster for config.match_comment is TRUE, the sub-bug predictor for bug #1.

The bug histogram shows that the top ranked predicates in this table are all sub-bug

predictors for bug #1. In particular, predicate 7 in the original list is ranked 12

in this cluster, showing that these two top-ranked predicates can indeed be grouped

together. The true predictors for bug #1 is also contained in the list: predicates

6 and 7 in this list have to do with the command-line option “-c”, which puts the

program in C comment-matching mode. Incidentally, these bug histograms also show

that these predictors are equivalent to the i == ... command-line length predicates.

This is an artifact of our data-generation process.

We also look at the cluster for predicate 4, the sub-bug predictor of bug #9.

Table 8.8 contains many other high-quality sub-bug predictors of bug #9, along with

the actual bug predictor, config.winnowing_window_size >= 200. We see that the

sub-bug predictor is in fact a more deterministic predictor for bug #9; it is true in

1011 bug #9 runs – many more runs than config.winnowing_window_size >= 200.
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Table 8.8: Predicate rankings based on predicate 4 of original MOSS results with overall
bug histogram.

Bug Histogram of Runs where Predicate is True

Rank Predicate #1 #2 #3 #4 #5 #6 #7 #9

1 __lengthofp == 200 40 5 13 6 10 5 8 577
2 config.winnowing_window_size == 200 41 5 15 29 42 5 8 631
3 __lengthofp > 50 66 10 25 16 19 5 9 1011
4 __lengthofp >= 200 65 10 23 12 17 5 9 1004
5 config.winnowing_window_size >= 200 67 10 26 51 70 5 9 1095
6 passage_index___0 > 128 67 10 23 7 0 5 9 986

...

8.5 RHYTHMBOX

There are at least two bugs in RHYTHMBOX, one of which exposes a bad coding

pattern that has to do with previously freed and reclaimed event objects. This bug

subsequently led to the discovery of multiple bugs within RHYTHMBOX resulting

from the same bad coding practice. This in part explains the high failure rate in our

RHYTHMBOX dataset. (Table 3.2 shows that over 60% of our RHYTHMBOX

runs are crashes.)

In Table 8.9, the first three predicates account for over 85% of the failed runs. The

first predicate is an important clue for the disclosure animation bug. The bug involves

a dangling pointer to an object that has already been destroyed. The predicate

indicates that there are inconsistencies in the timer object.

The second predicate is a predictor of the race condition bug that has to do with

initialization of the rhythmbox player. Table 8.10 shows the cluster for predicate 2.

We see that monkey_media_player_get_uri() == NULL, a smoking gun predictor,

is clearly grouped together with this predicate.

The rest of the predicates on the list in Table 8.9 are all manifestations of other

instances of the bad coding practice we had revealed.
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Table 8.9: RHYTHMBOX failure predictors given by the multi-bug algorithm.
# Failures Predicate Function

11,658 (mp->priv)->timer is FALSE monkey_media_player_finalize()

2566 tmp___5 is FALSE info_available_cb()

2319 vol <= (float) 0 is TRUE rb_volume_sync_volume()

623 (db->priv)->thread_reaper_id >= 12 rhythmdb_init()

316 rorder (new val) < rorder (old val) rb_random_play_order_by_age()

303 (mp->priv)->tick_timeout_id > 12 monkey_media_player_init()

Table 8.10: Predicate rankings based on predicate 2 of original RHYTHMBOX results.

Rank Predicate Function

1 tmp___5 is FALSE info_available_cb()

2 monkey_media_player_get_uri() == 0 info_available_cb()

2 monkey_media_player_get_uri() == 0 info_available_cb()

...

8.6 EXIF

The results for EXIF are shown in Table 8.11. Here, too, we can make use of

the predicate clusters to analyze each of the high-ranked predicates. Judging by

their predicate clusters (Table 8.12 and Table 8.14), predicates 1 and 3 both predict

the NULL-printing bug. In the machine readable mode, when the variable maxlen is

greater than a certain number in the exif_entry_get_value() function, the function

returns NULL, which eventually gets passed to a printf() function and crashes. The

predicate maxlen > 1900 is number 4 on the cluster list for predicate 1, and number

1 on the list for predicate 3. Another good predictor of this bug is ranked number

3 in Table 8.14; it indicates that exif_entry_get_value() is returning NULL. The

rest of the predicates in these two clusters are equivalent (but redundant) indicators

of the same problem.

Predicate 2 from the original multi-bug algorithm results is a direct indicator of

the memmove() bug. The program crashes when memmove() receives a negative byte

count, which is represented by the predicate i < 0.
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Table 8.11: EXIF failure predictors given by the multi-bug algorithm.

# Failures Predicate Function

1644 i < k exif_entry_get_value()

532 i < 0 jpeg_data_set_exif_data()

17 machine_readable is TRUE main()

12 (data->ifd[4])->count is FALSE exif_data_save_data_content()

Table 8.12: Predicate rankings based on predicate 1 of original EXIF results.

Rank Predicate Function

1 i < k exif_entry_get_value()

2 i < k exif_entry_get_value()

3 i <= k exif_entry_get_value()

4 maxlen > 1900 exif_entry_get_value()

5 i < k exif_entry_get_value()

...

The fourth predicate in the original list, (data->ifd[4])->count is FALSE, is

a secondary indicator of the last bug in EXIF, which has to do with loading images

taken by Canon cameras. The primary indicator of the bug, o + s > buf_size, is

ranked number 1 on the cluster list in Table 8.15. There are very few crashes due to

this bug. Hence its predictor is ranked behind the predictors for the other two bugs.

Table 8.13: Predicate rankings based on predicate 2 of original EXIF results.

Rank Predicate Function

1 i < 0 jpeg_data_set_exif_data()

2 i < 0 is TRUE jpeg_data_set_exif_data()

3 i < 52 jpeg_data_set_exif_data()

4 i < 60 jpeg_data_set_exif_data()

...
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Table 8.14: Predicate rankings based on predicate 3 of original EXIF results.

Rank Predicate Function

1 maxlen > 1900 exif_entry_get_value()

2 maxlen >= 72 exif_entry_get_value()

3 tmp___873 is FALSE exif_entry_get_value()

...

Table 8.15: Predicate rankings based on predicate 4 of original EXIF results.

Rank Predicate Function

1 o + s > buf_size is TRUE exif_mnote_data_canon_load()

2 (data->ifd[4])->count is FALSE exif_data_save_data_content()

...

8.7 Summary of Results

Our results strongly indicate the usefulness of a statistical approach to bug-finding.

In many cases, our algorithm returns direct indicators of the bug. In some cases, the

algorithm prefers more deterministic predictors rather than the smoking-gun causes

of the bugs. While these deterministic predictors are not as direct at indicating the

problem, they do reveal interesting information about the failure modes of the bugs,

and are therefore useful for the bug-finding process.

We learn two important lessons from our results. First, we learn that there are

perhaps no universally-valid assumptions about characteristics of bug predictor char-

acteristics. Even reasonable sounding assumptions—such as P and P̄ not both being

good bug predictors—are inappropriate on occasion.

Secondly, we learn that having a run cluster and a predicate cluster are very

helpful during debugging. In some sense, run clustering is the necessary evil and

a precondition for obtaining sensible predicates. Predicate clusters group together

all the redundant predictors of a bug. It would be nice if our algorithm can select
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the “best” predicate out of each cluster. But often times, statistics alone cannot

determine the merit of a predicate. Such a decision requires semantic analysis of the

program source code.

However, it is always useful to present correlation lists to users of the system.

After all, the programmer who wrote the code is the best candidate for distinguishing

amongst redundant predictors. It is often unsatisfactory for a user of the system to

be bluntly confronted by a list of suspicious predicates. Such a list may be concise,

but often does not contain enough information to fully describe the failure modes.

Having the predicate correlation clusters allows the user to examine the failure modes

in more detail, thereby allowing for more efficient debugging. When using our own

system to debug programs with unknown bugs, we ourselves have found it exceedingly

useful to have such correlation information between predicates.

Our multi-bug algorithm is a three-stage process: pre-filtering, iterative predicate

voting, and post-processing. Pre-filtering reduces computational costs, and post-

processing gives us useful predicate clusters. Both involve some form of univariate

hypothesis testing. In section 5.1, we demonstrated how simple univariate hypothesis

testing by itself does not provide a good predicate ranking. The strength of a good

predictor for one bug is often diluted by the presence of other bugs. High-ranked

predicates from the two-sample T test are super-bug predictors. Thus pre-filtering

or post-processing alone cannot select high-quality predicates. In order to isolate

predictors for multiple bugs simultaneously, we must first have either good run clusters

or predicate clusters. Our multi-bug algorithm gives us the former.

It is also worth noting that having a good predicate truth-probability model is

very helpful for the analysis algorithm. The truth probabilities are used as connection

weights between predicates and runs. In some cases the inferred truth probabilities

do form spurious connections where one does not exist. But overall, using inferred

truth probabilities gives us higher quality results than using the observed predicate
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Table 8.16: Comparison of average absolute errors of inferred truth probabilities vs. ob-
served truth counts.

CCRYPT BC MOSS RHYTHMBOX EXIF

Inferred 3.26e-18 0.1398 0.1767 0.02424 0.1258
Observed 0 0.1447 0.1809 0.02571 0.1284

samples. Table 8.16 contains the average absolute errors between the inferred truth

probabilities and the real (unsampled) truth count, compared against that of the

observed truth counts and the real truth count. The inferred truth probabilities have

lower average absolute errors in four out of five programs. The exception occurs in

CCRYPT, where the difference between the two error rates is negligible.

From a debugging perspective, the predicate lists presented here are of comparable

quality to earlier results presented in Liblit et al. [2005]. However, from an algorithmic

perspective, Algorithm 1 is built on a more formal framework, and would therefore

be more conducive to theoretical studies of the statistical debugging approach. For

instance, it would be interesting to see whether the algorithm is maximizing some

underlying cost function. It would also be useful to determine the “power” of our

algorithm, and to come up with rough figures for how many runs might be needed to

catch certain percentages of certain types of bugs. We have done some preliminary

experiments along this line of research, but a thorough theoretical investigation would

be much more elucidating.
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Conclusions

In this thesis, we introduced the statistical debugging problem, defined the data

collection framework, discussed the idiosyncrasies of bug-finding and presented two

algorithms that work well on real-world programs. Our journey on the road of au-

tomatic software debugging is far from over. There are many possiblities for future

work. We have gathered experience by working with a few programs. While they

contain bugs that are representative of common software bugs one might encounter,

they do not cover the whole spectrum. There are many other kinds of bugs that

are not addressed by our current methods. We intend to both broaden our scope of

experimentation, as well as improving upon the results we already have.

Part of our focus lies in bugs that are traditionally difficult to catch at run time,

such as memory corruption bugs. While there exist static program analysis tools for

catching memory leakage and corruption bugs, they are often quite expensive to run.

However, they do present an alternative. Hence catching memory corruption bugs

alone does not justify our debugging approach.

There are many other situations where a combination of dynamic analysis and sta-

tistical analysis may be the only option. We touch upon this territory with the event
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timing-related bugs in RHYTHMBOX. In general, race conditions and deadlocks in

multi-threaded programs are notoriously difficult to debug. Our predicate instrumen-

tation and sampling framework is not particular suited for observing such rare events,

especially when they are also timing-dependent. This may call for modifications to

our instrumentation schemes and data recording method.

New types of bugs and instrumentation schemes present new challenges to the

debugging algorithm. This project has been an adventure filled with interaction

between programming analysis needs and machine learning mights. In designing the

analysis algorithms, we paid considerable attention to the morphology of commonly

encountered bugs, and sought inspiration from programming analysis heuristics.

We believe that more can be done to incorporate classic programming analysis

techniques in the statistical analysis of programs. We began investigating this ap-

proach by bringing chronological ordering of predicates into the analysis algorithm.

Preliminary results are not ideal. But the combination of statistical and semantic

program analysis remains the only promising candidate for selecting the best bug

predictor from redundant predicates.

As computer systems become increasingly complex, more and more effort will

surely go into automatic management and troubleshooting of such systems. In the

coming years, we expect to see a lot more similar collaborations between statistical

machine learning and traditional computer science. Our findings in this project high-

light the potential benefits of such a collaboration to both fields. This, we hope, is

just the beginning.
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Parameter Estimates in the Predicate

Truth-Value Model

We derive the necessary formulas for obtaining the MAP estimate of the prior param-

eters in the predicate truth probability model in chapter 7. This requires calculating

the the gradient and the Hessian of the Bayesian likelihood function Equation (7.1).

As explained in section 7.2, the posterior probability of the prior parameters given

observations m and y is factorable, which simplifies the calculation of the cross-terms

in the Hessian.

Starting from Equation (7.1), we have

(α̂, β̂, γ̂, λ̂) = argmaxα,β,γ,λ log P (α, β, γ, λ,m,y | d) (A.1)

= argmaxα,β,γ,λ log P + log Q (A.2)

= (argmaxα,β log P, argmaxγ,λ log Q), (A.3)
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where

log P (y, α,β | m) = log
Γ(s + t)

Γ(s)Γ(t)
+ log

Γ(
∑

i ci)∏
i Γ(ci)

(A.4)

+(s− 1) log(1− α) + (t− 1) log α (A.5)

+(c1 − 1) log β1 + (c2 − 1) log β2 + (c3 − 1) log β3 (A.6)

+
∑
i∈A

[
log β1 + log

(
mi

yi

)
+ yi log α + (mi − yi) log(1− α)

]
(A.7)

+
∑
i∈B

log[β1(1− α)mi + β2] (A.8)

+
∑
i∈C

log[β1α
mi + β3], (A.9)

and

log Q = log
λu−1e−λ/v

Γ(u)vu
+ log

Γ(j + k)

Γ(j)Γ(k)
(1− γ)j−1γk−1 (A.10)

+ log γ|N |e−λd|N | (λd)S∏
i mi!

(1− (1− e−λd)γ)|Z| (A.11)

= (u− 1) log λ− λ

v
+ (j − 1) log(1− γ) + (k − 1) log γ (A.12)

+|N | log γ − λd|N |+ S log λ + |Z| log(1− (1− e−λd)γ) (A.13)

+const. (A.14)

Let’s first optimize log P for α̂ and β̂. Let Bi := β1(1 − α)mi + β2 and Ci :=

β1α
mi + β3. In addition, we use the softmax representation for the β’s:

βi =
eti

T
, (A.15)

where T =
∑

j

etj . (A.16)
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We first calculate the partial derivatives of βi, Bi, and Ci:

dij :=
∂βi

∂tj
=

Tetiδ(i = j)− etietj

T 2
, (A.17)

Dijk :=
∂2βi

∂tj∂tk
(A.18)

=
T 2etiδ(i = j = k)− Teti(etjδ(i = k) + etjδ(j = k) + etkδ(i = j)) + 2etietjetk

T 3
,

(A.19)

∂Bi

∂tj
= d1j(1− α)mi + d2j, (A.20)

∂Bi

∂α
= −β1mi(1− α)mi−1, (A.21)

∂2Bi

∂tj∂tk
= D1jk(1− α)mi + D2jk, (A.22)

∂2Bi

∂tj∂α
= −d1jmi(1− α)mi−1, (A.23)

∂2Bi

∂α2
= β1mi(mi − 1)(1− α)mi−2, (A.24)

∂Ci

∂tj
= d1jα

mi + d3j, (A.25)

∂Ci

∂α
= β1miα

mi−1, (A.26)

∂2Ci

∂tj∂tk
= D1jkα

mi + D3jk, (A.27)

∂2Ci

∂tj∂α
= d1jmiα

mi−1, (A.28)

∂2Ci

∂α2
= β1mi(mi − 1)αmi−2. (A.29)
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Thus, the first-order derivatives are:

∂ log P

∂α
= − s− 1

1− α
+

t− 1

α
+
∑
i∈A

[
yi

α
− mi − yi

1− α

]
+
∑
i∈B

B−1
i

∂Bi

∂α
+
∑
i∈C

C−1
i

∂Ci

∂α
,

(A.30)

∂ log P

∂tj
=

∑
i=1,2,3

ci − 1

βi

dij +
∑
i∈A

β−1
1 d1j +

∑
i∈B

B−1
i

∂Bi

∂tj
+
∑
i∈C

C−1
i

∂Ci

∂tj
. (A.31)

The second-order derivatives are:

∂2 log P

∂α2
= − s− 1

(1− α)2
− t− 1

α2
+
∑
i∈A

[
− yi

α2
− mi − yi

(1− α)2

]

+
∑
i∈B

−B−2
i

(
∂Bi

∂α

)2

+ B−1
i

∂2Bi

∂α2

+
∑
i∈C

−C−2
i

(
∂Ci

∂α

)2

+ C−1
i

∂2Ci

∂α2
, (A.32)

∂2 log P

∂tj∂tk
=

∑
i=1,2,3

−ci − 1

β2
i

dikdij +
ci − 1

βi

Dijk

+
∑
i∈A

−β−2
1 d1kd1j + β−1

1 D1jk

+
∑
i∈B

−B−2
i

∂Bi

∂tk

∂Bi

∂tj
+ B−1

i

∂2Bi

∂tk∂tj

+
∑
i∈C

−C−2
i

∂Ci

∂tk

∂Ci

∂tj
+ C−1

i

∂2Ci

∂tk∂tj
, (A.33)

∂2 log P

∂tj∂α
=

∑
i∈B

−B−2
i

∂Bi

∂tj

∂Bi

∂α
+ B−1

i

∂2Bi

∂tj∂α

+
∑
i∈C

−C−2
i

∂Ci

∂tj

∂Ci

∂α
+ C−1

i

∂2Ci

∂tj∂α
. (A.34)
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Lastly, we compute the derivatives of log Q for estimating λ̂ and γ̂:

∂ log Q

∂λ
=

u− 1

λ
− 1

v
+

∂L

∂λ
, (A.35)

∂ log Q

∂γ
= − j − 1

1− γ
+

k − 1

γ
+

∂L

∂γ
, (A.36)

∂2 log Q

∂λ2
= −u− 1

λ2
+

∂2L

∂λ2
, (A.37)

∂2 log Q

∂γ2
= − j − 1

(1− γ)2
− k − 1

γ2
+

∂2L

∂γ2
, (A.38)

∂2 log Q

∂λ∂γ
=

∂2L

∂λ∂γ
. (A.39)
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Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, March 2003.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering (ICSE-02), pages 291–301. ACM Press, 2002.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical
Association, 67(337):123–129, 1972.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer–Verlag, 2001.

David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36:177–221, 1988.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In Cindy Norris and Jr. James B. Fenwick, editors, Proceedings of the
2002 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL-02), volume 37 of 1, pages 58–70. ACM Press, 2002.

Jean-Baptiste Hiriart-Urruty and Claude Lemarechal. Convex Analysis and Mini-
mization Algorithms, volume II. Springer–Verlag, 1993.

Tommi Jaakkola and Michael Jordan. Variational probabilistic inference and the
QMR-DT database. Journal of Artificial Intelligence Research, 1:1–15, 1999.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: a systematic
study. Intelligent Data Analysis Journal, 6(5), November 2002.

Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type infer-
ence. In Proceedings of the 11th USENIX Security Symposium, USENIX, August
2004.

Erich L. Lehmann. Testing Statistical Hypotheses. John Wiley & Sons, 2nd edition,
1986.

Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In ACM SIGPLAN PLDI 2003, 2003.

98



BIBLIOGRAPHY

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Public
deployment of cooperative bug isolation. In Proceedings of the Second International
Workshop on Remote Analysis and Measurement of Software Systems (RAMSS
’04), pages 57–62, Edinburgh, Scotland, May 24 2004.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable
statistical bug isolation. In ACM SIGPLAN PLDI 2005, 2005.

Benjamin Robert Liblit. Cooperative Bug Isolation. PhD thesis, University of Cali-
fornia, Berkeley, December 2004.

Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. Sober: Statistical
model-based bug localization. In Proceedings of the Fifth Joint Meeting of the
European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE-05), 2005.

Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 1(1):24–45, January 2004.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of
Machine Learning Research, 3:723–746, 2002.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In NIPS 14, 2002.

Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. Leveraging
field data for impact analysis and regression testing. In Proceedings of the 9th
European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 128–137.
ACM Press, 2003.

Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. Automated support for classifying software failure reports. In
Proceedings of the 25th International Conference on Software Engineering (ICSE-
03), pages 465–477. IEEE Computer Society, 2003.

RAMSS ’03: The 1st International Workshop on Remote Analysis and Measurement
of Software Systems, May 2003.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms for
document fingerprinting. In ACM, editor, Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data 2003, San Diego, California,
June 09–12, 2003, pages 76–85, New York, NY 10036, USA, 2003. ACM Press.

99



BIBLIOGRAPHY

Robert Tibshirani, Trevor Hastie, Mike Eisen, Doug Ross, David Botstein, and Pat
Brown. Clustering methods for the analysis of DNA microarray data. Technical
report, Department of Health Research and Policy, Department of Genetics and
Department of Biochemistry, Stanford University, October 1999.

L. G. Valiant. A theory of the learnable. Communications of the Association of
Computing Machinery, 27(11):1134–1142, November 1984.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th
International Conference on Machine Learning, pages 412–420, Nashville, US, 1997.
Morgan Kaufmann Publishers, San Francisco, US.

Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, February 2002.

Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceed-
ings of the ACM SIGSOFT 10th International Symposium on the Foundations of
Software Engineering (FSE 2002), Charleston, South Carolina, November 2002.

100


	Introduction
	Related Work
	Data Generation and Collection
	Instrumentation Schemes
	The Predicate Sampling Framework
	Non-Uniform Sampling
	The Cooperative Bug Isolation Project
	The Datasets
	CCRYPT
	BC
	MOSS
	RHYTHMBOX
	EXIF


	Catching a Single Bug
	Possible Simplifications
	The Approach
	Characteristics of the Single-Bug Problem
	Designing the Utility Function
	Interpretation of the Utility Function
	Two Case Studies
	Results

	The Multi-Bug Problem
	Univariate Hypothesis Tests
	Super-Bug and Sub-Bug Predictors
	Redundancy
	A Co-Occurrence Similarity Measure
	Spectral Clustering

	Missing Correspondence
	Summary

	The Multi-Bug Algorithm
	Predicate Pre-Filter
	Definition of Bug Prediction Strength
	Graphical Representation of the Model
	Predicate and Run Update Equations
	The Algorithm

	Inferring Predicate Truth Probabilities
	The Truth Probability Model
	MAP Estimates of Hyperparameters
	Predicate Truth Posteriors

	Multi-Bug Results
	CCRYPT
	BC
	MOSS
	Obtaining Predicate Clusters from Run Clusters
	RHYTHMBOX
	EXIF
	Summary of Results

	Conclusions
	Appendices
	Appendix Parameter Estimates in the Predicate Truth-Value Model
	Bibliography

