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Abstract

Using the methods of Foias [6] and Vishik-Fursikov [10], we prove
the existence and uniqueness of both spatial and space-time statis-
tical solutions of the Navier-Stokes equations on the phase space of
vorticity. Here the initial vorticity is in Yudovich space and the ini-
tial measure has finite mean enstrophy. We show under further as-
sumptions on the initial vorticity that the statistical solutions of the
Navier-Stokes equations converge weakly and the inviscid limits are
the corresponding statistical solutions of the Euler equations.
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1 INTRODUCTION

Statistical study of the Navier-Stokes equations was initiated by Hopf [7]
for the purpose of describing turbulent flow and developed as a coherent
mathematical theory by Foias [6], Vishik-Fursikov [10] and others. Roughly
speaking, a statistical solution is a probability measure concentrated on the
individual solution space associated with the initial value problem for the
Navier-Stokes equations.

In this paper we are concerned with the statistical solutions of the Navier-
Stokes equations on the phase space of vorticity. Their corresponding initial
measure concentrated on Y of initial vorticity, where Y=L' N L is the Yu-
dovich space. There exists a classical theory of existence and uniqueness for
individual solutions in the setting [11]. Several important statistical equilib-
rium theories ([8],[9]) are for vorticity in this phase space. Recently we have
established the inviscid limit results for individual solutions corresponding to
initial vorticity in Y ([4],[5]). So it is natural to study the statistical solutions
and their inviscid limits related to this phase space.

We will consider both spatial and space-time statistical solutions. Foias
[6] and Vishik-Fursikov [10] define spatial and space-time statistical solutions
on velocity spaces and prove their existence and uniqueness, respectively. The
classical Galerkin approximation plays a basic role in their proof of existence.
We adopt their definitions to define spatial and space-time statistical solu-
tions on the phase space of vorticity corresponding to initial measure y on
Y. Thanks to the recent results of the existence and uniqueness of individual
solutions with L' initial data ([1],[2]), we are able to construct explicitly the
defined statistical solutions without appealing to Galerkin approximation.
Our proofs of uniqueness are similar to theirs. The inviscid limit results of
the statistical solutions are obtained with more regularity assumptions on
initial measures.

Finally we remark that because there is no homogeneous Borel measure on
LP\ {0}(1 < p < 00) the phase space Y as a subspace of L? does not support
any homogeneous measure except the trivial one. It would be interesting
to introduce physically proper spaces of vorticity on which a homogeneous
measure can concentrate.



2 PRELIMINARIES

We consider the two dimensional Navier-Stokes and Euler equations

g—?%—u-quLVp:l/Au,

V. .u=0.

The kinematic viscosity v is a positive number in the case of the Navier-
Stokes equations; it equals zero for the Euler equations. The vorticity

obeys the nonlinear advection-diffusion equation
(O +u-V—-—vA)w=0. (2.1)

The vorticity equation can be viewed as the basic evolution equation. In this
formulation the velocity is computed from the vorticity via the Biot-Savart
law:

u=Kx*w (2.2)

where 1
K(z) = gVLlog(lxD.
We consider the initial vorticity in the space
Y = L'(R¥) N LE(R?)

of bounded functions with compact support and the norm on Y is the sum
of L' and L* norms.

For initial vorticity in Y there exists a unique global in time weak solution
of the Euler equations, as shown by Yudovich [11]. The well-posedness for
the Navier-Stokes equations with L! initial data has also been established.
More precisely,

Theorem 2.1 Let the initial vorticity wg € L'(R?). Then there exist unique
C* functions w and u on R?* x R which satisfy equation (2.1) and (2.2).

3



Furthemore, the operators S : wg — w and its derivatives ath“S (for every
integer k and double-index «)are continuous maps as follows

S: L'R* v+ C(Ry, LNR)) N C(Ry, WM n W)
ofves:  LYRY — C(Ry, L(R* N L®(R?)),

In particular, every wo € L'(R?) determines a continuous trajectory Swy €
L'(R?), which depends continuously on wy.

This theorem has been recently proved by Ben-Artzi [1] and Brezis[2].
We will especially use the continuity of the operator S.

We will also need the following estimates and exponential decay results,
which are proved in [4].

Theorem 2.2 Let wy € Y be the initial vorticity and w be the corresponding
solution of the Navier-Stokes equations. Then for all t > 0,

lw( Ollze < flwolize, 1< p < oo,
[, t)llzee < U = v/wollzallwol|e»

where u 1s the velocity corresponding to w. Furthermore, if the support of the
initial vorticity is included in the disk

{z:]z[ < L}

Then the vorticity satisfies

_ (Un?
w(z,1)] < |lwollgwe VIT¥2 (2.3)

Qi = {z:lel 2 C(L+ 3 +Ut))

The following energy estimates will also be used.

for all x € Qy,

Proposition 2.3 Let wy €Y be the initial vorticity and w be the solution of
the Navier-Stokes equations. Then for each T > 0,

T
Orgtaéllw(wt)lliz +2V/0 lw(-, )| Fdr < [lwol|Z- (2.4)
4 < (U 2.5
e |15, 0lli < (U + ) ool (25)



Proof. We obtain from multiplying the Navier-Stokes equations of vorticity
by w and integrating over R?

1d
—— | |w(z,t)dz + / (u+Vw)- wde = 1// (Aw) - wdz
2 dt R2 R2 R2

We are able to integrate the above terms by parts because of Theorem 2.2 and
eventually obtain (2.4). The inequality (2.5) is obtained after multiplying the
Navier-Stokes equations by v € H*(R?) and integrating by parts.

We will use B(X) to denote the o- algebra of a nonempty set X. Often we
will use the following basic measure transform lemma without mentioning.

Lemma 2.4 Let X; be a space with o-algebra B; for i = 1,2 and
S Xi— X,
be a measurable mapping and p be a measure on Xy. Define
A'p(w) = p(S7'w), Vo € By,

Then we have
[ stwiaun) = [ atsuoydutuo

if either g(Suo) is p(duo)-integrable or g(u) is A™p- integrable.



3 SPACE-TIME STATISTICAL SOLUTIONS

We will use the functional spaces U and 3:

dw

dt
3=L*[0,T), L) nC([0,T], H™?)

with the corresponding norms

V= {w:we L*[0,T),H") N L>=([0,T], L?), € L*=([0,T), H™*)},

dw
el = ||w||L2([o,T],H1) + ||w||L°°([o,T],L2) + ”E“L“([O,T],H—?)

lwlls = llwllzzo,m,L2) + lw (-, )l oo (ro,77,-2)

Clearly, U is continuously embedded in 3.
Proposition 2.3 implies that the solution (vorticity) w of the Navier-Stokes
equations with initial vorticity wg in Y is in .

Let g(wo) be the initial probability measure concentrated on Y satisfying

[, loolidutin) < . (3.)

The space-time statistical solution of the Navier-Stokes equations on the
phase space of vorticity can be defined by adopting the definition of Vishik
and Furshikov [10].

Definition 3.1 A space-time statistical solution of the Navier-Stokes equa-
tions corresponding to the initial measure p is a probability measure P on 3
such that

(1) P is supported on U, i.e., P(0) =1;
(i1) There exists a set W closed in 0 such that
W eB(3), PW)=1,

and W includes the solutions of the Navier-Stokes equations;



(iii) Measure P and u are related by the formula
Py mo) = p(wo), Vwo € B(Y)

where vy 'wo = {w : w € 3,yw € o} and yo(w) = w(0);

(iv) The inequality holds
/ (vleolaora + 10O + ol e (32)

dw
+||%

im0 -)dP(w) < C [ loolfsdun), 91 € [0,7]

where C is constant independent of v.

We define a probability measure on 3
P(w) = p(S™'w), Vw € B(3) (3.3)

where S™'w is the preimage of @ and S is the solution operator of the Navier-
Stokes equations defined in Theorem 2.1. The following proposition shows
that S : Y — 3 is continuous. Therefore S™'w € B(Y) for any @ € B(3),
that is, (3.3) is well defined.

Proposition 3.2 S:Y —— 3 is continuous.

Proof Letw;,w; €Y and wynar = max{||wi||Le, ||ws||L=}. By the definition
of the norm on 3,

T
56— Sl = [ 11(,7) — S 7l
0
+ max_ || Swi(-,t) — Swa(-, 1) 5

0<t<T

Theorem 2.2 and the continuity of the emdedding L*(R?) — H~%(R?) imply
that

T
||Swy — SUJQ”% < 2wmax/ |Swi(-,7) = Swal-, T)||prdT
0



+20maz max [|Swi () = Swa(-, )]s
The above estimate and Theorem 2.1, i.e. the continuity of
§: L'(R*) — C(Rs4, L'(R?))

imply the continuity of S : Y+— 3, which concludes the proof of this propo-
sition.

We now prove that P is a space-time statistical solution:

Theorem 3.3 The measure P defined in (8.83) is a space-time statistical
solution of the Navier-Stokes equations with initial measure yu in the sense of
Definition 3.1.

Proof Wefirst prove the inequality (3.2). By integrating inequalities (2.4),(2.5)
of Proposition 2.3 with respect to du(wo), we obtain

T
/ (max ool + 2 [ nw<-,r>||§pd7) 4P() < G [ fnldi(on)
0<t<T 0

dw
J 12 o) < Ca [ llnls )

for some constant C; and Cj. In particular, these estimates imply (3.2) and

/||w||mdP(w) < 00,

that is, P(0) = 1.
We can define, thanks to Theorem 2.1,

W=>5Y

Clearly, W consists of the solutions of the Navier-Stokes equations. Using the
idea in [10], we can prove that W is closed in 0 and W € B(3). Furthermore,

P(W) = P(SY) = p(S7SY)) = p(Y) = 1.
Let w € B(Y). As remarked in [10],
1o'lw = {w € 3:vw € w} € B(3)
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Since S~!45'w is the preimage of v, '@ with respect to S : Y — 3,
Sylmw=w

Ply'@) = p(S7 5 'w) = u(w)
which implies (z¢z) of Definition 3.1.
Thus we have showed that the measure defined in (3.3) is a space-time
statistical solution as in Definition 3.1.

Following the idea of Vishik and Fursikov ([10]), we can also prove that
the probability measure P defined in (3.3) is the unique space-time statistical
solution corresponding to the initial measure p.

Theorem 3.4 The space-time statistical solution P in the sense of Defini-
tion 3.1 is uniquely determined by the initial measure p.

Proof. First we can show that for any @) € B(3)
Y (Q@ N SY) € B(Y)
The uniqueness of the solution of the Navier-Stokes equations implies
7% (0(@NSY))NSY =QnSY
Using the above inequality and P(SY) =1,
P(Q) = P(Q N SY) = Pl (%(Q N §Y)) N SY)

= P(15 ' (%(Q@ N SY))) = p(0(Q N SY))
That is, P is uniquely determined by p.



4 INVISCID LIMIT OF SPACE-TIME STA-
TISTICAL SOLUTIONS

Let p be the initial probability measure satisfying (3.1) and PNS be the
space-time statistical solution obtained in the previous section. To show the

inviscid limit (as ¥ — 0), we need to make further assumptions on the initial
data:

/|Vw0|d:1: < oo, /Hwou,{ldﬂ(wo) < oo (4.1)
and we have

Proposition 4.1 Assume that the initial vorticity wy and measure u satisfy
assumption (8.1). Then the individual solution (vorticity) w™5) and the
statistical solution PN of the Navier-Stokes equations with initial vorticity
wo and respectively, measure u satisfy

T
/ (max 9Ol +v [ ||w<NS><-,~r>||%pdr) APV (9)) < ¢
0<t<T 0
(4.2)

dwN5)
/” dt HLOO(O,T;H-?)dP(NS)(w(NS)) < ¢ (4.3)

where ¢y, ¢y are constants independent of v for small v.

Proof Since w™5) decays at infinity (see Theorem 2.2), We can show by
the standard energy estimate that

T
2 [+ [ I <o ()

where ¢; does not depend on v but may depend on T. We obtain (4.2)
by integrating both side of (4.4) with respect to dpu(wp). (4.3) is an easy
consequence of Proposition 2.3.

The statistical solution of the Euler equations on the phase space of vor-
ticity can be defined through Definition 3.1 by formally setting v = 0. We
can construct the space-time statistical solution of the Euler equations as the
inviscid limit of PV9) of the Navier-Stokes equations.
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Theorem 4.2 Let the initial vorticity wy and measure @ satisfy the assump-
tion (3.1) and P9 be the statistical solution of the Navier-Stokes equations
constructed in the previous sections. Then there exists a subsequence of PIN9)
(still denoted by PWNS) ) such that its inviscid limit PB) exists and P® s
the statistical solution of the Euler equations. Furthermore, P(E) satisfies the
estitmates:

02X oD Ed PP (0P < ¢ < 00

dw'®) B\, (E
/” 7 = min—2dPP (W) < < 0o

E

where w(F) is the vorticity of the Euler equations with initial vorticity wy.

The following Prokhorov ’s weak compactness result plays an important
role in the proof of Theorem 4.2.

Lemma 4.3 Let X; and X, be two Banach spaces such that X, is separable
and X, is compactly imbedded in X,. Assume that 9N is a family of probability
measures defined on B(X3) with support on B(Xy). If for any p € M, || - || x,
is p—measurable and

sup / 1 lLxsdi(f) < oo,

LEM

then M is weakly compact.

Proof of Theorem 4.2 We just sketch the proof. Estimates (4.2),(4.3) of
Proposition 4.1 imply

/ lwllwdP* (@) < C,
pij

where C is independent of v. Since U is compactly imbedded in 3 , we can
use Prokhorov’s theorem. That is, PN9) is weakly compact in 3 and for a
subsequence converges to some probability measure P(E) on 3. We can check
that P is the statistical solution of the Euler equation. The two estimates
for P(E) hold because of the bounds in the estimates (4.2) ,(4.3) are uniform

for small v.
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5 SPATIAL STATISTICAL SOLUTIONS

We will use BC to denote the space of real bounded continuous functions on
L*(R?) and C; to denote the space of functions ® on L?(R2) such that

1®]lc, = sup 2!

— < 0.
w 1+ [lwl],

Let 4 be a Borel probability measure concentrated on Y and satisfy

/Y ol dp (o) < oo. (5.1)

The spatial statistical solution of the Navier-Stokes equations on the vortic-
ity phase space is defined as follows. A quite similar definition of spatial
statistical solutions on the velocity space was given by Foias in [6].

Definition 5.1 A family of Borel probability measures {p; }o<i<t on L*(R?)
is called a spatial statistical solution of the Navier-Stokes equations on the
phase space of vorticity corresponding to u if it satisfies

(1)
t— /1/)(w)dpt(w)is measurable on [0,T) for all ¢ € BC,

(i5)
/ lwollZadus(w) € L(0,T)),

(iii)
/ Jol2 dpe(w) € LA(0, 7)),

(iv)
T
| ot + vl o e0)

+(u - Vw, &', (t,w)]dp(w)dt = /Y ¢(0,w)dp(w),

12



for all ®(t,w) = r(t)d(w) with r(t) € C([0,T)) and ¢ € T, where u is the
corresponding velocity of w and J is a class of real functions ¢ defined on
H' satisfying

(A) |p(w)] < e +eflwllm, for anyw € H' and some constants c1,c; which
may depend on ¢;

(B) ¢ is Frechet L*-differentiable in the direction of H' i.c., 3¢, € L? such
that for v € H!

1 !
||U||H1 |¢(u) + v) - ¢(w) - (¢wav)| — 0, as ||v||H1 — 0:

(C) ¢' is continuous from H' to H' and ¢' is bounded.

We shall now prove the existence of the spatial statistical solutions. Let
w(-,t) = S(t)wo(:) be the unique solution (vorticity) of the Navier-Stokes
equations corresponding to the initial data wy € Y,where S(t) is the solution
operator defined in Theorem 2.1. We now define a Borel probability measure
on L*(R?)

pu(w) = w(S() @), Ve € B(LY) (5.2)
where B(L?) stands for the o—algebra of L*(R?).

Proposition 5.2 For allt € [0,T], pt in (5.2) is well defined.

Proof. We only need to show that for any ¢ € [0,T], S(t): Y +—— L? is
continuous. In fact, for any t € [0,T] and wy,w, € Y,

15(0)on — S(t)wallZe < 201t — S(E)nll
where & = max{||w; ||, [|wa||Le}. This estimate and the continuity of
S: L'(R?* — C(Ry, L'(R?)
imply that S(¢) : Y — L? is continuous.

Theorem 5.3 The family of probability measures {p; }o<i<t defined in (5.2)
is a spatial statistical solution of the Navier-Stokes equations on the phase
space of vorticity.
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Proof. We need to check that u; given by (5.2) satisfies (i), (77), (411) and
(¢v) of Definition 5.1. First we check (¢). By the definition of pi(w)

[ b )= [ $(S(@n)duten

for 4 € BC. The continuity of ¢ and S imply the continuity of [ p(w)dus(w)
and thus its measurability on [0, 7.
(¢2) and (i27) are easy consequences of the estimates in Proposition 2.3.
Now we prove (iv). First we show that functional

3

T
B /0 /Lz[—q’é(tm + v((w, ®L(1,w))) + (u - Ve, (¢, w)ldpe(w)dt
makes sense. For ®(¢,w) = r(t)¢(w) with r(¢) € C5°([0,T)) and ¢ € T,

,(t,w) = r'(t)p(w), B, (t,w) = r(t)¢'(w)

are continuous from [0,7"] x H' to R. Clearly, u = K * w as a function of ¢
and w is continuous from [0,7] x H' to R. Thus,

h(®) = ®,(t,w) + v((w, B, (t,w))) + (u - Vw, B, (t,w)

is continuous from [0,7] x H' to R. Furthermore, the definition of ® and
the fact that [|u]|r~ < U (see Proposition 2.2) lead to

[M(@)] < 1 + eaflwllm + ecavl|wllm + el flw]|

where ¢; — ¢4 are constants depending on ¢ (but independent of ¢,w). (2i¢)
and the above estimate imply that ¢g(®) makes sense.

We have from multiplying the Navier-Stokes equations of vorticity by
r(t)¢'(w) with r(t) € C3°([0,T)) and ¢ € J

& (r(1)6()) — ' (1)6() + (- T, () 0)) = v(Aw, (1))

after integrating with respect to ¢,
T
/ Hlw dt-l—/ r(t)(u - Vw, ¢'(w))dt (5.3)

14



T
_ /0 r(1)(Aw, ¢ (w))dt + r(0)$(wo)

Due to the results of Theorem 2.1 and Theorem 2.2, more precisely, the fact
that

Vw: L'R*)+— C(Ry, L' N L®(R?)
vanishes at infinity, we integrate by parts to obtain
(Aw, ¢'(w)) = —((w, ¢'(w))) (5-4)
We obtain (iv) by integrating (5.3) with respect to du(wo) and using (5.4).
Our next goal is to show that the spatial statistical solution of the Navier-
Stokes equations on the phase space of vorticity is uniquely determined by

the initial probability measure p. Here we assume that the initial measure p
has bounded support in Y, i.e., for some constant a

suppp C {w € Y i |jw|ly < a}
The definition of y; in (5.2) implies that for all ¢ € {0, T
supppy C {w € Lt ||wllze <1} = By

for some constant r > 0.
We shall need the following lemma, whose proof is quite similiar to that
given by Foias [6].

Lemma 5.4 Let {pi}o<ict be a family of Borel probability measures on
L?%satisfying (i), (i1), (iii) and let p be a probability on 'Y such that (5.1) holds.

Then the following two conditions are equivalent:
(1v)  {pi}oct<T Satisfies the equation:

/OT /LQ[—‘I’;(t,w) + v((w, ¥, (t,w)))

e Vo, t)du)it = [ 00,w)du(e)

for all ®(t,w) = r(t)¢(w) with r(t) € C([0,T)) and ¢ € T ;

15



(') {petocier satisfies the equation:

/m (1 w)dple / / + (w0, B (s,0))

+(u - Vw, ) (s,w))]dus(w)}ds = /Y O(0,w)du(w)

forallt € (0,T) and ® € Jy, where Jy is the class of real functions defined
on [0,T] x H' satisfying:

(A1) O(t,w) is continuous in (t,w) € [0,T] x H',
91, < e + ezl
for some constants ¢, c;.
(B1) ®(t,w) is Frechet L* differentiable in the direction of H',
(C1) ®(-,) is continuous from [0,T] x H' to H' and is bounded.
Clearly, J; contains [J.

We can now state the uniqueness theorem and the idea of its proof is

from [6].

Theorem 5.5 Suppose that u has bounded support in Y. Then any space
statistical solution of the Navier-Stokes equations on the phase space of vor-
ticity with bounded support in By is uniquely determined by p.

Proof. Let {ﬂt}ogtST be another statistical solution satisfying the condi-
tions in the theorem. First we show that for any ¢t € [0,7] and ¢ € J,

dﬂt / ¢ d,ut

Let ¢ € J and @(T,w) = ¢(S(t — 7)w), T € [0,t], where S is the solution
operator of the Navier-Stokes equations defined in Theorem 2.1. It is easy to
check that ® € J;. By Lemma 5.4, the space statistical solution {f;} should
satisfy

/ B(t,w0)djie(w) + / 8! (5,0) + v((w, @ (5,)))
L2 0 12
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+(u - Vw, @, (s,w))]djis(w)ds = /Y ®(0,w)du(w)
since ®(7,w) = ¢(S(t — 7)w),

w)dfiy(w / P(S (w) (5.5)

= /0 Lz[—@’s(s,w) + v((w, @, (s,w))) + (u- Ve, (s, w)]di(w)ds

but
Bl (5,0) = (F(S(t = s)), ‘(51— ) (56)

The right hand side of (5.5) actually becomes zero after we replace ®’ by the
formula (5.6) in it . Thus,

w)dfiy(w / $(S(t)w)dp(w)

On the other hand, by the definition of {y;}o<i<T,

w)dpy(w / o(5 (w)

Thus for all t € [0,T] and ¢ € T,

p(w)din(w) = [ ¢(w)dp(w)
L2 L2

We obtain by using the result of Lemma 5.6 below

/ W) = / W)

for all t € [0,T] and ¥ € €(By) , where € denotes the space of all continuous
real functionals on B; with respect to the weak topology on L2?. Since on
By the Borel sets with respect to L? weak topology coincide with those with
respect to the usual L? topology. Thus,

ft(w) = p(w), for any Borel set w C By,
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Since the supports of both measures are also included in By, we have for all

te0,7],
/:zt = ,u’ta
which concludes the proof of this theorem.

We’ve used the following lemma in the proof.
Lemma 5.6 The sel {®(-)|By,® € J} is dense in €(B,).

This lemma can be found in [6].

6 INVISCID LIMIT OF SPATIAL STATIS-
TICAL SOLUTIONS

In this section we prove the existence of the inviscid limit of the spatial
statistical solutions constructed in the previous sections and furthermore we
show that this inviscid limit is the space statistical solutions of the Euler
equations. The idea of the proofs for these results comes from Foias [6]. Our
proof is also similar to that of Chae [3] for the inviscid limit of statistical
solutions defined on the phase space of velocity .

We need to make further assumptions on the initial data:

/|Vw0|d:z: < 00, /||w0||H1d/L(w0) < oo (6.1)

and we have with these assumptions

Proposition 6.1 Let wy be the initial vorticity satisfying (5.1) and WV

be the corresponding solution (vorticity) of the Navier-Stokes equations. As-

sume that {;ANS)}OQST be the spatial statistical solution of the Navier-Stokes
equations with initial p obtained in the previous sections. Then

T
sup / N2 du ™) 1 o / / o™ 1) 2pdnMdt < C (6.2)
0

0<t<T

for some constant C' independent of v.

18



The proof of this inequality is similiar to that of Proposition 4.1.

The definition of the statistical solution of the Euler equations on the
phase space of vorticity is obtained from that of the Navier-Stokes equations
by formally taking » = 0 and restricting the test functions ® to J,, a subclass
of J. J; consists of functions of the type

O(t,w) = r(t)p(w), r(t) € C°([0,T))

and ¢(w) = Y((w,91), (w,g2),- -, (w,gx)), where ¢» € C(R¥) has bounded
first derivatives and for 1 <: <k, ¢ € H'.

Our main results are included in the following theorem.

Theorem 6.2 Let p be a Borel probability measure on'Y satisfying (5.1) and

{pgNS)}(KKT be the corresponding spatial statistical solutions of the Navier-
Stokes equations on the phase space of vorticity . If we further assume that
wo and p satisfy (6.1), then there exists a subsequence {,ut }0<t<T (we use
the same notation for this subsequence) and a family of Borel probability
measures {pisyo<e<T on L* such that

t— / w)dpi(w) is measurable on [0,T] for all ® € C,

T
lim/ /q)(t,w)dyg’vs)dt :/ /@(t,w)d,utdt, for all ® € L}(0,T;C,).
0 0

v—0

Furthermore, {p:}o<i<T is a spatial statistical solution of the Euler equation
on the phase space of vorticity corresponding to .

To prove this theorem, we need the lemma:
Lemma 6.3 Let {u!} be a family of Borel probability measures such that
(a) t — [ ®(w)dpy(w) is measurable on [0,T], V& € BC,
(b) For some constant C, supoeser [ |wl}pndpt(w) < C, Vv >0,

(c) |w|? is uniformly integrable with respect to py, i.e. for Ve > 0, there
exists a re > 0 such that

| P <e
{wiw|>re}
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Then there exists a family of Borel probability measures {ps} such that

t— / w)dpi(w) is measurable on [0,T], V® € BC

T
lim / [ #ttords e = / [ o, voe 0,13,

Proof of Theorem 6.2  We sketch the proof. It is easy to check that
the statistical solution of the Navier-Stokes equations {utNS } satisfy all the
conditions in the lemma. By applying this lemma, we obtam a family of
probability measures {u;} as the inviscid limit of {pt } We can show
that {u;} is actually a spatial statistical solution of the Euler equations on
the phase space of vorticity. In fact we only need to prove equality (¢v) in
Definition 5.1 with v = 0 and ® € J;. The idea of showing (:v) is to check
that each term of the intergrand in (7v) is in L!(0,T;C,) and then use the
limit equality

T T
lim/ /@(t,w)dpgmdt :/ /fb(t,w)dptdt, Vo € L1(0,T;Cy)
0 0

v—0

Further details are omitted.

Proof of Lemma 6.3. We consider the functional

T
_ / / O(t,w)du(w)dt, @ € [}0,T;Cy)
0 L2

This functional is well-defined because [}, ¢(w)du(w) is measurable on [0, 7'

for any ¢ € Cy. This can be seen from assumption (a) and the fact that any

¢ € C, can be written as the limit of ¢ = min(¢, k) , which is in BC.
Furthermore, we show that F* € (L'(0,T;C,))"

T
F(®)] < / / 198, Vs (1 + [lP)dpt (@)dt < ClI® o orien
0

where C does not depend on v and we've used inequality (6.2) in the above.
By the Banach-Alaoglu theorem there exists a F' € (L'(0,T;C;)) such that
for a subsequence

FY — F in the weak-* sense in (L'(0,T;C2))'.
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Let X be a strong lifting of L*(]0,T])([6]). By the integral representation
theorem, there exists a family {Fi}o<i<7 C (C2)’ such that

T
F(®) = /O < Fy, 0(t) > dt, Vo e L'(0,T;C,)

sup [|Ff} = || £]
0<t<T

ME(®))(t) = Fu(®), YD eCy Yite[0,T)

Next we want to show that for any ¢ € [0, 7] there is a Borel probability
measure p; on L? such that

< F,® >= / d(w)dp:(w), VO € BC
12

The idea of proof is to use Daniell’s theorem (see Lemma 6.4 below). First
we can prove that for any ® € BC:

| < F,,® > | < sup|®| + T%|q>|Bc, Vr > 0,ae. t €[0,7] (6.3)
B,

where B, is the ball of radius r in L%, For the lifted family F; the above
estimate holds for all ¢ € [0,T]. Let @, > 0 be a sequence in BC such that
®,, — 0 pointwise as m — oo. By the Dini’s theorem,

sup |9, = 0, m — o0
B,

Thus, by letting r — oo in (6.3),
lim < F;,®,, >=0, Vtel0,T]

m—+00

Daniell’ theorem then implies that for all ¢ € [0,T] there exists a Borel
measure /i

< F,® >= /(I)(w)d,ut(w), ® e BC, tel0,T]

It is easy to see that u; is actually a probability measure. By taking ®(¢,w) =
r(t) € L'([0,T]) in

v—0

T T
lim/ /‘I)(t,w)d,u;’(w)dt = / < Fy, ®(t) > dt,
0 0
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we obtain < F,1 >=1, that is, [ dp:(w) = 1.
Thus we have proved that there exists a Borel probability measure /;
such that

/OT/CI)(t,w)d#'{(W)dt — /OT/‘I)(t,w)dﬂt(w)dt as v — 0 (6.4)

for all ® € L'(0,T; BC).

We can prove that the above limit equality (6.4) actually holds for a
broader class of test functions ® € L'(0,T;C;). The main idea of showing
this extension is to approximate C, functions by BC functions and use the
uniform integrability of ||w||z2 with respect to . We won’t give more details.

We have used the Daniell’s theorem, which states

Lemma 6.4 Let I be a positive linear function on BC' satisfying the Daniell’s
condition: if {¢m} is a sequence in BC which deceases to zero pointwise, then
limpy—oco < F,¢m >= 0. Then there exists a Borel measure P on L* such
that

< F,¢ >:/¢dP, V¢ € BC.
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