
14074 OCTOBER 1978 EM5 

JOURNAL OF 
THE ENGINEERING 

MECHANICS DIVISION 

STATISTICAL STABILITY EFFECTS 

IN CONCRETE FAILURE 

By ZdeDek P. BaZant, I M. ASCE and Liisa PaDula 1 

NATURE OF PROBLEM AND OBJECTIVES 

In contrast to metals, the inelastic behavior of concrete as well as rocks 
is characterized by strain-softening, i.e., decline of stress at increasing strain. 
This property reduces the ductility of concrete structures and may cause sudden 
failure. Some investigators suggest that failure due to strain-softening may be 
a stability problem (1,4,5,10,13,14), but they differ in the choice of the instability 
mode. In a preceding paper (I), it was proposed that the proper instability 
mode is the so-called strain Iocalization-a mode in which the strain localizes 
into a narrow band that has a certain finite thickness, la' depending exclusively 
on material properties. Strain localization is a concept that has recently been 
receiving keen attention in continuum mechanics (16), mainly with regard to 
shear failures in soils and rock. In Ref. I, this concept was applied to concrete, 
analyzing a simpie-model of a uniaxially stressed specimen loaded by a spring. 
Stability analysis of strain localization in this specimen has yielded simple 
expressions for ductility (i.e., ratio of strain at failure ~ to strain at peak stress 
ep ) as a function of length I of the specimen and spring constant, Cs ' of the 
supporting spring. The failure of statically indeterminate beams was analyzed 
as curvature localization in a similar way (1). 

The purpose of this study is to extend the preceding work (I) by incorporating 
statistical microscopic nonhomogeneity of the test specimen into the analysis 
of strain-localization instability. A model of parallel elements of nonuniformly 
and randomly distributed properties will be used. This model is similar to that 
previously analyzed by Dougill (4), but differs by the fact that the failure of 
individual elements depends not only on their strain or stress, but also on the 
current stiffness properties of the whole system. It will be shown that the 
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model reasonably describes the effect of support flexibility and specimen length 
upon ductility, as well as strength. Furthermore, a simple one-element model 
coupled to series as well as parallel springs will be analyzed and the disparate 
effects of these springs upon ductility will be elucidated. 

It must be emphasized, however, that attention will be restricted to uniaxial 
longitudinal strain-localization models, which are justified by their simplicity 
and agreement of their predictions with experimental knowledge. but definitely 
neither give a complete picture of specimen behavior, nor describe the actual 
micromechanism of failure. In this respect, other, more physically based ap

proaches (e.g., Ref. 12) will be required. 

EFFECT OF SUPPORT FLEXIBILITY AND ELASTIC RESTRAINT UPON DUCTILITY 

Before turning attention to a system of elements, it is useful to analyze a 
specimen that is coupled first in series with a spring of spring constant, C; , 
then in parallel with a spring of spring constant, Cp ' and finally in series with 
spring of spring constant, Cs (see Fig. I). Let the specimen be initially in an 

c, 

FIG. 1.-Concret' Specimen with Parallel and Series Springs. Its Stress-Strain Dia
gram and Strai;'Localization 

eqUilibrium state that is characterized by a uniformly distributed uniaxial. stress, 
a, and strain, E, corresponding to a point on the strain-softening branch (Fig. 
1). To examine stability of this equilibrium state, assume that the strain undergoes 

hcrements 8e(x) of piece-wise constant distribution, by which the strain gets 
localized into a narrow band of thickness 21D (Fig. I). Let the displacement 
increments of the cross section at the boundary of the localization band and 
at the end of the specimen be denoted as 8ua and 8ub , respectively. The sign 
of 8u

a 
and 8u

b 
will be assumed such that the localization band, 2/a , undergoes 

a further increase of strain and the rest of the specimen (segments Ib ) undergoes 

a strain decrease (unloading). 
The simplest way to decide the question of stability is to calculate the load 

8Q that must be applied at the boundary cross section of the localization band 
in order to produce displacement 8ua • The combined stiffness of springs C. 
and C is C. + C

p 
because these springs undergo equal deformations and the 

reacti~ns are added. The flexibilities of segment Ib of the specimen and of 
the spring system are (I - la)1 EuA and (l/C:) + I/(Cs + Cp )' respectively. 
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Thus, the combined effective stiffness of the system of the three springs, together 
with the segment Ib , is 

I 
C.rr = .1 _ I I l' . .... . ................. (I) 

__ a + +_ 
EuA C. + Cp C: 

in which Eu = unloading modulus (Fig. I); and A = cross-sectional area of 
the specimen. Equilibrium in the cross section at the boundary of the localization 
band requires that SQ - E,A SuJ la - C.ff SUa = 0, in which E, = tangent 
modulus, which is negative for the strain-softening branch. This may be rewritten 

as SQ = all SUa' in which 

E,A 
all = C.rr + -

I" 

The work that is done by force SQ to produce displacement SUa is 

I I 2 

AW= -SQSuu = -Oll(Suu ) •••••• • ••••• • •••••• 

2 2 

.... (2) 

. .. (3) 

If A W is positive, then no deformation increment can occur if no work is 
done, which indicates stability (Drucker's postulate). If A W is negative and 
there are no frictional forces present, as in our problem, the system is unstable. 
(However, this is not necessarily true when frictional forces exist, although 
the case A W = 0, representing neutral equilibrium, might still be regarded as 
the stability limit for practical purposes.) Therefore, the stability condition is 
A W = (l /2) all (SU,,)2 > 0 or all > O. Substituting here Eqs. 2 and 1, the stability 
condition may be brought to the form 

E, 1 
--< .................. (4) 

Eu 1 EuA (I C. ) --1+-- +-
l" C.I" Cp C: 

1+-
C • . 

This condition reduces to Eq. 8 from Ref. I when springs Cp and C~ are absent, 
i.e., C~ = 00, Cp = O. 

If the localization band could be made arbitrarily narrow, i.e., la/I- 0, the 
tangent modulus, E

" 
could not assume any negative value without violating 

the stability condition. Eq. 4. However, it is known from experiments that 
a negative slope (a strain-softening branch) does exist. To explain this experimental 
fact with the present model, it may be assumed that I" cannot be smaller than 
a certain value (1). This is logical because the material is not a homogeneous 
continuum. Since the stress and deformation of segment I" is described by 
macroscopically uniform stress and strain, thickness I" obviously cannot be 
considered to be less than the size of inhomogeneities, such as the maximum 
aggregate size. d, or else the foregoing equations would become invalid. Thus, 
I" = nd, in which n is a material constant, probably between I and 20, and 
perhaps n = 2. 

To show some consequences of the stability condition (Eq. 4), a specific, 
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empirical stress-strain diagram of concrete has been considered, using the 
well-known approximate relation (15) 

(J" = m( E)'" :: E ........................... (5) 

m-I + -
Ep 

in which crp = peak stress; Ep = corresponding strain; and m = constant, usually 
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FIG. 2.-Ductility Dependence on Length and Stiffness of Series and Parallel Springs 

(C •• Cp )' According to Eq. 6 

between 2 and 3. The tangent modulus may be obtained as E, = dcr/dE, which 
yields 

....................... (6) 

in which E = (crp/Ep)m/(m - I) = initial elastic modulus; and m = 0.0004 
(Pp/psi) + 1.0 (where psi = 6.89 kN/m

2
). The points (E,cr) where the stability 

condition (Eq. 4) is violated first represent the failure points (Ef,crf ) and the 
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ratio of Ef (at failure) to Ep (at peak stress) may be called ductility. 
Substituting the right-hand side of Eq. 4 for -E,/ E in Eq. 6, and solving 

the resulting equation, the diagrams in Fig. 2 (for C; = 0) have been obtained. 
It is seen that ductility decreases as the size of the specimen increases, and 
for very long specimens there is no ductility (~ == Ep). Making the supports 
more flexible by adding a series spring, Cs ' destabilizes the system and decreases 
ductility; the more flexible is spring Cs ' the larger is the ductility decrease. 
By contrast, providing elastic restraint by attaching a parallel spring, Cp ' has 
a strong stabilizing effect; ductility becomes larger with a larger stiffness of 

the parallel spring. 
Although the condition in Eq. 4 has not been rigorously formulated, the 

foregoing conclusions have, in essence, been intuitively recognized by experi
mentalists; see, e.g., the work of Evans and Marathe (6) who coupled stiff 
parallel elastic rods to their test specimens to enable observation of the 
strain-softening branch in a testing machine that would otherwise be ~sufficient1y 
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FIG. 3.-Arrangement of Evan. and Marathe'. Tensile Tests with Slopes at Failure 

According to Eq. 6 

stiff for this purpose. Using Eq. 4, the spring constant, Cp ' needed to stabilize 
the specimen could have been determined precisely. 

Eq. 4 has been used to analyze tensile ductility as observed by Evans and 
'Marathe (6). From the drawing of the testing machine (Fig. 3) given in Ref. 
6, it was estimated that Cs = 15 X 10

6 
Ib/in. (2,627 MN/m), Cp = 11 X 

106 Ib/in. (1,926 MN/m), and C~ = 4 X 10
6

Ib/in. (700 MN/m). The width 
of the strain-softening band was assumed as fa = 2 in. (50.8 mm). 

The tensile tests of Evans and Marathe show that failure occurs at a point 
beyond the inflection point of the descending branch, where - E, is less than 
maximum. According to Eq. 4, it would be impossible for the spe~imen to 
fail at one - E,/ E" value and not to fail at a higher - E,/ E" value. At constant 
Ell' failure cannot occur at points of positive curvature of softening branch, 
beyond an inflection point. Therefore, in order to explain Evans and Marathe's 
tests, it must be assumed that the unloading modulus, Ell' is decreasing as 
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the strain increases. The largest possible value of Ell at the observed failure 
point may be calculated from Eq. 4. The unloading slopes obtained in this 
manner for Evans and Marathe's tests from the foregoing crude estimates of 
Cp ' C., and C; are plotted in Fig. 3. These slopes are not unrealistic, since 
it is well known that at very large strain in the softening regime the unloading 
modulus indeed decreases and tends to approach the secant modulus. This 
phenomenon is due to microfracturing. 

However, apart from a decrease in E", failure at points of positive curvature 
of strain-softening branch could be also explained by transverse inhomogeneity 
of the specimen, which is analyzed in the sequel, and by multiaxial stress effects. 
Probably all phenomena are at play at the same time. Nevertheless, the present 
simple stability model for ductility gives realistic and, above all, simple results. 

PARALLEL MULTI-ELEMENT SYSTEM OF NONUNIFORMLY DISTRIBUTED PROPERTIES 

On the basis of instability caused by strain softening, the stiffness of the 
testing machine has been shown to affect ductility. However. no effect on 

--~~~~.. .~ 

not filllnR fall lOR filled 

FIG. 4.-Parallel Multi-Element System of Nonuniform Properties, with Stress-Strain 
Curves of Elements of Various Strengths 

strength is ptdicted. Yet, it is known from experiments (7,8) that strength, 
too, is affected by stiffness of the testing machine. This effect can be modeled 
in fracture mechanics (7) by means of the energy release rate, but such an 
explanation is hardly justified in case of concrete specimens that are not much 
larger than the aggregate size [6-in. X 12-in. (152-mm x 305-mm) cylinders] 
because on this scale concrete does not follow Griffith-type crack propagation 
criteria. It will now be shown that uniaxial unstable strain localization due to 
strain softening is also capable of giving a simple model for the effect of machine 
stiffness upon strength, provided that macroscopic nonhomogeneity of the test 
specimen in the transverse direction is taken into account. 

Consider now a system of N independent parallel elements whose properties 
are nonuniformly distributed over the system (Fig. 4). Let each of the elements, 
numbered as i = 1, 2, ... , N, be of equal length 21, while the cross-sectional 
areas, A;, and material properties vary from element to element. The system 
of elements is loaded through symmetric springs of spring constant C •. In addition, 
a spring of spring constant, Cp ' is coupled in parallel with the system. 
~ The load, P, is transferred onto the elements by perfectly rigid platens (Fig. 
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4) which ensure that the change of length of all elements is the same. A uniform 
uniaxial stress, ai' is assumed to exist within each element. The elements are 
numbered as ; = I, 2, ... , N in the order of increasing strength. As the ends 
of springs are being compressed, individual elements gradually fail, beginning 
with the element of highest strength, N, because it has lowest e

p 
as is typical 

of concretes of various strengths. Let k denote the number of elements that 
have not yet failed at the current loading stage; i.e., elements; = k + I, 
k + 2, ... , N are those that have already failed and carry no stress; a, = 

o for i > k (Fig. 4). 
To examine failure as a phenomenon of instability, all kinematically admissible 

variations of displacements -should be analyzed. However, for the sake of 
simplicitly (as in Ref. I), attention will be restricted to those displacement 
variations for which all cross sections of each,element remain plane, the stress 
state remains uniaxial, and instability within any of the elements can occur 
only by longitudinal strain localization, in which one region, of thic~ess 21a(Fig. 
I), undergoes a uniform infmitesimal strain increment, 8ea " while the adjacent 
regions. of length lh' undergo uniform infinitesimal strain decrement 8eb • It 

is assumed that 8ea _ represents loading (8lea l 2: 0), possibly at decreasing st;ess, 
and decrement, 8eh ' represents unloading (81~bl :5 0), always at decreasing stress. 
The sign of strain 'as well as stress is chose~ to be negative for compression. 

Similarly, as before, thickness, fa of the strain-localization band must be an 
empirical material property; fa = lid, in which n is an empirical coefficient. 
Assuming the maximum aggregate sizes, d, to be the same in all elements, 

fa must be also the same, and so must be lb' 
During a given loading step, a certain number of elements may fail by unstable 

strain localization; they will be nU'lnbered as ; = j + 1, ... , k and their number 
is k - j (0 :5 j < k); while i = I, 2, ... , j are the elements that are not 
failing during the given loading step and have a uniform strain increment, 8e" 

allover the element (Fig. 4). 

The displacement- increments of the rigid platens will be denoted as 8u
b

, 

and the displacement increments of the cross sections at the boundary of the 
strain-localization band will be denoted as 8ua , (Fig. 4). Ifsome of the elements 
fail, springs tend to release energy and transfer it into the concrete. Thus, 
the rigid platens must move in such' a direction that strain in concrete increases. 
The tangent modulus for loading (increasing strain, 81el > 0) will be denoted 

as E", and the unloading modulus as E",. On the softening branch, E, < O. 
The simplest approach to stability. analysis is to enforce a displace~ent, 8u

ak
, 

of the cross section that bounds the localization band, and calculate the force, 
8 Q, needed to produce 8u

ak 
while all the rest of the system remains in equilibrium. 

(This approach is predicated upon the assumption that 8u
ak 

::F 0 in the instability 
mode.) Equilibrium of forces acting at the rigid platens requires that 

in which 8ub / I = 8eb = strain increments in nonfailing elements; and (8ub -

8ua,)/lb = 8e
bi 

= strain increments in failing elements. Forces acting on the 
cross sections at the boundaries of the strain-localization bands in elements 
i = j + I, ... , k are in equilibrium if 8ab , - 8aa, = 0 in elements i = j + 
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I, ... , k - I, and A
k
8a

bk 
- A

k
8a

ak 
+ 8Q = 0 in element i = k. This yields 

8ub - 8uao 8ua (8) 
AE '-AE-'=O for i='·+I, ... ,k-I . ....... . 
'''i I ' " I 

b a 

Eqs. 7-9 represent a system of (k - m + 1) equations for unknowns 8ub , 

8u 8u and 8Q the displacement increment, 8ua , being prescribed. 
dJ+I' ..• , ak_I' , k 

To solve 8Q from these equations, 8u Q , may be expressed from Eq. 8 as 

8ub 

8ua,=---
E,lb 

1+-'-

for i = j + 1, ... , k - 1.. . . . . . . . . . . . . . . . . (10) 

E .. ,1" 
Substitution of this expression into Eq. 7 provides 

(II) 

........... (12) 

.•. (13) 

lUld 8ua, can be evaluated from Eq. 10. 
To examine stability, one may again consider the work 

I I 2 

6. W = - 8Q8u"k = - Okk(8uak ) 
2 2 

...•.....•.. (14) 

which must be done to produce displacement 8U"k' The stability condition is 

6. W = (1/2) okk(8u"k)2 > 0 or 0u > O. 
If 8Q = 0 or 0kk = 0, the system is in neutral equilibrium and the initial 

state is a critical state. It must be checked, however, whether the signs of 
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8ub and 8ub - 8u
ol 

agree with the assumed moduli. The modulus for regions 
lo of the failing elements i = j + I, ... , k was assumed in Eq. 7 to be the 
unloading modulus, Ea,. It may now be checked that for akk = 0 and E'k < 
0, Eq. 13 indicates that 8ub /8u

Uk 
< I, which confirms that unloading indeed 

takes place in regions 10 • Furthermore, from Eq. 10 it follows that 8uJ8uu, 

< 1 for all failing elements, because E, < 0 for these elements. (This also 
shows that instability cannot occur in el~ments whose stresses are not on the 
strain-softening branch.) Finally, if the downward slope of the strain-softening 
branch is not unreasonably large, i.e., if -E, < Eulul /b' then Eq. 13, with 
akk = 0, indicates that 8u b /8u

Ok 
> 0, and this means that the use of modulus 

E, in Eq. 7 for the nonfailing elements was correct. 
The special case of the condition akk > 0 (Eq. 12) for N = k = I and Cp 

= 0 is identical to Eq. 17 of ReCI, concerned with a single failing element, 
and the same special case for Cp =/: 0 is identical to Eq. 4 for the one-element 
model (Fig. 1) with C.~ = o. 

DUCTILITY OF LARGE NONHOMOGENEOUS SYSTEM OF PARALLEL ELEMENTS 

Eq. 12 may now be used to analyze ductility of the model. Individual elements 
of the model exhibit different peak stress ap,. Let cp(ap) be the probability 
density distribution of the amount of concrete of varying peak stress a p within 
the system. Assuming that the peak stresses of individual elements vary discretely 
as a a = a -.1a,., a = a p - (N - 1).1ap, then the total cross-sectional 

PI' P2 PI P •• PN I 

area of all elements of peak stress ap within the interval ap/ - (l /2).1ap ~ 

ap < ap, + (1/2).1ap is 

N 

AI = A .1apcp(ap); with A = L A I ....... (15) 
;-1 

in which A = combined cross-sectional area of all elements. 

For numerical studies, the approximate stress-strain diagram given by Eq. 
5 has been assumed again. Constant m in Eq. 5, usually between 2 and 3, 
determines the roundness of the peak and the maximum downward slope of 
the a-E curve. For higher m values, the peak is sharper and the maximum 
downward slope is higher (relative to E). This is reflected in the empirical 

relation m = O.OOO4/~ + I (15) that has been used herein. For stability analysis, . 
the location of peak stress, Ep, and the shape of the a-E curve immediately 
after the peak, are most important. It is, therefore, more ,appropriate to set 
up a direct empirical expression for Ep and determine m on the basis of Ep. 
From an analysis of numerous experimental data (9,11) it has been found that 
Ep = 0.0023 (4,500 psi//;)q (psi = 6.89 kN/m2) for /; ~ 3,000 psi (20,670 

kN/m2) in which q is a constant between 0.4 and 1.0 for most types of 
standard-weight concretes. This expression reflects the fact that weaker concrete 
reaches the peak stress at higher strain (provided that/; ~ 3,000 psi or 20,670 

kN/m
2
). 

The effective unloading modulus, Ea, of the whole specimen decreases along 
the strain-softening branch, due to fracturing of microelements. The individual 
elements of our model may be regarded as such microelements, and so the 
value of unloading modulus Eu for individual elements that have not yet failed 
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may be considered to be equal to its initial value. which may be taken as 
E. 

Having determined the stress-strain relations and the cross-sectional areas 
of individual elements in the model, it is now possible to calculate the strain, 
Eu , at which the system of parallel elements becomes unstable. For this purpose, 
a simple computer program has been written. Using the specified a

p
, values, 

the program finds Ai' Ep ,' E j = Ea" and m; for all elements i = 1, 2, ... , k. 

Then, the program increments the value of strain E in nOllfailed elements 
proceeding in small steps .1E. For each step, .1E, the calculation procedure is 
as follows: 

1. Using given ITp; values for elements i = 1, 2, ... , N, calculate E'I (Eq. 
6) and Ep. for all elements i = 1, 2, ... , k. 

2. Find all elements (i = j, j + I. ... , k) that are in the strain-softening 
regime (Le., E > Ep). Begin calculation with this value of j, which corresponds 
to the assumption that all softening elements fail during the increment, .1E. 

3. Evaluate a kk from Eq. 16 and check stability condition, au> O. 
4. If the stability condition is violated, go to step 5. If it is not violated, 

increase j by one (j oE- j + 1), which means that fewer elements are assumed 
to fail during the current .1e increment, and repeat item 3. If for some r the 
stability condition is violated, proceed directly to step 5. If all j values up 
to k - 1 are exhausted without detecting instability, no element is failing during 
the current increment .1E and one has j = k. 

5. Set k - j and calculate the mean stress, a, at the end of increment .1E, 

i.e., a = IjA;a;/I;A;, i = 1, ... k, in which a j is given by Eq. 5 for /; 
=/~.,j =jl' and Ep = Epj • 

6. 'Set E oE- E + .1E, return to 1, and begin calculations for the next increment, 
.1E. 

The calculations just outlined have been run for normal (Gaussian) distribution 

of peak stres;p, i.e. 

I (ap - iTp )2 

cp (ap ) = s....r2; exp - 2S2 . (16) 

in which iTp = mean peak stress; and s = standard deviation of ap • (Note 
ihat ACI strength /~ is defined to be less than up.) Various values of up,s, 
spring constant C., length 1/1

0
, and of coefficient q (indicating the decrease 

of Ep with increasing ap) have been 'considered in the analysis. All calculations 
were made for a system of 34 elements; the interval up - 3s ~ ap ~ up + 
3s has been subdivided in 33 equal subintervals /1ap; the strain increment was 
.1E = 25 X 10-6

• 

The typical numerical results are plotted in Figs. 5-7. While for the case 
of a single element (Fig. 1) with constant unloading modulus Eu an inflection 
point cannot exist on the descending branch because failure cannot occur at 
points of smaller IE,I than some previous IE,I, for the parallel system, Fig. 
5 shows that the descending branch of the diagram of mean stress versus strain 
does exhibit an inflection point followed by a long "tail" of progressively smaller 
slope and positive curvature. This is despite the fact that the unloading modulus, 
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E", of each element (unlike the overall Ell considered in Fig. 3) has been considered 
equal to the initial modulus, E. The existence of the inflection point in the 
descending branch for uniaxial localization model is thus seen to be a consequence 
of nonhomogeneity, which causes that the individual elements in the parallel 
system fail by instability gradually, provided that s is sufficiently large. The 
average unloading modulus of the whole system is (Eu) = E ~/(Ati A), in 
which i = I, 2, ... , k, and it is clear the (E,,) decreases as k becomes smaller 
than N; it is this value that corresponds to E" for the single element model 
in Fig. 1. 

The gradual element failure and the decline of (E,,) may also be represented 
by Dougill's model of parallel linearly elastic elements failing at a given, 
statistically distributed stress (4), but the dependence of failures on the flexibility 
of support and the length of specimen is not reflected in the simpler Dougill's 
model. Thus, the present model is an extension of Dougill's approach. 
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FIG. 5.-Typical Stress-Strain Diagram for Multi-Element System in Fig. 4 with Gradual 

Failure of Elements 

The present model yields a very long tail of the descending branch, which 
makes it difficult to derme failure and ductility precisely. Failure can no longer 
be dermed as the point of zero stress, because the uniaxial localization ~ould 
give unrealistically large ductility. It has been somewhat arbitrarily assumed· 
that specimen disintegrates (in a triaxial manner) when (a) drops below 0.25 

(a)p' and the corresponding strain has been considered to be the failure strain, 
Eft for the entire system. Such values of (a) at failure approximately agree 

with the failure points implied by the measured stress-strain diagrams of Evans 
and Marathe (6). 

The typical results for ductility, indicating the effect of length and support 
flexibility upon ductility, are plotted in Fig. 6. These diagrams are seen to 
be very similar to those obtained for a single element (Fig. 2). Therefore, the 
single-element model seems to be sufficient as far as ductility is concerned 

(provided that the unloading modulus is reduced with increasing strain). This 
is not so, however, for strength. 
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Fig. 7 shows that an increase of length of the specimen (system of parallel 
elements) can reduce the peak (O'}p of the mean stress (a) (i.e., strength) 
appreciably (by about 4%, s = 0.1 up)' Flexibility of support Cs can cause 
a similar reduction of strength. These reductions are due to the fact that the 
strongest (not the weakest!) elements reach their individual peak stresses and 
suffer localization instability before the peak (0')1' is attained by the mean stress 
( a ). This can happen only if the strain, E 1" at peak stress a I' decreases with 
decreasing aI" which is known to be true for concrete of strength higher than 
3,000 psi (20,670 kN/m2

). Because the number of the elements that become 
unstable before reaching (a) I' is higher for longer specimens and for more 
flexible support, the strength reduction becomes stronger. That such reductions 
of strength indeed exist is confirmed by experiments (7,8). 

The standard deviation, s, is an important factor. The value of 0.1 iYp considered 
in the calculations would be high when the overall strengths of various standard 
test cylinders are compared. However, for the variations of the strength of 
microelements within a standard cylinder, the value s = 0.1 up would no doubt 
be too low. Certainly, in one test reported (8), in which a strength reduction 
as high as 35% was caused by placing a spring under the test specimen, it 
would be necessary to consider s to be much higher than 0.1 iYp in order to 

obtain a quantitative agreement. 

SYSTEM OF PARALLEL ELEMENTS OF RANDOM PROPERTIES 

The reduction of strength demonstrated in the previous section is caused 
by instability of several strongest (and stiffest) elements in the system, which 
reach the strain-softening stage before the total stress attains its peak. Hidden 
in the analysis was a tacit assumption that the system is so wide (Le., number 
N of elements is so high) that the areas of the elements, A /, can be determined 
from their statistical distribution. However, if (he system is not sufficiently 
wide (Le., if N is not large), then the peak stresses, iT

pl
' and areas, A /, are 

random numbers of given statistical distribution. Since in the parallel element 

model the strongest elements fail first (because they are stiffest), the distribution 
of the areas of the strongest elements has a major effect. A rigorous way 
to treat it would be to develop extreme value statistics, analogous to that used 
to predict failure of a cable consisting of many wires. However, this approach 
would be rather complicated when combined with the stability conditions. 
Therefore, it was decided to use random (Monte Carlo) simulation by computer. 

In the preceding section, the frequency of concrete elements of peak stress 

within a chosen interval, a PI - (I /2) A a P :S a PI < a P + (I /2} A a p' was modeled 
by area A / associated with peak stress a PI (Eqs. 15 and 16). In Monte Carlo 
simulation, however, the peak stress values are not chosen, but represent 
individual random events; so, each element is considered to have a 'unit area, 

A / = 1, and the previous role of A / is now replaced by the number of elements 
falling within a given interval of peak stress A 0'1" A set of N random numbers 
al'l (i == I, 2, ... N) of normal distribution, characterized by prescribed mean 
up and standard deviation s, have been generated by computer. For this set 
of a PI values (with A/ ;; I), the mean stress-strain curve of (a) versus E was 
calculated step by step as described in the preceding section, and the obtained 

peak value of (a) P of mean stress (a) was plotted as a point in Fig. 8. The 
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calculation has been run for N s different randomly generated sets of N values 
of a PI' and the obtained peak point was plotted in Fig. 8 for each of these 
sets; N. = 10 was used for all cases, except that N. = 30 was used for the 
largest N. 

To simulate the statistical size effect of width upon localization instability. 
the preceding calculation for N . different sets of a Pi values was made for various 
values of N (N = 2, 4, 8, 16 and 32). The results are all plotted in Fig. 8. 
As expected, in a greater number N of elements there is a greater likelihood 
of obtaining a stiffest (and strongest) element, and so the number of elements 

that have reached their peak stress and failed is higher and appears to approach 
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FIG. a.-Change of Strength of Parallel Multi-Element System as Function of Number 
.,rElements (Width), Support Flexibility, and Length 

an asymptotic value as N becomes very large. This phenomenon represents 
the statistical size effect of width upon localization instabilities. 

The reduction of peak stress is due exclusively to elements of highest strength, 
which also have highest stiffness; they pass beyond their peak stress and fail 
by localization instability before the combined mean stress-strain curve peaks. 

The largest among the E Pi values corresponding to the generated a Pi values becomes 
smaller as the number of random trials, N, is increasing, and so the percentage 
of elements that fail by localization instability before the mean stress-strain 
curve peaks is increasing, causing the peak of this curve to become lower 
as N is increased. This statistical size effect contrasts with the classical 
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weakest-link chain model-a series rather than a parallel system in which the 
weakest rather than the stiffest and strongest elements initiate failure. 

To sum up, according to uniaxial localization models, one can distinguish 
two different nonconventional types of size effect in the strength of nonhomogen
eous materials: (a) A size effect of width that is statistical in nature and is 
modeled by extreme value statistics (failure of stiffest elements); and (b) a 

size effect of length that is caused by instability due to strain localization in 
long specimens. 

In real, three-dimensional specimens, such a cleat distinction, however, does 
not exist. The effect of support flexibility C ... is similar to effect (b), and the 
addition of elastic restraint Cp counteracts effect (b). 

If the test specimen is very short (l - 1
0

), and the supports are stiff (C ... 

- (0), the strength reduction due to instability is negligible and the statistical 
size effect of width is the only one in action. In this case, the strength «(J' > p 

increases as the width is decreased, which is shown by curve.a in Fig. 9. 
If the test specimen is very wide (which corresponds to a system of many 
elements in Fig. 4), the statistical size effect is negligible and the size effect 

. O~ 
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FIG. 9.-Comparison of Strength Change Due to Statistical and Stability Effects 

of instability due to length or support flexibility is the only one present. This 
case is depicted by curve c in Fig. 9. When the length is not small (large 
1/1

0
) or supports are flexible (small C), and the width is not large (small N). 

both size effects are operative simultaneously, and the combined size effect 
is given by curves b and d in Fig. 9, based on the simulation results from 
Fig. 8. It is seen from Fig. 8 that both types of size effect are about equally 
significant, one reducing the strength as from 1.0-0.96, the other one increasing 
the strength as from 1.0-1.04, the combined effect being a variation of strength 
as from 0.96-1.04. This is not a large effect; however, a greater variation would 
be obtained if a broader variation of strength of individual elements were assumed. 
This would be appropriate if the whole model represented the standard size 
cylinder, because the elements of this specimen, corresponding to the elements 
of the model, are rather small and have widely scattered properties. 

Apart from the statistical effects analyzed, there exists, of course, the 

well-known classical statistical size effect on strength (2,18), which is described 
by the "weakest iink" model of a chain under tension. This effect is known 

I' 
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to be quite significant in tensile failure of concrete but is probably of little 
significance in the compression failure, because the mechanics of this failure 
is not realistically modeled by the failure of a chain. 

As far as ductility is concerned, the results of the Monte-Carlo simulations 
are not shown because they have been very similar for all N to the results 
for a wide system (large N) (Fig. 6). This is obviously due to the fact that 
ductility. unlike strength, depends not only on the strongest elements but on 
all elements in the system. 

CONCLUSIONS 

1. Unstable strain localization in strain-softening concrete is capable of 
explaining the dependence of ductility, as well as strength, upon the length 
and the width of specimen, the flexibility of support, the parallel elastic restraint, 
and the degree of nonhomogeneity of concrete. 

2. The fact that a parallel elastic restraint has a stabilizing effect while support 
flexibility destabilizes concrete specimens is quantitatively described, in a rather 
simple manner. by the present model (Eq. 4). The thickness of the strain-softening 
band, and both the tangent modulus and the unloading modulus, must be 
empirically known in order to be able to predict the instability . 

3. The strength reduction due to unstable strain localization can be modeled 
by considering a system of parallel elements of non uniformly distributed properties 
reflecting macroscopic nonhomogeneity of the specimen. In contrast to the 
weakest link model for a chain, the reduction of strength is here due to the 
strongest elements, which are stiffest, and are therefore first to fail by unstable 
strain localization, before the total load on the system attains its peak . 

4. The existence of an inflection point and a prolonged tail on the descending 
branch. as well as the decrease of the unloading modulus, can be explained 
by nonhomogeneity of the parallel. element model; thus the individual elements 
do not suffer stability failures at the same strain. In this model, the shape 

of the descendjng branch and the location of the inflection point depends on 
the machine sliffness, as well as the parallel elastic restraint. 

5. There exists a nonclassical statistical effect in strength, i.e., the statistical 
stability effect, which is due to the fact that in a wider specimen (having more 
parallel elements) the likelihood of encountering stiffer elements of smaller strain 
at peak stress is higher, causing more elements to become unstable before the 
Lotal load attains its peak. The statistical stability effect is always intertwined 
with the effects of length, support flexibility and parallel elastic restraint, and 
depends on the standard deviation of peak stress values within the parallel 
~ystem. 

6. The statistical stability effect in a parallel system can model the reduction 
of strength due to an increase in the support flexibility or in the length of 
specimen. 
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ApPENDIX ".-NOTATION 

Thefollowing symbols are used in this paper: 

A, A i = cross-sectional areas; 
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stiffness coefficients' 

spring constants of 'parallel spn'ng . . senes sprmgs, and 
effective spring constant· ' 
initial elastic modulus, t'angent d I mo u us, and unloading 
modulus; 

length of specimen and its segments (Fig. 1)' 
standard deviation of a . ' 

axial displacements of ;;oss sections (Figs . 1 and 4); 
sec~nd-order work at small load increments 8<jl' 
stram and stress (uniaxial); , 

strain and stress at peak point (Fig. 1); and 
mean value of CI p • 
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ABSTRACT: Using a uniaxial localization model, it is shown that parallel elastic 
rcstf!1int increases ductility, while an increase in support flexibility or length of 
specimen reduces ductility. Statistical macroscopic nonhomogeneity of the specimen is 
modeled by a system of uniaxial parallel elements of random properties following the 
normal distribution. The stability analysis and Monte Carlo simulations explain that in 
such a system an increase of length or support flexibility reduces not only ductility but 
also the strength of the system. The effect on strength depends on the number of 
clements (width of specimen), which represents a new non-classical statistical size 
effect, and on the standard deviation of peak stress values within the parallel system. 
Existence of an inflection point and the prolonged tail on the descending branch is 
explained by the nonhomogeneity of the specimen, and the shape of the descending 
branch, along with the location of the inflection point, is obtained as a function of 
machine stiffness, parallel elastic restraint, and specimen length and width. 
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