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Many metabolomics, and other high-content or high-throughput, experiments are set up such that the primary aim is the

discovery of biomarker metabolites that can discriminate, with a certain level of certainty, between nominally matched ‘case’ and

‘control’ samples. However, it is unfortunately very easy to find markers that are apparently persuasive but that are in fact entirely

spurious, and there are well-known examples in the proteomics literature. The main types of danger are not entirely independent of

each other, but include bias, inadequate sample size (especially relative to the number of metabolite variables and to the required

statistical power to prove that a biomarker is discriminant), excessive false discovery rate due to multiple hypothesis testing,

inappropriate choice of particular numerical methods, and overfitting (generally caused by the failure to perform adequate

validation and cross-validation). Many studies fail to take these into account, and thereby fail to discover anything of true

significance (despite their claims). We summarise these problems, and provide pointers to a substantial existing literature that

should assist in the improved design and evaluation of metabolomics experiments, thereby allowing robust scientific conclusions to

be drawn from the available data. We provide a list of some of the simpler checks that might improve one’s confidence that a

candidate biomarker is not simply a statistical artefact, and suggest a series of preferred tests and visualisation tools that can assist

readers and authors in assessing papers. These tools can be applied to individual metabolites by using multiple univariate tests

performed in parallel across all metabolite peaks. They may also be applied to the validation of multivariate models. We stress in

particular that classical p-values such as ‘‘p<0.05’’, that are often used in biomedicine, are far too optimistic when multiple tests

are done simultaneously (as in metabolomics). Ultimately it is desirable that all data and metadata are available electronically, as

this allows the entire community to assess conclusions drawn from them. These analyses apply to all high-dimensional ‘omics’

datasets.
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1. Introduction: binary class discrimination problems

‘‘Thirteen years ago I moved from a department of
applied mathematics and theoretical physics to a
department of physiology. During these years, I’ve come
to recognize how very difficult it is to do a good
experiment’’ (Rapp, 1993).

‘‘Scientific research is a process of guided learning.
The object of statistical methods is to make that process
as efficient as possible’’ (Box et al., 1978).

‘‘It can be proven that most claimed research findings
are false’’ (Ioannidis, 2005b).

‘‘ ‘what the data say’ is often obscured by question-
able answers to unanswerable questions (Cornfield,
1966)’’ (Goodman and Royall, 1988).

‘‘Left to our own devices, ...we are all too good at
picking out non-existent patterns that happen to suit our
purposes’’ (Efron and Tibshirani, 1993)

As part of the scientific endeavour, metabolomics
studies involve a search for some kind of truth, and it is

appropriate therefore to start by recognising that while
the renaissance of interest in metabolomics itself may be
comparatively new (but cf. (Horning and Horning,
1971; Jellum et al., 1981; Greenaway et al., 1991; Tas
and van der Greef, 1994)), the basics of metabolomics
studies (as scientific studies) are not, and they can thus
benefit greatly from the accumulated knowledge and
standards that have become the norm in mainstream
biology and medicine.

In the typical kind of experiment that is the focus of
this article, the general objective (cf. (Kell and Oliver,
2004)) is the discovery of one, or more, measured vari-
ables whose values are drawn from two populations
with means that differ ‘significantly’, these two popula-
tions (classes) being labelled ‘case’ and ‘control’. A
similar objective could be to discover a way of com-
bining several, or all, of the measured variables in such a
way that when projected into a single dimension (e.g. as
a rule (Kell, 2002a)) via a mathematical transformation
the predicted values are drawn from two populations
with means that differ ‘significantly’. This basic structure
is entirely general (figure 1A), and is well described in
textbooks such as (Duda et al., 2001) and (Hastie et al.,
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2001). The implication is then that knowledge of these
metabolite values will be sufficient to effect the required
discrimination (and subsequently, perhaps, its mecha-
nistic basis, that might then allow external interven-
tion). As such this is known as a binary class
discrimination problem (and multi-class problems,
including those involving a grade or severity of disease,
can always be reduced to a series of binary class
problems). We shall mainly assume that the ‘input’
variables are metabolite concentrations and the class
referred to as ‘cases’ genuinely contains individuals
who are in a different physiological state from those of
the ‘controls’. Such physiological states or individuals
from whom the samples are taken may include those
with disease, susceptibility to a disease, individuals

suffering from a toxic effect, possessing a desirable
agricultural trait, and so on) and it is taken that this
class membership is thus well defined. Inaccurate
labelling of individuals’ class membership is known as
class noise (Kell and King, 2000), and we shall largely
ignore it, although we would point out that the field of
semi-supervised learning is designed to help detect this
and reclassify individuals as appropriate (Bennett and
Demiriz, 1998; Demiriz et al., 1999; Kemp et al., 2003;
Li et al., 2003; Handl and Knowles, 2006b). Similarly,
we assume that individuals have been assigned entirely
to one class or the other (‘crisp’ membership), since so-
called fuzzy class membership (Zadeh, 1965; Bezdek
and Pal, 1992; Kruse et al., 1994; Li and Yen, 1995) is
outwith our scope here. Finally, where we touch on

Actual +/1 Actual -/0 

Predicted +/1 a TP b FP

Predicted -/0 c FN d TN

A

B

Figure 1. The binary classification problem. A. The basic structure of a multivariate binary classification problem involves projecting an n � p

dimensional data matrix X (n = number of samples, p = number of variables), via a multidimensional scaling transformation, into a one

dimensional vector ŷ (1�n). This function may simply be a weighted linear sum (as in Multiple Linear Regression), a two layer function requiring

estimation of a set of Latent Variables (e.g. PLS-DA) or even a multi-layer tree- based non-linear transformation (e.g. a multi-layer perceptron or

a parse tree as used commonly in Genetic Programming). The optimisation/selection of this transforming function is based on a-priori infor-

mation about class membership of each of the n samples, y (usually defined in terms of dummy values, ‘control’ = ‘0’ and ‘case’ = ‘1’). The

utility of a classifier is assessed using a priori class membership information of a second set of data (in the form of a test set). If the classifier

produces a binary output it can be assessed in the form of a confusion matrix, while if the classifier produces a continuous output then it can be

assessed in a similar fashion as is a single variable undergoing univariate significance tests. B. The so-called confusion matrix describing the

outcome of predictive models that cross-tabulates the observed and predicted +/) or 1/0 patterns in a binary classification problem. If, in a

binary prediction model we label the two classes as 1 (for cases) and 0 (for controls) under conditions in which we are treating the cases as

‘positive’, there are two possible prediction errors: false positives (FP) and false negatives (FN). There are also, happily, true positives and true

negatives that are correctly predicted by the model. B is adapted and extended from http://asio.jde.aca.mmu.ac.uk/multivar/da4.htm, which also

contains other information and is derived from (Fielding and Bell, 1997).
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multivariate analyses, we assume that the matrix of
metabolites versus samples is of full rank, i.e. there are
no missing values, and thus we do not deal with
algorithms (such as those described elsewhere (Tro-
yanskaya et al., 2001; Zhou et al., 2003; Sehgal et al.,
2005) for imputing them.

Since there are two possible classes, the outcome of
any predictions relative to the ‘true’ class membership
is usually set out as a binary matrix, the so-called
confusion matrix (figure 1B), consisting of true posi-
tives (TP), false positives (FP), true negatives (TN)
and false negatives (FN). Various metrics concerning
the performance of a binary classifier derive from
these and are given in table 1, and since they are
simply based numerically on the confusion matrix they
implicitly assume equal weightings on the ‘cost’ of
misclassification. We note that in many cases of
interest to this audience, a false negative is more
important to avoid than is a false positive, since if the
metabolite is a disease marker a false negative may be
life-threatening. However, we shall again largely not
pursue this issue here since our focus is on the con-
fusion matrix itself and the means by which we may
hope to maximise the Sensitivity (the conditional
probability that case Y when occurring is correctly
classified, i.e. pðYpredicted jYactualÞ, the probability that
Y is predicted to be 1 and is 1) and the Specificity
(which is the inverse, viz. pðYpredicted jYactualÞ, the
probability that Y is predicted to be 0 and is 0) of our
classifier. Note that this analysis of the confusion
matrix does not explicitly take into account the pre-
valences of the two classes in a given population, and
in consequence we do not need to be, and largely are

not, either explicitly Bayesian (Berry, 1996; Bernardo
and Smith, 2000; Baldi and Long, 2001) or explicitly
frequentist for these present purposes. However, in
terms of the interpretation of data, it is extremely
important that prevalences are taken into account (e.g.
(Brenner and Gefeller, 1997)), since a biomarker dis-
covery programme for a disease with a low prevalence
is likely to have many more false positives than may
occur with a disease with a higher prevalence.

We note that the problems we describe are both
widespread and have been widely recognised by a
variety of distinguished analysts, and a summary of
cautionary papers that make useful reading include
(Ransohoff and Feinstein, 1978; Altman, 2001; Ioan-
nidis et al., 2001; Ein-Dor et al., 2006; Ransohoff,
2004, 2005; Ioannidis, 2005a, b; Ioannidis and Trika-
linos, 2005; Wacholder et al., 2004). Few published
papers in the metabolomics literature withstand this
level of proper scrutiny (and no doubt some of ours
will not, but in view of the some of the misplaced
claims we have observed we still feel it useful to write
this introductory review). Box 1 summarises some of
the issues.

It is of interest to note that at the time of writing (July
2006), PubMed returned 578 references when for any
field the search term metabolom* was used (* is a wild
card, the terms thus including the terms metabolome,
metabolomic and metabolomics) and increased to 762
when metabonom* was added. However, of the 762 these
dropped to 82 when the term statistic* was also included.
In other words, only about 10% of papers in this field
appear to make mention of any statistical treatment. The
percentage improved slightly whenmetabolom*was used

Table 1

Some metrics derived from the confusion matrix of figure 1, where N is the total number of samples and a,b,c,d refer to numbers rather than
percentages. Adapted and extended from http://asio.jde.aca.mmu.ac.uk/multivar/da4.htm, which also contains other information and is derived

from (Fielding and Bell, 1997). For a given value of a variable, the likelihood ratio = TP rate/FP rate = sensitivity/ (1-specificity)

Measure Calculation

Prevalence (a + c)/N = (TP + FN)/ total

Overall diagnostic power (b + d)/N = (FP + TN)/ total

Correct classification rate (a + d)/N = (TP + TN)/ total

Sensitivity a/(a + c) = TP/(TP + FN)

Specificity d/(b + d) = TN/(FP + TN)

False positive rate b/(b + d) = FP/(FP + TN)

False negative rate c/(a + c) = FN/(FN + TP)

Positive predictive power a/(a + b) = TP/(TP + FP)

Negative predictive power d/(c + d) = TN/(FN + TN)

Misclassification rate (b + c)/N = (FP + FN)/total

Odds-ratio (ad)/(cb) = (TP.TN)/(FP.FN)

Kappa
ða þ dÞ � ððða þ cÞða þ bÞ þ ðb þ dÞðc þ dÞÞ=NÞ

N� ððða þ cÞða þ bÞ þ ðb þ dÞðc þ dÞÞ=NÞ

Normalised mutual information
1� - a.ln(a) - b.ln(b) - c.ln(c) - d.ln(d)þ (aþb).ln(aþb)þ (cþd).ln(cþd)

N.lnN�((aþc).ln(aþc)þ (bþd).ln(bþd))

‘Sensitivity’ is the conditional probability that case X is correctly classified.

‘Specificity’ is the inverse, i.e. that case not-X is correctly classified.

‘Positive predictive power’ assesses the probability that a case is X if the classifier classifies the case as X.

‘Negative predictive power’ assesses the probability that a case is not X if the classifier does not classify the case as X.
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in the title only. Only 10 papers with metabol* included
the word ‘learning’ (and thus ‘machine learning’) in any
field, and those with metabonom* did not add to their
number. Overall, then, only a small percentage of papers
in metabolomics make much of the importance of
statistics, so unsurprisingly are perhaps less than fully
alert to the dangers of poor experimental design and
analysis. (A referee points out that the same is true for
transcriptomics and proteomics.)

2. Statistics and machine learning, and supervised

versus unsupervised modelling methods

The most readily understood modus operandi for
discussing the causes of false discovery in metabolomics
is probably through the use (and misuse) of various
univariate tests and visualization tools, in parallel across
all metabolite peaks, and is that adopted here. However,
all these arguments apply equally to the output of most
multivariate methods, while some further arguments are
particular to multivariate modelling and the methods of
machine learning. With this in mind it may be useful, for
some readers, to be aware of the many chemometric and
related methods that are used in forming binary classi-
fiers (e.g. (Mitchell, 1997; Duda et al., 2001; Hastie et al.,
2001)). Some are principled and others are less so but let
us start with two main distinctions:

(i) Some methods such as Principal Components
Analysis (Jolliffe, 1986) and a variety of clustering
methods (Everitt, 1993; Handl et al., 2005) use only
the x-data as defined in figure 1 and are funda-
mentally designed for what Tukey called Explor-
atory Data Analysis (Tukey, 1977). They are

referred to as unsupervised methods and are to be
contrasted with supervised methods in which
knowledge of the class membership of at least some
of the samples is used to guide the classifier.

(ii) As pointed out with great clarity by the distin-
guished statistician Leo Breiman (Breiman, 2001),
and mirroring the philosophically reciprocal (but
not reversible (Kell and Welch, 1991)) relation be-
tween the worlds of data/observation and of mental
constructs (/ideas/knowledge) (Kell and Welch,
1991; Kell and Oliver, 2004), classical (Neyman-
Pearson) statistics starts with an idea or hypothesis
and tests the goodness of fit of the data to that
hypothesis. By contrast, machine learning starts
with a set of data and finds the hypothesis that best
fits the data. While statisticians had long pointed
out that this can lead to all sorts of problems of
overfitting [often referred to in this literature as
‘biased estimators’ (Miller, 1990; Chatfield, 1995)],
the machine learning community equally recognised
that the solution to this problem is based on what
are by now well-established validation and cross-
validation procedures.

Indeed, while we shall later discuss the importance of
validation and cross-validation, we shall largely ignore
the ‘data-driven’ literature on machine learning (e.g.
(Langley et al., 1987; Weiss and Kulikowski, 1991;
Anthony and Biggs, 1992; Hutchinson, 1994; Michie et
al., 1994; Mitchell, 1997; Vapnik, 1998; Michalski et al.,
1998; Michalewicz and Fogel, 2000)) and data mining
(e.g. (Adriaans and Zantinge, 1996; Cabena et al., 1998;
Weiss and Indurkhya, 1998; Berry and Linoff, 2000;
Hand et al., 2001; Rud, 2001)), but provide references
for those whose wish to learn more about these
methods.

However, we would make the comment that the real
aim of any of these studies is inference based on evi-
dence, and that while the classical (and largely frequ-
entist) approaches using statistical evidence provide
one general line of reasoning, and are the main focus
of the present review, there are other important
approaches, often largely Bayesian, with distinguished,
principled and fervent adherents (e.g. (Edwards, 1992,
2000; Royall, 1997; Pearl, 1988, 2000; Ramoni and
Sabastini, 1998; Bernardo and Smith, 2000; Shipley,
2001; Jensen, 2001; Casella and Berger, 2002; Mackay,
2003; Needham et al., 2006)). The proponents of like-
lihood in particular (e.g. (Edwards, 1992; Royall,
1997)) make an excellent case for their view of statis-
tical inference.

3. Distributions and Normal distributions

The properties of distributions and the analysis of
their variance are the focus of any number of text-
books on elementary statistics, including those aimed

Box 1. The main types of danger in the design and analysis of meta-
bolomics experiments.

Inadequate sample size, in which case it is always easy to find random

multivariate correlations when the number of variables greatly exceeds

the number of samples

Ignorance of Type I statistical errors, i.e. high false discovery rate

(FDR) due to low critical p-values when applying multiple significance

tests in parallel across all metabolite peaks, or combinations thereof.

Overfitting, typically by failing to use independent/blind ‘test’ samples

which are held back from model optimization and used only to test the

robustness of prediction in the final phase of the study.

Inappropriate model/statistical-test selection, in which the wrong sta-

tistical test or multivariate model is chosen for a given study, either due

to lack of theoretical understanding, or excessive familiarity with

‘favourite’ algorithms (or the software that implements them).

Bias, in which a variable of interest is differentially distributed between

the classes ‘case’ and ‘control’ but happens to be correlated with an-

other uncontrolled variable that truly underlies the variance in the

metabolite of interest, such confounding variables including smoking

status, gender, diet, lifestyle, pharmaceutical or recreational drug use,

etc.
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at a biomedical audience (Bland, 2000; Box et al., 1978;
Bradford Hill and Hill, 1991; Sokal and Rohlf, 1995;
Rothman and Greenland, 1998; Woodward, 2000;
Kirkwood and Sterne, 2003), and we are not going to
reproduce them here save in terms of the ostensibly
simple question of asking whether the statistical prop-
erties of a particular variable in populations from two
classes differ ‘significantly’ or otherwise, and what that
means. This basic issue is displayed in figure 2, where
three examples of a single variable’s potential values
expressed as two hypothetical Normal distributions are
given (blue = ‘control’; red = ‘case’). These distribu-
tions can be characterised by their mean and standard
deviation (SD). As these distributions are by definition
Normal, various useful and precise statements follow,
for instance (i) that the proportion of observations that
lie within±1, 2 or 3 SDs of the mean are respectively
68.27, 95.45 and 99.73, and (ii) that given the means
and standard deviations we can predict with some
probability p whether the two populations do indeed
differ ‘significantly’ by more than a critical value a. A
straightforward but important corollary of the normal
distribution is that by definition nearly 5% of obser-
vations lie more than 2SDs away from the mean, while
approximately 3 in a thousand lie more than 3 SDs
away. Given 6000 parallel tests (the approximate
number of genes in yeast (Goffeau et al., 1996)) more
than 18 ‘random’ genes would appear to be ‘significant’
if this thought were based on their expression levels
being more than 3 SDs away from some reference
expression level of genes from yeast cells measured in a

nominally different condition. It is worth bearing in
mind in this context that gross cholesterol levels are
considered extremely important risk factors for coro-
nary heart disease, yet the means in cholesterol levels
between those with coronary artery disease and those
without differ by less than 1 SD (Kannel, 1995)). While
they are less predictive than LDL:HDL–cholesterol
ratios (Natarajan et al., 2003), it should also be men-
tioned in terms of causality that measures such as
statin treatment that also happen to lower such cho-
lesterol levels plausibly exert their protection largely by
entirely other means (e.g. (Grimes, 2006)).

Given two Normal populations (or classes), the
usual procedure for testing whether the two popula-
tion means differ ‘significantly’ is the Paired Student’s
t-test (Student was the pseudonym of a statistician at
the Guinness brewery named W. S. Gosset, who
deduced the t-distribution, that is very similar to the
Normal distribution, in 1908). Another popular para-
metric test (i.e. one in which the parameters of the
underlying Normal distribution are estimated) is one-
way analysis of variance (ANOVA) which assesses the
significance of the ratio of the variation within class to
the variation between class.

If the distributions of the two populations are not
Normal, transformations such as the logarithmic
transformation can effectively turn a skewed distribu-
tion into a Normal one; however care has to be taken
that by compensating for skewness in one direction one
does not introduce skewness in the opposite direction. If
no suitable transformations are available a variety of

Figure 2. A. The Normal distribution curves for three very hypothetical binary discriminant examples in which the mean for the controls is

always 0.7, the SD for both populations is 0.2, and the mean of the cases is respectively 0.8, 1.1 and 1.5. B. Three artificial data sets. Each

consisting of 100 case samples and 100 control samples drawn from distributions as defined in A. The data are presented in the form of a scatter-

plot of response vs sample number, together with binned histograms, box-and-whisker plots and the respective ROC curves for the same data.

The lower and upper lines of the ‘‘box’’ are the 25th and 75th percentiles of the sample. The distance between the top and bottom of the box is the

interquartile range. The line in the middle of the box is the sample median. If the median is not centred in the box, that is an indication of

skewness. The ‘‘whiskers’’ are lines extending above and below the box. They show the extent of the rest of the sample (unless there are outliers).

Assuming no outliers, the maximum of the sample is the top of the upper whisker. The minimum of the sample is the bottom of the lower whisker.

By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box and is marked as a red

cross. The notches in the box are a graphic confidence interval about the median of a sample. A side-by-side comparison of two notched box plots

provides a graphical way to determine which groups have significantly different medians. The text boxes describe the Analysis of Variance

statistics; the paired t-test statistics, and the modified Z factors for each (where ,modified� implies the more relaxed form of the equation, where a

zero score implies that for two normal distributions (of equal standard deviation) their means will be 4 standard deviations apart).
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non-parametric tests that do not assume a particular
underlying distribution are available. There are various
tests for normality. Typically, each metabolite peak may
be checked for within-class kurtosis, and for within-class

goodness of fit to a normal distribution using the Lil-
liefors test (Conover, 1980). For a given metabolite
peak, if either control or case samples has kurtosis, or
fails the Lilliefors test then non-parametric tests are

Figure 2. Continued.
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appropriate (Hollander and Wolfe, 1973). Of these the
most common is the Mann–Whitney U test (or Wilco-
xon two sample test) which by using rank orderings is
largely insensitive to extreme values.

We note here that the estimates of all of these sta-
tistical metrics are themselves subject to variance, and
estimates for confidence intervals for means, differences
in means, and variances can be calculated (Gardner and
Altman, 1989; Bland, 2000).

It is also worth noting for case-control studies that
equivalent tests, and confidence intervals, can be esti-
mated for multivariate statistical methods, such as
Principal Components Analyisis (PCA, where confi-
dence is estimated using knowledge of class member-
ship), Canonical Variates Analysis (CVA) (see
(Krzanowski, 1988)), sometimes referred to as Discri-
minant Function Analysis (DFA) (Manly, 1994) and
Discriminant Partial Least Squares (D-PLS, or PLS-
DA) (see (Eriksson et al., 2001)). In this way, the actual
model predictions (projections from many dimensions
into one- or two-dimensional space) can be assessed for
significance prior to inclusion into a confusion matrix,
and suitable confidence intervals can be defined for
assessing the robustness of the model using an inde-
pendent test set (see later).

Another approach to assessing confidence intervals,
usable for both parametric and non-parametric statis-
tics alike, is the bootstrap family of methods (Efron
and Gong, 1983; Efron and Tibshirani, 1993) that use
resampling procedures (which bear relations to some
types of internal cross-validation, see below). Its
accessibility has increased markedly with the advent of
powerful personal computers. To generate a bootstrap
uncertainty estimate for a given statistic (such as a
mean or median) from a set of data, we randomly
generate (with replacement) p subpopulations of a size
less than, or equal to, the size of the original data set.
Typically, p is set to 1000, ergo any data point can be
sampled multiple times or not at all. The desired sta-
tistic is calculated for each subpopulation, from which
uncertainty estimates and confidence intervals are
derived from the variances observed in and between
these ‘new’ populations.

4. The Z- statistic

Another interesting statistic, that has assumed con-
siderable popularity in the world of high-throughput
screening but is little known outside, is the Z (and Z’)
statistic (Zhang et al., 1999). The domain relates to
determining a ‘hit’ in an assay in which there would be
positive and negative controls (known as ‘sample’ and
‘control’) that correspondingly did or did not display
activity in the assay of interest. Here, the aim is also in
part to optimise the assay itself, but this is extremely
pertinent to determining the quality or reliability of a

method designed for binary class (patient/control) dis-
crimination in terms of a metabolomic biomarker or
biomarkers. The initial recognition of these authors was
that neither the signal:noise nor the signal:background
ratios provided good metrics for this, but that metrics
which used both the mean and variance (i.e. standard
deviation, SD) in both the classes were to be preferred.
Specifically, the Assay Value Ratio,

AVR ¼ 3ðSDsignal þ SDbackgroundÞ
j�xsignal � �xbackgroundj

Or in our particular context,

AVR ¼ 3ðSDcase þ SDcontrolÞ
j�xcase � �xcontrolj

ð1Þ

And the Z factor,

Z ¼ 1�AVR ð2Þ

Z factors above 0.5 are considered to provide an
excellent assay and hence discrimination. Alternative
and less stringent forms of the Z factor that use 2
rather than 3 SDs may also be envisaged (see
figures 2B, 5).

5. Receiver-Operator Characteristic (ROC) curves

An additional property of the kinds of plot shown
in figure 2A (here we assume that the mean of the
variable of interest is larger in the cases than in the
controls) is that one can imagine taking some value, a
of that variable, x, (assume initially a = zero) and
hypothesising that all samples above that value are
‘cases’ and all below it are ‘controls’. One can then
produce a confusion matrix for this value of x and
determine the sensitivity and specificity from the for-
mulae in table 1. This can be repeated for all values of
x and a (smoothed) plot of the data made of the
specificity (i.e. true positive rate) against 1-sensitivity
(i.e. false positive rate). This plot will necessarily
include the points 0,0 and 1,1, and is known as the
Receiver–Operator Characteristic or ROC curve. It is
widely considered to be one of the best means by
which to describe the utility of a variable in binary
classification (Egan, 1975; Metz, 1978; Hanley and
McNeil, 1982; Zweig and Campbell, 1993; Raubertas
et al., 1994; Zhou et al., 2002; Baker, 2003; Linden,
2006) (and see e.g. http://gim.unmc.edu/dxtests/
ROC1.htm and http://www.anaesthetist.com/mnm/
stats/roc/). If the area under the ROC curve is 0.5 (the
lower limit) the variable is distributed similarly
between cases and controls, such that any diagnostic
test based on it is valueless for discrimination. The
area under the ROC curve (the AUC) when there is
complete separation of the two populations (such that
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a value or set of values of the variable that lies
between the ranges of the two classes is entirely
diagnostic of the class) is 1 (See figure 2B). The ROC
curve has its origins in signal detection theory (Egan,
1975) as applied to the radar detection of specific
objects. It is especially attractive as it is insensitive to
the nature of any underlying population distributions,
i.e. it is non-parametric, it is independent of the
prevalence of disease, two or more diagnostic tests can
be compared at any or all false positive rates (FPRs),
and summary measures of accuracy, such as the AUC,
incorporate both components of accuracy, i.e., sensi-
tivity and specificity, into a single measure (Obu-
chowski et al., 2004). The AUC is an estimate of the
probability that a member of one population chosen
as random will exceed a member of the other popu-
lation chosen at random, in the same way as does U/
n1n2 in the Mann–Whitney U test (where U is the test
score, n1 the sample size of class1, and n2 the sample
size of class2 (Bland, 2000)). It is often considered that
a value for the AUC of >0.9 is an excellent test while
a value over 0.8 is still likely to be good. It does not
seem to be widely used in either transcriptomics or
metabolomics studies, though various simple computer
programs are available (Stephan et al., 2003) and we
suggest that it should be adopted for omics biomarker
discovery for just the reasons for which it has been
widely adopted in the medical literature.

Other measures that might be considered for use as
metrics of the quality or accuracy by which we can
compare the ‘true’ and proposed class memberships of a
binary partitioning include the F-measure

2�specificity�sensitivity
specificityþsensitivity

� �
(van Rijsbergen, 1979) and the

adjusted Rand index (Hubert and Arabie, 1985), as well
as other well-established methods that we have recently
surveyed in the context of cluster validation (Handl
et al., 2005).

6. Hypothesis testing and statistical power.

In order to avoid ambiguity, for reasons that will
hopefully soon become clear, statisticians tend to enjoy
the use of double negatives and the usual (Neyman-
Pearson) manner in which experiments of the present
type are couched is in terms of a null hypothesis. Typ-
ically the null hypothesis is that for a given metabolite
all samples are drawn from the same population (or
from two populations with the same mean). A false
positive (also known as a ‘type I error’) occurs when the
hypothesis is rejected (i.e. it is claimed that the samples
are drawn from two populations with significantly dif-
ferent means) when it should be accepted (i.e. there
really is no significant difference in means). If, as is
commonly the case (but see later), we allow a 5%, or one
in twenty, chance that we have made a type I error, in

other words if we set our criterion for a ‘‘significant
difference’’ between two population means at the 5%
level, we have a value of a parameter referred to as a of
0.05. The probability of having a false negative or
making a type II error, i.e. claiming that a variable is not
significant when it really is, is correspondingly known as
b. The power of a test (the probability that a test will
produce a significant difference at a given significance
level) is (1)b), so if b is 0.1 or 10%, then the power is
90%. Various tables (or indeed software packages – we
use the nQuery Advisor http://www.statsol.ie/nquery/
nquery.htm) – allow one to calculate the number of
samples necessary to discriminate two populations on
the basis of the distributions of a variable between them.
In the case of comparing two means (l1 and l2) from
two Normal distributions (standard deviation = r1 and
r2 and population size = n1 and n2, respectively), where
the standard error, sediff, of the difference between
means is = sqrt(r1

2/n1 + r2
2/n2), it can readily be shown

(Bland, 2000) that the power of the test = 1)U(z) where
z = 1.96)(l1+ l2)/sediff (at a = 0.05; see later for why
this is already too forgiving) and U is the equation for
the standard for the Standard Normal distribution.
Figure 3A shows three power curves for population
sample sizes n1, n2 = 10, n1, n2 = 100 and n1, n2 = 400.
The difference in means is varied from 0 to 0.5 units
(where r1, r2 = 0.2). The plots illustrate the fact that in
order to keep the probability that a test will produce a
significant result at a reasonable level (for a fixed a – in
this case 0.05) then the relationship between the number
of samples measured and the difference in population
means is critical. In other words, if the difference
between ‘case’ and ‘control’ is slight then a relatively
large sample set is needed when compared with a situ-
ation where the difference between ‘case’ and ‘control’ is
substantial. The point is therefore, that the ‘chance’ – in
terms of sensitivity and specificity – of being able to
discriminate two populations on the basis of a candidate
discriminatory variable, or model, is a function of the
mean and variance in those two populations and the size
of these populations, i.e. the number of samples that are
assessed. So when a statistician says that ‘we have failed
to reject the null hypothesis’, what s/he may mean is
‘from the data provided we accept the null hypothesis; if
the test were to be repeated with a different number, or
set of samples, a different conclusion may be reached’;
hence the use of the double negative. Note that these
attempts to assess statistical power are related to, but
often have a different emphasis from, the kind of
material in the Design of Experiments literature (Box
et al., 1978; Deming and Morgan, 1993; Myers and
Montgomery, 1995; Hicks and Turner, 1999; Mont-
gomery, 2001) including that on the Design of Com-
puter Experiments (Sacks et al., 1989; Crary, 2002; Chen
et al., 2006) where we typically have control over a
variety of parameters and wish to understand their effect
on a number of indicator variables. A useful introduc-
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tion to the calculation of statistical power is also avail-
able at Statsoft’s website (http://www.statsoft.com/
textbook/stpowan.html#(power_doe2).

We would stress also that the p-value is not univer-
sally accepted as a useful measure. ‘‘The most widely
recognized practical consequence of the p-value’s
dependence on only one hypothesis is that a huge effect
in a small trial or a minuscule effect in a large trial can
result in identical p-values. To the extent that we believe
the size of an effect is an essential part of the evidence
relative to the hypothesis of ‘‘no effect’’, then the p-value
is inadequate for measuring the strength of evidence
(Cornfield, 1966). The move toward confidence intervals
is an effort to deal with this issue by focusing on the
effect size.’’ (Goodman and Royall, 1988). Put another
way, ‘‘Unlike the p-value, the use of evidential measures
forces us to bring scientific judgment to data analysis,
and shows us the difference between what the data are
telling us and what we are telling ourselves.’’ (Goodman
and Royall, 1988). Finally, by contrast, and in the words

of Garner and Altman (Gardner and Altman, 1989),
‘‘Small differences of no real interest can be statistically
significant with large sample sizes, whereas clinically
important effects may be statistically non-significant
only because the number of subjects studied was small.’’

7. Statistical analysis using machine replication.

In order to improve the accuracy of any statistical
analysis it is advised to collect machine replicates of all
the biological samples in a given study. Indeed, as is
widely recognised in transcriptomics, appropriate repli-
cation is one of the best ways that may be available for
improving the statistical precision in many cases.
Machine replicates differ from biological replicates in
that in the latter case the same biological subject is re-
sampled and analyzed more than once (e.g. 20 ‘control’
patients results in 20 biological ‘control’ replicate mea-
surements, whereas, 4 ‘control’ patients repeatedly
sampled 5 times results in 4 biological replicates, each
containing 5 machine replicates; each strategy involves
20 measurements in total). Collection of machine repli-
cates may be done for several reasons:

� To provide a measure of machine variance (within-
sample variance), which can then be compared with
between-sample and between-class variance. This
provides both a measure of the sensitivity of the
system used to analyze the samples and some extra
information about the reproducibility of any ‘discov-
ered’ biomarkers.

� Given that certain assumptions are true (see below) n
machine replicates may be averaged in order to reduce
the standard deviation due to random noise by a
factor of

ffiffiffi
n
p

(for mathematical derivation see: http://
zone.ni.com/devzone/conceptd.nsf/webmain/D3887A
3DF70CBE0F86256A5400681ACD), thus boosting
the signal to noise ratio.

� If enough machine replicates are collected semi-
supervised multivariate data analysis, (such as semi-
supervised PC-CVA) may be used to model the data.
In this methodology the training ‘class’ information is
the ‘sample id’, such that for 10 samples there are 10
classes. So in this case, the model loadings are
optimized such that the ratio of between sample
variance to within sample variance is maximized. This
will allow clustering of samples to be revealed which
would otherwise be obfuscated by noise in unsuper-
vised methods such as PCA, without enforcing some
known class membership – as in fully supervised
methods.

As with any other aspect of data analysis, correctly
utilizing machine replicate information requires
assumptions to be made about the distribution of such
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data. Thus, much care has to be taken in the way that
they are used to help clarify any statistical analysis.

Univariate significance tests assume that all mea-
surements are independently sampled from a larger
population. As replicate measurements are not inde-
pendent they cannot all be used in a test between ‘cases’
and ‘controls’. Although the test score may not be
unduly affected, any significance value or power calcu-
lation will be skewed as the number of degrees of free-
dom has been falsely increased. Instead the replicate
sub-sets must be averaged to a single value. However,
this can be dangerous if the within-sample variance is
much greater than the between-class variance. In this
case the significance test results may easily be misrep-
resentative of the true relationship. In multivariate
analysis this principle also applies when splitting data
into training and test sets. Data should be allocated to
each set such that machine replicates are not separated.
Again, this will ensure that the data sets are truly
independent.

If machine replicate averaging is to be performed to
increase the signal-to-noise ratio then there are also
several assumptions that are often ignored, e.g.: that
the noise is homoscedastic (Alsberg et al., 1997), i.e.
the mean and standard deviation remain constant
across all replicate measurements, its mean is equal to
zero, and the signal (without noise) is steady. If any of
these assumptions is false then the averaged value may
be skewed. For example, in Fourier Transform Infra-
red (FTIR) spectroscopy samples may be loaded using
96-well silicon sample plates (Harrigan et al., 2004). If
three measurements are made from a single well over a
short period of time then machine replicate averaging
will probably be effective. However, if a single bio-
logical sample is sub sampled 3 times into three ran-
dom wells across the plate then it is more likely that
the averaging of these three machine replicates will be
affected by systematic errors/noise such as plate-drift
or time variation. Thus, the averaged value may be
skewed. Conversely, if one wishes the machine repli-
cates to represent the variance due to machine error
then, each replicate sample should be a truly indepen-
dent measurement on the machine in question and
should be randomly ordered amongst the experimental
cohort as a whole.

8. False Discovery Rates and inadequate sample size

The term False Discovery Rate (FDRs) typically
refers to the frequency of type I errors, i.e. to claims
that some variable, or model, can discriminate two
populations when, in fact, it cannot. As indicated in
the abstract, there are a variety of reasons why this can
occur, and in a certain sense we can also learn about
why these may occur from the analysis of type II errors
– the failure to observe an effect when one really does

exist – with which they have a certain symmetry. One
of the chief causes of FDRs, however, is inadequate
sample size (Ioannidis et al., 2001, 2003; Ransohoff,
2004; Wacholder et al., 2004; Ioannidis, 2005a, b; Io-
annidis and Trikalinos, 2005; Ein-Dor et al., 2006;
Todd, 2006), a feature that is particularly problematic
in cases when the number of variables greatly exceeds
the number of samples. This is, of course, a charac-
teristic of omics studies that has long been highlighted
following the development of microarrays for trans-
criptomics (e.g. (Benjamini and Hochberg, 1995; Efron
and Tibshirani, 2002; Storey, 2002; Storey and Tibsh-
irani, 2003; Reiner et al., 2003; Jung, 2005; Xie et al.,
2005)). First, however, it is appropriate to discuss in
outline the literature on this question of looking at
multiple variables in a single study simultaneously,
since the basic problems and potential solutions have
also long been known.

9. Multiple hypothesis testing and the Bonferroni

correction.

Much of classical statistics is concerned with uni-
variate analyses, and the question of whether (in this
context) one would ‘by chance’ assign a sample to a
particular population on the basis of the measurement
of a single variable. In a sense this can be compared to
the chance of winning a lottery on the basis of pur-
chasing a single ticket. To a good approximation (it
depends on whether only a finite set of unique solutions
are sold individually), this chance scales linearly with the
number of lottery tickets. The same is true in statistical
hypothesis testing. In other words, given various distri-
butions, the chance of finding a discriminating variable
with a p value less than a specified value (say p<0.01) is
increased in proportion to the number of independent
tests one makes (the number of tickets, if you will). In
metabolomics, if the search for discriminating biomar-
kers is performed using 200 metabolites and a suitable
critical p-value for rejecting the null hypothesis across all
the parallel tests is considered to be 0.01, then the p-
value for rejecting the null hypothesis for an individual
metabolite (the corrected p-value) can be approximated
to 0.01/200 = 5Æ10)5 (0.00005). This is, of course, a
much more stringent test than p<0.01 but is arguably
the most appropriate way to look at this kind of mul-
tiple hypothesis testing, at least as a starting point. This
said, it is conservative in the sense that it excludes type I
errors at the cost of increasing the potential for type II
errors (false negatives) (Bland and Altman, 1995; Cook
and Farewell, 1996; Perneger, 1998), leading to the
conclusion that any peak found to have a p-value below
the Bonferroni-corrected level is clearly significant.
Intelligent use of Bonferroni correction does not neces-
sarily require that sample sizes be enormous (Leon,
2004), since the ‘burden’ can be placed on the acceptable
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p-values (Storey, 2002), but it does increase substantially
the stringency of our testing and the need for a great
deal more skepticism that is usually observed when
novel biomarkers are apparently discovered.

Actually, Bonferroni correction assumes that each of
the variables is independent (of the others), and while
this is clearly not entirely true these correlations are
known to apply to only a comparatively small number
of metabolites (Kose et al., 2001; Steuer et al., 2003;
Weckwerth and Morgenthal, 2005; Camacho et al.,
2005; Steuer, 2006); a divisor of 100 rather than 200 in
the above example would make little difference to the
number of metabolites found to be false positives (type I
errors) by Bonferroni analysis in metabolomics studies.
An illustration of the effects of Bonferroni correction is
given in figure 3B.

Although there are other methods (e.g. (Benjamini
and Hochberg, 1995; Cook and Farewell, 1996; Reiner
et al., 2003; Storey and Tibshirani, 2003; Jung, 2005; Xie
et al., 2005), and see also http://www.tufts.edu/�gdallal/
mc.htm), we would comment that as well as being the
most conservative, a pure Bonferroni analysis is both
conceptually easy to understand and numerically easy to
implement.

10. Stratification and subpopulations

A related error goes as follows: ‘‘although I could
find no statistically significant marker for discriminating
between the cases and controls when I compared the
entire (matched) population from a carefully designed
experiment, perhaps a subpopulation – say women
between 40 and 50 – would show that there is in fact a
marker with a significance value such as p<0.05 that I
might get away with publishing’’. Actually this kind of
post hoc stratification or ‘data dredging’ (Todd, 2006)
also amounts to multiple hypothesis testing, and while
the numbers in the subpopulations are even lower than
in the whole population, it too must be subjected to a
Bonferroni correction if tested in this way. Note that
this has nothing to do with the real stratification or
differences in populations that are, for example, the
focus of pharmacogenomics (Evans and Johnson, 2001;
Evans and Relling, 1999, 2004) and analyses designed to
reduce confounder effects (Rothman and Greenland,
1998).

11. An example from gene associations in cancer studies

Since the early days of transcriptome analysis (Golub
et al., 1999), many workers have looked to detect
different gene expression in cancerous versus normal
tissues. Partly because of the expense of transcripto-
mics (and the inherent noise in such data (Schena,

2000; Tu et al., 2002; Cui and Churchill, 2003; Liang
and Kelemen, 2006)), the numbers of samples and
their replicates is often small while the number of
candidate genes is typically in the thousands. Given
the above, there is clearly a great danger that most of
these will not in practice withstand scrutiny on deeper
analysis (despite the ease with which one can create
beautiful heat maps and any number of ‘just-so’ sto-
ries to explain the biological relevance of anything
that is found in preliminary studies!). This turns out
to be the case, and we review a recent analysis (Ein-
Dor et al., 2006) of a variety of such studies.

Ein-Dor and colleagues (Ein-Dor et al., 2006)
recognised these problems, and reasoned that if the
FDRs in ‘comparable’ studies were very great the genes
observed would, by definition, be different from each
other. (Equivalently, repeated findings of the same thing
would give one confidence in their significance, as was
also found in protein-protein associated studies (von
Mering et al., 2002), arguably for similar reasons.) This
was easy to test simply by comparing the gene lists
found in different studies of the ‘same’ cancers. While
cancer poses special problems, as its development has a
stochastic part caused by increasing mutation rates and
DNA and other cellular damage (Duesberg et al., 2000),
if the markers are to be any use we must find ones that
are statistically reproducible.

Probably the most widely accepted theory in machine
learning (Mitchell, 1997; Vapnik, 1998) is due to Valiant
(1984), and is known as PAC (‘probably approximately
correct’) learning. Ein-Dor et al. (2006) developed this
theory to assess the likely FDR in these kinds of studies.
A comparison of two studies using hundreds of samples
found respectively 76 (Wang et al., 2005) and 70 (van ‘t
Veer et al., 2002; van de Vijver et al., 2002) ‘significant’
genes, but only 3 of them were in fact the same (Ein-Dor
et al., 2006)! Equally, permuting subsets of the samples
also ‘discovered’ entirely different lists of genes. Thus
the figure of merit Ein-Dor et al. (2006) introduced, f,
‘‘is the overlap between two Prospective Gene Lists
(PGLs), obtained from two different training sets of n
samples in each. That is, 0 £ f £ 1 is the fraction of shared
genes that appear on both PGLs; the closer f is to 1, the
more robust and stable are the PGLs obtained from an
experiment’’. For the typical sample sizes used in the
studies surveyed by Ein-Dor et al. (2006), the overlap
between two PGLs, obtained from two training sets
using the PAC analysis, was of the order of only a few
percent.

12. Meta-analysis

Analyses (such as that of Ein-dor and colleagues
above) that combine data from different trials of nom-
inally the ‘same’ experiment are known as meta-analyses
in the literature of medical statistics. Overall, there is a
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feeling that such datasets should not be combined into a
single large dataset as this produces bias, and instead
should be analysed and compared separately (Sharp et
al., 1996; Altman and Deeks, 2002). Thus, meta-analysis
is treated as a two-stage process in which the data for
each study are first summarised, and then those sum-
maries are combined statistically. We note, however,
that publication bias – the greater likelihood of pub-
lishing a positive than a negative result – can create
optimistic inaccuracies in such analyses (Williamson
et al., 2005).

13. Bias

We have mentioned bias several times. The problem
is often referred to as a problem of ‘confounding vari-
ables or confounding factors’, although the latter phrase
has a slightly different emphasis and meaning in the
epidemiological literature (‘‘confounding is a distortion
in the estimated exposure effects that result from dif-
ferences in risk between the exposed and unexposed that
are not due to exposure’’ (Rothman and Greenland,
1998)). Imagine a study in which we wished to measure
biomarkers for ethnicity, and compared the serum or
urine metabolome of samples taken from Japanese or
Russian people. No doubt we would find differences, but
it would be quite wrong to ascribe these to ethnicity as
the differences are just as likely to be due to something
else that co-varies with ethnicity. Diet is likely the most
important co-varying difference here. Of course this is
an ‘obvious’ example, though such studies may well
equally be confounded by the difference in time it takes
the samples to get to the airport, i.e. differences in
transport and storage conditions, which may in conse-
quence be extremely well coupled with the thing one is
trying to measure. This is almost inevitable in multi-
country studies without great care being taken. Ranso-
hoff (2005), whose outstanding review should be read by
every researcher, refers to bias as ‘‘the most important
‘threat to validity’ that must be addressed in the design,
conduct and interpretation of such (i.e. biomarker)
research’’, and he comments that ‘‘Bias can be so pow-
erful in non-experimental observational research that a
study should be presumed ‘guilty’ – or biased – until
proven innocent’’. In contrast to the small sample size
problems that exacerbate false discovery rates, bias
cannot be compensated by large sample numbers – in
fact this can even make things worse by persuading
readers of the validity of spurious differences that are
actually due simply to confounding factors that happen
to correlate with the class discrimination of interest.
Naturally the correlation improves with sample size, as
does the bias.

Bias can be exceptionally difficult to remove in
case-control biomarker studies, although careful age
and gender matching of the two classes is a good

start. Having a gender bias (in which say males are
more common in the case than in the control cohort)
means that there is a danger of learning a model that
is actually discriminating on gender. Similarly, it is
likely that more cases will be taking drugs against the
disease that they are known to have than are taking
the same drugs in the control population. A recent
study (Kirschenlohr et al., 2006) suggested that both
of these problems were probably a major feature of an
earlier study on the purported detection of coronary
artery disease using NMR. In this case (Kirschenlohr
et al., 2006) it was argued that only 6% of the model
could be attributed to the coronary artery disease,
compared with the 50% that might be achieved,
ignoring prevalence, by random guessing of the class
membership.

The only way to know that one has avoided bias,
and for the readers of publications to know that
authors have avoided important bias that might have
affected the conclusion that should be drawn form the
data, is to publish all the metadata (data about the
samples) along with the metabolomic data. In this
way, readers can establish that the models are not
being made on confounding factors by comparing
closely the distributions of the claimed biomarkers not
only between the different classes (case and control)
but with respect to the metadata. The fact that this
was probably true of the famous ovarian cancer
proteomics data soon led to the discovery (Baggerly et
al., 2004; Diamandis, 2004) that the original data
(Petricoin et al., 2002) were almost certainly not
sound. Several years on, ‘‘there are no clear success
stories in which discovery proteomics has led to a
deployed protein biomarker’’ (Rifai et al., 2006).
Including the properties of the instrument in the
analysis is probably key to getting good data here
(Ressom et al., 2005).

14. Overfitting/overtraining and proper (cross

and external) validation

As mentioned above, there is a nowadays a trend
towards data-driven models of biology (Brent, 1999,
2000; Brent and Lok, 2005; Kell and Oliver, 2004). In
particular, one important area is that in which multiple
combinations of variables are tested to see if they make
a functional classifier. Classical statistics rightly recog-
nised that this is really a version of the multiple-
hypothesis-testing problem given above, and effectively
provides a huge number of lottery tickets with which,
one might, by chance, ‘win’, i.e. find a combination of
markers that effectively discriminated the two classes.
However, it may of course be the case that such a
combination of markers really is discriminatory. How
then is one to find out? The answer adopted by the
machine learning community is to use a subset of the
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data – the hold-out set – that is not used in the gener-
ation of the model in any way at all (Ransohoff, 2004).
Thus the set used in producing the model is called the
training set. Many of the powerful methods available
today, such as neural networks and Evolutionary
Algorithms, can usually learn the training set (White,
1992), even if the inputs consist of random numbers.
Such models will not of course give reliable data when
exposed to new examples, i.e. they will not generalize
well. The initial model is said to have overfitted the data.
The same kinds of problems arise in process modelling
(Kell and Sonnleitner, 1995).

In order to address this issue of overfitting the
machine learning community has developed several
validation techniques. If during modeling some sort
iterative parameter optimization is required, such as in
the case with PLS-DA, PC-DFA, or multilayer percep-
trons and other kinds of Neural Networks, etc., then
internal model validation is commonplace. The simplest
is to split the training data into two sets, typically with a
ratio of 2:1 training:validation, and where the validation
set is matched and completely representative of the
training set. The validation set is used to assess the
goodness of prediction statistic (Q2) (Eriksson et al.,
2001) by projecting the data through a model previously
built using the training set (assessed using the goodness
of fit statistic R2). As the model parameters are opti-
mised (e.g. by increasing the number of latent variables),
R2 and Q2 initially follow the same upward trend from 0
to 1. However as the models start to overfit, the trajec-
tories diverge, R2 tending toward 1 and Q2 falling back
toward 0. It is assumed that the model will have
achieved its optimal predictive powers, and thus gener-
alize well, at the initial point of divergence. Finally, one
uses a completely separate set, the test set, to assess how
accurate the model one has selected really is. In many
published studies this very important third step is left
out. There seems to be a failure to understand that as
the validation set is used in the optimization of the
model it is to all intents and purposes part of the
training set, thus it cannot also be used to assess the
general predictive powers of the final model. This can
only be done with an independent test set.

Another popular validation method is n-fold cross-
validation (Martens and Næs, 1989; Eriksson et al.,
2001; Brereton, 2003), where the dataset is randomly
spilit into n mutually exclusive subsets (the folds) of
approximately equal size (the special case where n = the
number of samples is known as leave-one-out cross-
validation – though Golbraikh and Tropsha, in a won-
derfully titled article, make a very clear case against the
use of leave-one-out Q2 in multivariate problems (Gol-
braikh and Tropsha, 2002)). The model is trained n
times each time holding out one of the folds as an
internal validation set. The Q2 values for the n valida-
tion steps are then averaged to give an overall Q2 value
for that particular model. This process is repeated as the

model parameters are optimised and the optimisation
halted by looking for a maximum in the Q2 curve. This
method is considered useful because all the training data
are at some point used to both train and validate the
model, and in this way no data are ‘wasted’ in a holdout
validation set. Unfortunately, even though this algo-
rithm has been shown to be extremely effective in many
circumstances it can potentially be misused when the
number of variables p >> than the number of samples s
as is generally the case in omic studies. A useful and
lucid comparison between n-fold cross-validation and
other model selection methods is provided by Kohavi
(Kohavi, 1995). He points out that ‘‘if a {machine
learning classifier} is unstable for a particular dataset
under a set of perturbations introduced by
cross)validation, the accuracy estimate is likely to be
unreliable’’.

When p >> s there is a great danger that machine
learning models will fall foul of the curse of dimension-
ality (Bellman, 1961). For example if one took 100
observations along one-dimension, one could draw a
histogram of the results, and draw clear and statistically
valid inferences (as illustrated in figure 2B). If one now
considers the corresponding 200-dimensional hyper-
cube, the 100 observations are now isolated points in a
vast empty space (given a unit hypercube and random
sample distribution the relationship between dimension
and average distance to nearest neighbour is linear, such
that at p = 10, 99% of the samples are greater than 0.5
from the origin (Hastie et al., 2001)). To get similar
coverage to the one-dimensional space would now
require 100300 (or 10600) observations (Bellman, 1961), a
number that may be compared to 1017 which is the
lifetime of the known Universe in seconds (Barrow and
Silk, 1995). Now consider that we wish to construct a
linear decision plane in order to discriminate between
cases and controls in this multidimensional space. Also
consider that the orientation of this decision plane will
be optimised using the ‘goodness of fit’ criterion
described above. Now, if p>> s, and thus the hypercube
(or X-space) is sparsely populated then the influence of
each sample on the goodness of fit and therefore on the
orientation of the decision plane can potentially be huge.
This is of course dependent on the distribution of the
samples in the X-space. If each class is tight and occu-
pies a small and separate volume in space then the
leverage effect of each individual may be small. How-
ever, if for example the multidimensional within-class
variance>between class variance (i.e. the samples are
more widely dispersed in X-space) then leverage could
be substantial. So if we now use n fold cross-validation
to optimise the orientation of the decision plane one can
deduce that removing each validation set could also
easily have a huge effect on the orientation of this plane
for each of the n training models.

In linear algorithms such as PLS-DA or PC-DFA it is
possible to check for instability by means of comparing
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the loadings vector for each of the n trainingmodels. If the
values differ considerably between models then in effect n
completely different models have been created to explain
the same discrimination; which one is then correct (and is
this even a valid question)? This phenomenon is termed
the Rashomon Effect by Breiman (2001). Rashomon is a
Japanese movie in which four people, from different
vantage points, witness an incident in which one person
dies and another is supposedly raped. When they come to
testify in court, they all report the same facts, but their
stories of what happened are very different. In this paper
Breiman states ‘‘This effect is closely connected to what I
call instability (Breiman, 1966) that occurs when there are
many differentmodels crowded together that have about the
same training or test set error. Then a slight perturbation of
the data or in the model construction will cause a skip from
one model to another. The two models are close to each
other in terms of error, but can be distant in terms of the
form of the model.’’ In situations such as these (in our
hypothetical case where the n training models differ sig-
nificantly) the leverage effect of each holdout set must be
considerable, thus the assumption that the classifier is
stable with respect to the data set is false and therefore n-
fold validation will potentially produce a badly trained
final model. Add into this the fact that if s is small then s/n
will be even smaller, so it is very unlikely that each of the n
validation sets will be fully representative of the whole
data, and will probably be biased in relation to the meta-
data, adding to the probability of a badmodel. Great care
must therefore be taken when using this method of vali-
dation and again the only way of proving the model’s
unquestionable robustness is to use an independent test
set as described above, or by using more sophisticated
methodologies such as bootstrapping.

It has been implied that PLS-DA is capable of coping
with this curse of dimensionality through the use of
latent variables (Eriksson et al., 2001). However as these
latent variables are also optimized using goodness of fit,
the problem remains dependent on the number and
distribution of the sample population. The same source
notes that ‘‘A necessary condition for PLS-DA to work
reliably is that each class is tight and occupies a small
and separate volume in X-space...Moreover, when some
of the classes are not homogeneous and spread signifi-
cantly in X-space, the discriminant analysis does not
work’’ (Eriksson et al., 2001).

Note that in some literature the terminology for the
validation and test sets is exchanged (we prefer the
version above with the final held-out set being the ‘test
set’). The key point is that the set finally used for
assessing the model must not have had any part in its
generation whatsoever. Any model that is not validated
using samples that had absolutely no part in the pro-
duction of the model is prone to overfitting. Period
Ransohoff (2005) comments that only about 10% of
transcriptomics studies have used independent (external)
validation (Ntzani and Ioannidis, 2003).

The situation is not helped by the vast range in
sophistication of modeling software available to users of
metabolomic instrumentation. Users can often be
encouraged to plot spurious correlations, which do not
in isolation fully explain the significance of the model’s
predictive ability. For example in Discriminant Partial
Least Squares if 10 latent variables are needed to pro-
duce a ‘robust’ and ‘validated’ model, simply plotting
the scores values of the first two latent variables is not
sufficient proof of class separation in X-space (especially
if class confidence regions are not shown, and test set
values are not overlaid on this plot). The final overall
model prediction scores for the training, validation, and
test sets are required. Only then can the model be cor-
rectly assessed using univariate statistics and graphical
tools of the type described here. In the case of PLS this is
quite straightforward as any model created can be
reduced to the form of ŷ = bX (where, ŷ is the predicted
numerical response, b is the loadings vector if there is a
single response variable, and X is the input data vector)
(Alsberg et al., 1998; Wold et al., 2001) and many good
visualization and statistics tools are available.

Rowland (2003) gives an excellent example of what
may be required, in the context of genetic programming,
a technique (e.g. (Koza, 1992; Langdon, 1998; Koza et
al., 2003)) that we favour since it gives easily interpret-
able rules that relate to actual metabolites rather than to
latent variables and that also generalize well (Kell et al.,
2001; Kell, 2002, b; Goodacre and Kell, 2003; Kenny et
al., 2005).

It is also worth stressing that the distributions of
samples in the training, validation and test sets should
be such that they effectively come from the same pop-
ulations, since if they do not failure is almost certainly
guaranteed – and assessing whether this is the case can
nevertheless expose bias. The most famous example is
perhaps a tale (Goodacre et al., 1996) about an experi-
ment designed to train a neural network-based classifier
involving the discrimination of images of landscapes
from images that were otherwise similar but also con-
tained battle tanks. Unfortunately the images without
the tanks had been taken on a sunny day and those with
the tanks on an overcast day, so the classifier had only
learnt whether the sun was shining or not! Of course this
came to light, as it were, when a second test set was used
that did not have such a correlation between brightness
and tankness.

Finally it is also worth noting that simply quoting R2

and Q2 values as a measure of quality for a given model
provides a very vague description of predictive ability.
Generally a Q2>0.5 is regarded as good; however, this
is very much application-dependent (Eriksson et al.,
2001). A simple scatter, box, or ROC plot (e.g. see
figure 2B) of both training and overlaid test predictions
give readers, and reviewers, far more confidence in any
claims of model utility than a single conglomerate score
with many assumed characteristics.

D.I. Broadhurst and D.B. Kell/False discoveries in metabolomics and related experiments184



15. Credit assignment in multivariate calibration

Assuming that one is not simply looking for a model
that will classify biological samples without explaining
how (a so called ‘black box’ model), the primary aim of
any multivariate machine learning of the type of present
interest must be the discovery of important discrimina-
tory biomarkers for a given metabolomics experiment.
We have shown how it is possible to evaluate each
metabolite univariately (i.e. in isolation). However, if no
single metabolite is deemed a singularly good biomar-
ker, one must expand the search to subsets of two or
more metabolites that in combination provide good
discrimination. Of course, as with parallel single
metabolite significance tests, the possibility of False
Discovery increases with the number of metabolites
measured in parallel. However, whereas in the univari-
ate case the number of parallel tests increases linearly, in
the multivariate case the number of parallel tests is equal
to p!/(s!(p)s)!) where p is the total number of measured
metabolites and, s, is the number of metabolites that
appear in a candidate subset. For example, if p = 100
and s = 5 there are 7.52�107 possible combinations
(and thus parallel tests).

The discovery of significant biomarker subsets (SBSs)
can be achieved in one of two ways. First in what we will
term ‘the bottom up approach’, where we hypothetically
look at all the possible combinations of s in p, whilst
varying s from 2 to p (The curve in figure 4. shows the
relationship between the number of possible combina-
tions of s in p, as s is varied between 2 and p. The area

under the curve =
Pp
s¼2

p!=ðs!ðp� sÞ!Þ is the total number

of possible combination of any subset size). For each
subset a particular model is built (for example, the
simplest being a weighted linear sum, of the form
ŷ = bXsub) and the predictions from this model are then
evaluated by either univariate significance tests or model

validation. Any model above a certain quality threshold
can then have its constituent metabolites listed as an
SBS. Of course using this strategy the amount of parallel
tests will quickly become huge and computationally
intractable. There are simple ways of limiting the num-
ber of tests, such as disallowing any models to be built
that already contain SBSs of a lower dimensionality (i.e.
if subset {w,x,y} is an SBS then one may choose not to
test {w,x,y,z}), or strictly limiting the maximum number
of metabolites in a subset. A more heuristic solution is to
use a search algorithm to traverse the metabolite subset
space. In particular methods involving the use of evo-
lutionary algorithms to ‘evolve’ SBSs or their equivalent
have proved very successful for chemical problems
(Lucasius and Kateman, 1994; Lucasius et al., 1994;
Horchner and Kalivas, 1995; Broadhurst et al., 1997;
Judson, 1997; Shaffer and Small, 1997; Gillet et al.,
2002; Jarvis and Goodacre, 2005). Alternatively, both
the model and the subset to be tested can be evolved in
the form of a Genetic Program (see above).

The second approach is what we will term ‘the top
down approach’. This method involves constructing a
multivariate model using all of the available measured
metabolites at once. Ignoring the many non-linear
methods for the moment, most multivariate methods
depend on parameter estimation using the covariance
matrix of the raw data. Unfortunately when there are
more variables than observations this can easily lead to
a numerically unstable inverse matrix (or one incalcu-
lable due to singularity) (Seber and Wild, 1989).
Therefore, the most popular linear multivariate models
use latent variables (variables that serve to reduce the
dimensionality of the raw data, such that stable
covariance-based parameter estimation can be
achieved). Either way, the final model can be expressed
in terms of a multivariate classifier as defined in
figure 1A. In the case of linear models such as MLR,
PLS-DA, and PC-DFA this model can simply be
reduced to the following single equation: ŷ = bX (where
b is the loadings, or weights vector, of length p). The
predictions from these models can again be evaluated by
either univariate significance tests, or model validation.
Assuming proper validation has been performed then
the problem is now how to relate individual loadings
values to the significance of the model’s performance.
Many publications assume that if a metabolite has a
relatively high loading (arbitrarily set, for instance,
to>2SD of the overall loadings distribution) then it is
automatically deemed significant. Thus if q out of p
loadings are greater than 2SD then the q corresponding
metabolites are reported as being significant biomarkers.
This of course may be true, but judicious use of Occam’s
Razor (i.e. when multiple competing theories have equal
predictive powers, the principle recommends selecting
those that introduce the fewest assumptions and postu-
late the fewest hypothetical entities; see also (Seasholtz
and Kowalski, 1993)) implies that these assumptions be
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Figure 4. The combinatorial explosion of possible models that occurs

when one tries to makes models using subsets of a total (here) of 100

metabolites. The abscissa is the total number of metabolites allowed to

contribute to the model.
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tested. One method would be to use some sort of sen-
sitivity analysis (Frey and Patil, 2002; Oakley and
O’Hagan, 2004; Saltelli et al., 2004; White and Kell,
2004; Kell and Knowles, 2006). Another more
straightforward method is to remove the q metabolites
from the raw data and build two new models in parallel,
one model with the q metabolites in isolation, the other
with the remaining data. If the first model proves suc-
cessful (and the loadings are relatively consistent) then
the assumption that these q metabolites are significant
biomarkers holds true; if not then the assumption is
false. If the first model is a success but the second model
fails then we can assume that the q metabolites are the
sole important biomarkers. However, if both the models
are a success then there are more significant biomarkers
than originally thought and the process of isolation and
model building must continue. Eventually, a list of
robust metabolite subsets will be produced. An example
of where this approach has been successfully used can be
seen in (Catchpole et al., 2005). Breiman (2001) is also
quite scathing about directly interpreting loadings plots
and provides an example where variable isolation and
remodeling proves that seemingly important variables
are in fact not so influential after all.

16. Multi-objective optimisation

Related to this, as well as many input variables one
may also have many objectives. This is an important

field that is not really the subject of this review, but we
do consider it useful to mention a few works on the
subject (Ringuest, 1992; Dasgupta et al., 1999; Zitzler,
1999; Van Veldhuizen and Lamont, 2000; Deb, 2001;
Coello Coello et al., 2002; Handl and Knowles, 2004,
2006a; Knowles and Hughes, 2005; Handl et al., 2006),
noting especially that there are many conditions in
which even single-objective problems can be given
multiple objectives in order to aid in their solution
(Knowles et al., 2001).

17. Visualisation issues

As stated above, we would argue that the best solu-
tion for allowing a full understanding of the significance
or otherwise of a particular piece of work is to make
available all the data and metadata. Given the existence
of the Web, this is nowadays straightforward. However,
data alone are but the ground substance for under-
standing, and there are a variety of tools that can help
readers of papers evaluate the data using different views.
This topic is usually referred to as Data Visualisation
(Cleveland, 1993, 1994; Fortner, 1995; Wilkinson, 1999;
Friendly, 2000; Tufte, 2001), and is especially significant
in the analysis of multivariate omics data. For reasons
of cost we can effect many more analyses in metabolo-
mics than are likely to be done in transcriptomics or
proteomics (we have already published elements of a
750-sample study (Kell et al., 2005) and are presently

Figure 5. A plot of the area under the ROC curve vs the p-value for 286 metabolites from a dataset of 87 pre-eclamptic cases and 87 carefully

matched controls (Kenny et al., 2005) analysed using an optimised GC-tof method (O’Hagan et al., 2005). The colour of the symbols encodes

whether the metabolite is raised (blue) or lowered (red) in the cases while the size encodes the modified Z factor.
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writing up one concerning some 1500 yeast gene
knockouts), while FDRs are decreased by the fact that
the number of metabolites is somewhat less than the
number of transcripts or proteins (Oliver et al., 1998).
Further, for fundamental reasons explained by meta-
bolic control analysis (Kell and Westerhoff, 1986; Fell,
1996; Heinrich and Schuster, 1996; Cornish-Bowden
and Cárdenas, 2000; Cascante et al., 2002), the variation
in the metabolome is expected to be much greater

(Raamsdonk et al., 2001; Urbanczyk-Wochniak et al.,
2003; Kell, 2004), and thus we have the opportunity to
achieve levels of statistical significance that the other
omes are much less likely to achieve without very large
sample numbers. Todd (2006) gives equivalent argu-
ments for SNPs. The area under the ROC curve and the
statistical p-value are not entirely unrelated, but they do
nevertheless measure different properties; ROC curves
are more sensitive to the actual class distributions across

Figure 6. Effect of sample size on the apparent significance of a particular marker (metabolite 1298). A ten per cent random sample was taken

from a study of 50 cases + 50 controls. A randomly selected ‘significant’ peak from this subset (where the critical p-value is 0.05) is shown in the

form of a box-whisker plot and ROC curve A. This peak could easily be considered a significant biomarker (if no correction to the critical p-value

is made to account for parallel statistical tests). If this metabolite is examined using the whole data set (B) the p-value increases to 0.48 and thus it

is therefore not really a significant biomarker.
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the total range, rather than being encoded as an estimate
of this distribution as calculated by variance-based sig-
nificance tests. Consequently, we find that a plot of the
AUC (Area under the ROC curve) vs the p-value (for a
particular significance test) is an extremely convenient
way of comparing all the measured metabolites in a
single graph. Figure 5 shows one for data acquired as
part of the study described by Kenny et al. (2005). The
figure also shows the conventional cutoff of p<0.01
and that after applying a Bonferroni correction for a
data set containing 200 metabolites to make it 5Æ10)5.
This decreases the number of ‘significant’ metabolites
from 148 to 49.

As already discussed, small data sets can lead to false
discoveries. To illustrate this circumstance we took a
dataset (not yet published) of human serum metabolites
measured using a GC-tof-MS assay (O’Hagan et al.,
2005). 50 ‘cases’ with matched ‘controls’ were processed
resulting in 272 statistically usable peaks. These data
were split into two sets: Set A is the original 50 ‘case’, 50
‘control’; Set B simulates a very small sample size study
by randomly sampling a matched subset of 5 ‘case’, 5
‘control’ from A. AUC vs p-value plots were constructed
for both sets (not shown). A randomly selected ‘signifi-
cant’ peak from data set B (where the critical p-value is
0.05) is shown in figure 6A. This peak could easily be
considered a significant biomarker (if no correction to the
critical p-value is made to account for parallel statistical
tests); however if this metabolite is examined using the
whole data set (figure 6B) the p-value increases to 0.48.
Thus one can see how easy it is to select a peak falsely as ‘a
possible marker’ when there are so few samples.

Plots such as those of Figs 2B and 6 allow one to see
the distribution of individual data points for a single
variable in a manner that summary statistics such as
mean and SD do not. We also prefer (Kell et al., 2001)
plots such as that of figure 7 in which individual samples
are displayed as a function of a small number of vari-
ables (rather than latent variables).

The principal focus of this review has been the
effective discovery of true metabolite biomarkers for
binary classification experiments. Whether the bio-
markers are discovered univariately or multivariately,
the result is a set of important metabolities. As men-
tioned earlier, there can be significant correlations
between different metabolites as a series of samples are
measured as part of a study, whatever the mechanism
(Kose et al., 2001; Steuer et al., 2003; Camacho et al.,
2005; Weckwerth and Morgenthal, 2005; Steuer, 2006).
(This said, we note also that a combination of ‘omic
data and attendant GO terms shows that most inter-
ventions in pathways have their greatest effect on
pathway elements that are nearest to the site of inter-
vention, such that expression profiles may indeed be
used to infer them (di Bernardo et al., 2005), although
this is not a watertight principle (Westerhoff and Kell,
1987).) Describing and subsequently understanding the

cause of these correlations is sometimes difficult with
many measured variables (particularly true with omic
data). A convenient means for summarising such rela-
tionships for significant correlation is the so-called
spring-embedding plot (figure 8), in which nodes
(metabolites) are displayed as an undirected graph by
constructing a virtual physical model and running an
iterative solver to find a low-energy configuration.
Following an approach proposed by Kamada and
Kawai (1989), an ideal spring is placed between every
pair of nodes such that its length is set to the shortest
path distance between the endpoints, and the spring
constant is proportional to the correlation between
nodes. The springs push the nodes so their geometric
distance in the layout approximates their path distance
in the graph. (In statistics, this algorithm is also known
as multidimensional scaling. Its application to graph
drawing was noted by Kruskal and Seery (1980), and
has since been used by many others (e.g., Eades, 1984;
Ebbels et al., 2006; Fruchterman and Reingold, 1991;
Kim et al., 2001)). Figure 8 was produced using
Graphviz open source graph visualization software
(Gansner and North, 2000), where the nodes are the
Bonferonni-corrected significant metabolites, with their
size inversely proportional to their p-value, and edges
only exist between two nodes if the Spearman’s rank
correlation coefficient is>0.6. It is worth noting that if
the sample size is small the reliability of such coeffi-
cients is questionable.

A variety of other multidimensional scaling algo-
rithms such as the Sammon mapping (1969) convert
complex high-dimensional relationships into ‘maps’ that
may be visualized in 2 and 3 dimensions. Kohonen’s
self-organising maps are one such (Kohonen, 1989;

Figure 7. Visualisation of metabolomic data from individual samples.

The plot shows the values of 3 metabolite peaks for cases (red) and

control (blue and yellow) taken from a study of metabolic markers for

pre-eclampsia (Kenny et al., 2005).
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Zupan and Gasteiger, 1993), while Agrafiotis and col-
leagues (Farnum et al., 2003) describe a variety of
visualization tools within the framework of molecular
diversity, including, in consequence, those based on
illustrating degrees of similarity.

18. Recommendations

We summarise our recommendations in the form of a
Box. It is usefully read in conjunction with Ransohoff’s
paper (2005).

Potential problem Recommendation

Bias Make (and publish) a table that includes for each binary class the

numbers (for categorical data) or mean and variance in the distribution

of samples between cases and controls for each of the metadata classes

(such as gender, age, pharmaceutical and recreational drug use, dietary

information, ethnicity, etc.). For those that are unequal check that the

same model that claims to discriminate cases from controls cannot

discriminate well solely on the basis of these co-variates.

Inadequate sample size The study must be powered correctly, recognising that for multiple

(parallel) measurements/tests the necessary powering differs from that

for a single measure.

Excessive false discovery rate due to multiple hypothesis testing Apply suitable corrections, the best being the most conservative

Bonferrroni correction that decreases the statistical p-value in rough

proportion to the number of variables (metabolites) being modelled.

Report only those that survive this test.

Inappropriate use of particular numerical methods Check that the methods used are fit for purpose. For instance, methods

like PLS can not deal sensibly with non-monotonic data (these are

common in metabolomics studies, for instance when a drug is benefi-

cial at low doses and toxic at high ones). Many other methods fail on

disjoint populations.

Overfitting Ensure that one is not simply learning what amounts to a training set.

This is only really checked by external validation.

Figure 8. A spring-embedded correlation plot showing the correlations between metabolites from a case:control study where the nodes (whose

size is inversely proportional to the p-value) are the significant metabolites after Bonferonni correction, while edges only exist between two nodes

if the Spearman’s rank correlation coefficient is >0.6. Also any isolated node is a significant biomarker but has no significant correlation to any

other peak and its location is arbitrary. Gold standard = current standard measurement for classification.
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Figure 9. A workflow describing some of the useful analyses that may be performed during the generation and analysis of metabolomic

biomarker data designed for binary class discrimination.

Potential problem Recommendation

Failure to perform adequate validation and cross-validation True validation in supervised learning systems requires testing the

model on samples that have not been used in its construction at all. It

is good practice to try and discriminate the training, (validation) and

test samples for readers.
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A generally useful concept in bioinformatics (Goble et
al., 2001) is the concept of the pipeline (Potter et al., 2004;
Brown et al., 2005) or workflow (Peleg et al., 2002; Oinn
et al., 2004, 2006; Stevens et al., 2004; Romano et al.,
2005), especially in the present context for the analysis of
omics data. Here, the tools involved in the data analysis
are stitched together using standardised environments or
interfaces to form a workflow, after which they may then
be enacted in a more or less automated manner. Dis-
tributed environments using systems such as Taverna
(Oinn et al., 2004, 2006; Stevens et al., 2004) to enact the
necessary workflows provides an attractive way forward
(Chen and Hofestädt, 2006; Kell, 2006). A suggested and
useful pipeline for metabolomics data analysis is given in
figure 9.

19. Concluding comments

The world of science is littered with examples of false
conclusions being drawn from ostensibly well designed
experiments (http://www.ems.psu.edu/�fraser/Bad-
Science.html), and the bad design of experiments will
usually ensure such an outcome. In many areas of post-
genomic discovery, the proper methods of statistical
analysis are not entirely clear, for instance how best to
treat correlated variables in terms of a Bonferroni-type
correction for significance when doing multiple
hypothesis-testing. However, there are many elements of
good practice that are well established in biomedicine
and we in metabolomics have no reason not to follow
them in our own experiments. Even well-established
principles such as single- and preferably double-blinding
of samples are not made explicit, and could as well be.
But the most important issue is the recognition that with
very many variables, potentially with significant noise,
the false discovery rates and premature claims of sig-
nificance are likely to be major problems. It is hoped
that this review will lower their frequency.
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