
Flow, Turbulence and Combustion 66: 427–451, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

427

‘T-RANS’ Simulation of Deterministic Eddy
Structure in Flows Driven by Thermal Buoyancy
and Lorentz Force
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Abstract. The paper reports on the application of the Time-dependent Reynolds-Averaged Navier–
Stokes (T-RANS) approach to analysing the effects of magnetic force and bottom-wall configuration
on the reorganisation of a large coherent structure and its role in the transport processes in Rayleigh–
Bénard convection. The large-scale deterministic motion is fully resolved in time and space, whereas
the unresolved stochastic motion is modelled by a ‘subscale’ model for which the conventional alge-
braic stress/flux expressions were used, closed with the low-Re number 〈k〉-〈ε〉-〈θ2〉 three-equation
model. The applied method reproduces long-term averaged mean flow properties, turbulence sec-
ond moments, and all major features of the coherent roll/cell structure in classic Rayleigh–Bénard
convection in excellent agreement with the available DNS and experimental results. Application of
the T-RANS approach to Rayleigh–Bénard convection with wavy bottom walls and a superimposed
magnetic field yielded the expected effects on the reorganisation of the eddy structure and consequent
modifications of the mean and turbulence parameters and wall heat transfer.

Key words: deterministic eddy structure, numerical simulations, Rayleigh–Bénard and magnetic
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1. Introduction

Large-scale eddies can be discerned in many turbulent flows in laboratories, in
nature, or in industrial applications. Often, as in the case of vortex shedding, in
flows driven by buoyancy or subjected to a magnetic field or system rotation, the
large structure has a deterministic character. Such vortical structures also appear in
laminar flows, but in turbulent regimes it is not always clear whether these struc-
tures can be regarded as true turbulence (smooth spectrum and probability density
functions), or they may be interpreted as a form of mean motion with inherent but
deterministic (organised, coherent) unsteadiness.

Whatever their nature, these large structures are usually the major carrier of
momentum, heat, and species, especially in regions away from a solid wall. Hence,
in such flows the transport processes can be controlled by affecting only or primar-
ily the coherent structure. Control can be achieved either by imposing an external
force (distrubuted control), or by controlling the boundary topology or its physical
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conditions. Both techniques have long been in use: rotation, buoyancy, electric or
magnetic field, surface blowing or suction, riblets and grooves, are only some of
the means applied to control drag, heat and mass transfer, entrainment and mixing,
combustion, noise, etc. However, it is only recently, with the advancement of exper-
imental field techniques (e.g. Particle Imaging or Tracking Velocimetry, PIV, PTV)
and of Direct Numerical and Large Eddy Simulations (DNS, LES), that the flow
and turbulence control studies have focussed more on coherent structures. Major
prerequisites for the analysis of the effects of coherent structures are the ability
to identify the morphology of the organised deterministic motion and a proper
interpretation of their role in controlling the flow and transport processes. Once
this is achieved, the effects of various methods of flow control can be tested and
optimised for the desired performance. While direct numerical simulation and large
eddy simulation can provide necessary information, their application in complex
industrial flows at higher Reynolds and Rayleigh numbers is still not feasible.
On the other hand, the conventional Reynolds-Averaged Navier–Stokes (RANS)
approach, which is still used as the major industrial predictive tool, by its virtue,
conceals any spectral and structural information, and is regarded as unsuitable for
detecting any identifiable eddy structure. A hybrid approach that fully resolves
large-scale coherent structures and uses a RANS model to provide the second mo-
ments for the remaining – still substantial – part of the spectrum, seems a plausible
solution method.

We argue that for flows with identifiable and dominant large eddy structure (vor-
tex shedding, internal separation and recirculation, longitudinal vortices, Rayleigh–
Bénard and other types of natural convection, as well as flows with rotation), the
application of the Time-dependent Reynolds-Averaged Navier–Stokes (T-RANS)
approach can be a useful tool for identifying the organised motion and its response
to the imposed distrubuted or boundary control. The approach is akin to Very
Large Eddy Simulation (VLES) by which the large structure is fully resolved,
whereas the ‘rest’ of the turbulence is modelled by conventional turbulence clo-
sure models (‘subscale model’). As compared to LES, here both contributions to
the long-term statistical averages are of the same order of magnitude. Close to a
solid wall, the large structure is suppressed by wall blockage, and the turbulence
production either by mean strain or buoyancy due to wall heating, is dominant.
Here, the unresolved incoherent motion bears most of the second moments and
they need to be provided by a subscale model. This imposes a special requirement
to model accurately the wall phenomena. On the other hand, away from a solid
wall, where the freely evolving large structure becomes dominant, this structure
should be fully resolved by a time-dependent solution of the ‘filtered’ equations.
Resolving the large-scale motion enables us to capture accurately the large-scale
transport, which in conventional RANS methods is usually modelled inadequately
by gradient hypotheses.

The approach proposed here is similar to the ‘semi-deterministic’ turbulence
modelling proposed by Ha Minh [1] (see also [2, 3]). Both methods have their roots
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in the decomposition of the instantaneous variables into time-mean, unsteady co-
herent motion, and the remaining random, incoherent fluctuations, as proposed by
Hussain [4]. Ha Minh and his coworkers reported the application of their approach
to flow behind a backward facing step, where the time-mean and coherent fluctu-
ations were lumped into the ensemble-averaged motion for which the ensemble-
averaged Navier–Stokes equations were solved in time. The contribution to the
second moment by the unresolved incoherent motion was provided by a modified
version of the conventional low-Reynolds number k–ε model, in which the eddy
viscosity was reduced by arbitrarily decreasing the empirical coefficient Cµ to a
value which enabled unsteady quasi-periodic solutions to be obtained. This has
been recognised as a major shortcoming of the Ha Minh approach, since no general
modification valid for a broader class of flows could be deduced. The backward-
facing step flow may not be the best example for this approach: according to
Auburn et al. [3], the experimental conditional sampling indicated that the coherent
structure originating from the separated mixing layer, despite deterministic fea-
tures, ‘present significant random discrepancies’. Indeed, for flows with relatively
smooth spectrum distribution, and where the coherent structure is not clearly sep-
arated in spectral space from the incoherent turbulence, a general modification of
the ‘subscale’ model still needs to be worked out, possibly in terms of scales and
energy contents of the resolved coherent and unresolved incoherent motion.

In this work we consider flows where the deterministic coherent structure seems
well separated from the incoherent turbulence in spectral space, both in the energy
content and in scales. This does not necessarily mean a dip in the spectrum, since
the deterministic motion can have a wider range of frequencies which may overlap
with the stochastic turbulence. Here, as the results below show, the problem of
modifying the single-point turbulence model used for incoherent motion is ab-
sent. The flows considered are several cases of steady Rayleigh–Bénard convection
which, in addition to the classic case, include configurations with non-flat bottom-
wall topology, and with superimposed magnetic field. In all cases the large-scale
coherent structure is known to exist and, for some of the cases, the detailed DNS
and experimental data are available. Despite similarity in approach, our motivation
to explore Rayleigh-Bénard convection with T-RANS was not inspired by the work
of Ha Minh and his group (in fact we were unaware of this work when we started).
It originated from problems encountered when solving Rayleigh–Bénard convec-
tion with conventional steady two-dimensional RANS computations [5], which all
yielded a steady roll/cell pattern irrespective of the Rayleigh number, contrary to
the experimental observation.

Comparison of T-RANS and DNS statistics, which serves as a first check if the
T-RANS approach is meaningful, requires care in interpreting the statistics in order
to account for the contribution of the resolved motion. The triple decomposition,
by which the instantaneous field is assumed to consist of long-term average (time-
mean), quasi-periodic (coherent structure) and random (stochastic) fluctuations,
provides a satisfactory tool, indicating that the long-term statistics can be well
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reproduced by accounting for both the random and coherent contributions. A sec-
ond test of applicability of T-RANS is the comparison of structure-identification
functions evaluated in parallel with DNS and T-RANS realisations. Various identi-
fication criteria have been applied including numerical visualisation, critical point
theory and vortex dynamics approaches.

The T-RANS approach yielded a very similar large-scale structure for the clas-
sical Rayleigh–Bénard convection as obtained by DNS. The distribution of mean
and second-moment quantities and heat transfer on the walls are also in excellent
agreement with available DNS and experimental data. Based on this verification,
the T-RANS method was then used to predict the effect of the magnetic field
and wall waviness on the eddy structure and wall heat transfer in the same flow
configuration. Only partial validation of these cases was possible because of a lack
of experimental or other data.

2. Equations and Triple Decomposition

The instantaneous motion of an incompressible, conductive fluid under joint ac-
tion of buoyancy and magnetic force is described by the equations for continuity,
momentum, energy, and electric potential:
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∇2�̂ = ∇·[Û × B̂], (4)

where F̂ Li is the Lorentz force, �̂ is the electric potential, B̂i is the imposed mag-
netic field.

For the resolved (‘filtered’) motion, equations can be written in essentially the
same form as for LES:
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= 0, (5)
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∇2〈�〉 = ∇ · [〈U〉 × 〈B〉], (8)

where the 〈 〉 stands for resolved (implicitly filtered) quantities, and τij and τθj
represent contributions due to unresolved scales to the momentum and temperature
equations, respectively, which were provided by the subscale model.

Assuming that the large-scale structure has a deterministic character and is
distinct in the spectral space from the rest of turbulence, we can decompose the
instantaneous flow property at a point �̂(xi, t) into time-mean�(xi), deterministic
�̃(xi, t), and random (incoherent) ψ(xi, t), i.e.

�̂(xi, t) = �(xi)+ �̃(xi, t)+ ψ(xi, t) = 〈�〉(xi, t)+ ψ(xi, t). (9)

By performing a long-time averaging at a point in space and assuming that the
coherent and random motion are not directly interacting, the second moments are
obtained as a sum of the resolved and modelled contributions, as follows from the
long-term averaging, i.e. for variables � and ϒ :

�̂ϒ̂ = � ϒ + �̃ϒ̃ + ψγ = 〈�〉〈ϒ〉 + ψγ . (10)

Unlike in LES, both contributions, i.e. the coherent (resolved) and the random
(modelled), are usually of the same order of magnitude and, close to a wall, the
unresolved part is larger, as is shown later in the case of turbulent heat flux and
temperature variance.

In order to illustrate the implication of the approach we consider the long-term
averaged energy equation, which for steady Rayleigh–Bénard convection reduces
to

∂

∂xj

(
ν

Pr

∂〈T 〉
∂xj

− T Uj − T̃ Ũj − τ θj
)

= 0, (11)

where τ θj = θuj . The first three terms are provided from a time-dependent, three-
dimensional numerical solution of resolved quantities and the last term is provided
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by the single-point ‘subscale’ model. Further averaging over homogeneous (hori-
zontal) planes yields the expression for the total heat flux in vertical direction (z)
(with τ θw = θw):

ν

Pr

∂〈T 〉
∂z

− T̃ W̃ − τ θw = qw

ρcp
= const. (12)

Hence, the long-term total vertical heat flux, averaged over horizontal planes (con-
stant in a steady Rayleigh–Bénard convection), consists of molecular, large-scale
(coherent) and small-scale (modelled) contributions.

3. The ‘Subscale’ Model and Solution Method

Because only the largest scales are fully resolved in time and space, care must be
taken to provide an adequate ‘subscale’ model for the remaining, relatively large,
unresolved part of the turbulence spectrum. In the near-wall region, the direct effect
of the large-scale structure is small and the subscale model provides an almost
complete contribution to the turbulent transport of momentum, heat and species.
Hence, the importance of the subscale model is much greater than, for example, the
subgrid scale model in LES. Besides, the subscale model should not be dependent
on the grid size, as it is in LES, simply because the unresolved motions span over
a larger range of scales than defined by the numerical mesh. It seems natural to
use a single-point closure as practised in the RANS approach. As mentioned in the
Introduction, in some flows where the coherent structure is not so dominant and
the spectrum has a smooth shape, the single-point closure model may need to be
modified to reduce the modelled contribution (e.g., [2]). However, this is not nec-
essary in the present case. Moreover, because the turbulent transport by large-scale
motion is fully resolved, and the importance of the subscale model is particularly
significant close to the wall where the mean convection is often negligible, there
is no need to solve differential transport equations for second moments (turbulent
stress, heat flux) and a simple algebraic model seems to be adequate. The study
reported here was performed using a ‘reduced’ algebraic expression for heat flux
τθj derived by truncation of the modelled differential transport equation for τθj
by assuming weak equilibrium, but retaining all major flux production terms (all
treated as time-dependent):

τθi = −Cφ 〈k〉
〈ε〉

[
τij
∂〈T 〉
∂xj

+ ξτθj ∂〈Ui〉
∂xj

+ η(βgi〈θ2〉 + 〈θf Li 〉)
]
, (13)

where

f Li = j × B = σ

ρ
(−∇φe︸ ︷︷ ︸

e

+u × B)× B (14)

is the fluctuating Lorentz force, and e is the fluctuating electric field. Note that B
stands for B̂ = B, assumed to be independent of (or slowly varying with) time.
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The turbulent stress tensor τij and the correlations involving the electric field
〈uiej 〉 and 〈θej 〉 should also be expressed in similar algebraic forms by trunca-
tion of the full transport equations for these quantities (here 〈 〉 means that the
modelled expressions use resolved quantities). However, in the present work we
use the simple eddy diffusivity expressions for these moments and account for the
buoyancy and magnetic field by additional terms in the transport equations for the
turbulence kinetic energy 〈k〉 and its dissipation rate 〈ε〉 [6]. These two equations,
together with the equations for temperature variance, 〈θ2〉, (all modified for low-
Re number and near-wall effects), close the problem, resulting in a three-equation
model, 〈k〉 − 〈ε〉 − 〈θ2〉:

D〈k〉
Dt

= Dk + Pk +Ggk +GLk − 〈ε〉, (15)

D〈θ2〉
Dt

= Dθ + Pθ − 〈εθ 〉, (16)

D〈ε〉
Dt

= Dε + Pε1 + Pε2 +Ggε +GLε − Y, (17)

where D stands for diffusion, P is production by mean field gradients, G is pro-
duction by body force (Gg-buoyancy, GL-Lorentz force), 〈ε〉 is turbulence energy
dissipation, and Y is the destruction of 〈ε〉. All these terms are defined by conven-
tional expressions (see, e.g., [7]) using standard coefficients and the thermal-to-
mechanical turbulence time-scale ratio R = 〈θ2〉〈ε〉/2〈k〉〈εθ 〉 = 0.5. A novelty is
the model of production by the Lorentz force both in the 〈k〉 and 〈ε〉 equations [6]:

GLk = −σ
ρ
B2

0 〈k〉 exp

(
−CLσ

ρ
B2

0

〈k〉
〈ε〉
)
, (18)

GLε = −σ
ρ
B2

0 〈ε〉 exp

(
−CLσ

ρ
B2

0
〈k〉
〈ε〉
)
, (19)

with CL = 0.025.
The equation set is solved numerically using a finite-volume Navier–Stokes-

Maxwell solver for three-dimensional flows in structured non-orthogonal geome-
tries, with Cartesian vector and tensor components and a collocated variable
arrangement. The second-order accurate central difference scheme (CDS) was
applied for the discretisation of diffusive terms in all equations and of convec-
tive terms in 〈U,V,W, T ,�〉 equations. The second-order linear-upwind scheme
(LUDS) was applied for convective terms in equations for the turbulence quantities,
i.e. 〈k, ε, θ2〉.

The time marching is performed by fully implicit second-order three-time-
level method which allows larger time steps to be used, in view of the fact that
only large scales are being resolved. The typical non-dimensional time step was
τ ∗ = 0.02, where τ ∗ = τ

√
βg4T/H . Test with much smaller and larger time

steps (0.005 and 0.08) showed no noticeable difference in long-term averaged
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properties, nor in structure morphology. Typical computations covered about 200–
400 non-dimensional time units τ ∗ which correspond roughly to 15–30 convective
time scales based on convective velocity and characteristic cell circumference, de-
fined by Kerr [8]. In all cases, the temperature of the walls were kept constant at
a predefined level to yield the desired Rayleigh numbers. All computations started
with uniform fluid temperature.

4. Illustrations

4.1. THE CLASSIC RAYLEIGH–BÉNARD CONVECTION

The T-RANS computations of Rayleigh–Bénard convection over a heated flat
bottom wall at a range of Rayleigh numbers reproduced very well the mean tem-
perature, wall heat transfer, and the second moments obtained by experiments and
DNS. This is illustrated in Figure 1 where the mean temperature, computed with
T-RANS for two Ra numbers, 107 and 109, (Ra = βgi4T PrH 3/ν2), are com-
pared in linear and semi-logarithmic plot with the DNS data of Grötzbach [9] for
Ra = 3.8 × 105 and Wörner [10] for Ra = 6.5 × 105. Despite a large difference in
Rayleigh numbers, the T-RANS computations are in excellent agreement with the
DNS data when normalised with the buoyancy temperature Tq = Q/Uq and length
scale Zq = α/Uq , where Q is the wall heat flux, and Uq = (βα2gQ/ν)1/4 is the
buoyancy velocity. A similar quality of agreement was obtained for the turbulent
thermal heat flux and temperature variance (Figure 2). Both parts of the figure
illustrate the contributions of the resolved and modelled motion to the second
moments. It is noted that the modelled contribution dominates the near-wall region
accounting almost fully for the total turbulent heat flux and temperature variance,
whereas the resolved contribution becomes dominant away from the wall. Note
that the heat flux is shown on a blown-up scale only for the near-wall region; the
profile for the complete channel section is shown in Figure 6.

Moreover, the parallel application of several structure identification methods
(second invariant of the velocity gradient, discriminant of its characteristic equa-
tion, kinematic vorticity number, massless particle trajectories) to the instantaneous
fields obtained by DNS and T-RANS, showed a striking resemblance in the large
structure, including the spiralling updrafts as major constituents of the large-scale
unsteady roll-cell pattern [11, 12]. An illustration is provided in Figures 3–5 where
examples of the instantaneous plots of trajectories of massless particles are shown
for several horizontal and vertical planes obtained by DNS and T-RANS for the
same Ra number. The figures show a number of organised vortical structures with
clearly identifiable vortex cores both in horizontal and vertical planes. These quan-
titative and qualitative agreements between T-RANS and DNS (more details can be
found in [12, 13]) ensured confidence in the T-RANS approach and its extrapola-
tion to cases with multiple-body forces and complex wall topology, which are both
expected to impose a reorganisation and a modification of the large coherent struc-
ture. Because this structure provides major ‘communication’ between the boundary
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Figure 1. Mean temperature profiles in RB convection; T-RANS and DNS – Grötzbach [9],
Wörner [10].

layers at the bottom and top walls, its modification is expected to influence the
overall heat transfer.

4.2. RAYLEIGH–BÉNARD CONVECTION SUBJECTED TO LORENTZ FORCE

The next case considered is an example of distributed turbulence control: a mag-
netic field imposed on the flow of conductive fluid generates the Lorentz force,
which dampens the velocity and its fluctuations in the direction of the force [14].
As a consequence, the vortical structure is modified with a tendency to align the
major vortex axis with the direction of the magnetic field vector. This effect is
currently utilised in controlling the process of continuous metal casting and is
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Figure 2. Long-term averaged profiles of vertical heat flux (near-wall blow-up) and the
temperature variance in RB convection; T-RANS and DNS – Grötzbach [9], Wörner [10].

regarded as a potential means to control the crystal growth in a large crucible.
The algebraic turbulence model used here was developed to reproduce the effect of
magnetic field on mean velocity and turbulent stresses in forced turbulent flow in a
plane and a square channel [6]. In addition to the direct effect on large-scale motion
(Lorentz force in momentum equations), it is noted that the additional ‘magnetic’
terms representing the effects of the magnetic field are also present in the model
equations for turbulent kinetic energy and its dissipation rate, as well as in the
model expressions for other second moments.

Here we present a case of magnetic Rayleigh–Bénard convection (RBM), i.e.
the situation where the gravitational vector and the imposed magnetic field are
aligned. The considered Ra number, 107, ensures a fully turbulent regime in the ab-
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Figure 3. Instantaneous trajectories of massless particles in five vertical planes for DNS [10]
(top) and T-RANS realisations (bottom), Ra = 6.5 × 105, Pr = 0.71.

Figure 4. Instantaneous trajectories of massless particles in two horizontal planes for DNS
[10] realisation, Ra = 6.5 × 105, Pr = 0.71, z/H = 0.5 (top) and 0.05 (bottom).
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Figure 5. Instantaneous trajectories of massless particles in two horizontal planes for T-RANS
realisation, Ra = 6.5 × 105, Pr = 0.71, z/H = 0.5 (top) and 0.05 (bottom).

sence of magnetic field, thus enabling the study of the effect of the Lorentz force on
the reorientation of the vortical structure and the associated transport phenomena.
We consider three cases corresponding to zero, medium and strong magnetic fields,
defined by Hartmann number Ha = 0, 20 and 100 (Ha = B0H

√
σ/ρν). Figure 6

shows the turbulent heat flux and temperature variance across the channel for three
Ha numbers, all normalised with the wall heat flux (that equals the total long-term
averaged heat flux across the flow) for the case of no magnetic field (Ha = 0). The
resolved and modelled contributions, as well as their sum (the complete turbulence
second moments) are plotted separately. Note that Figure 6a shows the same results
as Figure 2, but now plotted over the whole channel. Because the vertical distance
is here scaled with the channel width D, the T-RANS computations for Ra = 107

do not collapse to DNS data (symbols) that were performed for Ra = 6.5×105. The
difference between the complete turbulent heat flux and the total flux (equal to 1)
represents the molecular flux. The effect of the magnetic field is clearly manifested
in the reduction of the total heat flux, as a consequence of the reduction in both the
resolved and modelled contributions. The modelled parts are the main contribution
in the near-wall regions (0 < z/D ≤ 0.1, 0.9 ≤ z/D < 1) for the situation without
a magnetic field, (Ha = 0). When the magnetic field is active, the ‘magnetic terms’
in the model of the unresolved motion dampen the modelled contribution relative
to the resolved one. For Ha = 20, both contributions are equally important in the
near-wall regions for both

θwtot = τ θw + T̃ W̃ and θ2
tot = 〈θ2〉 + T̃ T̃ ,

where
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Figure 6. Effect of the transversal magnetic field on long-term averaged deterministic and
modelled contributions to vertical heat flux and temperature variance, Ra = 107, Ha = 0, 20,

100; modelled contributions (- - -): 〈θw〉, 〈θ2〉, deterministic contributions (—): W̃ T̃ , T̃ T̃ .
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W̃ T̃ = 〈W 〉〈T 〉 − 〈W 〉 〈T 〉 and T̃ T̃ = 〈T 〉〈T 〉 − 〈T 〉 〈T 〉

represent the deterministic contributions. A further increase in the magnet strength
leads to a drastic reduction in the modelled contribution, which becomes negligible
at Ha = 100. It is noted that the modelled contribution diminishes faster than the
resolved one. This is, of course, the consequence of the model used, which contains
damping functions related to the turbulence Reynolds number. A strong damping
of the modelled contribution indicates a strong diminishing of the turbulence Re
number, reflecting an overall damping of the turbulence kinetic energy associated
with unresolved scales. However, the persistence of the contribution by the resolved
motion indicates the persistence of the large eddies, which, although subject to
reorganisation, still contribute to the second moments. It is interesting to note that

the peaks of the temperature variance T̃ T̃ for the largest value of Ha are moved
away from the walls, which in classic Rayleigh–Bénard convection, is associated
with a decrease in Ra number.

The reorganisation is clearly illustrated in Figure 7, showing the planform
structures and hot finger-like plumes in between identified by the temperature
isosurfaces. Due to the Lorentz force in the x–y plane (since the imposed magnetic
field is oriented in the vertical z-direction), the horizontal movement of thermal
plumes is significantly reduced. At the same time, the thermal plumes become
significantly smaller, but more extended in the vertical direction, with a higher
concentration in the near-wall regions. This is reflected in the form and size of the
planform structure, which becomes smaller as the strength of the magnetic field
increases. The plumes show a tendency towards the cylindrical shape elongated in
the vertical direction with aligned vertical velocity and vorticity with the magnetic
field and gravitational buoyancy vectors. The coherent structures, identified by the
contours of constant kinematic vorticity number, show a very similar behaviour
(not shown here). This reorganisation of the plume structure with an increase in
the magnetic field has been observed earlier. For example, Chandrasekhar reported
(albeit for much lower Ra numbers), that “the cells tend to become narrow and
elongated as Ha increases” [15, p. 177].

The effect on the long-term averaged mean temperature is depicted in Figure 8
(top), showing a tendency toward inversion. The application of an eddy-diffusivity
concept would result here in a counter-gradient vertical heat flux, which is wrong,
illustrating clearly the inadequacy of the eddy diffusivity approach to model the
Rayleigh–Bénard and similar phenomena. The effect on wall-heat transfer is il-
lustrated in Figure 8 (bottom) where the time evolution of the Nusselt number is
presented. It is obvious that the magnetic field significantly dampens heat transfer,
though the effect does not scale linearly with the strength of the imposed magnetic
field. It should be noted that the computations started with a uniform temperature
and zero velocity field and with a step elevation in the bottom-wall temperature,
so that the initial period reflects the development phase. However, in the later
period, after τ ∗ ≈ 150, the Nusselt numbers reach almost constant values. For
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Figure 7. Effect of the transversal magnetic field on planform structures and fingerlike plumes
(the isosurface of temperature T ∗ = 0.625 coloured with W ), Ra = 107, Ha = 0, 20, 100.
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Figure 8. Influence of the transversal magnetic field on long-time averaged temperature
profiles (top) and time evolution of integral Nusselt number (bottom).

the classic Rayleigh–Bénard convection the Nu number agrees well with the DNS
and experimental correlations. With an increase in Ha number, the Nu number
decreases. The effect at Ha = 20 is small, but at Ha = 100 the averaged value
of the Nusselt number is close to that for laminar regimes corresponding to much
lower Rayleigh numbers. Figure 7, however, shows that the flow contains a distinct
eddy structure of a relatively uniform scale, which is nearly two-dimensional. This
is also illustrated in Figure 9 which shows examples of the instantaneous distribu-
tion of Nusselt numbers on the bottom wall for the three Ha numbers considered.
In all three cases, the Nusselt numbers exhibit sharp peaks corresponding to the
impingement of plumes on the wall, with very low values in between. However,
the space between the peaks and valleys, reflecting the size of the plume patterns,
is much smaller at the highest Ha number than in the two other cases. The bottom il-
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Figure 9. Influence of the transversal magnetic field on the local Nusselt number distribution
(Ra = 107, Ha = 0, 20, 100).
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Figure 10. Effect of bottom-wall configuration on first- 〈W 〉, 〈T 〉 and second-order statistics
〈θ2〉, two-dimensional waviness, SB = 0.1 cos(xπ), Ra = 107, Pr = 0.71, (a) τ∗ = 50, (b)
and (c) τ∗ = 200.

lustration in Figure 9 also shows a high degree of order, with peaks of similar values
and evenly distributed over the wall surface, corresponding to the well-organised
nearly-two-dimensional vertical plumes.

4.3. CAPTURING THE EFFECTS OF WALL TOPOLOGY

As an example of boundary controlled structure, we consider a high Ra number (up
to Ra = 109) Rayleigh–Bénard convection over heated wavy walls with different
wavelengths and amplitudes. The two- and three-dimensional topologies are de-
fined by sinusoidal surface variation in one and two directions, SB = 0.1 cos(xπ),
and SB(x, y)= 0.1 cos(xπ) cos(yπ), respectively. Krettenauer and Schumann [17]
performed DNS and LES of the same two-dimensional configuration, though at a
much lower Ra number, Ra = 5.5 × 104, and observed that the gross feature of
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Figure 11. Effect of bottom-wall configuration on first 〈W 〉, 〈T 〉 and second-order statis-
tics 〈θ2〉, three-dimensional waviness, SB = 0.1 cos(xπ) cos(yπ), Ra = 107, Pr = 0.71,
(a) τ∗ = 50, (b) and (c) τ∗ = 200.

the flow statistics, such as the profiles of turbulence variance and fluxes were not
very sensitive to the variations of the bottom-wall topology. On the other hand, the
motion structure persisted considerably longer over the wavy terrain than over flat
surfaces.

The effect of the bottom-wall configuration on the resolved properties 〈W 〉, 〈T 〉
and second moments 〈θ2〉 is presented in Figures 10 and 11. In the initial stage
of heating, τ ∗ = 50, the contours of the vertical velocity and temperature in the
horizontal plane (x, y, 0.5) show a regular flow pattern determined by the wall
configuration (Figures 10a and 11a). Updrafts are represented by solid lines and
downdrafts by dashed line contours. The sites of the plume generation are located
at the surface wave peaks, as observed by five plumes regularly extending in the
vertical direction. At τ ∗ = 200, the picture is significantly different. The locations
of the plume realisation are not fixed anymore, the two-dimensional structure ori-
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Figure 12. Time evolution and spatial organisation of large coherent structures defined and
identified by Nk = 2 at τ∗ = 50 (left) and τ∗ = 200 (right), two-dimensional waviness,
SB = 0.1 cos(xπ).

Figure 13. Time evolution and spatial organisation of large coherent structures defined and
identified by Nk = 2 at τ∗ = 50 (left) and τ∗ = 200 (right), three-dimensional waviness,
SB = 0.1 cos(xπ) cos(yπ).

entation is lost, and the plumes’ movement produces a strong horizontal motion.
The second moments (the modelled part) show a similar behaviour: the contours
of 〈θ2〉 in the vertical planes indicate that 〈θ2〉 are concentrated in the near-wall
regions. This is what we expected, since the main role of the subscale model is
to produce the correct near-wall behaviour, while in the outer region, the large-
scale dominated motion is fully resolved. A similar analysis is performed for the
three-dimensional surface wave configuration. The plumes rise from the surface
peaks and sink into the surface valleys, portraying 25 characteristic locations in
the (x, y, 0.5) plane (Figure 11). At τ ∗ = 200, the initial organisation of the flow
cannot be observed anymore. Thermal plumes occupy a significantly larger space
and not only the regions close to the bottom surface peaks, as found in the initial
phase of flow development.

In order to get a better insight into the organisation and modification of the
large coherent structures, we applied the structure identifying analysis to an in-
stantaneous T-RANS realisation. Figures 12 and 13 show the time evolution and
spatial organisation of large structures defined and identified by the kinematic vor-
ticity number, Nk = (|ωl|2/2SijSij )1/2

. Very different shapes and organisations are
observed in the initial stage of heating (τ ∗ = 50) for two different topologies of the
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Figure 14. Influence of the bottom-wall topology (top) and of the subscale model on the time
evolution of the integral Nusselt number (bottom).

bottom wall. The large two-dimensional structures extending in the y-direction and
located in the center of the cavity are observed for the imposed two-dimensional
topology. Contrary to this, for three-dimensional wave topology, the coherent struc-
tures are located in the near-wall regions and are significantly smaller in size. At
τ ∗ = 200, the structures are very similar in shape and size for both configurations,
but even for this time instant, significantly different flow reorganisation can be ob-
served (diagonally oriented for three-dimensional topology and around the central
y-axis for two-dimensional wave topology). In both cases and at both time instants,
a close correlations between thermal plumes and large structures can be observed.

Figure 14 (top) shows the influence of the bottom-wall topology on the time
evolution of integral Nusselt numbers for four different wall configurations: a
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Figure 15. Influence of the bottom-wall topology on local Nusselt number, two-dimensional
waviness, SB = 0.1 cos(xπ), τ∗ = 50 (left) and τ∗ = 300 (right).

flat bottom surface (conf1), a two-dimensional wavy surface in the x-direction
(conf2), the same configuration with a twice longer wavelength (conf3), and a
three-dimensional topology (conf4). The three-dimensional wave configuration
promotes a fully developed regime earlier than others. The longer wavelength in
two-dimensional surface configuration keeps the initial flow organisation for a very
long period of time (almost 200 non-dimensional time units). When the fully devel-
oped stage was reached, the integral Nusselt number approached the value for the
flat wall, indicating that the imposed waviness of the bottom wall only marginally
affects the integral heat transfer at the fully developed stage.

Figure 14 (bottom) illustrates the effect of the ‘subscale’ model by comparing
the ‘pseudo DNS’ (no subscale model) and T-RANS. Both simulations show an
almost identical time response in the development of the overall Nu number, in
close correlation with the behaviour of the maximum velocity components. The
first peak is observed when the 〈U 〉 and 〈W 〉 velocity components reach their
peak values for the first time (τ ∗ = 15), followed by a decline until the 〈V 〉
velocity reaches its maximum, followed by a subsequent increase in heat transfer.
The simulation without a subscale model on a relatively coarse mesh of 822 × 32
resulted in a laminar-like regime with the averaged overall Nu of 12. In contrast,
the simulation with the AFM subscale model produced turbulent flow and more
intensive heat transfer yielding a the final averaged value of Nu = 18. These
findings illustrate the importance of the subscale model in the range of low and
transitional Ra numbers for complex geometries, when the grid resolution is not
sufficient to resolve all scales. It is also noted that the averaged Nu = 18 is close to
that for a flat wall at the same Ra number, confirming the findings of Krettenauer
and Schumann [17] that the total heat transfer was only marginally affected by
the wall waviness (at least for the configurations considered, with relatively small
amplitude to wavelength ratio).
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Figure 16. Influence of the bottom-wall topology on local Nusselt number, three-dimensional
waviness, SB = 0.1 cos(xπ) cos(yπ), τ∗ = 50 (left) and τ∗ = 300 (right).

Finally, Figures 15 and 16 show examples of instantaneous distributions of the
Nusselt number for the two- and three-dimensional bottom-wall wave configu-
rations with the same wavelengths, for two time instants. The results are shown
for the upper flat cold walls rather than for the bottom wavy walls in order to
illustrate the effect of the bottom-wall topology on the heat transfer at the opposite
flat wall. Both cases show a strong organisation in the Nusselt number distrib-
ution that closely reflects the wall configurations. The organisation in the initial
stage (τ ∗ = 50) is more orderly, but the wall topology effect is also visible much
later (τ ∗ = 300), particularly for two-dimensional waviness. It is also interesting
to note that the three-dimensional waviness tends to smooth the Nusselt number
distribution at the later stage more efficiently than the two-dimensional topology.

5. Conclusions

The time-dependent Reynolds-averaged Navier–Stokes (T-RANS) approach was
applied to analyze the Rayleigh–Bénard convection over a flat and wavy walls, and
with superimposed magnetic field, over a range of Rayleigh numbers. The large-
scale eddy structure is numerically fully resolved in time and space, whereas the
second moments (heat flux, stress, scalar variance) associated with the remaining
unresolved turbulence spectrum for velocity and scalar variables are provided by a
subscale model for which the single-point three-equation 〈k〉-〈ε〉-〈θ2〉 algebraic
stress/flux closure was used. Unlike in LES, both the resolved and unresolved
contributions are of the same order of magnitude and in the near-wall regions, the
contribution of the unresolved part is dominant. This places particular importance
on the subscale model, which ought to provide a good reproduction of the near-wall
phenomena.

It was demonstrated that the method reproduces very well the long-term av-
eraged mean temperature distribution, wall Nusselt number, turbulence second
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moments (heat flux, scalar variance) in classic Rayleigh–Bénard convection that is
in excellent agreement with the DNS and experimental data. Moreover, the method
captures very well the large-scale coherent structures, with features very similar
to those found by DNS. The method was then used to predict the effects of the
imposed Lorentz force and bottom-wall waviness on the reorganisation of the large
coherent structure, and consequent effects on the mean flow, turbulence statistics
and the Nusselt number. The lack of experimental or DNS data for the latter two
cases prevents a direct verification of the T-RANS results, but the qualitative effects
are in accordance with the observations reported in the literature.

A major advantage of the method is in resolving the dominant large-scale trans-
port, dispensing with a need to use gradient transport hypotheses. On the other
hand, because only very large scales are resolved numerically, the approach is more
economical than LES: it does not require very fine mesh except close to a solid wall
(but only in the wall-normal direction). The time marching can be performed with
a larger time step using implicit schemes. In addition, because the resolved large-
scale structure is expected to be coherent with a deterministic character, the number
of realisations needed to obtain the statistics should be significantly smaller than
required for LES. The approach is regarded as potentially useful for many types
of flows where the large-scale coherent structure is present: in flows dominated
by body forces, in periodic separating and vortex shedding flows, and in large
combustion installations prone to instabilities and unsteadiness. Another potential
application is in studying and optimising the control of turbulent flow, heat, and
mass transfer through the control of large coherent eddy structures.
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16. Hanjalić, K. and Kenjereš, S., Reorganization of turbulence structure in magnetic Rayleigh–
Bénard convection: A T-RANS study. J. Turbulence 1(8) (2000) 1–22.

17. Krettenauer, K. and Schumann, U., Numerical simulation of turbulent convection over wavy
terrain. J. Fluid Mech. 237 (1992) 261–299.


