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Summary. Methods for the analysis of data on the incidence of an infectious disease are reviewed,
with an emphasis on important objectives that such analyses should address and identifying areas
where further work is required. Recent statistical work has adapted methods for constructing
estimating functions from martingale theory, methods of data augmentation and methods developed
for studying the human immunodeficiency virus—acquired immune deficiency syndrome epidemic.
Infectious disease data seem particularly suited to analysis by Markov chain Monte Carlo methods.
Epidemic modellers have recently made substantial progress in allowing for community structure
and heterogeneity among individuals when studying the requirements for preventing major epi-
demics. This has stimulated interest in making statistical inferences about crucial parameters from
infectious disease data for such community settings.
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1. Introduction

This paper was prepared for the Royal Statistical Society Epidemics Workshop, held on the
Isle of Skye, Scotland, on March 31st—April 12th, 1997. Our purpose is to identify statistical
issues and problems that are current and worthwhile as projects for research collaboration.
The hope that collaboration would begin on one or two of these problems at the workshop
has been fulfilled, but there remain numerous pressing problems. An attempt is made to cast
a wide net and to be objective, but it is inevitable that the problems identified draw heavily on
the authors’ own experience. The paper includes a requisite review of material on epidemic
models and the estimation of their parameters.

Infectious disease data have two features that distinguish them from other data. They are
highly dependent and the infection process is only partially observable. A consequence of
these features is that the analysis of data is usually most effective when it is based on a model
that describes aspects of the infection process, i.e. on a transmission model. Therefore
modelling is an integral part of statistical work in this area. Although deterministic models
can be a guide towards parameter estimates, the need to quantify the precision of estimates
and the variation in data imply that stochastic models are the natural basis for the analysis of
infectious disease data.
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Statistical analysis, embracing modelling, parameter estimation, hypothesis testing and the
design of studies, plays an essential role in bridging the gap between the mathematical theory
and public health practice, and it is this aspect that motivates the present discussion. In other
words, we attempt to promote the use of statistical analyses that provide practical insight
and guidance for disease control, with emphasis on identifying issues that have not been
addressed adequately.

The paper is primarily concerned with the incidence of a disease that is transmitted by
person-to-person contact, Section 3.1 being an exception. Modelling and analysis of the devel-
opment of the disease within a host is not covered; see Isham and Medley (1989), part 2,
for a collection of recent papers on this topic. Analyses concerned with seroepidemiological
data, such as seroprevalence, are not covered either; see Brookmeyer et al. (1995) and Saidel
et al. (1996) for recent examples of such work.

Section 2 provides an overview of some standard epidemic models and methods for making
statistical inference about their parameters. Its aims are both to help to make the paper self-
contained and to act as a foundation for the discussion in the rest of the paper. Later sections
are directed at specific objectives. Methodology that can help to determine the way that the
disease is transmitted is reviewed in Section 3. In Section 4 the focus is on identifying sources
of heterogeneity in disease transmission, as well as on estimation problems when hetero-
geneity is present. The particular heterogeneity arising from having a structured community,
and assessing the consequences of ignoring such heterogeneity, is investigated in greater
detail in Section 5. A major motivation for the study of epidemic models is the insight that
they provide about the control of disease transmission. Section 6 looks at the estimation of
parameters that are needed to determine control specifications, such as the vaccination
coverage required to prevent epidemics and the estimation of vaccine efficacy. A relatively
new area of work is that concerned with the transmission of the human immunodeficiency
virus (HIV), the virus that leads to acquired immune deficiency syndrome (AIDS), which has
some unique features. In Section 7 we focus on some of this methodology to see whether
these methods can be utilized for the analysis of data on other infectious diseases. In the final
section we identify some statistical problems that are worthy of further attention.

2. Parameter estimation for standard epidemic models

2.1. Susceptible—infective—removed models in continuous time

For many transmissible diseases all individuals are initially susceptible. On infection they
become infectious for a period, after which they stop being infectious, recover and become
immune. They are then said to be removed. An individual who is infectious is called infective.
For convenience, models which assume that individuals pass, in turn, through the susceptible,
infective and removed states are called SIR models.

2.1.1.  The general epidemic

The so-called general epidemic model was first studied by McKendrick (1926). It is a Markovian,
continuous time model describing the spread of an SIR infectious disease in a population of
homogeneous individuals who mix uniformly.

Consider a closed community with # individuals. Let S(7), 1(¢) and R(¢) respectively denote
the number of susceptible, infectious and removed individuals at time z. The relationship
R(t) = n— S(¢t) — I(¢) holds for all ¢. Let N(¢) = S(0) — S(¢) be the number of individuals
infected in (0, ¢]. The initial conditions of an epidemic are specified by S(0) = s, /(0) = i, and
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R(0) = ry. In this section we assume these quantities to be known. In practice, the number of
individuals who are immune is often unknown and this is in itself a source of challenging
statistical problems; see Section 6.1.

The two processes N(¢) and R(¢) are increasing counting processes. Let H, denote the o-
algebra generated by the history {S(u), I(u); 0 < u < t}. Then the general epidemic is defined
by

Pr{dN() = 1, dR(t) = 0|'H,} = B S(¢) I(£) dt + o(d0),
Pr{dN(1) =0, dR(¢) = 1 |H,} = v I(t) dt + o(d?), (1)
Pr{dN(t) =0, dR() = 0|H,} =1 — BS(0) I()dt — v I() dt + o(d?),

where S(7) = S(¢)/n is the proportion susceptible at ¢ (this overline notation will also be
used for other proportions). After some finite (random) time 7 no infectious individuals are
present in the community and the epidemic is over. The number of individuals who are still
susceptible at time 7 specifies the final state of the epidemic.

The general epidemic has two parameters, namely 5 and ~. The parameter [ is the rate with
which an infectious individual has close contacts with other members of the community,
B3 8(1) is the rate of close contacts with susceptible individuals and so 8 S(¢) I(¢) is the aggre-
gated rate at which infectious individuals have close contacts with susceptible individuals. In
statistical studies it is natural to transform the other parameter to 7', the mean duration of
the infectious period; the model implicitly assumes that the infectious period is exponentially
distributed with parameter . The quantity § = 3/ is the average number of infections
caused by one infectious individual during the early stages of the epidemic. It is called the
basic reproduction number, often denoted R,, and plays an important role in SIR models,
e.g. Ball (1983). For a large class of epidemic models it is known that two qualitatively
different situations may occur with an epidemic in a large population. Either the epidemic
dies out quickly, with a small number of individuals infected, or the epidemic takes off and a
positive fraction (with some Gaussian noise) of the community become infected before the
epidemic dies out. The latter case, called a major outbreak, can only happenif R, =60 > 1,e.g.
Ball (1983).

The general epidemic model has several features that are open to criticism. The assumption
of homogeneous individuals is relaxed in Section 4, whereas that of uniform mixing is relaxed
in Section 5. The length of the infectious period may follow a different distribution. Indeed,
the force of infection exerted might vary during the infectious period, in which case the length
of the infectious period assumes a less important status in the analysis. In particular, some
diseases are known to have a latent period following infection, during which the individual is
not infectious. Some resulting statistical issues are discussed briefly in Section 3.2.

2.1.2. Maximum likelihood estimation under complete observation

Assume that a realization of the general epidemic is observed completely and continuously up
to the end of the epidemic. Using counting process theory (e.g. Andersen et al. (1993), p. 402),
we may then write the log-likelihood explicitly as

1(B,7) = J; [log{8 S(u) 1(u)} AN () — B S(u) 1(u) du + log{~ I(w)} dR(u) — v I(u) du].

It is easily verified that the maximum likelihood (ML) estimators are given by
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8= N / JO S(u) () due,
T @)
’y/*\‘ = J I(u) du/{R(T) — Iy}
0

Note that jOT I(1) du is the sum of all infectious periods, so 7/\*1 is simply the sample mean of
the infectious periods.

Rida (1991) showed that, on the part of the sample space where a major epidemic occurs,
the ML estimators are consistent and asymptotically independent normal variates as n, the
population size, tends to oo. The standard errors of the estimators are then given by

se() = B//N(r)

and

se(y1) = 771 /V{R(T) = roh.

Under complete observation several generalizations of the present model can be incorporated
without meeting major difficulties in estimation. For example it is possible to allow for a
latency period, an arbitrary distribution of the infectious period, that the infection rate
depends on time, 8 = 3(¢), perhaps due to seasonal changes, and different types of individual.

Often the epidemic is observed only partially. This makes ML estimation cumbersome, and
other approaches to statistical inference become attractive.

2.1.3. Martingale methods under incomplete observation
It might be that only the final state of the epidemic is observed, i.e. besides the initial state (s,
iy, I'y) the data consist of S(7), which determines R(7) = n — S(7) since I(7) = 0. Estimation
procedures for this type of data have been proposed by several researchers, e.g. Becker
(1989), section 7.4.1. Another plausible data set consists of the initial values and continuous
observation of the removal process. The final state of the epidemic process can then be
deduced, so this is a more comprehensive data set. The time of removal can for many diseases
be approximated by the time of diagnosis or show of symptoms, which is sometimes
available, whereas the time of infection is rarely known. Estimation for this type of data is
treated by Bailey (1975), section 6.82, and more recently by Becker and Hasofer (1997, 1998).
When the epidemic is observed only partially the likelihood cannot be written in a closed
form. Instead estimation can, for example, be based on approximations of certain recursive
formulae defining the likelihood as in Bailey (1975), p. 118, or rely on large population approx-
imations. Alternatively martingale techniques can be used with the method of moments to
give estimates with explicit expressions. Two zero-mean H,-martingales are defined by

t

My(0) = N(t) — J 5.5u) I(u) du, 3)

0

1

Ma(t) = R() — ry — JO 1) du. 4)

From martingale theory it follows that
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to 8 n n n 16}
Mit)=| =——dM ——M,(t) =— ——{R(?) —
0= | gm0 =La0 =2t =B R0 )
is a zero-mean martingale. By equating M(7) to its mean we obtain the estimate
R e R . (R() = 1o} = —log(1 = )/ (R@) = 7o), (5)
s s —1 TS+l )T T = T I0R T PIASRT) Tl

where p = 1 — S(7)/s, is the observed proportion who became infected. Note that 6 depends
only on the initial and final states of the epidemic. Applying the martingale central limit
theorem it can be shown (see Rida (1991)) that for a major epidemic in a large community the
estimator @ is approximately normally distributed with mean 6 and a standard deviation that
is estimated consistently by

X 1 1 1 N R
se(f) = 3 +(so —y + ...+ SO T 1P + P {R(7) ro}} /{R(T) o}

We can only estimate 6, or a function thereof, when only the final state is observed. This is
not surprising since we observe one random quantity S(7) and the distribution of this
quantity is independent of the unit of time, as is § = 3/~. However, if the removal process is
observed continuously we can do more. Becker and Hasofer (1997) applied martingale tech-
niques to obtain another estimating equation, which enables 5 and + to be estimated
separately. The process that they considered is M(f) = S(¢)(1 + H/n)R(’) which can be shown
to be a martingale by using equations (3) and (4). From this martingale it is possible to
construct an estimating equation depending only on the final state and the removal process
and to derive estimates and confidence regions for the two parameters § and ~.

We saw earlier that estimation is straightforward when the epidemic is fully observed.
Thus, if it were possible to reconstruct the complete epidemic process from the available data
we could estimate parameters in a simple way. One example of this idea is presented at the
end of Section 7.2.

2.2. Epidemic chain models

In this section we consider analyses based on SIR models in discrete time. For some diseases
the latent period is long in relation to the infectious period and neither period varies much
between individuals. Chicken-pox, measles and mumps are considered to satisfy these cri-
teria. In such cases it is sometimes possible to identify the generation in which an individual
was infected. By generation is meant the number of predecessors in the chain tracing back
to the introductory case(s). In applications it is only possible to distinguish the first few
generations. For this reason direct applications of chain models occur mainly in statistical
analyses of outbreaks in small groups, such as households. However, under some circum-
stances, e.g. under the Reed—Frost assumption described below, chain models are also a
natural tool for deriving the distribution for the size of an outbreak irrespective of whether
the separate generations can be distinguished.

2.2.1.  Chain—binomial models for independent household outbreaks

In a chain—binomial model the parameter ¢; is defined as the probability that a susceptible
individual escapes infection when exposed to i infectious individuals of a given generation. The
events that different susceptible individuals escape infection are assumed to be independent.
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Let I, denote the number of infective individuals in the kth generation and S, the number still
susceptible. Then the probability function of the next generation is given by

. s X S—X
Pr(fip = xISy =5, [ =i5q) = (x)p;-q,- , x=0,...s, (6)

where q = (¢, ¢, - - ., ) and p; = 1 — g,. Individuals who are not infected remain susceptible
the next generation, i.e. Sy, = S; — [;4, and individuals who are infectious become removed
the next generation.

An epidemic chain specifies the spread through the generations. For example 1 — 2 —
1 — 0 means that iy, =1, iy =2, i, =1 and i; = 0. The initial numbers of infective and
susceptible individuals, (i, s,), are assumed given. By sequential use of equation (6), the
probability of a specific chain is

1 k=l
Psin( @) = Pr(iy — iy — ... — ix]sg, ip; q) = % [1r" " (7)
it st o
In equation (7) i, = 0 and consequently s, = s,_;. Two specific parametric forms for q have
received much attention in the literature: the Reed—Frost form, ¢, = ¢', and the Greenwood
form, ¢; = ¢ (i > 0). In the Reed—Frost case an individual must escape infection from each
infected individual to remain susceptible, and this occurs independently. The Greenwood
assumption says that the probability of escaping infection is constant as long as someone is
infectious, an explanation being that the chance of infection depends only on whether or not
the household is ‘contaminated’.

Model (7) can be generalized in several ways. For example, the probability of escaping
infection may depend on the type of individual, the specific generation and/or the household
size. Another generalization is to assume that ¢ is random with some specified distribution,
independent and identically distributed for different individuals, resulting in a random effects
model. More details of such models are given in Becker (1989).

2.2.2. Epidemic chain data

If the epidemic chain is observed at each generation the statistical analysis is straightforward,
even with more general epidemic chain models. Assume that several different household
outbreaks are observed and that the outbreaks may be treated as independent. Let n(s,,
iy, - - -, i) denote the observed number of households with initial configuration (s, i)
and with epidemic chain i, — iy, —> ... — i, and let n = {n(sy, i, - . ., i;)}. Then the log-
likelihood is

Hgm)=c+ > n(so, dos - - - i) log{py;,(i; @)}, ®)
805005 - - o iy
where c¢ is independent of the parameter vector q.

The ML estimators {4;} are obtained by maximizing the likelihood with respect to q. Let ¢;
denote the number of times that an individual escaped infection when exposed to i infected
the previous generation, and let ¢; denote the corresponding number who did not escape
infection (note that these data are contained in the observed n). Then the ML estimators are
given by §; = e;/(e; + ¢;) when there are no restrictions on the parameters. The estimators
are consistent and asymptotically independent normal variates (as the number of house-
holds becomes large) with a standard deviation that is consistently estimated by se(q;) =

{‘}iﬁi/(ef + Ci)}1/2~
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ML inference for the single parameter g under the Greenwood assumption (¢; = ¢) is
similar to this, and straightforward. Under the Reed—Frost assumption (¢; = ¢') standard
ways of making ML inferences are cumbersome when data on larger households are present,
because the likelihood contains terms of the form p; = (1 — ¢')". The EM algorithm facilitates
such ML inferences. For application of the EM algorithm take the more detailed data set to
be that which for each generation not only records whether a susceptible individual is infected
but also records for each infected susceptible individual the number of infective individuals
that contacted it. The event of being infected, which has probability

1-¢=> <l.)l7jqi‘f,
=1 \J
is then replaced by i distinct events occurring with probabilities (;) pld7,j=1,..., i The
maximization step of the EM algorithm is then immediate, because the likelihood for the
detailed data has a form as for binomial data. The expectation step is also simple because its
conditional expectation is determined by the mean of a binomial variate; see Dempster et al.
(1977) and Becker (1997) for details.

2.2.3. Size of outbreak data

Often only the final number of infected individuals is observed, rather than the whole epi-
demic chain, i.e. for each household the data consist of r = X, i, besides i, and s,. Let m(r;
iy, o) denote the observed number of households with initial configuration (i, s,) which,
besides the introductory case(s), eventually had r infected individuals, and m = {m(r; iy, 5;) }.
For these data the log-likelihood is given by

l(q9 m) =c+ E m(r lOa SO) log{ 3010(’; q)}a
50,1051

where P, ; (r; q) = i, Py, (I; @) and the latter are defined in equation (7). Direct maxim-
ization of this likelihood is cumbersome, since P, ; (; q) is a sum of terms and so its logarithm
has complicated derivatives.

Again the EM algorithm is useful. For the more detailed data set we pretend that the
epidemic chains are observed. Begin with an initial estimate q'” of the parameter. The E-step
is to calculate the conditional expectation of the log-likelihood for the complete data N given

the observed data m, giving

3 m(r So» Ip)

50510,1" A()l()(} 0)) |

The M-step requires us to maximize this expression with respect to q to obtain a new estimate
q"". This is simple since when we substitute equation (7) into equation (9) the latter takes on a
form like that for binomial data. The E- and the M-steps are sequentially repeated, updating
the estimate each time, until the increase in the log-likelihood at the new estimate value is
negligible.

When observing the whole epidemic chain both i, and s, are automatically known, and not
just their sum i, + s, = &, the household size. When the final size is observed for affected
households the number of introductory cases may be unknown. One solution to this problem
is to assume that in each household, independently of others, i, is a realization of a random
variable conditioned to being strictly positive. Thus a conditional bin(s, 7) distribution
truncated by excluding the zero class is appropriate. If uninfected households are also

E{l(gN)M=m; ¥} = Z Pain (5 ) log{p,,;,(i; @)} )
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observed i, is modelled simply as coming from a bin(k, ) distribution. The same idea has
been proposed for the analysis of other epidemic models; see Longini and Koopman (1982)
and Addy et al. (1991). When applying the EM algorithm we now include observations
on the iys in the complete data set and maximize with respect to q and the additional
parameter .

The chain—binomial model relies on two fundamental assumptions: that of independence
between household outbreaks and that the disease evolves in generations. The assumption of
independence is of course questionable, but very convenient. Fortunately, for a model
explicitly allowing infections between households Ball et al. (1997) have shown that, given a
major outbreak, household outbreaks are approximately (i.e. asymptotically) independent, if
the number of households is large. If the randomness in the latent and infectious period is not
negligible and/or the infectious period is not short relative to the latent period, then the
chain—binomial model is not appropriate, at least in the case with separate g,-parameters.
Instead, we then need to resort to recursive formulae defining the distribution of the final size,
e.g. Addy et al. (1991). Besides allowing latent and infectious periods to be random, it may be
necessary to allow individuals to be of different type, e.g. according to age group and/or
gender; see Section 4.

3. How is the disease transmitted?

3.1. Is it person-to-person transmission?

So far we have assumed that the disease spreads /ocally through person-to-person contacts.
This is not always true. There may be a global source of infection, e.g. through a commonly
shared water source or transmission via airborne organisms. Statistical analysis of data from
such diseases differs in that there are no strong dependences arising from interaction between
infective and susceptible individuals, making the likelihood tractable to work with. When
analysing a disease with unknown means of spread it is therefore important to distinguish
between the two types of spread.

When the spreading mechanism is local, cases will typically cluster according to some local
community structure. The local structure which has received most attention in the literature
is the presence of households, the reason being that members of the same household have a
higher contact rate, but also because data containing household details are often available.
Several different testing procedures are available to detect clustering of infected cases within
households, usually based on final size data; see for example Britton (1997a) and references
therein. Many test statistics are of the form

H= fh) (JZ) — gU)N,,

where /4, denotes the size of household r, f(4,) and g(h,) are functions of the household size
and N, is the (random) number of cases in household r (so (’g) is the number of infected pairs
of individuals in household r). Local spread tends to cluster cases in certain households, thus
making the statistic H large and the test significant. The distribution of H is calculated under
the null hypothesis of global spread and conditional on the overall proportion of cases in the
population.

If the population consists of plants or animals, domestic or wild, some other local structure
(e.g. geographical) might be more relevant than houscholds. Let the local structure be
specified by {d; ;} where d, ; is large if individual j is ‘close’ to i (i # j). For an SIR model with
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arbitrary distribution of the infectious period the score statistic of the hypothesis that the
local structure is irrelevant for the disease is then given by

T= Z di./Ci(Cj - ﬁ),
ij

where C; indicates whether or not individual i was a case and p is the observed overall
proportion infected (Britton, 1997b). Again, the distribution of 7 is computed under the null
hypothesis of uniform global spread and conditioned on p.

Suppose now that the spread is known to be local or some test indicates that it is local and
we wish to find out more about the mechanism of spread. With chain—binomial models this
can be done by exploring the dependence of the ¢;, the probability of escaping infection when
exposed to i infected individuals of a given generation, on i and other factors. For example,
treating the spread within households, we might ask: does the risk of being infected increase
with the number of infectious individuals? “Yes’ would indicate person-to-person trans-
mission whereas ‘no’ suggests that the chance of infection only depends on whether or not the
household is ‘contaminated’. How to perform such a test is discussed in Becker (1989),
section 2.6.2, where the Greenwood assumption is tested against the Reed—Frost assumption.

A drawback with the tests discussed in this section is that they assume homogeneous
individuals. An important unsolved problem is to develop tests that allow for some hetero-
geneity between individuals, e.g. due to age and/or sex. Wrong conclusions might be drawn if
we treat heterogeneous individuals as if they were homogeneous. For example, if many
households contain two adults and two children, and children are more susceptible to the
disease, then a true local spread might not be detected because most cases will be children and
they are evenly spread among households.

3.2. The infectivity function

Consider a community of uniformly mixing individuals. A function B(u) giving a measure of
how infectious a given infective individual is u time units after becoming infected is called the
infectivity function, or infectiousness function. This function is of great public health interest,
but its estimation is hampered by not being able to observe which disease transmissions are
caused by a given infective individual. Mainly its estimation has been restricted to the case
where

{ﬂ, fX<u<g<X+Y,
B(u) = (10)

0, otherwise,

where X is the duration of the latent period and Y is the duration of the infectious period.

In the general epidemic model it is assumed that Pr(X = 0) = 1 and Y has an exponential
distribution, whereas in the multiparameter chain—binomial model it is assumed that both X
and Y are essentially constant with X large and Y small. The statistical analyses described in
Bailey (1975), chapter 15, and Becker (1989), chapter 4, assume various convenient paramet-
ric forms for the distributions of X and Y, and illustrate the analyses with applications to
data on household outbreaks.

It seems plausible that the true infectivity function is a continuous curve for each
individual, with some variation possible between individuals. However, the lack of adequate
data often makes this function unidentifiable. For example, the distribution of the final state
is known only to depend on the distribution of fooo B(u) du and the latter class of distri-
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butions is not larger than that with B as in model (10). However, knowledge about the
infectivity function is central when aiming to reduce disease transmission and practical advice
on methods for the estimation of its shape and a description of the requisite data would be
valuable.

A starting-point for the development of such methodology might be as follows. Suppose
that the development of an infectious organism by each infected individual follows a similar
time line, i.e. each infected individual has exactly the same infectivity function. Now consider
data on households which include knowledge of the times of infection of the primary case
and the next infection in the household. It seems feasible to estimate the common infectivity
function nonparametrically from such data.

A start has been made to such analyses in partner studies associated with HIV and AIDS,
where the time of infection could be ascertained because it was acquired by a blood
transfusion and information about the time of infection of the sexual partner is obtained
from a blood test, so his or her time of infection might be interval censored (Shiboski and
Jewell, 1992).

4. Heterogeneity between individuals

Sources of heterogeneity can, loosely, be classified into heterogeneity due to differences in the
characteristics of individuals and heterogeneity arising from community structure. In this
section we are concerned with the first type of heterogeneity, postponing heterogeneity due to
community structure to Section 5.

Individual heterogeneity may mean that individuals vary in their susceptibility to infection,
or in how infectious the individual is when infected or both. Different levels of susceptibility
are easier to estimate than different levels of infectivity; see Baker and Stevens (1995) and
Britton (1998). A simple explanation for this is that a high susceptibility in a subgroup is
reflected by a large proportion infected in that subgroup whereas high infectivity in a sub-
group leads to a large proportion of those infected being infected by this subgroup, but
details on who infects whom are rarely available. For this reason infectivity is often assumed
identical and heterogeneity is considered to arise only from varying susceptibility, e.g.
Rhodes et al. (1996). Since varying infectivity is equally important when aiming to control the
spread of a disease, estimation procedures for different levels of infectivity, and determining
what data are required for such an estimation, is an area requiring attention.

Factors that are responsible for heterogeneity between individuals can be either identifiable
or unidentifiable. Examples of identifiable factors are age, sex, vaccination status and pre-
vious history of disease, whereas examples of unidentifiable factors are genetic variation,
immunological variation, vaccination (if response to it is random) or any of the examples of
the identifiable factors where they are not known by the investigator.

4.1. Identifiable heterogeneity between individuals

The first natural question to pose is whether the spread of disease depends on certain specific
characteristics of individuals. A quick and simple way to test whether individuals are
heterogeneous in terms of susceptibility is to classify cases and non-cases according to their
characteristics and to analyse the corresponding contingency table (Becker, 1989). Addy et al.
(1991) tested various hypotheses concerning infection rates by using the ML ratio statistic,
based on a stochastic epidemic model for a heterogeneous population, when analysing the
outbreak of influenza A in Tecumseh, Michigan, among 567 households.
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If individuals are known to be heterogeneous, or if some test of homogeneity has been
rejected, the next step is estimation. If the population can be separated into a few homo-
geneous subpopulations we have what is called a multitype epidemic. The general epidemic of
Section 2, for example, is easily generalized to this situation. In the homogeneous population
an infectious individual has contact with any given susceptible individual at rate §/n. In a
multitype population this contact rate becomes «,;3;/n, where ¢ is the relative infectivity of
the infectious individual and 3; the relative susceptibility of the susceptible individual (this
model assumption is known as proportionate mixing, ¢.g. Hethcote and Van Ark (1987), the
most general case having arbitrary coefficients {3;}). Using techniques similar to those of
Section 2.1, Britton (1998) showed that the relative susceptibilities are consistently estimated
from final state data by

A 1 1 1

ﬂi=m+m+...+mw—log(l_%)a i=1,...k, (11)

where p; = 1 — S;(1)/S;(0) is the observed proportion of i-individuals who became infected.
For final state data the infectivities are unidentifiable, but if the epidemic is observed com-
pletely they can be estimated by using ML theory for counting processes. An interesting
feature is that such estimators have a very slow rate of convergence if the corresponding
susceptibility is identical with some other susceptibility (Britton, 1998). Models containing
more parameters may be analysed when information about the actual contacts is also avail-
able. For example, Rhodes et al. (1996) used counting process theory to derive procedures to
distinguish susceptibility from exposure to infection under this scenario.

The population cannot always be separated into a few homogeneous subgroups. For
example, if age is assumed to have an effect on either susceptibility or infectivity then it would be
appealing to treat age as a continuous covariate. So, instead of dividing the population into age
groups (resulting in a multitype epidemic), it might be better to treat susceptibility or infectivity
as a function with age as a dependent variable. Such a function could either be assumed to
have some parametric form or it could be estimated nonparametrically. Estimation pro-
cedures for continuous explanatory variables are an area desiring further work in the future.

Heterogeneity arising from age differences deserves special mention since age changes over
time. If studying an epidemic over a longer time period the age changes should therefore be
accounted for. In this situation births, deaths, immigration and emigration, and perhaps
waning immunity, should also be incorporated in the model. Some deterministic models with
these features have been considered, but statistical analyses with such features require
attention.

4.2.  Unidentifiable heterogeneity between individuals

Inference for unidentifiable heterogeneities is only possible if data contain longitudinal
information or if several epidemics are observed, e.g. many household outbreaks. A common
way to model unobservable heterogeneities is by means of random effects, i.e. to model
individual susceptibilities and/or infectivities as realizations of random variables, usually
defined to be mutually independent. For household epidemics such models have been con-
sidered for example by Becker (1989), section 3, and Baker and Stevens (1995).

Becker and Yip (1989) treated the situation where one epidemic is observed completely and
continuously by assuming variable susceptibility among individuals. It is shown that such
heterogeneity typically results in the same type of disease progress as if the transmission
parameter decreases over calendar time. The explanation appears to be that, over time,
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it is the individuals with high resistance to the disease who tend to avoid infection, thus
decreasing the rate at which new infections occur in the community.

Several parameter estimates have been derived from deterministic models containing
heterogeneity, identifiable as well as unobservable, e.g. Anderson and May (1991) and
Hethcote and Van Ark (1987). As mentioned previously, a drawback of obtaining estimators
from deterministic models is that it does not provide an associated measure of their uncer-
tainty.

There is always a risk that some sources of heterogeneity may be overlooked and an
important question is what effect this has on the statistical analysis, in terms of understanding
the dynamics of spread and when aiming to control the disease. Comparing the spread of
disease in heterogeneous and homogeneous populations has received much attention in the
probability literature, e.g. Ball (1985). In the statistical literature such comparisons have only
recently begun, and mainly when considering heterogeneities due to community structure,
e.g. Becker and Utev (1997). One way to assess the effects of different model assumptions
from a statistical perspective is to compare the immunity coverage that is needed to prevent
epidemics, as it would be estimated under the different model assumptions; see Section 5.

5. Epidemics in structured communities

5.1. Community structure and the prevention of epidemics

There has been considerable interest in comparing the outcomes of models for the trans-
mission of disease in communities of homogeneous uniformly mixing individuals with
outcomes for models which allow some heterogeneity. To make such comparisons meaning-
ful it is necessary to calibrate the two communities in some way. For example, comparisons
might be made subject to the initial average susceptibility of individuals being the same. This
gives meaningful mathematical comparisons, but it is difficult to gain a useful practical
insight from such a comparison. For practical insight it seems necessary to bring data into the
comparison. For example, given data on one or more epidemics in a community we might
then compare conclusions reached from these data under the assumption that the community
consists of homogeneous uniformly mixing individuals with conclusions reached from an
alternative analysis of the same data that allowed for some form of heterogeneity.

We now illustrate this point with respect to the following practical problem. Suppose that
we wish to immunize a fraction of the members of a large community against a certain
infectious disease with the aim of preventing future epidemics. The question is: how large
must the immunity coverage be to prevent epidemics?

5.1.1.  Community of towns

In a uniformly mixing community, consisting entirely of susceptible individuals, the critical
immunity coverage is v, = 1 — 1/6,. This is true because the reproduction number after
vaccinating a proportion v is reduced to (1 — v)f,, and when this number is less than or equal to
1 a major epidemic cannot occur (see Section 2.1). The basic reproduction number 6, is estim-
ated by expression (5) if data on just one large epidemic are available which give an estimate of
the critical immunity coverage under the assumption of a uniformly mixing community.

In contrast, suppose that the community is made up of k large localities, perhaps towns,
with uniform mixing in each of these and negligible interaction between localities. Then
locality j has a basic reproduction number 6, and critical immunity coverage v; = 1 — 1/6,
so the critical immunity coverage for the entire community is
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k
v =T
j=1

where 7; is the proportion of all individuals residing in locality j.

Becker and Utev (1997) showed that if we base estimation of the ¢, on the same data set,
where the large epidemic is comprised of a large epidemic in each of the localities, then the
estimate of v, is the same as the estimate of v, only if all localities have the same basic
reproduction number; otherwise 0, > 0,. In other words, the critical immunity coverage is
underestimated if this kind of heterogeneity is present and we ignore it.

This comparison gives a useful practical insight. We now give another example.

5.1.2. Community of households

Suppose that the community consists of a large number of households and that individuals
tend to mix more with members of their household than with other members of the com-
munity. The comparison is now complicated by the fact that the performance of a vaccination
strategy depends on how immunizations are distributed over the households. One strategy
is strategy H, which consists of independently selecting each household for complete immun-
ization with probability vy. Households that are not selected remain completely susceptible
under this strategy. The critical immunity coverage for this strategy will differ from that for
strategy I, which immunizes each individual independently with probability vy.

Again it is of interest to compare the estimate of the critical immunity coverage under the
assumption of a uniformly mixing community with that under the assumption of a household
structure, when the same data are used. For a disease that is highly infectious within house-
holds it is found (Becker and Utev, 1997) that the estimate of the critical immunity coverage
using strategy H is underestimated by assuming a uniformly mixing community. However,
this is not necessarily true for other vaccination strategies, since some strategies perform
better than strategy H. It is also of interest to know how these results depend on the distri-
bution of household sizes. An investigation of this has recently been begun (Utev and Becker,
1997), but many open problems remain.

5.2. Parameter estimation using data from a community of households
Early analyses of data on outbreaks in households were based on the assumption that, once
the household has been infected, its outbreak evolves essentially independently of the presence
of disease in the rest of the community. Epidemic chain models, as described in Section 2.2,
formed the basis for these analyses. Although it is probably true that the probability of
infection by a given infective household member is much larger than the probability of being
infected by a given infective individual from outside the household, there are so many more
infective individuals outside the household during a major epidemic that the probability of
being infected from outside the household cannot be neglected. Some methods of parameter
estimation that allow for disease transmission between households are now available.
Longini and Koopman (1982) proposed an analysis for data on a sample of households
whose members had their blood tested for susceptibility before the epidemic season and again
after the epidemic season. They adopted the Reed—Frost assumption for transmission between
members of the same household. Transmission from other individuals is accommodated by
introducing a global force of infection A(z), depending on time 7, and supposing that each
susceptible individual independently escapes infection from the global source, over the entire
epidemic season [0, T'], with probability
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qp = exp {— L A(?) dl}.

The quantity ¢, is treated as a parameter in their analysis. It actually depends on the size of
the epidemic and therefore is more accurately viewed as a random variable. Nevertheless,
treating gg as an unknown constant produces a relatively simple working model that enables
an estimation of the probability of disease transmission between household members in a
way that allows for the possibility of acquiring the disease from outside the household. ML
estimation is used, with computation relying on the use of a set of recursive equations that
specify the model probabilities.

Becker and Hopper (1983) were motivated by relatively complete data on an epidemic in a
closed community. They used martingales for the underlying counting processes to derive
explicit expressions for estimators of By /7, the potential for infection within households, and
Os/7, the potential for infection between households. Becker (1992) showed that the same
methods, with essentially the same estimates, apply in the data setting considered by Longini
and Koopman (1982), with the advantage of giving explicit expressions for estimates.

A more comprehensive method of analysis is described by Addy et al. (1991). They
extended a model presented by Ball (1986). The model allows the infectious period to have
any distribution, but computation becomes feasible only if its Laplace transform has an
explicit expression. Individuals may acquire infection from outside the household by a global
force of infection as in Longini and Koopman (1982). Discrete heterogeneity can also be
accommodated, but in practice they reported computational difficulties when data on
households with more than five members were included.

One statistical aspect that has been neglected is the design of studies associated with
infectious diseases. To a large extent epidemic data arise from observing a disease that has
run its natural course, but in some studies the statistical design of studies is relevant. An
example occurs in the Tecumseh data analysed by Addy ez al. (1991), where members of a
sample of households had their sera tested before and after the epidemic season. Design
problems associated with this type of study include the computation of the number of
households required in the sample to enable estimation with a specified precision and what
household sizes are best included in the sample. More specifically, are estimates more precise
if we use 100 households with two initial susceptible individuals or 50 households with four
initial susceptible individuals?

5.3. Geographic spread

The work by geographers on the spatial spread of infectious diseases is well illustrated in Cliff
and Haggett (1993). They used both continuous time models and epidemic chain models,
dividing the geography into a finite number of localities and then essentially treating indi-
viduals as different types, with type specifying their locality. It is then natural to allow
individuals to change type, because of migration.

Time series models have also been used. They capture the dependence in the data only
indirectly, because they do not propose to describe the transmission mechanism that gen-
erates the data.

Whereas there are deterministic models with a location included as a continuous variable
(Bailey (1975), chapter 9), there does not seem to be any statistical analysis with a continuous
location variable.

The collection of quality data on the transmission of disease is difficult under ideal
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conditions. The study of the spatial spread of diseases requires data over a large region,
adding enormously to the difficulty of gathering reliable and complete data, and thereby
stifling the study of spatial spread. Although the concept of the velocity of an epidemic wave
(Mollison, 1997; Metz and van den Bosch, 1995) is of great interest its formal estimation
seems to be out of reach because of a lack of appropriate data.

6. Parameters crucial to the design of control measures

Sometimes we can side-step the difficulties of estimating all the parameters of an epidemic
model by focusing on specific parameters of interest. We illustrate this with reference to
estimating the fraction of the community that needs to be vaccinated to prevent epidemics
and estimating the vaccine efficacy.

6.1. Estimating the critical immunity coverage

When the general epidemic model applies to a large population the critical immunity level is
vy = 1 —1/6,. Its estimation is manageable since the estimation of the basic reproduction
number 6, = §/v is manageable; see equation (5). We now consider the estimation of a
certain critical immunity coverage for a community of households.

Let the community consist of a large number of households and suppose that immun-
ization occurs by selecting households and vaccinating every member of each selected
household. The critical immunity level under this vaccination strategy is vy = 1 — 1/Ryy,
where Ry, is the basic reproduction number for infected households. The mean number of
households that an arbitrary infected household infects, if all other individuals were sus-
ceptible, is

Ruo = Ocovio

(Bartoszynski, 1972; Becker and Hall, 1996; Ball et al., 1997), where 6 is the mean number
of individuals whom an infective individual would infect in households other than his own if
everyone were susceptible and vy, is the mean eventual number of cases in the household of
an individual who is selected randomly from the community and infected, if every one of his
household members is initially susceptible.

A direct estimation of vy or Ry, does not seem feasible, and so we need to estimate 6, and
vio- The former of these parameters is concerned with disease transmission between house-
holds; the latter with disease transmission within households. A full specification of the
disease transmission model does not seem to be needed for the estimation of these param-
eters. More specifically, details of the distributions of latent and infectious periods are not
needed; nor is a detailed specification of the way that disease spreads within the household.
However, there is a serious challenge because the infection process is only partially observed.
Both 6, and vy, are means and so they could be estimated by appropriate sample means
if we could observe who infects whom for an epidemic in a community with all members
initially susceptible. There are two problems with this. First, we cannot observe who infects
whom. Second, the available data are usually from epidemics in a community in which a
significant proportion of members are immune, as a result of either previous exposure to the
disease or vaccination. Methods of estimation need to be devised that are based on obser-
vable parts of epidemics in a partially immune community.

An estimation of 6 is possible from data on which households become infected and which
avoid infection; see Becker (1995), section 2.2.2.

For the estimation of vy, it helps to note that vy, = X, g,v,, Where g, is the proportion of
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individuals who belong to households of size n and v, is the mean size of the outbreak in a
household where one of the # initial susceptible individuals is infected. Census data on house-
hold sizes determine the g,,. Several possibilities exist for the estimation of the v,. In the unlikely
event that we have data on a number of household outbreaks for each household size n, where
each household member was initially susceptible, we can estimate each v, by the corresponding
sample mean v,. In the case of partial immunity we might be willing to assume that the size of the
outbreak depends on the initial number of susceptible individuals, but not on the additional
number of immune members of the household. Then we can manage with the sample mean of
the size of household outbreak for each initial number of susceptible individuals. A problem is
that with partial immunity we are unlikely to have many outbreaks in households with a large
number of susceptible individuals, leading to imprecision in the estimate. When the total number
of observed household outbreaks is moderate there seems no option other than to formulate a
parametric model for the transmission of disease within households, which enables the use of
data on all observed outbreaks to estimate the small number of parameters.

This is one example of how focusing on a specific objective can make parameter estimation
feasible. We now give another such example.

6.2. Vaccine efficacy
Traditionally, vaccine efficacy has been defined as

attack rate among vaccinated individuals

VE=1- - —
attack rate among unvaccinated individuals

and this measure retains a central role in epidemiology circles. The attack rate is the pro-
portion of individuals of that cohort who are infected over a specified time period. It is not a
very satisfactory single measure of vaccine efficacy, because it depends on both the com-
munity from which the data come and on the time period over which the data are collected.
Motivated by Smith er al. (1984), Halloran et al. (1992) made a more careful study of the
interpretation and estimation of vaccine efficacy.

An interpretation of protective vaccine efficacy depends on the type of response that indi-
viduals have to the vaccine. It may be that, when a fully susceptible individual has a force of
infection A(¢) exerted on them at time ¢, then every vaccinated individual has a force of
infection w A(7) exerted on them, where 7w € [0, 1] is a measure of the protection that the
vaccine offers. However, it might be that a fraction 7 of the vaccinated individuals are fully
protected whereas the remainder have no protection at all. In each case 7 can be considered a
measure of protective vaccine efficacy and its estimation is of interest, but the interpretation is
clearly different in the two cases.

It is likely that the responses to the vaccine vary between individuals and it would be
interesting to devise studies that can test for heterogeneity in the response, perhaps by
looking for overdispersion in the number infected in each of a number of groups.

7. Methodology for human immunodeficiency virus and acquired immune
deficiency syndrome

There are very many references on statistical methodology for the study of the HIV epidemic.
We review briefly a couple of major contributions and reflect on how these methods relate to,
or may contribute to, the analysis of data on other infectious diseases.
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7.1.  Estimation of the incubation distribution

The time that it takes from infection with HIV until diagnosis with AIDS is often called the
incubation period. It is now known to have a median time of about 10 years, and to be highly
variable. Its probability distribution is of interest for advising patients and as a tool for
reconstructing the HIV incidence curve from observed AIDS incidence data; see Section 7.2.
The estimation of this distribution presents difficulties because the time of infection is usually
unknown.

There is one major group of infected subjects for whom the time of infection is known,
namely those infected by receiving a transfusion of infected blood on a single occasion. We
become aware of such subjects when they are diagnosed with AIDS, at which time their time
of infection can be retrospectively ascertained. An estimation of the incubation distribution
from such data requires care (Kalbfleisch and Lawless, 1989), since shorter periods are over-
represented in such retrospectively ascertained incubation periods, because infected subjects
with longer incubation periods have not developed AIDS by the time of the analysis.

The incubation distribution has also been estimated from survival times, without AIDS,
observed in large cohort studies. The exact time of infection is generally not known, but
regular blood tests for cohort members produce a time of last negative test to HIV antibodies
and a time of first positive response. In other words, the time of infection is interval censored.
Also, the time of AIDS-free survival is right censored. This has generated the development of
extensions to Turnbull’s (1976) self-consistency algorithm to cope with survival data that are
doubly censored and truncated (DeGruttola and Lagakos, 1989; Sun, 1995).

The incubation periods of common diseases are considered reasonably well established
(Benenson, 1990), but much of this knowledge is based on the accumulation of little bits of
information gathered over a long time period, rather than on data from carefully designed
studies. Therefore there is merit in studies and methods that formally estimate the distri-
bution of the incubation period for the common diseases. The methods developed for the
estimation of the incubation period of AIDS are relevant to other infectious diseases, but
their application is impractical for most of them because the incubation periods are usually
much shorter. These methods do, however, have potential for application to diseases, such as
hepatitis, with a long latent period.

7.2. The method of back-projection

Back-projection is a method for reconstructing the realized, but unobserved, HIV infection
curve from the AIDS data by using knowledge about the incubation distribution. Its purpose,
in the HIV and AIDS context, is to assess the extent of the HIV epidemic and to use the
reconstruction as a basis for predicting AIDS incidences. This purpose has less relevance for
most other infectious diseases, because epidemics of most diseases tend to be over before the
data are available in a comprehensive form.

However, there is considerable interest in reconstructing the infection process for other
diseases for the alternative purpose of taking advantage of the explicit expressions that are
available for ML estimates of parameters when the process is fully observed. If we can use the
available data to make a plausible reconstruction of the realized infection process, then we
can substitute the reconstructed process into these explicit expressions. The hope is that the
resulting estimates will perform well, and this warrants investigation because this is a way of
making a very difficult estimation problem feasible.

Suppose that the removal process is fully observed and we propose to reconstruct
unobserved parts of the infection process with the purpose of using the available data together
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with reconstructed parts of the process to take advantage of estimators such as expressions (2).
The fact that infection occurs by the transmission of disease from person to person is ignored
in the method of back-projection. Instead, just for the reconstruction of the unobserved parts
of the data, we assume that infections occur according to a non-homogeneous Poisson process
with intensity A, at time . When we allow the form of ), to be sufficiently flexible it can
reproduce the infection intensity of any transmission model. Let N, denote the number of
infections occurring over (0, ¢] in a closed community. Then

t
E(N) = J A.dx = A, say,

0
so that an estimate A, of A, for all # can be thought of as a reconstruction of the unobserved
process {N,}. Then {S,, 1,}, the unobserved part of the process, is reconstructed by S, = S, — A,
and I, = I, + A, — R,.

Irrespective of the underlying process of infection, when infectious periods are ‘assigned’ to

infected individuals independently, the removal process has intensity

!
= | A arso (12)
where D is the duration of the infectious period and F, is its distribution function. Equation
(12) assumes that there is no latent period. In discrete time, e.g. when dealing with daily data,
A, and p, represent the mean infection incidence and mean removal incidence respectively at
time r. Estimates of A;, A,, . . . are then taken to be reconstructions of the number of
individuals infected on days 1, 2,. . . respectively.

Equation (12) is the basis of the method of back-projection. Typically we assume that {R,}
is an observed Poisson process with intensity function y, and Fp(u) is assumed known from
past studies. Starting with these assumptions several approaches have been used to obtain an
estimate of \,. Isham (1989) assumed that y, has a parametric form, estimated the parameters
from the removal times and, using /,, deconvoluted equation (12) to obtain an estimate ,.
Day et al. (1989) and Taylor (1989) used a parametric form for A, and estimated its param-
eters from the removal data using equation (12) in the likelihood. It has become popular to
work in discrete time, leaving the A, as separate parameters to be estimated, in the spirit of
functional estimation. This is an ill-posed inverse problem (O’Sullivan, 1986) and smoothing
needs to be imposed to stabilize the estimate. Becker ef al. (1991) achieved this by adding a
smoothing step to the EM algorithm for obtaining the ML estimates of the \,, whereas
Bacchetti et al. (1993) used the penalized likelihood for obtaining a smooth estimate for the
curve defined by the A,.

One attempt at the use of reconstructed infection curves in the estimates (2) has been made
by Becker and Hasofer (1998), with promising results. Their approach is first to use kernel
smoothing on the observed removal process to obtain R}, a smoothed version of R,, and then,
for the general epidemic model, to use

1k

I*=
Ty de

as the reconstruction of /, with v assumed known.

The proposal to reconstruct the infection process and to use the ‘complete’ data set for
parameter estimation is in the spirit of data augmentation methods (Tanner, 1996) that have
proved useful for solving estimation problems that are difficult because of missing data,
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censoring and partial observation. This immediately suggests that other data augmentation
methods, such as Bayesian analyses using Markov chain Monte Carlo methods, have a role to
play in the analysis of infectious disease data. A start has been made by Gibson and Renshaw
(1998) and O’Neill and Roberts (1999) on ways to implement these methods for the analysis of
epidemic data. An attractive aspect of such analyses is that it makes it possible, in principle, to
allow for the heterogeneity that undoubtedly exists between individuals and households. In
particular, in the analysis of data on household outbreaks it has been found necessary to allow
for heterogeneity; see Bailey (1975), Becker (1989) and Baker and Stevens (1995). In analyses
by ML methods this has required simplifying assumptions. The Markov chain Monte Carlo
methods have the potential to provide analyses under realistic assumptions.

8. Important future directions

Several statistical problems have been mentioned that require attention. It seems useful to
express an opinion about the statistical work, in the various areas, that is most worthwhile in
terms of public health impact.

A literature search on vaccine trials and efficacy produces a vast number of papers
describing different studies. This is not surprising since vaccination is often the most effective
means of preventing the transmission of disease. Modellers and data analysts have much to
contribute to this work, although they have only recently started to take up the challenge as a
literature search on modelling work concerned with vaccine efficacy reveals. Real vaccines
have shortcomings. Modellers could help substantially by quantifying the way that random-
ness in the response to a vaccine affects the effect that vaccination has on preventing the
transmission of disease. Statisticians should tackle the associated estimation problems. More
specifically, it is important to estimate the parameters that specify the vaccination coverage
which is required to prevent epidemics, under various vaccination strategies when those
vaccinated vary randomly in their response to vaccination.

The bulk of data collected on epidemics consists of surveillance data. These data tend to be
of poor quality, usually suffering from severe underreporting and rates of reporting that vary
over time. For example, some practitioners are inclined to pay more attention to the task of
notifying the incidence of disease at times when many cases are occurring. The use of such
unreliable data is clearly of doubtful value. Rather than trying to encourage all sources to
report all cases, and obtaining data suffering from underreporting and variability in report-
ing, it may be more practical to obtain complete data from just a carefully chosen sample of
the sources. Statisticians can help by providing proper advice on what type and how much
data are required to make decisions on disease control policy that are objective and
supported by reliable data.

A very rewarding consequence of developing new statistical methodology is when it
motivates someone to conduct a study that specifically takes advantage of this methodology.
This seems a possibility for the important problem of estimating the infectivity function for
diseases. Hence the development of methods for such estimation and determining their data
requirements are research topics of high priority.

In modelling work aimed at assessing the consequences of intervention through vaccina-
tion it is often acknowledged that disease transmission occurs at different rates in different
age groups (Anderson and May (1991), chapter 9). However, the methods that have been
used to estimate age-specific transmission rates assume that no immunization programme is
in place and that the transmission process is in a steady state. For most diseases neither is true
today and we urgently need methods for estimating age-specific transmission rates from data
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on disease transmission in communities that contain some immunized individuals and
avoiding the steady state assumption.
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