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STATISTICAL STUDY

OF NAVIER-STOKES EQUATIONS, I

C. FOIA015F

ABSTRACT. This article is devoted to the study of the evolution of the statistical

distribution in the velocity functional phase space associated with the initial

value problem for the Navier-Stokes equations. This approach yields a rigor-
ous mathematical treatment of turbulence in the framework of which existence
and uniqueness theorems are proved for the statistical distribution.

The article has its origin and its core in the joint research done by
G. Prodi and the author during 1968-1970 on these problems. Actually it

constitutes the first complete exposition of this joint research.
The paper contains 9 paragraphs, among which the first one discusses

in some detail the meaning of the present research while the second lists the

main prerequisits concerning the stationary and nonstationary solutions of

the Navier-Stokes equations (other facts concerning such individual solutions
are scattered, where they are necessary, through the paper).

In § 3 we first establish the basic equation (see Eq. (3.13,)) for the

evolution of the statistical distribution; then we construct, by an adequate
Faedo-Galerkin method, a solution of the initial value problem for our basic
equation (see Th. 1 in Sec. 3.2). Various improvements of this construction
are given in Sec. 3.3 (Th. 2), Sec. 4.1 (Prop. 1), Sec. 4.4 (Th. 2), Sec. 5.3

(Th. 4) and Sec. 5.4 (Th. 5). In Sec. 3.4, we prove that the usual individual
(weak) solution of the Navier-Stokes equations are precisely those solutions
of our basic Eq. (3.13~j) which are Dirac measure valued. The next § 4 is

devoted to the study of the energy relations for statistical distributions (see
for instance Cor. 2 in Sec. 4.1) and some compactness consequences of the
energy inequality (Th. 1 in Sec. 4.2). The § 5 constitutes one of the core of

*) Ind. dell’A.: Institut de Math6matique, Acad6mie de la Rep. Soc. de

Roumanie, Calea Grivitei, 2’1 - Bucarest 12 - Romania.

This is the first part of one article whose second part will appear in the next
issue of this Journal.
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our research. It contains the uniqueness theorems for the evolution of the

statistical distribution. These theorems are of two kinds (in a complete analogy
with the usual nonstatistic behaviour of the solutions of Navier-Stokes equa-
tions), namely: For plane flows if, for the initial statistical distribution, flows
with large kinetical energy have enough small probability to occur, then its

evolution is uniquely determined in the future (Th. 1 in Sec. 5.I.b) and Th.
3 in Sec. 5.2); for three dimensional flows, this uniqueness holds only for
the near future provided that moreover large enough energy vorticities have
probability 0 with respect to the initial statistical distribution (Th. 2 in Sec.
5.1). Let us also mention Th. 6 in Sec. 5.4.b) which essentially shows that the
evolution of the statistical distribution is uniquely determined under some
mild conditions.

In § 6 we study the stationary (i.e. time independent) statistical distribu-
tions showing that such distributions automatically occur in the study of the
time averages of individual solutions (see Th. 1 in Sec. 6~.1.b) and Th. 2 in
Sec. 6.2.c) as well as Prop. 7 in Sec. ~6.3:6)). For plane fluids, the stationary
statistical distributions are precisely the probabilities on the functional phase
space, invariant to the functional flow which corresponds in this space to the
initial value problem for the Navier-Stokes equations (see Sec. 6.2). Therefore
in the next § 7 we study in more detail such invariant probabilities. Our main
results concern the position in the functional phase space of the supports of
the invariant probabilities (see Prop. 2 and Th. 2 in Sec. 7.2.6)) and an upper
estimation of the functional dimension of these supports (see Th. 3 in Sec. 7.3).
One should observe that these results are steps towards a rigorous mathemat-
ical proof that no fully developed turbulence exists for plane flows. Finally
we show that statistically, plane flows behave as a random point in an m-di-
mensional space (see Prop. 3 in Sec. 7.4.b) and Prop. 4 in Sec. 7.4.c)) where
the dimension m behaves similarly to the Reynolds number. In § 8 we give
a consistent mathematical foundation for the Reynolds equations based on
our basic Eq. (3.131) (see Sec. 8.1). Moreover for the time independent Rey-
nolds equations we show that there exists a unique mean velocity majorizing
the amount of energy transfered from the mean velocity to the turbulent
fluctuations (see Sec. 2.a) and especially Th. 2). Finally in § 9, we establish
Hopf’s functional equation for turbulence as a consequence of our basic Eq.
(3.13,) (see Th. 1 in Sec. 9.1) and thus solve the initial value problem for
Hopf’s equation (see Th. 2 in Sec. 9.2.a) and Th. 3 in Sec. 9.2.b)).

§ 1. Introduction, comments and motivation.

1. In recent years much progress was made in some non linear

problems of the theory of partial differential equations, as illustrated
by Lions [ 1 ] . However many old problems in mathematical physics
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still have an incomplete rigorous solution in contemporary mathematics.
A striking example of this kind is given by the Navier-Stokes equations

(Recall that u denotes the Eulerian fluid velocity, f the external body
force, p the pressure and v the viscosity while the density =1, u and f
are Rn-valued functions in (t, x) belonging to an enough regular cylinder
[ 0, T ] X n of here fl c Rnand n is the so called dimension of

the fluid or that of the spatial variable x in ( 1.1 ).) Indeed, concerning
the initial value problem

for (1.1), the main question faced by Leray [2], [3] almost 40 years

ago (namely the existence of a unique solution u for t in an interval
of time independent of the initial data uo) is, in case the spatial dimen-
sion n is ? 3, still without definite answer in spite of the researches
of many mathematicians.

On the other hand the experimental study of turbulence leads
rather to a statistical approach than to a deterministic one. Among
the first attempts of connecting turbulence with the Navier-Stokes equa-
tions was made by Reynolds [1] in ~the following way: Consider that
the velocity u is the sum of the velocity u of the mean flow and of the
fluctuation Su of the velocity due to the turbulence. Then taking for-

mally the mean values in (1.1) one obtains the Reynolds equations

where the additional term in the right member of the first equation ( 1.3)
represents the average of the forces corresponding to the turbulent
stresses due to the turbulent fluctuations of the velocity. Though these
equations are not causal and rather mathematically inconsistent, they
have been constantly used in the description of turbulent phenomena;
hence much work was done by mathematicians in order to build a
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framework in which (1.3) shall have a consistent meaning (see for in-
stance the survey by Kampé de Feriet [ 1 ] ). Another more recent ap-
proach to turbulence was proposed by Hopf [3], consisting essentially
in a statistical mechanics, based on the Navier-Stokes equations instead
of the Hamiltonian canonical system, in which the basic equation con-
cerns the evolution of the characteristic function of the statistical distri-
bution of velocities. However, since no existence theorems have been

proved, this new statistical mechanics was developed more as a for-

malism in theoretical physics than as a coherent mathematical theory.
Finally let us mention that in 1960, G. Prodi proposed a measu-

re theoretical approach to the study of the Navier-Stokes equations
( 1.1 )~( 1.2), with the purpose of establishing the uniqueness of the
solution for all initial datae uo in a set of total measure with

respect to certain measures suitably connected with the Navier-Stokes
equations (see Prodi [3], [4]). Though this program is not yet achieved,
the remark that the measures involved in these researches give a reson-
able coherent mathematical model for stationary turbulence was at the
basis of the present paper. We shall try now to give a brief account
of the contents and purposes of this article together with their possible
significance in the theory of turbulence.

2. Let us begin by remarking that the phase space for ( 1.1 )-( 1.2)
(i.e. the space of the initial data) is a real Hilbert space N of infinite
dimension ), while the initial value problem ( 1.1 )-( 1.2) becomes the
initial value problem for an equation of evolution in N of the follow-
ing type

where u is a N-valued function on [0, T], u’ is its derivative in t, g
is a given N-valued function while A is a positive selfadjoint operator
and B is a bilinear mapping of the domain ~A of A into N. The equa-
tion ( 1.4) corresponding to ( 1.1 )-( 1.2) always has a solution (in a certain

1) For the meaning of the objects involved in this section, which are not

completely defined, see §§ 2-3.
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weak sense) satisfying

where N1 stands for the domain of the square root of A. If in the

equations (1.1) the space dimension is = 2, then this solution u is

uniquely determined by its initial data uo and if S(t) is the map uo H u~(t),
then { S(t) possesses nice smoothness properties; in particular

is a smooth function in t for any (Borel) probability ti on N and for
a suitably large class of real functionals C’(’) on N. Now statistical
mechanics postulates (with a very persuasive heuristic argument based
on the identification of probabilities to frequencies) that if ~, denotes
the probability on phase space N giving the statistical distribution of
the initial data, then the statistical distribution at the moment t &#x3E; 0
must be given by the probability lit defined by

Therefore (1.6) has to be equal to

Using this identification, we establish that, for rather a large class of
real test functionals 1&#x3E;(., .) defined on [0, T ] X N, and vanishing for
t near T, the following equation holds
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where cp’u stands for the Frechet derivative of 0 with respect to u.

Equation (1.8) (or rather some equivalent form of it which is valid for
a larger class of functionals 4» makes sense even if the functional flow
{ S(t) } is missing. Therefore, (1.8) can be considered as the equation
of evolution for the statistical distribution I1t which for t= 0 coincides
with ’(.1. This equation deserves to be studied for its own sake, inde-

pendently of the dimension n of the underlying domain In in (1.1)-(1.2).
Our first main result will be (see Sect. 3.3) that if n = 2, 3 or 4,

and, if the initial probability verifies

I denotes the N-norm of u), then the equation (1.8) always has a

solution } satisfying also the properties

Moreover one can choose the solution to verify an energy inequality
(see § 4) which is stronger than that obtained by a formal integration
with respect to v of Leray’s energy inequality for individual solutions.
It is this strengthened version of the energy inequality which is useful
in the study of the solutions of (1.8). For instance it implies that if
the support of p is bounded in N then the support of ti, is uniformly
(in t) bounded in N; moreover it plays an essential role in the proof of
the fact that the solutions of ~( 1.8) (for a given (1) form a convex
compact set in a convenient locally convex vector space; this suggests
that perhaps a well chosen strictly convex functional of } may select
a unique natural solution. We shall illustrate this idea later on the

Reynolds equations.
The study of (1.8) presents, as one should expect, similar aspects

to that of (1.4) (i.e. ( 1.1 )-( 1.2)), especially in what concerns the pecu-

1) It should be noted that I (the norm in N) is proportional to the kinetic
energy corresponding to the velocity u; therefore (1.9) means that the initial mean
kinetic energy is finite.



225

liarity arrising in the passage from plane to spatial flows (i.e. from space
dimension rz = 2 to n = 3 ) .

Let us give a sample of this peculiarity. In case n = 2, at least if

the support of the initial probability is bounded in ~V, the only solu-
tion of (1.8) turns out to be that given by (1.7) (see § 5). Therefore
if we start with initial data uo , the statistical solution ¡1t with initial

value the Dirac measure S.. concentrated in uo will be the Dirac measure
concentrated in S(t)uo . In the more interesting case n=3, any

individual solution u(t) with initial value uo yields a statistical solution
8.(t) with initial value 6, (see Sec. 3.4). Therefore if the uniqueness
of the initial value problem for individual solution fails in the case

n=3, the same will be true for the uniqueness of the initial value pro-
blem for statistical solutions, and even more, there would exist non-
Dirac-measure-valued statistical solutions corresponding to initial Dirac
measures. We dont’t know if, conversely, this kind of behaviour of the
statistical solution implies the non-uniqueness of the individual solutions.

Let us discuss more extensively the peculiarity of the three dimen-
sional case, relating it to the theory of turbulence. For us, unlike Leray
tJ2], [ 3 ] , a turbulent non-stationary solution of the Navier-Stokes equa-
tions means a solution of (1.8) even if the initial date uo is determined,
I.e, if u=6* . This point of view agrees with that of Hopf [3] and
Batchelor [1]. Now turbulence may be produced at least in two ways.
The first one, depending on a high instability of the individual solutions,
can occur even with the uniqueness of the problem (1.1)-(1.2) (whose
proof in dimension n = 3 is missing, perhaps, of the weakness of the
presently available mathematical methods). This is certainly the case for
the plane flows, as pointed out before; it is moreover consistent with
the fact that in this case

where cl , C2 are constants and
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Indeed, (1.10) permits a very great increase of the dispersion of tit in
a very small time even if the dispersion of pL is very small, once large
initial mean energy f I u 11 dflu) is admitted. This kind of turbulence

N

is obviously possible in the three dimensional case too. However, in

the latter case we have in mind a second way by which turbulence may
occur and which would be without analogue in the present day physical
theories. More precisely, it is possible as pointed out before, that for
the solution } of (1.8) with initial data p,= °"0 the measures tit shall
no more be of Dirac type for all This would be an intrinsic tur-
bulence due, not to the impossibility of our precise determination of
the initial data but to the absence of our smooth description of motion,
on which the Navier-Stokes equations are based. In this description
turbulence may be also the reflection of molecular phenomena. Unhap-
pily we have been unable as yet to prove that this kind of intrinsic
turbulence exists.

In any case our definition of a turbulent solution for Navier-Stokes

equations permits a simple understanding of the Reynolds equations.
Indeed if u(t) is the mean velocity defined by (1.11) then an easy

computation gives

which obviously is the functional form for the Reynolds equations (1.3),
exactly as (1.4) is for ( 1.1 )-( 1.2). In this way we can consider that

solving our equation (1.8) one obtains explicit solutions for the Reynolds
equations. The compactness properties of the solutions t;~,t } for a given
p, yield easily (see § 8) a unique mean velocity function u(.) on [0, to]
(for any D) such that

shall be a minimum. In this way in the Reynolds equations the mean
velocity is uniquely determined (even if the turbulence } is not) by
a certain supplementary extremum principle.
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Our approach yields also solutions for the Hopf’s equation for
turbulence (see Hopf [3]). Indeed if f[tl is a solution of (1.8) then
it is easy to establish (see § 9) that the functional

where (t, V)E [0, T) X N and ( - , - ) denotes the scalar product in N,
is a weak solution of Hopf’s equation. Thus our existence theorem, for
(1.8), gives an existence theorem for the Hopf equation, provided the
equation

determines a 1.1 satisfying ( 1.9).

3. Special attention is paid in the paper to the stationary tur-

bulence, that is to the stationary {i.e. time-independent) solutions of

( 1.8) ~). In dimension n = 3, the results concerning stationary solutions
of (1.8) essentially coincide with those in Prodi [4]; we have not suc-
ceeded in going beyond them. In dimension n = 2, however we prove
that the stationary solutions are exactly the invariant measures, i.e.

measures p satisfying

and that they are carried by rather thin sets in N (see §§ 6-7). Moreover
we shall prove that the motion given in N } is from a proba-
bilistic point of view isomorphic to that of a random particle in R’,
where the number k behaves in the same manner as the Reynolds
number. A further justification of our way of regarding Reynolds equa-
tions is that if u~(t) = S(t)u is any solution of ( 1.4) and u* is any cluster

point of the time averages

1) Of course in this case g will be taken independent of t.
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then for a suitable invariant measure we have

and obviously

which is the functional form of the time independent Reynolds equa-
tions. In this particular case there is a unique mean velocity u* minimiz-
ing I Al /2U * I.

4. Some of the results of this paper were already announced by
Foia§ [1] but this is the first time that they are published together
with their complete proofs. Of course many questions remained open
including unfortunately some of the most important ones such as that
of the existence of intrinsic turbulence.

Finishing this introduction we wish to mention another such que-
stion : Is there any physically meaningfully principle enabling us in case
n = 3 to select a unique solution of (1.8)? Perhaps before answering
this question one has to understand what happens with the uniqueness
theorem for even in the case n = 2 once no boundedness condition
is imposed on the support of ~,.

« Acknovvledgements. Most results of this paper were obtained

during the stays (January-March 1968; August 1970) in Italy (supported
by the Italian C.N.R., i.e. Centro Nazionale delle Ricerche) of the author,
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As already stated, §§ 3-5 are the result of the joint research of
G. Prodi with the author. The lattere expresses his deep gratitude to
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CNR and NSF) the author also thanks professors D. Gilbarg and J. L.
Lions for their kind interest in the subject ».

§2. Preliminaries on individual solutions.

1. We begin by recalling the basic notions and definitions as

well as the basic results on individual solutions of Navier-Stokes equa-
tions.

Let nc:R" be a bounded domain and let Lp denote the space of
measurable vector-valued functions u2 , ..., defined on
n such that

Let HI (i&#x3E; 1) be the space of those ueL2 which satisfy D"u =
, -_ -- 1 1. 1 - __ ~ I - 4 J - - - - - -- . 6 ..... -- - --

~ ~c ~ = oc~ -I- ... +an and the derivatives are taken in the sense of the

theory of distributions). The norm in Hl will be the usual one:

Moreover we shall use the following notations:

and
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Let 11 be the space of those vector-valued functions u2

..., un) defined on n such that ( j =1, 2, ..., n) (i.e. u; is a

C°°-function with compact support in and that

We shall denote by N, resp. Nl, the closure of 11 in L~, resp. ~h;
moreover for I&#x3E; I we shall put Let D denote Friedrichs’

selfadjoint extension (in N~ of the operator - A ) 111 where A denotes
the Laplace operator; note that D is the only selfadjoint operator &#x3E;_ 0
in N such that its domain £9D is contained in and satisfies D 111 =
= -.A 111. It is plain that actually

Moreover since .n is bounded, D-1 is compact in N. Consequently there
exists an orthonormal } of N such that where

Xn&#x3E;0. By a suitable choice of the indices we can suppose that

Obviously X1 can be also defined by

We shall denote by Pm the orthogonal projection of N onto the sub-
space spanned by w, , ~wx , ..., Wm (for put These projec-
tions Pm(m=O, 1, 2, ...) will play an essential role in the sequel.

For l ? 1 let us denote by N-l the conjugate space (Nl)~‘ where
the duality extends that given by (u, v) (with ueL2). This means
that L2 is identified with a subspa-ce of in such a way that the
value of regarded in N-’, in an element is (u, v). For

and ueN-l 1 we shall keep the notation (u, v) for the value of u
in the point v. With this notations we can write

where De is a linear continuous operator from Nl into N-1 extending D.
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2. We shall also consider the trilinear functional

defined whenever the integrals make sense; in particular, this is the
case if u, and in which case we have also

In the sequel we shall always suppose that the dimension n  4. In

virtue of the following particular case of Sobolev’s imbedding theorem

(where the imbedding is continuous) we deduce from (1) the inequality

i.e. b is continuous on N~. For n = 2 or 3 we shall also use the follow-

ing obvious inequality

where

In case n = 2, the inequality (Ladyzenskaya [ 1 ] ; see Lions [ 1 ] ,
Ch. I, § 6)

1) Here cl denotes a constant not depending on u, v, w; in the sequel c2 ,

c3 , ... will denote similar constants.
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gives readily, by (2.1.),

for all u, v, weNt. Finally let us remark that

since this relation is immediate if u, v, In virtue of (2.3) there
exists e continuous bilinear map B of Nl X N’ into N-1 such that

With these notations, let us now recall the definition of a (weak)
stationary solution of the Navier-Stokes equations with right term f ELx
independent of t. By definition, such a solution is an element 

satisfying

here P denotes the orthogonal projection of Ll onto N. Obviously any
such solution satisfies the following energy equation

A stationary solution always exists (Leray [ 1 ] , Ladyzenskaya [2]; see

also Lions [I], Ch. I, § 7). If [[ u II is sufficiently small (for instance
this is the case if v~l~,~ 1~2~ f I is small enough), then the &#x3E;solution u ifs

unique. In the case n = 2 and if the boundary 3n of f2 is of class G’2
then for m large enough, Pfn is on the set S of all possible stationary
solutions (with a fixed f ) a homeomorphic map from S into thus
S is a compact of N of finite dimension (see Foia§-Prodi [ 1 ] ).

3. To recall the fact concerning non-stationary solutions of the
Navier-Stokes equations let us introduce the following notations. For
a given Banach space B, we shall denote by Lp(a, b; B) 
the usual Lebesgue space LP of the (classes of) B-valued functions de-
fined on (a, b), endowed with the usual norm. That is, f E Lp(a, b; B)
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means that f is strongly measurable and that

is finite. b; B) will denote the space of those functions g defined
on (a, b) such that g I (ai, bt ; B) for all intervals bi] c
c (a, b). If B = R, we shall write simply b) and Lfoc(a, b).

Concerning the Navier-Stokes equations, we shall suppose moreover
that the right term /(~ ’)=(/i(~ ), ..., ,~~~( t, ~ ) ) bel ongs to T ; L2 ) .
By definition, a (weak non-stationary) solution o f Navier Stokes equa
tions (in (0, with initial value uoeN (see ( 1.1 )-( 1.2)) is a

function

for every Tie(0, T), satisfying the equation

for all f unctions v( ~ ) verifying the following conditions:

(i) T); NI), i.e. it is continuous from [0, T) to IVI,

(ii) v(.) is differentiable (in N) and its derivative v’( ~ ) belongs
to L’(0, T; N),

(iii) v(.) has compact support in [0, T).

Obviously, the integrals in (2.8) make sense. Note also that it is suf-

ficient to verify (2.8) for functions v(.) of the particular form 9(.)v
with and ?(’) a real continuously differentiable function with
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compact support in [0, T). (Indeed if v(.) satisfies (i)-(iii), then v(.),
resp. v’(.), can be approached in C([0, T); NI), resp. ~(0, T; N), by
the functions

which for £&#x3E;0 small enough belong to Co( [0, T); Nl), i.e. are N’-valued
continuously differentiable functions with compact support in [0, T).
Such functions can be approached in T); Nl) by sums of func-
tions of the form c~( ~ )v indicated above.)

One has to point out the relation between (2.8) and (1.4). Put

vDe=Ae and vD = A. Then it is not hard to prove (in virtue of the

preceding remark) that u( ~ ) is a solution in the sense of the above given
definition if and only if u(.) verifies (2.7) and as N-1-valued function
is an absolutely continuous function whose derivatives u’( ~ ) verifies
a.e. (i.e. almost everywhere with respect to the Lebesgue measure) on
(0, T) the differential equation

and the initial condition

The relations (2.9~(2.10) are to be considered in N-’. Obviously in case
f(t) does not depend on t, a stationary solutions is precisely a solution
u(t) which does not depend on t.

The basic result due to Leray [2], [3], Hopf [ 2 ] (see also Lions
~[ 1 ] , Ch. 1, § 6) is that for any initial data there exists a solution
of the Navier-Stokes equations (i.e. satisfying (2.7) and (2.8) for any
v( ) with properties (i)-(iii), or equivalenty satisfying (2.7) and (2.9)-
1’2.10)). Moreover this solution can be chosen in such way that the

following energy inequality holds
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In case n = 2, any solution can be considered as belonging to

C([0, T); N) and satisfying the energy equation

(Prodi [2]). Moreover this solution is uniquely determined (Lions- Prodi
[ 1 ] ; see Lions [ 1 ], Ch. I, § 6.2).

4. In the sequel we shall always suppose that the boundary aSZ
of of class C2. This assumption implies, in virtue of a deep result
concerning the linearized Navier-Stokes equations (see Cattabriga [ 1 ] 1),
Vorovich-Yudovich [ 1 ] ), that the domain ~D of D coincides with N-
and thus

In particular this inequality allows us to connect grad u 1, (which occurs
in (2.3’)) with for suitable a&#x3E;0. Indeed, the map Dj (j= 1, 2, ..., n)
being continuous

for n = 3, 4 by Sobolev’s inequality (2.2), we can deduce, using the

1) The particular case which interests us is the following: Let 8SZ be of class
Cl, I- 2 and let (where N~ = N). Then there exists 1 such
that D v = u.
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Interpolation Theory (see Lions-Peetre [ 1 ] ), that Dj will map continu-

ously the domain of the power 10 + I - 0 of D into Lq wherep 2

That gives

for any u belonging to the domain of and any

Let us note two particular significant cases of (2.15), namely

where is arbitrary and

We can supplement (2.15’)-(2.15") in case n = 2 with

(see Foia§-Prodi [ 1 ], p. 11). Using (2.15"’) together with (2.3’) one
obtains for any solution u( ) in dimension n = 2 the following estimate

- . I .....

for all T), whenever T; L2). In case T= o this obvi-

ously gives
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(where c7 is a constant depending on f L2&#x3E; but independent
of u~ - )). For (2.16)-(2-16’) and other consequences of (2.15"’) consult
Foia§-Prodi [1]. In case n = 3, the inequality (2.15’), leads to the exis-
tence of a unique solution u(.) with initial value defined on an

interval [0, t(uo)) of (2.9)-(2.10), where the end t(uo) satisfies an ine-

quality

c’7 being a constant depending only on n, v and I f ~ ~ r. °° co, T ; L~&#x3E; , where
its supposed in L°°(0, T; L2) (see Prodi [4], ’[6]).

5. We shall finish this paragraph by pointing out that the initial
value problem for the Navier-Stokes equations can be considered as a
particular case of the following: Let A be positive selfadjoint operator
in a real Hilbert space N, let N’~ «(1.=0, 1, 2) denote the domain of A«/2
normed with (an equivalent norm to) the natural norm of TA’/2 (i.e.
u - and let N-lx be the dual space of Na the duality extending
that of N° to No. Let moreover B( ~ , ~ ) a bilinear map of Nl X N’ into

which extends by continuity from N X Nl and N1 to N-2

and which verifies

(whenever the left term makes sense). Let moreover T; N).
Then for any UoeN there exists a function

which, if considered with values in N-2, is strongly absolutely conti-

nuous and such that

and
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Here Ae is the extension of A as continuous operator from Nl to 
The case n = 2, enters in this abstract framework with the additional

property (see (2.3")).

for all u, v, For the study of this abstract evolution equation
we refer to Foias [2]. In particular let us mention that if (2.20) is

valid then there exists a family of mappings { S(t) }otT of N into N
such that the unique solution of (2.19)-(2.19’) is given by S( ~ )uo , and

for all uo , voEN; moreover S(t)u is continuous in (t, u)e [0, T] X N
In case f(t) does not depend on t we have obviously S(ti)S(t2)=S(ti + t2)
for all tl , 

In the sequel any solution of (2.19) will be called an individual
solution of (2.19). Part of the results which we obtained on the statis-
tical solutions of Navier-Stokes equations will be valid also for the
abstract equation (2.19). Therefore the next paragraph will be devoted
entirely to the study of statistical solutions for an abstract equation
(2.19) with the properties which were given above and which obviously
are fulfilled by the Navier-Stokes equations, as plainly follows from the
facts presented in the other preceding sections of this paragraph.

§ 3. Statistical solutions and their existence.

1. Definition of a statistical solution. a) By a (Borel) measure IJ.
on a real Hilbert space N we shall understand a countably additive
function defined on all Borel sets e N. Let us recall that the a-algebra.
of all Borel sets in N is the smallest containing the open (or the closed)
subsets of N. Let S be a continuous map from N into N. Define

Plainly v is also a (Borel) measure on N. If D is any real continuous
functional on N and if is v-integrable then obviously 0 will be
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v-integrable and

Let us now suppose that we are given the equation (1.19) with
all the properties listed in the last section of § 2, together with the

supplementary property (2.20). This will allow us to consider the family
I Suppose now that we are given also a probability (Borel)
measure 11 on N (i.e. and ,(N) =1 ) and that this probability p repre-
sentes the statistical distributions of the initial data of (1.19). Which
will be the probability [tt representing the statistical distribution of the
individual solutions of (1.19) at the time t if at the initial time t = 0

it was i-1? The natural definition is in this case

The usual heuristic justification of (3.2) given in any text book of sta-
ti~stical mechanics is the following: Let us consider N initial possible
data with N sufficiently large, so that we might suppose that is

« approximatively » equal to the quotient where denotes
the number of those initial data which belong to w. Denote by 
the number of those data which in their evolution will belong to w at
the time t. Obviously

so that again supposing that is approximatively equal to 
we « obtain » (3.2).

The unpleasant feature of the definition (3.2) is that it is connected

with the equation (1.19), by the intermediate of ( S(t)) } which can not
be defined in case no supplementary condition on B (as for instance is

(1.20)) occurs. Therefore we shall establish an equation which is satis-

fied by } defined as in (3.2) whenever { S( t) I exists but which shall
make sense even if this does not happen.

b) To this purpose let us remark that the energy inequality (2.12)
for the indivi¡dual solutions u( ~ ) leads to
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where for simplicity we have taken T oo and T; N- ’). Now
in the particular case when u(t)=S(t)u the functions

and

are obviously Borel functions on [0, T] X N. Therefore (3.3) gives
that

the left term being a Borel function in t, and

In this way if

condition which will be always imposed tu ti from now on, then (3.4),
(3.4’) together with (3.1-l’) and (3.2), yield
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Let us now consider a real functional u) defined for (t, u) E
e[0, T] such that

and for a certain m=1, 2, ... (For the definition of Pm see Sec. 2.1).
Moreover let us suppose that 1&#x3E;(., .) is Frechet differentiable from

[0, T] X N into 1R with continuous differential 1) and that

C14, C15 being constants depending on 0.
Let moreover u( ~ ) be a solution of (2.19). Let us recall that u~ ~ ),

as function with values in N-2, is absolutely continuous (hence the
derivative u’(t) exists in N-2 , a.e. on (0, T)) and verifies (2.19); more-
over let us note that since wi, w2, ..., and

Pm can be extended, by continuity, into a continuous mapping (Pm)e
of N-2 znto lV (even N2) . Therefore in virtue of (3.7), u(t)) is

1) Let us recall that a real function Ø(.) defined in a neighbourhood of a
point uo of a Banach space B is called Frechet differentiable in uo, if there
exists an element such that

where (v*, v) denotes the duality between B* and B, i.e. (v*, v) = v*(v) for ve B,
v* E 8* and

If this happens for all u - Uo belonging to a subspace B’ c B we shall call (D
Fréchet B-dif ferentiable in the direction of B’. In both cases w* 0 is called the
Frechet differential of 4J in u,~ and is denoted by 

Finally let us note that if B = X X Y then J3*=A’*X Y* and

where the components constitute the partial Frechet differentials.
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absolutely continuous in t and a.e. on (0, ~’) we have

where the brackets represent the duality between N-2 and N~ since,
in virtue of ~( 3 .7 ), we have

Using (3.9-10), as well as (2.19), (3.3) and (3.8), we obtain readily

whence (by (3.3))

Using (3.5) we deduce

By Funini theorem, the function
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is Lebesgue-integrable on (0, T). Let r(’) be any function of class C’
with compact support in (0, T). Then, by (3.11),

so that

is absolutely continuous and a.e. on (0, T)

On the other hand in virtue of (2.19) and (3.9) we have

so that (3.12) can be written under the form

~ 

1) We shall use the symbol f~ to indicate with respect to which variable is

the differentiation taken.
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and using (3. 1’) we can rewrite this relation under the form

The noteworthy fact is that in t3.13) the system of maps } does no
more occur but instead the equation (3.13) is written only in terms of
the measures ’Ilt and of the given abstract differential equation (2.19),
that is, in the case in which we are concerned, only in terms of the
Navier-Stokes equations and the functional spaces and operators asso-

ciated with them. To avoid technical difficulties we subject ~( ~ , ~ ) to
the supplementary condition

and integrate (3.13) with respect to T), thus obtaining the equation
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The equation (3.131) will be the basic equation which our study
concerns. Therefore we begin with a simple discussion of properties
connected with it.

c) Let us define some new functional spaces, namely: ~0153, for 
will be the space of all real continuous functionals 4&#x3E;( . ) on N such that

61,1 will .be the space of all real continuous functional 4D( - ) on Nl such
that

Moreover we shall put

A family of positive Borel measures (1t on N, will be called
basic 1) if it satisfies the following conditions

1) The reason of this terminology is such family of measures will be at the
base of our research in the sequel.

2) Since is continuous on N we deduce

that 11 . 112 is a Borel function from N to [0, oo], hence the integral
makes sense for all t e [0, T] being perhaps for some t. i
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for any non,negative functional 0 defined on N and weakly continuous
(i.e. continuous from Nwe.k’tO 1R, i.e. from N endowed with the weak
topology, to 1R). Plainly the family of measures defined by (3.2), once
(3.5) is valid, is basic (see (3.6-6’)).

A first remark to be made is that

(3.17) 1 (with continuous embedding)

and

The first inclusion is obvious, while for the second we have only
to note that, by (3.17),

(with continuous embedding), the first space being obviously dense

in £2.
In virtue of /the property (3.17’), any functional whose

restriction to 21,1 1 is £2-continuous, uniquely extends to a functional
e £*2. The set of these functionals of ~,1 i will be denoted by ~1:2’
Obviously the extension map is a surjection of £;, 1; 2 onto the set of
those functionals e £*2 whose restriction to £1,1 n £2 is £1,1-continuous.
For Fe£,1;2 we can consider either i or for cl&#x3E;e£2.

LEMMA 1. Let be a basic family o f measures on N. Then

makes sense for any 1&#x3E;(., .) belonging to £2 or ~1,1, and is a linear

satis f ying 2)
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PROOF. Let 4»(.) be any non-negative functional defined on N,
continuous from lV to 1R. The function defined by

is weakly continuous on N, thus

are measurable functions in t on (0, T ). Letting m -+ 00, we deduce
that their limit

is measurable on (0, T). Now in virtue of (3.16’) we have

so that the preceding argument applies also to any nonnegative func-
tional &#x26; defined on N and continuos from Nl to 1R. Plainly (3.16),
(3.16’) will now imply that (3.19) is defined a.e. on (0, T) and is

measurable, for any or (D e,01, i. Thus it remains only to prove
(3.182) and (3.18~, ~).

For (3.182) we have only to note that
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while for (3.18~,1) that
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This finishes the proof of Lemma 1.

d) Let now ’(; denote the space of all real functions ~( ~ , ~ ) defined
on [0, T] &#x3E;C Nl and satisying the following conditions:

(i) ~(t, u) is continuous in (t, u)e [0, T] X N’ and verifies the
second condition (3.8),

(ii) O(t, u) is Fréchet N-differentiable in the direction of N’,
i.e. there exists ,u) EN such that

is continuous from
bonuded.

Let denote by the space of those funtions which were def.ined
after formulae (3.6-6’). A fuction of will be called a test functional.
In virtue of (3.10). we have ’CocZ;. We shall call the functions of 
elementary test functionals.

LEMMA 2. Let be a basic family of measures on N, let
T; Nw) and let tI&#x3E;(., . )e’b. Then

makes sense. Moreover if

PROOF. That is obvious; also it is obvious that -+ (D

pointwise. Moreover let us remark that for all m =1, 2, ...



250

where c24 is a constant depending on Moreover (Oml’u is continuous
from ( t, u)e [0, T ] X N to Nl so that if

the function ~’~,~( ~ , ~ ) is continuous from [0, T ] X Nl and

where c24 - c26 are constants (depending on o but independent of t, u
and m). Using (3.16’) we can easily verify that makes sense for
all m =1, 2, .... Let us define also

for all . Since

we deduce by property (iii) of a test function that

Moreover (3.21’) shows that

so that applying Lebesgue’s dominated convergence theorem we obtain
that (3.20) makes sense and (3.20) is valid. Indeed for a value te(0, T)
such that
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by Lebesgue’s theorem we obtain that u) is vrintegrable and

Denote by ~m(t) and ~(t) the integrals occurring in (3.23). We
have a.e. on (0, T)

Moreover on (0, t) we have also

where the right term is an integrable function (in t). Applying once
again Lebesgue’s theorem we infer that ~r( ~ ) is integrable on (0, T)
and that

This conclusion coincides with our claim.

e) We are now in the state to give our basic definition. A statistical
solution of the Navier-Stokes equations (or more generally of an abstract
evolution equation of the type described in Sec. 2.5) is, by definition, a
basic family of probabilities on N satisfying (3.13/) for all
test functions ~( - , - ) which satisfy (3.8’). The probability li is called
the initial data and is subjected to condition (3.5), while the function
f( .) is called the right member 1) and is subjected to the condition

~( ~ ) E L1(~~ T; N-1).

REMARKS. 1. In virtue of Lemma 2 above in order that } be
a statistical solution it is sufficient (and obviously necessary) that

1) Recall that it represents the external body force.
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(3.131) shall be satisfied only by all elementary test functions 4D( -
sati,sfying (3.8’).

2. The above definition was chosen in such a way that in case

the space dimension n of the fluid is = 2, i.e. in case the system
exists (in this case f(. )eL2(O, T; N-1)), the family 

defined by (3.2), yields a statistical solution of the Navier-Stokes equa-
tions. The important feature of our definition is that it does not involve
the existence of the system thus it is valid also for the

case where the space dimension of the fluid n is = 3 or 4 (remember
that our abstract scheme concerns the Navier- Stokes equations only
in dimension n = 2, 3 or 4).

3. For 4&#x3E;e’bo, it is plain that To( - as defined by (3.22) be-
longs to ~1,1. The condition that the basic family } be a statistical
solution of the Navier-Stokes equations can be obviously given the fol-
lowing equivalent form: Let Fe£1,1;2 be the functional attached to

by formula (3.18). Then is a statistical of the Navier-
Stokes equations if and only if

for all elementary test functionals l&#x3E;e’bo satisfying (3.8’).
This equivalent definition will be very used in the sequel.

4. The study of the test functionals is of great interest in the

theory of statistical solutions of the Navier-Stokes equations. A very
significant progress can be achieved by enlarging the class of test func-
tionals in the basic equation (3.131). Suppose for instance that for a
statistical solution the equation (3.131) would remain valid whenever

it makes sense. But this is then the case with u) = i r(t) u 2 where2

T)) is arbitrary. But such choices in (3.13,) lead readily
to the energy equation
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a.e. on (0, T). This would already be a very interesting fact concerning
statistical solutions. The main reason for which in our approach this
substitution for 4S( . , . ) is not allowed is that the Frechet derivative of

~ j I U 12 is u which is not bounded in the Nl-norm.

5. In connection to the preceding remark let us point out some
restritive properties of our test functionals:

Any test functional ~( ~ , ~ ) can be extended to [0, T] 
such that

for all te [0, T ] , u, v E lV-1, where

Moreover this extension is continuous from [0, T] &#x3E;C Nweak to 1R.

PROOF. We have for any s, t E [ 0, T] and u, veNt (using the
notations of (3.8) and (3.24’)

Taking s = t in (3.24"), we readily deduce that ~( t, ~ ) can be
extended by continuity to whole N-1 (since Nl is dense in N-’) and
that this extension will satisfy (3.24). For this extension, (3.24") remains
valid whenever s, T], 1 and ueN. Since the imbedding
Nc:N-’ is compact, this extended version of (3.24") shows that
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6. One can easily deduce from the preceding remark that for

any test functional 4&#x3E;(., .) we have (for its extension on [0, T] X N

with some suitable constants depending only on 4S( . , . ). An-
other remark is that if a test functional 4j . , . ) satisfies (D(t, u)=o
for a certain te [0, T] and for all u with I I u I I enough large, then
actually ~ -)=0 (i.e. u)=O for all u). Indeed if there

exists (h =1, 2, ...) such that in N 

Therefore cIJ(t, utt) = 0 for enough large h. By Remark 5., 0(t, Uh) --~

-~ ~~(t, u), thus (D(t, for all which is dense in N, so
that this implies 0(t, u)=O for all ueN.

2. Existence of statistical solutions. a) The aim of this section is

to prove the following basic result.

THEOREM 1. For any initial satisfying (3.5) and any right
term f( . )eLl(0, T; N-1),there exists a statistical o f
the Navier-Stokes equations (i.e. satisfying (3.131) for all test functional
1&#x3E;( ., .) subjected to the condition (3.8’)).

The proof of this theorem will be rather big and parts of it will
be used in the sequel to improve the above existence theorem.

The main part of the proof lies on the following

LEMMA 3. Let be a sequence of basic families of
(Borel) measures on N such that

Let moreover F(m), m =1, 2, ... be the functional E ~ i, ~ ; 2 defined as in
Lemma 1 for { ~,t = (1-1~m) }. Let moreover 1 be a m*-cluster point
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of 1). Then FE ~ l,1 ~ 2 , F is also a w*-cluster point of { F~’~~ }~-1
in £*2 and there exists a basic family of (Borel) measures
on N such that (3.18) be valid for all ~( ~ , ~ ) E L1(o, T; ~) 2).

PROOF. Let cm and C’3, be the suprema occurring in (3.26) and
(3.26’). By (3.182) we have

Therefore for l we have

and this shows that We shall denote the extension, by con-
tinuity, to whole ~2 of our functional, also by F. On account of (3.27)
and the fact that £1,1 n ~2 is dense in ~~ , and since F is a w*-cluster
point in i of it is easy to verify that F is also a w*-cluster
point of { F~’~~ }m~i in ~*~ too.

Since F can be considered in £*2=(L1(0, T; 62))* it is natural to

use the integral representation of the continuous linear functionals on
Ll-.spaces. However since 62 is not separable, one has to refer to a

more involved representation theorem (particular form a general theorem
of A. and C. Ionescu Tulcea [1]; see also Dinculeanu [ 1 ] , §§ 10-13):

Let 3S be a Banach space (which is not supposed neither separable
nor reflexive), let T; --ie))* and let X be a strong lifting of

T) 3). Then there exists a family such that

1) Recall that a w*-cluster point of a sequence where B is a

Banach space, is a functional b*E B*, which is in the i.v*-closure of the set 
for all k = 1, 2, ... This means that for any finite set of elements bl , b , I ..., I bl
of B, E &#x3E; 0 and any k, there exists an m &#x3E;_ k such that I 1£ for
all j = 1, 2, ..., 1. The existence of a w*-cluster point F is a consequence of the
fact that in virtue of (3.1~-181, 1) and (3.26-26’), the sequence {F~}~ is bound-
ed in t’1,1 I (and also in ~2 ); indeed in B * any ball { b*; (with
roo) is w*-compact (see DUNFORD-SCHWARTZ [1], Ch. V, 4.2).

2) It is plain that any C(., ’)~L~(0, T; 60) belongs to ~2 so that the
assertion makes sense since F is defined on LI(O, T; @o).

3) Let us recall that a lifting X of L-(0, T) is an algebraic application of

L~(0, T) into the algebra of all measurable bounded functions (defined everywhere
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In our case J§= @2 and the functional F is just the iv*-cluster point
with which we are concerned.
- , ,, - - - ,

Our first aim is now to find for almost all T ) a Borel

measure on N such that

(where r denotes the function defined by

on (0, T)) such that XV 6 cp for all T) and

The lifting ~, is called strong if for any tpec([0, T]) we have = cp(t) for
all where in the left side, cp is considered in T). There exists

always a strong lifting of L~(t~, T) (see DINCULEANU [1], § 20, Sec. 2) and in
the sequel such a lifting 7~ will be fixed. The property of ~, which will be

constantly used and which follows easily from (*) is that if for an everywhere
defined bounded measurable function we have everywhere and if

~(t) ~= 0 a.e. on (0, T), then everywhere.
1) Recall that eo c @2’ thus makes sense 
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. By the arbitrariness

any te(0, T) we have whenever

Denote, for p =1, 2, ...,

- 

_

properties of the lifting we deduce

Then for any (i.e. real continuous bounded functional
on N) we have

But, using (3.26’),

so that (3.32) gives

for all (t, 7’) X N) belongs to ~~ we can deduce, from (3.32’),
the relation

valid for all p =1, 2, ... and all
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Let now a~= { ~~r ~~° 1 be a sequence of functionals such
that

Taking into account that bp is compact in N and applying the Dini
theorem we have that

Since we hav

for all T), therefore by Fatou’s lemma can infer from (3.32")
that

since this is valid for all p =1, 2, ..., it results

In this conslusion the exceptional set depends on the sequence cr.

We shall use this partial result to show that actually the exceptional
set can be chosen independent of a. To this purpose let us introduce
the function defined on N by

Obviously For p, q fixed, let
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for all u EN and r =1, 2, ... Then

long to (5o . Moreover since

for all uEN (where I
is increasing and

for all Thus the sequence 1 satisfies (3.34). In virtue of

(3.35), there exists an exceptional set T) of Lebesgue mea- &#x3E;

sure 0 such that

that is

But

so that

for all T) and r=1, 2, ..., whence (by (3.37))

for all T )BEp, q .
Let

where the limit exists (being perhaps also = 00) because Ft is &#x3E;_ 0 and
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thus, by (3.36), Pr.1I2)}~1 1 is non-decreasing in r, for all T ).
Note now that

for all m, r =1, 2, ...; since for a fixed r, 1 ~ II Pr.IFe£2 and since
F is a w*-cluster point in ~*2 too, we infer that

Applying the Beppo-Levi theorem we deduce that

the Lebesgue measure of E will be 0.
We shall show now that

and for all sequences
Indeed, if

and if for every u
ball such that

is a sufficiently small



261

then by the compactness of bp , there exists a finite number 0’0 , 0"o ,
..., of such balls such that

Obviously 0 is an open neighbourhood of bp so that for q sufficiently
large we have

Therefore it is clear that we have

and for all r, p =1, 2, ... It results

for all p, r =1, 2, ... and all T). For fixed p, by Dini’s theorem,
for so that for T )BEp, q we have

For T)BE, the relation (3.35") will be valid for all p=1, 2, ...,

and 0(t) is  00, so that (3.35’) results from (3.35") making p - oo .
We proved in this manner that for any T)BE, the functional

satisfies Daniell’s condition; therefore by the well known theory
of the Daniell integral (see for instance Loomis [ 1 ], Ch. III, §§ 12-13)
it results that there exists a Borel positive measure (1t on N such that
(3.29) is true; recall that this assertion is valid for all T)BE.

Let for k =1, 2, ...,

Therefore for
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Letting and applying the theorem of Beppo Levi we obtain

The same argument can be applied to
It leads to the conclusion

and all r =1, 2, ... Making we deduce finally

Let us define for teE. Then (3.38) and (3.38’) (because of

(3.37"’)) show that the family satisfies the conditions

(3.16-16’). Moreover if W is any weakly continuous functional &#x3E; 0

on N, then Ok( - ) defined by

for all k -1, 2, ..., belongs to So, thus, since

the function in the first term is measurable in t. Letting k - oo, 
tends increasing to D(u) (for all ueN). Thus applying the Beppo Levi
theorem we deduce that
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is a measurable function in t. Thus { ~,t oiT is a basic family of mea-
sures on N. Finally if C(’, ’)eZ~(0, t; CD) then a.e. on

(0, T), thus, by (3.29), a.e. on (0, T)

Therefore (3.18) is valid for this 4&#x3E;(., .) in virtue of the representa-
tion (3.28).

This finishes the proof of Lemma 3.

REMARK. If all measures m=l, 2, ...) are proba-
bilities (i.e. if for all m and t) then in the basic family

yielded by Lemma 3, for almost all te(O, T), the measures

tit are probabilities.

Indeed if all measures p(m) are probabilities, then for any r(.)e
e Ll(O, T) we have

so that using the fact that r0 leC2 we can infer

But r 0 1 belongs even to L’(0, T; ~), thus
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for all r( ~ ) ~ L’(0, T) so that

b) Lemma 3 can be completed with a less immediate remark,
given by the following useful

LEMMA 4. If in Lemma 3, the . 12 is uniformly integrable
with respect to almost all p(m) (0  t  T, m =1, 2, ...) 1) then (3.18) is
valid also for every (D(., .) belonging to C2 -

PROOF. The hypothesis of uniform integrability yields us a func-
tion of re (1, 00) such that

for all r2: 1, almost all T), and m =1, 2, ...

for a certain r? 1, and let p( ~ ) E Ll(0, T).
Then

1 ) This means that for any there exists an such that
for all m and almost all t.
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so that (since we deduce that for the w*-cluster point F
in £*2 we have

and this is valid for all T). This conclusion together with
(3.28) leads to

a.e. on (0, T). Using (3.28") and the properties of the lifting X we
deduce that actually (3.40’) is valid for all T).

Let now 0 be an arbitrary functional let T)BE (see
the proof of Lemma 3) and let for r &#x3E;_ 2

Then satisfies (3.40) and
Therefore in virtue of (3.40’) we have

But since (preSo and te(0, T)BE, we have also

where the integral converges to This can be shown in

the same way as (3.40"), using (3.38) instead of the uniform integra-
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bility. Thus (3.29) is valid for all and consequently (3.28), with
x( - ) of the form x(t)=,tP(t, ), ~( - , - ) E ~~ = Ll(o, T ; y2) coincides
with (3.18).

This finishes the proof of Lemma 4.
The above result does not assure that in the conditions of Lemmas

3 and 4, the relation (3.18) is valid also for all 1&#x3E;(., .) of £1, I . There
is however an important functional of for which this is still true,

namely the functional 41,D(., -) defined by (3.22), in case ~( - , - ) is an
elementary test functional. As we already remarked, the functional ’l’ø

belongs in this case to so that if F is the functional yielded by
Lemma 3, then makes sense. With this remark we can pass to

the following supplement to Lemmas 3-4:

COROLLARY. In the conditions of Lemmas 3 and 4, the formula
(3.18) (for the functional F yielded by Lemma 3) is valid for all func-
tionals ~~( - , - ) with 

PROOF. Firstly note that implies that is continuous

in t from (0, T) to e2, because for all T) and ueN:

and

with a suitable constant c3z and integer m( _ ~ , 2, ...) depending only
on (D. Sencondly note that cI»’u(t, u) is (see (3.10)) continuous and boun-
ded from (0, T) X N to N2. This implies that the functions in t

belong to

where



267

so that by Lemma 4, to prove our corollary it is sufficient to show that

Let denote by ’1’(., .) the functional occurring in (3.42) and let for

a k =1, 2, ... denote by ~k( ~ , ~ ) the functional defined by

Since (B(u, v), w) is continuous in (u, v, w) eN’ X N X NZ (see Sec. 2.5)
and Pk is continuous from N into Nl, it is clear that Tk(t, - ) is contin-

uous in t from (0, T) into 62; therefore

for all k=12, ... Using also the fact that (B(u, v), w) is continuous
in ( u, v, X N’ X N2 we deduce that

where c33 is a constant depending on C. In virtue of (3.42’k) it results

where in virtue of Lebesgue’s dominated convergence theorem the first
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integral tends to 0 for k- oo . In this manner to infer (3.42) from
(3.42k), it remains to prove the convergence

To this purpose, note that

whence

for all m, k =1, 2, ... Since

we can infer that

and this for all k =1, 2, ... Taking into account ( 3 .42’k) we obtain

thus by Lemma 4 we have
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which as we already remarked converges to 0 for k- oo . Thus (3.43’)
yields (3.43) and this finishes the proof.

REMARK. It is easy to verif that the conclusions of Lemmas
3-4 and of the corollary above, remain valid if the sequence f F(-) I is

replaced by a directed set { F~°~~ }.

c) We can now give the

PROOF OF THE EXISTENCE THEOREM (see Sec. 3.2.a)). We begin
by considering the differential system

This is one very wellknown Faedo-Galerkin approximation of (2.19),
which plays a basic role in the proof of the existence of individual
solutions for (2.19). For sake of completeness we shall give here the
properties of (3.44m) which we shall need in the sequel. A simple com-
putation leads successively to

with a constant c34 dependent only on v. In virtue of these relations,
( 3 .44m) has for any uo.cP,,,N a solution defined on whole [0, T ] with
initial data Obviously this solution is uniquely determined by ugm
and satisfies (3.44:n-44:) for all T]. Let denote the
value in t of this solution. It is easy to verify that is continuous
in (t, uom) as function from [0, T] X PmN. Put

for every Borel set weN . We obtain a Borel probability with support
in PmN. By (3.1’) we have for any that
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Put, for any m= 1, 2, ... and T),

for every Borel set w c lV. It is plain that one obtains a (Borel) proba-
bility on N with the supp ~,im~ in PmN and such that (for all te [0, T])

for every actually, using (3.1’), (3.44;’:) and supp ~,lm~ c PmN
one can verify that (3.45’) is valid also for De@2 or Since

the right term in (3.45’) is continuous in t if for instance we

can easily infer that satisfies condition (3.16"). Moreover
integrating (3.44~) with respect to p and taking into account (3.45’),
we obtain (using also Fubini’s theorem)

T

where are constants independent of T) and m =1, 2, ...

In this manner we verified that (tl(’) 10tT is a basic family of pro-
babilities on N, and moreover that the sequence satis-

fies the conditions in Lemma 3. We shall show now that actually it

satisfies also the supplementary condition of Lemma 4.
Indeed, since by (3.44~)

where C37 is a constant depending only on f(.) and v, for r ? (c3~)i~x
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in the same way as that one which led us from the Navier-Stokes

equations (2.19), in the case of dimension n = 2, to (3.131). For 4Y

fixed, if m is enough large we have in virtue of the condi-
tion (3.10) (namely this m has to be &#x3E;_ than that one, depending on 1&#x3E;,
which occurs in (3.10)). Thus we can write (3.13I, rn) in the following
manner

where is the integer depending on Oeimo which occurs in (3.10)
(or equivalently in (3.7)). Since ~(0, Pmu) -+ ~(0, u) for m -+ 00 , by
(3.5) and (3.25) we can infer that

for m -~ ~ ; consequently implies

which on its turn implies (3.13n). This finished the proof of the exist,
ence theorem.

Before finishing this section let us mention that to obtain statistical
solutions with supplementary properties, we shall in the sequel return
to this proof and analyse it more completely.

3. Elementary properties of statistical solutions. a) We start by
noting that if where r(.) E Coo( [0, T ) ) is

a real functional defined on Ni, then 1&#x3E;(., .) E ’(;, for all r( ~ ), if and

only if p( .) satisfies the following conditions.

(tic) ( C C38 "E’ C39 I for any and some suitable con-
stants c38-c3g (depending on 4&#x3E;( . ));

(iic) 1&#x3E;(.) is Frechet N-differentiable in the direction of Nl;
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we have

so that for all m=1, 2, ...

which in virtue of (3.5), converges to 0 for r ~ 00 , and is independent
of m. So we can apply Lemmas 3 and 4 as well as their Corollary to
the present situation. We obtain a basic family of probabilities

1) and a functional Fe£~,1;2 connected as in Lemmas 3-4

and the Corollary, and such that F is a w*-cluster point in C*2 of the
sequence corresponding to our sequence of basic fa-
milies (m=1, 2, ...). In virtue of the Remark 3° in Sec.
3.1.e) and the Corollary to Lemma 4 we have only to show that the
functional F satisfies

for all satisfying (3 .8’). For a fixed m = 1, 2, ... and for any
1&#x3E;( . )e’bo satisfying (3.8’), we can pass from (3.44m) to

1) For those t for which lit is not a probability replace tL, by p. This alterates
the family of a set of Lebesgue measure 0 in (0, T) so all the other properties
are conserved.
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~’( ~ ) is continuous from I
ed 1).

I is bound.

Such a functional 4~ . ) will be called a time-independent test func-
tional and the family of these functional will be denoted by 

If moreover

and a fixed suitable integer m =1, 2, ..., «.) will again be called

elementary. The corresponding class will be denoted by ’bird.
Plaintly the Remarks 5, and 6, in Sec. 3.1.e) can be also applied

to a obtaining readily that (D(-) can be extended to a Lip-
shitz function to whole N-1 whose restriction to N is weakly continuous;

can not be 0 for all I large enough unless 0( - ) is identical 0.

LEMMA 5. Let 10tT be a basic family of probabilities on N,
let l1 be a probability on N satisfying (3.5) and let T; N-1).
Then the following three conditions are equivalent:

(i) is a statistical solution of the Navier-Stokes equa-
tions with right term f(-) and initial data p, (i.e. (tttl } satisfies (3.131)
for all test functionals which verify (3.8’)).

(ii) }orTsatisf ies the equation

a. e. on ( 0, T), f or every fl)( ., .) e ’b.

(iii) satisfies the equation (3.131) for all functionals

1) Obviously the condition (i~) is implied by the others.
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(iv) satisfies the equation

a.e. on (0, T), for every

PROOF. It is obvious that

Multiplying (3.15iv) with -r(-c) (r(’) belonging to Co°°([0, T))), inte-

grating in ~ the resulting relation between 0 and T and efectuating
an integration by part in those terms which involve the integrals from
0 to T, we obtain easily (3.131) with ,thus (iv) ~ (iii).
On the other hand replacing in (3.131) the functional ~(’, ’) by its

product with T)) we get

and this is valid for all
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basic family anti a functional ~~( ~ , ~ ) E ‘~, the functions

and

belong to LI(O, T), being related by the relation

valid for all T)). Plainly this gives

for all reCo"([0, T)). This shows firstly that the derivative (in the sense
of the theory of distributions) of g4 . ), where

is 0, thus ~( -) coincides a.e. on (0, T) with a constant which on account
of (3.46’) must be J ~(0, Thus we have verified that (i) ~ (ii).
The same argument applies for the implication (iii) ~ (iv).

For the remaining part it is sufficient to prove the implication

Let ~( ~ , ~ ) E T satisfy (3.8’) and let Define
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and

Since for any fixed te[O, T] we have (see Remark 6) in
Sec. 3.1.e) for property (ic) of time-independent test functions), if the
condition (iii) of the lemma is satisfied, then (3.15i) is valid for (~ * r)m
for any m =1, 2, ..., whenever the support of r verifies the condition

where 1’) &#x3E; 0 is such that

Now

where
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and

the constant depending on (D, and r. Taking into account the fact that
is a basic family, it is obvious that to obtain (3.131) for r

from its validity for ((D,* r)m by letting we have to note the
obvious fact that

and

where the constants c4n-c41 depend only on 0 (see (3.25)) and r; indeed
these facts give also the convergence

In this manner, (3.131) is valid for any functi~onal ~ * r given by (3.47)
with 0(., .)e’U satisfying (3.8’) and r(.)eCo-(R) satisfying (3.47’).

Let now p(. )eCoOO(1R) be such that

Put Then r£( ~ ) satisfies

(3.47’), hence (3.131) is valid for 
the convergences
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are (as in the preceding case) direct consequences (via the Lebesgue do-
minated convergence theorem) of the fact that basic and

the constant depending only on ~(’, ). On the other hand by the
same Lebesgue theorem

because (by (3.48-48’))

with suitable constants c4rc43 (depending only on C). It rests to obtain

instead of the analogous relation to (3.47") the relation
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Or

where

for all T) and Moreover it is easy to verify that the above
convergence is dominated in such a way that the Lebesgue dominated
convergence theorem can be applied and henceforth deduce that (3.47"’)
is valid in case

Since (iii) =&#x3E; {iv) we have integrating (3.13IV) with
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from where, using again the fact that 10tT is basic and (3.48-48’),
(3.49) follows readily.

This finished the poof of Lemma 5.

REMARK. In virtue of Lemma 5, for any solution the

reflation (3.13IV) is, for every valid a.e. on (0, T). However
the exceptional set E~(~) depends on the functional We shall prove
now that for the statistical solution constructed in Sec. 3.2 the equa-
tion (3.13Iv) is valid for all t E (o, T)BE, where E is a fixed set of Le-
besgue measure 0, and all functionals (i.e. the exceptional
set in (3.13IV) does not depend on 

PROOF. Recall that except a set E of measure 0 we have (see the
notations in Sec. 3.2)

for all , The equation (3.13iv) being for a fixed 
valid a.e. on (0, T), we have that

a.e. on (0, T), where the exceptional set depends a priori on ~.. But the
right term is a continuous f unction of t and the lef t term satisfies ( 3 .28"),
so that applying the strong lifting property, (3.13:v) holds everywhere
on (0, T). Taking into account the remark made before (3.13:v) we
infer readily that (3.13iv) actually holds for any t outside E and this
f or every 
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b) It is clear that the definition of a statistical solution 10tT
of the Navier-Stokes equation determines the measures I a.e. on

(0, T), in the sense that any other family of measures for which

for almost all t E (o, T), is al,so a solution with the same initial

data It of the Navier-Stokes equations with the same right term f(.).
In connection with this remark let us firstly prove the following:

LEMMA 6. For any statistical solution 10tT with initial data

(.1 of the Navier-Stokes equations the following conditions are equivalent:
(i) The equation (3.13111) holds for all ~( ~ , ~ ) E ‘~ and all

T).

(ii) The equation (3.13Iv) holds for all and all

T).

(k) For every 0( - e’Z; the function in t

is continuous on (0, T) and converges to

(kk) For every «. )e’bind, the function in t

is continuous on (0, T) and converges to 
i1

PROOF. It is obvious that (i) ~ (ii), (k) # (kk) and that (in virtue
of the preceding Lemma 5) (i) and (k), resp. (ii) and (kk) are equivalent.
To finish the proof if will be sufficient to show that (kk) #(k). There-
fore suppose that (kk) is true, and let be bounded and

such that
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Suppose that ) implies readily that

and by an approximation process we can deduce that

Making m -&#x3E; co we obtain finally

Let now ~~( ~ , ~ ) E ‘~,° and remark that since we have

where t, T] and for ta = 0 we put But, with suitable
constants c46-c47 (depending on t1&#x3E;(., )) and p &#x3E; 1,

so that

Since 1&#x3E;(., .) is continuous from to lR and since
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f u : I u  p I is compact in Nweak, the integral in (3.52’) converges to 0.

Thus for all p &#x3E; l, hence This means that (k) is satisfied.
p

c) Let us now prove the main result of this section 3.3, namely
the following

THEOREM 2. Suppose that the initial data A has a bounded support
in N. Then the statistical solution constructed in Sec. 3.2.c),
has a uniformly (in t E (o, T)) bounded support in N and moreover one
can suppose that it satisfies the following condition:

(j) The function defined on [0, T) by

is continuous for every real functional (D( - ) weakly continuous on N
(i.e. continuous from Nweak to 1R).

REMARK. In virtue of Lemma 6, the solution satisfies (3.13III)
and (3.13IV) for all T).

PROOF OF THE THEOREM. Suppose that the support

for a certain It is obvious that then

(see the proof of the existence theorem, given in Sec. 3.2.c)). On the

other hand in virtue of 1 we have

so that for all m=1, 2, ... and T) we have
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Let now

Then and

so that, since we deduce

But, by Lemmas 3-4, we have

whence

so that, since 4 , we deduce

Let now denote the space of all weakly continuous real functionals
defined on 81 and let E be the exceptional set c (0, T) occurring in
the Remark folowing Lemma 5. For any T)BE, let 

be defined by

and for any s E E let Gs be any functional belonging to
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Since the ball of radius 1 is weakly-compact in (@(B’)) *, Gs exists.

By the Riesz-Kakutani representation theorem (see Dunford-Schwartz [ 1 ] ,
Ch. IV, 6.3) there exists a Borel measure tis on the metric compact space
81 endowed the Nweak-topology such that Gg(o)= f However

B’
on Bl the Borel sets with respect to the Nweak-topology coincide with
those with respect to the usual N-topology 1), so that is a Borel measu-
re on N. Obviously fts must be a probability. For s = 0 put finally

Let now Then (3.13iv) is valid for all T)BE (see
the Remark following Lemma 5), therefore for t -~ s, t 0 E, must

converge. By the definition of GS , this limit is In this way we

proved that for our new definition for teE of the probability ttt we
obtained that

is continuous on [0, T] for every ~(’)~~~.
To finish the proof it will be sufficient to show that

is dense in C(B1). This follows directly from the following useful

LEMMA 7. Let Bl = { u; I u 1::5 ri) } (with and let

0(B1) denote the algebra of all real weakly continuous f unctionals on
BI . Let moreover

Then is dense in (n.ormed by the usual sup-norm, i.e.

1) Firstly since the identical map continuous, every « weakly »
Borel set (i.e. Borel set with respect to the Nweak-topology) is a « strongly » Borel
set (i.e. with respect to the usual N-topology). Conversely it is obvious that any
ball in l1i is weakly closed, hence « weakly » Borel set. From here follows readily
that any strongly Borel set is also weakly Borel set. (See PRODI [4].)
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PROOF. In virtue of the Stone-Weierstrass theorem it will be suf-
ficient to prove that 6to is an algebra containing 1 and separating the
points of 81. Obviously leelo. Moreover if lD4u)=(u, wm) then

0.(. ) 6 IZ;ind since the eigenvector Wm of D obviously belongs to Nl. If
for u’, we have for all m, since ~{ is a basis
of N it results u’ = u". Thus 9k separates the points of Bi . Let now
0 and let m be large enough that

There exists a C1-function ’ defined on such that

is bounded on 1R"" and

Let

Put

The functional 4&#x3E;1 belongs to ’bAnd and coincides with D on Bi . Thus
if 0 is any other functional we have

and Since plainly do is a linear set, the preceding
remark shows that it is an algebra. This finishes the proof of Lemma 7
and thus also that of the theorem.

4. Individual solutions as statistical solutions. a) Let 1.1 be a Dirac
measure i.e.

Suppose that the statistical solution given by the Theorem in Sec. 3.3.c)
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is formed by Dirac measures, i.e.

Then, for any

Taking f1)(u)=(u, v) with veN’, we obtain that

from where we deduce readily that { u(t) 10,,T is an individual solution
of the Navier-Stokes equations with initial value uo . We shall prove
now also the converse fact, that is the following

PROPOSITION. The individual solutions of the Navier-Stokes are

the statistical solutions which are Dirac-measure valued.

PROOF. Let be an individual solution of the Navier-
Stokes equations. We know (see Sec. 2.5) that u( ~ ) is absolutely con-
tinuous if regarded as function with values in N-2 and that (see (2.9-9"))

for all t outside a set £ c (0, T) of Lebesgue measure 0, and this for all
veN2. Let now

where 4 Plainly An easy
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computation shows that, outside E, we have

and obviously

Now it is easy to verify that 8(u(.» is absolutely continuous thus

(3.56’-56") yield

It is clear that if (3.13,v) holds for all then it holds also for
all luind. We have thus to prove that (3.13iv) holds for all

Suppose therefore that

Let moreover p be such that (see Sec. 2)

By (3.57) we have a function p defined on of class C1 such that

and such that
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there exists a sequence of polynomials ..., such that

and for any j =1, 2, ..., k. Consider

where t,E Col(IR ) and (r) = r for Then since 4Jm(u) is a sum

of functions 9(.) of the type occuring in (3.56"’) we deduce by linearity
that

Now in virtue of (3.58), (3.57’-57") and (3.59-59’) we can pass to the
limit in (3.60) obtaining
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for all This relation (3.60’) coincides with (5.13iv) if we
define pt, for by and by This finishes the

proof of our proposition.

REMARKS. 1) If for a given initial determined data uo there exists
two distinct individual solutions say { ul(t) }orT then
the statistical solution with initial data v=6, is on account of the pre-
ceding proposition also not unique, namely we have the distinct statistical
solutions and T)). However in this case

we have already the phenomenon which in the introduction was called
intrinsic turbulence. Indeed, for any fixed 0  0  1,

will be a statistical solution with initial data but which has
not an one1X&#x3E;int support for all t, since otherwise for all 

2) It would be very interesting if intrinsic turbulence is always
connected with non-uniqueness of the individual solutions.

§ 4. The energy inequality and consequences.

l. For statistical solutions the useful analogue of the energy int-
quality (2.12) for individual solutions is not that one which can be ob-
tained by a « formal » integration of (2.12), i.e.

where in the brackets { ... is indicate the formal integration leading, via
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(3.2), to the two extremal terms of (4.1 ). (Note that in case the space
dimension n is 2 this is already a proof that (4.1 ) is valid for the solution
given by (3.2)). For many reasons some of which will be seen below,
the statistical analogue of (4.1) seems to be the following relation

which must be satisfied a.e. on (0, T) for any real-valued function x~( - )
of class C~ on [0, oo) such that

here C49 is a constant depending on ~.
We shall call (4.1 ) the energy inequality for statistical solutions,

while (4.2) will be called the strengthened energy inequality for statis-
tical solutions.

PROPOSITION 1. The statistical solutions constructed in § 3 satisfy
the strengthened energy inequality.

PROOF. Let us return to the proof of the existence theorem of
Sec. 3.2.a) given in Sec. 3.2.c). Let + be as in (4.2-2’). Then using
(3.44m) we have

whence (by 2 .17 ) )
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so that integrating with respect to t and to p/~ we obtain

for all te [0, T). Let p(’) be any function &#x3E; 0 in LI(O, T). Then (4.3)
gives

in which k, m=1, 2, ... and all functions (on N X (0, T)) belong to
. Therefore the relation (4.3’), written for the functionals 

(m =1, 2, ...) given by (3.18) with {p-~m)} I instead of will be con-
served for any w*-cluster point F e 2*2 of f F(-) 1. But such a cluster
point is of the form (3.18) with a statistical solution { ~,t }. Therefore
we conclude that any statistical solution obtained in Sec. 3.2
will satisfy the relation
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for all k=l, 2, ... and T), p( ~ ) &#x3E;_ 0. Letting we

obtain

from which, the inequality (4.2) results readily.

REMARK. If in (4.2) we put for we obtain (4.1);
thus if satisfies the strengthened energy inequality (4.2) it

satisfies also the energy inequality (4.1).
The statistical solutions satisfying the energy inequality or its

strengthened form have a certain number of interesting and useful sup-
plementary properties:

COROLLARY 1. For any statistical solution with initial

satisfying the energy inequality (i.e. (4.1 )), we have

where c5o is a constant depending only on f(.), v and f2.
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PROOF. The right term of (4.1 ) is less than

from where (4.4) can be easily obtained with 

COROLLARY 2. Let T; N-1). Then, for any statistical
solution with initial satisfying the strengthened energy
inequality (i.e. (4.2)), we have a.e. on (0, T)

for all r &#x3E; c52 , where c52 is a constant independent of p, and 

(iz. depending only on and f ( - ) ) .

PROOF. Let ~.) satisfy (4.2’) and such that for ,-2].
Then (4.2) gives a.e.
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where I and ~,1 is the first eigenvalue of D (see
Sec. 2.1 ). Putting , we obtain that, for 

a.e. on (0, T). In particular (4.6) shows that

for any ~r( · ) satisfying (4.2’) and such that for xE [0, r~], 
Let be fixed, and put

where E&#x3E; 0 and

Then in (4.7) we can replace ~r( ~ ) by 4Jk( . ); therefore letting k ~ 00
we obtain also
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and letting we deduce easily that

However the exceptional set w of those T) for which (4.8) is not
valid depends on r, i.e. m=mr . Taking m= U Wr where the union is
taken for all rationals r&#x3E;c52 we conclude that for the inequality
(4.8) is valid for all rational thus (using the fact that ~5t is a

measure) also for all r2:c52. Let now

and let ~k( ~ ) be defined as above with 8e(’) replaced by 8( . ). Intro-

ducing these ~(.) (~k =1, 2, ...) in (4.6) and letting we deduce
that

From this relation and (4.8) we obtain plainly the desired relation (4.5).

REMARK. It is obvious that the corollary 2 yields also the con-
clusion that if the initial data has a bounded support in N then the
supports of are uniformity (in t) bounded in N; this result
was already obtained in the theorem of Sec. 3.3, without the hypothesis
that T; N-1). However this last assumption is obviously
verified if f(t) --- f does not depend on t. In this case one can consideri
those statistical solutions which do not depend on i.e. the stationary
statistical solutions. For them, Corollary 2 will yield an interesting
property (see Sec. 6.1).
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2. a) We shall now give the main consequence of (4.1 ) and (4.2).
For this recall that to any basic family of measures formula

(3.18) associates a functional We shall endow the set of all
statistical solutions with the topology induced, on the set of the cor-

responding functionals by the w’~-topology on ~i,1 . Obviously
in this way the set of all statistical solutions becomes a subset of a locally
convex space. Our main result in this section is given by the following

THEOREM 1. Let T; N). Then for given initial data

1-1, the set of all statistical solutions satisfying the strengthened energy
inequality is a convex compact set.

PROOF. Let 8(11) denote the set of all statistical solutions with initial
data &#x3E; satisfying the strengthened energy inequality. It is obvious that
this set is convex (as subset of ~i,1 ~ z ). Thus the only fact to be proved
is that it is compact (as subset of £~, 1).

We start the proof with the conclusions of Corollary 1 above,
namely that

for all where CM-55 are constants depending only on ti

(and naturally on !1, ’J and f { ~ ) ) . By Lemma 1, the functionals F cor-

responding by (3.18) to form a bounded set (denoted
again by in r;,1 , thus a subset of a compact set (the ball centred
in origin and of an enough large radius in r;, 1) in the w*-topology of

Therefore we have only to show that any F belonging to the w*-
closure in ,1 i of actually belongs to For this we firstly note
that, as remarked at the end of Sec. 3.2.b), the Lemmas 3-4 and their
Corollary (in Sec. 3.2.b)) remain valid if the sequence IF(-)) } of func-
tionals considered in Lemma 3 is replaced by a directed set Now

lest « label the w*.neighbourhoods of F For any a, choose an

belonging to that l.v*-neighbourhaod of F which is labelled

by a. Applying the extended version of Lemma 3 (Sec. 3.2), we obtain
a basic family of Borel probabilities on N such that (3.18)
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is valid for all T; To apply Lemma 4 (Sec. 3.2) we
have to show that for our family the function u -+ u 12
on N is almost uniformly integrable. To this purpose let e&#x3E; 0 be given
and let re be such that

Obviously we may suppose that (see Corollary 2 in Sec. 4.1 ).
Then in virtue of (4.5), for we have

this shows that the function 1 . 12 on N is almost uniformly integrable
with respect to }«, . Corollary 1 in Sec. 4.1, shows (see also
Lemma 1 in Sec. 3.1.c)) that {F(0153)}0153 is bounded in ~*2, hence, since

i n ~2 is dense in ~2 that F is also a cluster point in the w*-topology
of ~*2 . The Lemmas 4,5 and their Corollary (in Sec. 3.2.a)-b)) can be
applied to F, yielding a basic family of probabilities on N,
connected with F by the formula ( 3 .18 ), valid for ~a.ny or O of
the form IF, with pe’Z;o. Now i for any and

so that (since F is a w* -cluster point of in ~,1)

which is valid for all tpe’bo, whence is a statistical solution
of the Navier-Stokes equations with initial data (see Remarks 1) and
3) in Sec. 3.1.e)). It remains to prove that satisfies the strength-
ened energy inequality. For this, let T), Then the rela-
tion (4.2) for { ~,r } = { ~,ia~ } gives
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where k =1, 2, ... is arbitrary. Introducing the functional

which obviously (on account of the hypothesis on f( . )) belongs to ~2 ,
the relation (4.10) can be written in the following form

Since (4.10) is valid for all a, and since F is a w*-cluster point of
in C*2 too, we deduce

The relation (4.10") being valid for all T), p&#x3E;:0, it results (via
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Lemma 4, Sec. 3.2.b)) that

a.e. on (0, T), k =1, 2, .. Letting in (4.10"’) we obtain readily
(4.2). This finishes the proof of the Theorem.

The same proof yields the following

PROPOS ITION 2. Let } be a directed set of probabilities on N
such that

and r£ is adequately chosen (i.e. . 12 is uniformly integrable
with respect to 1). For any a let (til (at) }otT be a statistical solution

of the Navier-Stokes equations with initial data ~,~a~, satis f ying the strength-
ened energy inequality, and let F(CL) be the corresponding (via (3.18)) func-
nal in £, 1; 2 . Let F be a Lv*-cluster point in { F°‘ }. Then F cor-
responds (via (3.18)) to a statistical solution of the Navier-
Stokes equations with initial data 1.1, and satisfying the strengthened
energy inequality.

REMARKS. 1 ) If all the measures have their supports
c Bo = { u : ueN, I u  rio } , it is clear that (4.11’) is satisfied. Moreover,
in virtue of the Lemma in Sec. 3.3.c), (4.11 ) is equivalent with the
convergence p(a) - li in the W*-topology of Therefore the pre-
ceding Proposition yields in this case a kind of continuity of the (not
necessarily uniquely determined) map 11 -+ from to

£r,l i both endowed with the w*-topology.
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2) Let the initial data 11 in the Theorem be the Dirac measure

where It is obvious that any Dirac measure valued stati-

stical solution of the Navier-Stokes equations with initial data 
is an extremal point of (i.e. the set of all statistical solutions with
initial data considered as a subset Is the converse
also true, i.e. is any extremal point of a Dirac-measure valued solu-
tion ? If the answer to this question is « Yes », then the intrinsic tur-
bulence occurs if and only if there is no uniqueness for the individual
solutions of the Navier-Stokes equations with initial value uo .

b ) Let us sketch the difficulties which occur in the study of the
converse question raised in the preceding Remark.

Let uoeN be fixed and let 8 denote the set of all (functionals
in £;,1 i corresponding to the) statistical solutions of the Navier-Stokes

equations with initial data and satisfying the strengthened energy
inequality; 8 is considered as subset of £;,1. If is such a

solution, then 

where r9 depends only on uo (and of course on and f( . )), but not
on the solution. In virtue of Sec. 3.3.c), we can suppose that (3.I3III)
and ( 3 .13IV) are satisfied for all te[O, T] and that the continuity pro-
perty (j) given in the Theorem 2, Sec. 3.3.c), is valid. Arguments used
in Sec. 3.3 show that we can suppose that (4.2) is also satisfied for

all te [0, T ] . If not an extremal point of S, then F= IFl +2

+ F" where F corresponds to while F’, F" to other two
2

different statistical Now taking (DEZ;O ind
and r c L’(0, T) we have
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whence (re L1(0, T) being arbitrary)

a.e. on (0, T). By the continuity condition (j) (already quoted) (4.12’)
holds for all te [0, T) and all But the integrals in (4.12’) are
taken in fact only over Bo , so that in virtue of Lemma 7 (in Sec. 3.3.c))
we have

with adequate solutions
for all T ] so that

It results 

with a certain density 8(t, u) &#x3E; o, which must also verify

Taking into account (4.13), we can infer that

for all te [0, T]. Actually 6 is subjected to a very strong condition of
different nature, intimately related to the Navier-Stokes equations. To
justify this assertion let us suppose that for any test functional 4&#x3E;(., ),
the function (t, u) --~ u) u) is also a test functional. Writing
(3.13III) for this functional, we obtain (for T])
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Taking into account that { ~,t’ } ot~ is also a solution with the same
initial data 6* , it results

for all test functionals (D(., -) and all T] . Obviously (4.14)
implies

a.e. on (0, T). Let E«7)(.,.) denote the exceptional set in (4.14’), i.e. such

that (4.14’) is valid for all T)BE«7)(.,.). The space where

u ~ 1:!5; ro) } is endowed with the weak topology, is sepa-
rable (since Bo is metric and compact), therefore, in virtue of the

Lemma 7 in Sec. 3.3.c), there exists a sequence (Om( . ) ) } c Z;iond dense
m=1

Then for any tE (0, T)BE we have
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In virtue of (3.16’) we may suppose that
m

te [0, T]BE, so that the function in the brackets [...] is tirintegrable.
It results that

for all so that

I.1t-almost everywhere in N.
In this manner 6 is subjected to satisfy (4.141). To solve (4.141)

in functionals 8 satisfying also the conditions (4.13"-13"’) seems to be
extremely hard (if possible?).

3. The function u H 1 I u [ on Nl is obviously not a time inde-2

pendent test functional; therefore we cannot replace the functional
in (3.13iv) by it. If however (3.13Iv) would be valid also for this par-
ticular functional, then since its Frechet derivative is u H u and b(u,
u, u ) = 0, we will receive

that is, the energy equation instead of (4.1 ). Unhappily this deduction
of the energy equation is not rigorous in our approach. Therefore we
shall now give somte supplementary conditions for the validity of (4.1’).

PROPOSITION 3. Let 10tT be a statistical solution of the Na-
vier-Stokes equations with initial data 11, satisfying the strengthened
energy inequality. Let n denote the space dimension {i.~e. the dimension
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of fl), and let y denote the function

Then if

in the strengthened energy, inequality the equality holds, the strength-
ened energy equation

is valid (a.e. on (0, T)) for any function ip of class Cion [0, oo) satis-
fying

and for a suitable constant c56 (of course, depending on ~).

PROOF. It is plain that for any function ~ occurring in (4.2") there

exists a sequence { converging pointwise (on [0, oo))

to ~ and such that

for and m =1, 2, ..., where c67 , cs8 are some suitable
constants (i.e. independent of m and ~). In virtue of (3.16-16’), (4.16)
and of Lebesgue’s dominated convergence theorem, if (4.2") holds for all

(instead of ~), m =1, 2, ..., then it holds also for d/. Therefore it is
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sufficient to prove (4.2") under the supplementary assumption that

, For such 4J, the functional Ok :

longs to ’bAnd for all k =1, 2, ... Therefore taking
we obtain a.e. on (0, T)

Here, except

all the other terms obviously converge (a.e. on (0, T)) to the correspond-
ing terms in (4.2") and this without any use of the assumption (4.15-15’).
However to infer that (4.2") is valid we must show that the integral
(4.17) tends to 0 while k -~ ~ . For this we shall use (4.15-15’). In

this aim, note that since b(u, u, u) = o we have

with a suitable constant c5g (i.e., independent of « and ~k =1, 2, ...). *
In virtue of (2.3) we have
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and (2.4) we have

Finally if n = 3, then using first (2.4) and H61der inequality

where on account of Sobolev’s inequality (2.2) u )6c61 11 u ~~ I so that

where c6o-62 are suitable constants. To estimate note that 

=DDl/2CL6 and N=DDocL2 so that the identical map will imbed con-
tinuously DD,I, (in virtue of Interpolation Theory; see Lions-Peetre [ 1 ])

so that (4.18’3) and (4.19) give

where and c63 is a constant (i.e. independent of u). The rela-
tions (4.182~) being valid for all ueNI and all k =1, 2, ..., a successive

application of Lebesgues dominated convergence theorem (whi~ch is per-
mitted in virtue of {4.15’)) shows that the integral in (4.17’) tends to
0 f or k --3 00, since
k -&#x3E; 00. This finishes the proof of the Proposition.

COROLLARY. Let the space dimension n be =2, and let 
be a statistical solution of the Navier-Stokes equations satisfying the

strengthened energy inequality. Then, if the initial data Il is with bound-
ed support in N, the solution satisfies the strengthened energy
equation.



308

Indeed in this case, the support of pt is (a.e. on (0, T)) uniformly
bounded in N (see the Remark at the end of Corollary 2 in Sec. 4.1 ),
so that with a suitable constant c65 we have, by (3.16’),

therefore the preceding Proposition yields the Corollary.

4. The energy inequality for individual solutions of the Navier-
Stokes equations obviously gives some a priori estimations for these
solutions. However the relations (2.16-16’) are in fact also £ priori esti-
mations. We shall give now an analogue of these relations for the stati-
stical solutions.

THEOREM 2. Let be the statistical solution of the Navier-
Stokes equations constructed in Sec. 3.2. Suppose that its initial data ~,

is carried by a bounded set in N’ and that the right term f(.) of the
equations belongs to L°°(o, T; lV). (Recall that actually we note by ~( ~ )
the « projection » on N of the external body forces in the classical ex-
pression of the Navier-Stokes equations). Then there exists a constant
r2 such that

for

where depends on (.1. 
°

PROOF. We have, for some real r20,

Therefore for the measure (see Sec. 3.2.c)), we have also
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The inequalities (2.16-16’) conserve, of course, their validity for the

equation (3.44m) instead of the Navier-Stokes equations (see for instance
Prodi [6] and Foias-Prodi [1]). For sake of completeness let us sketch
their proof: From (3.44m) by scalar multiplication in N with Dum we
deduce readily

where c66=1I f(.) N) and the bound for b(., - , - ) was taken
f rom (2.3’), where p &#x3E; 2 is arbitrary. Take p = 4 if n = 2 and p = 6 if
n = 3 . Then

(see (2.2) and (2.2’)) and

where C67-68 are some suitable constants; therefore (3.44~) yields

where y is constant (with respect to T] and m =1, 2 ,...) and
is a non decreasing function ~~( ~ ) of In case n = 2, we deduce



310

from (4.~’~)

where, by (3.44~), 1’1 is a non decreasing function 1t(.) of 
In case n=3, we deduce from (4.23) that

where

Put

and

Then

whenever

and

In virtue of (4-26-26"), if t is as in (4.26") we have (see Sec.

3.3.c)) 1)

1) We will make the convention that
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L’e.

(4.27)

whenever

(4.27’)

Let now ~ : [0, oo)h~ [ 0, 1 ] be a nondecreasing continuous function
such that

and let x : [ o, T ] ~ ’~R be the characteristic function of [0, T] if
n=2 (i.e. x=I) or of [0, t2] if n=3. Then where

u ~ belongs to ~~ for all k =1, 2, ... Moreover we have

on account of (4.27-27’). Since this conclusion is valid for all m= 1,
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2, ... it results

for any constructed in Sec. 3.2.c). Therefore

But and thus in virtue of the Theorem in Sec. 3.3, we may
suppose that the integral in (4.29’) is a continuous function of t, so that

Letting k --~ ~ , we obtain finally that

and for all non decreasing continuous functions tp : [ 0, ~ ) H [0, 1 ]
satisfying (4.28). Since there exists a non decreasing sequence 
of such functions converging to the characteristic function of (r2 , 
the relation (4.30) yields

for all t E [ 0, T] if n=2 and all t2 ] if n = 3 . This concludes the

proof of the Theorem.

REMARKS. 1) In case n . = 2, T can be taken without altering
the preceding theorem.

2) In case n=3, the relations (4.25-25’) yield some (rough) esti-
mations for r2 and t2 in function of r2° (see (4.21)).
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§ 5. Uniqueness theorems f or statistical solutions.

1. a) We shall devote this paragraph to the study of the unique-
ness of our statistical solutions. To avoid some technical in essential dif-
ficulties we shall suppose in the sequel that the right term f(.) of the
Navier-Stokes equations does not depend on t, i.e. f (t) --- f for all

te [0, T] where f is an element of N (i.e. in particular such that all

preceding assumptions on f ( ~ ) hold). Moreover we shall also often suppose
in this paragraph that the initial data has a bounded support in N.
Thais assumption avoids a difficulty which seems rather deep and is

therefore of quite a different nature than the first one. With this last

assumption we know that our statistical solutions satisfy the additional
properties of Theorem 2 in Sec. 3.3, as well as the strengthened energy
inequality, so that by the Corollary in Sec. 4.3, they satisfy also the

strengthened energy equation 1). In particular we have also

with some convenient constant ri and any solution 10,,,T.

for

Here =s(m)(t) was defined in Sec. 3.2.c) and m =1, 2, ... Note that

since Pmflt) - Pmf for all t we have obviously the semi-group property

in fact for all a, a &#x3E; 0. Therefore

 - ----

1) One can easily verify in this case the strengthened energy equation holds
for all T] not only a.e. on [0, T].
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and all te[0, ~r]. Differentiating with respect to t we obtain

whence, by (3.44.),

where runs over whole PmN. In this manner

for all

(Here above we have used the fact that

supplement (5.5-5’) with

Let us finally define the functional by

Our main aim in this paragraph will be to find some sufficient conditions
on for the convergence

We begin by putting

Obviously
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Moreover it is clear that C~(’, ’)~~o, i.e. is an elementary test func-
tional. Therefore we can write ( 3 .13III ) for ~( ~ , ~ ) _ ~m( ~ , ~ ) :

Ln (5.8) we can replace
by (5.5), obtaining

I with its value given

But

so that (5.8’) reduces to the relation
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whence

If n=2 by (2.1) and (2.2’), we have

while for n = 3 we have, by (2.2) and (4.19),
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with a convenient constant 059. Using these inequalities as well as (5.1),
we obtain from (5.8") the relation

valid for any -c e [0, T ] for which (3.13111) holds for all 4bm , m =1, 2, ...;

in particular for any Te [0, T ] if supp p is bounded in N. To exploit
(5.9) we must estimate

where we used (5.2) and (5.7), as well as the chain rule for differentia-
tions. Since we have

and a suitable constant 071. Therefore from (5.9’) we can infer

In this manner we arrived to the study of

where s&#x3E;0, w, zePmN are fixed. Differentiating (3.44m) with respect



318

to w, we obtain

so that, by taking the scalar product (in N) with D-’~{s) we arrive to

by (2.3’), where p &#x3E; 2 is arbitrary. By (2.15’-15"’), the last term is

(with p=4 if n=2 and p=6 if n=3)

In this manner, (5.11) can be given the form

where and m3 is a suitable constant 1). Integrating (5.11’) we
obtain

Putting we arrive to the

1) Depending only on v, f and n.
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estimation

which together with (5.9") give

Introducing (5.9IV) in (5.9), we finally obtain

We are now able to conclude these considerations with the follow-

ing basic

LEMMA. Let p, be with bounded support in N and let 
be any statistical solution of the Navier-Stokes equations with initial

data ii, satisfying the supplementary properties given in the Theorem

of Sec. 3.3. Let, and let [(D]m be defined by (5.6).
Then the convergence
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holds whenever

or

the initial data ’11 is carried by a bounded set in Nl and ’t is sufficiently
small 0::; ’t’ ::; ,;(p,), where is a non increasing function

of r4= inf (r: r &#x3E; 0, eN, II u II &#x3E;r}~=0}).
PROOF. By (5.1) and ( for all uesupp li,,

J, te [0, T]. Now, consider first the case n = 2. Then

where this last term is, by (3.44~), less than

the constants c74-cn depending only on f , v, n and It, i.~e. being inde-
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pendent of m. For we for thus

the last integral tends (in virtue of (3.16) and Lebesgue dominated con-
vergence theorem) to 0 for m --~ ~ . Therefore (5.14) follows from (5.132).

Consider now the case n = 3. Then

Take equal to the value t2 given by (4.25’). Then in virtue of (4.243)
we have

so that the last term in (5.133) is, for 0:i~T(~), less than

where in the last inequality we used the conclusion (4.20) of Theorem
2 in Sec. 4.4. Now we can conclude the proof as in the case n . = 2.

b) The preceding Lemma allows us to obtain two uniqueness
theorems for the statistical solutions of the Navier-Stokes equations.

THEOREM 1. Let n = 2 and let 11 be with bounded support in N.
Then the statistical solution of the Navier-Stokes equations, with initial
data li, satisfying the supplementary properties given in the Theorem of
Sec. 3.3 is uniquely determined.
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REMARKS. 1) The statistical solution given by the formula (3.2)
(see Remark 2) in Sec. 3.1.e)) plainly satisfies also the supplementary
properties fo the Theorem in Sec. 3.3. Therefore Theorem 1 above shows,
in fact, that (3.2) yields the unique statistical solution within the indi-
cated class, with initial data 1-1.

2) It is clear that Theorem 1 is a global (in t) uniqueness theo-
rem for the statistical solution. This is in perfect correspondence with
the case of individual solutions.

PROOF OF THEOREM 1. Let and two stati-
stical solutions of the Navier-Stokes equations satisfying both the pro-
perties given in the statement. By the preceding Lemma we have for

any (D 6 Uiond and any - E [ 0, T ] :

that is

for [0, T] and

But the support of ~ is contained in a ball Bl = { u : u ~ for

some suitable real ri . Therefore in virtue of Lemma 7, Sec. 3.3, we
infer from (5.15) that
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for all T~[0, T] and

Plainly (5.15")-(5.15"’) imply that, as measures on the metric compact
space B1 (Bl being endowed with the weak topology of and p,’’t
coincide. By the remark made in the foot note at page 285, 
for ani Borel set c~ of N included in Since the supports of both mea-
sures are also included in 81 we have finally that for all

1:’E [0, T]. This concludes the proof.

THEOREM 2. Let n = 3 and let p be carried by a bounded set of
N~. Then the statistical solution of the Navier-Stokes equations with ini-
tial data p, satisfying the supplementary properties given in the Theorem
of Sec. 3 .3, is uniquely determined on an interval [ o, where

-~(~,) &#x3E; 0 is sufficiently small (i.e. ~ is uniquely determined for all

O:5’t~’t’(p,); here is as in the preceding Lemma in Sec. 5.1.a)).

The proof of this theorem is identical with that of Theorem 1,
therefore we pass to the following:

REMARKS. 3) Theorem 2 is a local (in t) uniqueness theorem for
the statistical solution. This is also in perfect correspondence with the
case of individual solutions.

4) Both Theorems 1 and 2 contain as particular cases (on account
of Sec. 3.4) the basic (not the most elaborate) uniqueness theorems for
the individual solutions of the Navier-Stokes equations.

5) We can complete the preceding remark, by observing that Theo-
rem 1 has the following consequence: In the case of space dimension
n = 2 there is no intrinsic turbulence. Indeed in this case for the measure

6, (whose support is = (uo 1) there exists a unique statistical solution
which has 6, as initial data, namely (see Remark 1) above) that given
by formula (3.2), i.e. for all In case n = 3, this

argument is no more valid because Theorem 2 is a local uniqueness
theorem.

c) In dimension n = 2, as pointed out in Remark 1) in the pre-
ceding section, there is a direct relation between p and It, namely, that
given by (3.2). Our purpose in this section is to exibit a similar con-nec-
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tion in dimension n = 3 but in the particular case considered in Theo-
rem 2.

First for the smoothness of the exposition, we shall discuss in more
details some features of the individual solutions of the Navier-Stokes

equations in dimension n = 3. (Remember that we are concerned with
the case when !1 c 1R3 is bounded with boundary of class C2 and that
in the abstract form of the Navier-Stokes equations the right term f
does not depend on t and belongs to N) . An individual solution M(’)
will be called regular on [ o, to] if its restriction u I [0, to] to this inte-

gral belongs to C( [o, to] ; Ni). Since (by Sobolev’s imbedding
theorem) we have C( [o, to] ; to] ; to ; L6) so that
by a uniqueness theorem for « some » individual solution (se Prodi [ 1 ] ),
any other individual solution with initial data u(O) coincides with u(.) on
[0, to ] . Therefore we can define the map T(to) on those for which
there exists an individual solution u(.) with initial value uo , regular
on [0, to], by 

We shall prove now that for there exists an tz (for instance
that one determined by (4.25’)) such that for any 0:5-c:5t2, T(-r) is an
Nl-continuous map from } to NI and

I 0 for me uniformly on [0, t2] for any fixed

To this purpose note first that in virtue of (4.26-26") we get from
(4.23) the relation

where we used the fact that (see (4.26~-26"))

It results

where, as above, m =1, 2, ..., t2] and u E Bol are arbitrary, while
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c’o is a constant (depending on r2 , thus on r~ ). The last relation implies

where and u are again arbitrary and c~ is a constant (depending on
c’o , r2 and v, that is on r2° and v). But for a fixed u, the sequence

i contains a subsequence u }~° i which converges

(strongly) in T; N) to an individual solution u( ~ ) on (0, T) with
initial value u (see Foia§ [2]; see also Lions [ 1 ], Ch. I, or Prodi ~[4]).
Since for (4.26IV) implies

and DPk is a bounded operator in N, we can easily infer that

This implies (since I DPkU(tO) I tends to 00, for k - 00, if and

tends to I if 

Replacing by a suitable subsequence we can also suppose
that u - u(t) in N, a.e. on (0, T). Using (4.26"’) instead (4.26I~)
we can deduce in a similar way as above that

Now u(.) is a function in N-1 (see Sec. 2.3) an absolutely continuous



326

function and satisfies in N-1 equation

a.e. on (0, T). But on (0, t2) we have (on account of (4.26v-26VI) that
a.e.

hence t2 ; N); therefore u 0 t is absolutely continuousTt 
 , ) C Y

as function in N and the above equation (2.9) holds in 1V, a.e. on (0, t2).
It results easily that for any and I, k= 1, 2, ... the function

~~ 112 is absolutely continuous on (0, t2) and

Integrating this equation and letting k -+ 00 (which is permitted since
tz ; Nl) n L2(O, t2; NZ) (see (4.26v-26VI) above)) we finally

obtain

Putting the absolutely
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continuous function 11 ~(.) 112 will satisfy the following differential ine-

quality (a.e. on (0, tz))

where (4.26III and 26VI) were used. It results

whence using also (4.261)

for all te [0, t21 . In this manner we have obtained
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for all t2] and ~==1, 2, ... Here cri is a constant independent of
t, and u E Boi (obviously depending on r °). Letting and using the
Lebesgue’s dominated convergence theorem for the integral in (4.26VII),
we finally conclude with

Since is continuous as function in Nl, implies that

u( ~ ) ~ [o, t2]; Ni). This proves that u(t)= T(t)u for all

t2]. The conclusion being valid for all it remains only
to prove that T(t) is continuous from 801 (endowed with the topology
of N’) t~a Ni. To thi,s aim repeating the argument used to arrive from
(2.9’) to (4.26~), we will firstly obtain for u(t)=T(t)u, v(t)=T(t)v
where the [0, u, veBol, the relation

whence

for all te [0, t2]. Finally this means

for

This concludes the proof of the above underlined statement. We are
now in state to complete Theorem 2 by the following
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THEOREM 2’. In the conditions of Theorem 2, we have 

for all Borel c N, whenever t is sufficiently small.

PROOF. Let and let be enough small for the
validity of (5.14) for all ’te(O, -co]. Thus letting m - 00 in (5.14) we
obtain in virtue of the underlined properties of I and f T(t) }

for all Here the integrations actually can be restricted to 8~1.
Now for any Borel put

Obviously Bol is a Borel set in N and is a Borel map from Do’
(as Borel subset of N) to N. Indeed since closed balls in Nl are Borel
sets in N so are also open balls in Nl (hence any open set in Ni is a
Borel set in N), is a Borel set in N, for any set w open in N.
Therefore the above formula defines a Borel measure in N. It is plain
that v.~( { u : In this manner for a sufficiently large
r1 we have

Since

for all it results in the same way, as in the proof of Theorem 1

in Sec. 5-I.b), that This conclusion holding for all ~e[O, To]
we finished the proof.

REMARK. It is clear that the conclusions of Theorems 2-2’ hold
for any t such that ~ is carried for all ’te [0, t], by a bounded set
in ~1. In this way the possible peculiarity in dimension n --_ 3 may occur

only at that time t when any bounded set of Nl is not of probability
I1t equal to 1.
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2. Let us return to the case n = 2, but suppose that p, has perhaps
an unbounded support in N. Then a estimate more accurate that (5.9)
is obviously

for ir outside a set E(O.) of measure 0 in [0, T] . Now in virtue of (
and (3.44~) we obtain from (5.9’v)

so that (5.16) becomes

for all ~e [0, and some convenient constants c76-77 (independent
of p, I and 1». Let us suppose that for some 6 &#x3E;0
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Then for we infer easily from ( 5 .16") that for

Clearly from (5.18) it results that if is another statistical

solution (with the same initial data p) which satisfies (5.17), then

for all where (being independent of ~), ~ is

arbitrary in and Eo(V)ci[0, is of Lebesgue measure 0. Let

p,o &#x3E; 0. By an argument used in the proof of Lemma 7 in Sec. 3.3, for
there exists a such that

rational po&#x3E;0 choose a sequence
relations (i.e.

verifying the last

such that is dense in ~(Bo). The union of all these sequences
is countable, so that the union E of all E«4y;) will be of Lebesgue
measure 0 in [0, -co] . Suppose moreover that } and (p’,) } satisfy the
relation (4.5), so that if (see Corollary 2 in Sec. 4.1) we will
have for all --ro]BEo the relation

From (5.19-20) we can infer rather easily that
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for all

Let oi be a Borel subset of N. Then for a fixed -co] BEo there
exists a sequence such that 0~p;~l and

Taking in (5.21 ) and making j - oo we obtain

Finally for (5.22) yields In this manner we
obtained that for all i e [0, 1;o]BEo . Obviously we may suppose
that Repeting the same argument for the interval 2To] and
and so on we finally arrive to the conclusion that ;p,=p’.., a.e. on

[0, T] so that, by the convention made in Sec. 3.3, the two solutions
} and { ~’t } coincide.
In this manner we obtained the main part of the proof of the

following

THEOREM 3. Let n = 2 and satisfy

for Then the statistical solution of the Navier-Stokes equa-
tions with initial data ,11 and satisfying the strengthened energy. inequa-
lity is uniquely determined (Le. it is given by the formula (3.2); see the
Remarks 1 ) in Sec. 5.1.b)).

To conclude the proof we have to show that (5.23) implies (5.17)
with some suitable 8 &#x3E; 0. In this aim note that (4.2) yields readily that
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whence

where c78-79 are constants large enough (independent of i and ~). It is

easy to infer from (5.24) that actually (5.24) holds for T = T and for
such that +’&#x3E;0. In particular for

we obtain

where are some convenient constants.
This concludes the proof of Theorem 3.
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REMARK. The Corollary in Sec. 4.3 conserves its interest only in
that case which is not covered by Theorems 1 and 3. Indeed, since for
n = 2 the energy equation holds for the individual solutions (see (2.13)),
an integration with respect to l1 yields the energy equation for the stati-
stical solution defined by (3.2). But in the cases involved in Theorems
1 and 3, this it the unique statistical solution (with initial data ti).
(Of course the quoted Corollary concerns the strengthened equation
but in this discussion this is not an essential fact.)

Concluding this section let us mention that unfortunately in dimen-
sion n = 3 there seems not to exist an analogue to Theorem 3.

3. For individual solution in dimension n = 3 there is a global
(in t) uniqueness theorem in case f = 0 and the initial data uo E Ni has
a sufficient small norm 11 uo 11 . There is a perfect correspondent of
this theorem for statistical solutions, namely:

THEOREM 4.1) Let n = 3 and f = o. There exists a constant C82 (de-
pending only on f2 and v) such that i f

then the statistical solution } of the Navier-Stokes equations (with
initial data 11), constructed in Sec. 3.2, is uniquely determined (for all
te [0, T]).

PROOF. In virtue of Theorem 2’ and the Remark following it, we
have only to show that if c82 is sufficiently small then there exists an-
other constant c82 such that

for all t&#x3E;0 (see the notations in Sec. 5 .1.c)). By (4.26"’) we have

for sufficiently small t2 &#x3E; 0.

1) Suggested to us by M. SHINBROT.
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so that if u(.) is a regular solution on [0, to] we can easily deduce that
to ; DD)- Using this fact we can prove without difficulty

that as function with values in N, u~~ ) is absolutely continuous and

whence (see the discussion preceding Theorem 2’ in Sec. 5.1.c))

Integrating this differential inequality we obtain

where c84 is a constant depending only on n and v. Putting
, 1 ~ " I

Hence if (~ u then for any t for which T(t)u is defined we

shall shave

But T(t) is defined for if -~ is sufficiently small. In virtue

of (5.28’), II thus T(t) is defined for t e [ 0, 1’] where
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T’ can be chosen dependent only on c’ . But Sin-
ce ~~ T{T’-f-~)u ~~ _c82 , will be defined on [0, -r], that
is T(t)u is also defined on -r+2-c’]. Continuing this process, we
finally obtain (5.26), finishing our proof.

REMARK. The preceding proof concerning individual solutions is
well known (see for instance Lions [ 1 ], Ch. I, § 6.7); we have given it
for sake of completeness.

4. a) Let again n = 3 and p be with bounded support in N. Then
there exists an r such that

for any statistical solution with initial data ti, constructed
in Sec. 3.2, and

for all T] and 2, ... Let T) Then

(using the notations of Sec. 3.2)

for all m =1, 2, ... Let 1 be dense in T) and 
be such that 1 is dense in ~(B), where B is endowed with
the N-weak topology (see Lemma 7, Sec. 3.3). By Cantor’s diagonal
process we can obtain a subsequence {mi};:1 such that ~{ F~m= ~(cp; ~ 1

is convergent for all j, k =1, 2, ... Let our w*-cluster point F (see the
proof in Sec. 3.2.c)) be a w*-duster point in i not only for {pm&#x3E; };=1
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but also for its subsequence ~{ F~m= ~ } ~ °, . Then we obtain

for all j, k =1, 2, ... Now the integrals on N are actually only on B, so
that, using the special choice of the sequence I we deduce that

(5.29) holds even if Ok is replaced by Similarly, it holds
also if pj is replaced by any T). Thus

for all T) and all real functionals tI&#x3E; defined on N and

N-weakly contimous on B. Let toe(O, T ) be fixed and wo denote
the of those MoeAF for which T(to)uo is defined. Using the same techni-
que as in the discussion preceding Theorem 2’ in Sec. 5.1.c) one can

verify that u~o is open in Nt, thus wo is a Borel set in N. Suppose now
in (5.29’) and «t)=0 for T). It results
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Let us prove now that for any u E wo and to] , } N-weakly
converges to T(t)u for i ---~ oo. We start the proof by noting that in the
contrary case we find an tl E (o, to] and a subsequence { m’i } c { mi I such
that } N-weakly convergent to an element ui EN, u,OT(ti)u.
From this subsequence we can extract another subsequence }
such that u converge (in N) a.e. on [0, to] to an individualt t

solution with initial data u (,see Foias [2], § 3), thus necessarily to

T~ ~ )u. On the other hand the function S(m)u in t E [ o, T] is N-weakly
continuous, uniformly in m= 1, 2, ... Indeed for v ENl we easily deduce
from (3.44,n-44 ... ) that for we have

where c~ - iclv are some convenient constants (independent of ti , t2 , m
and T], m =1, 2, ... } is bounded in N, the
above inequalities are sufficient in order that the desired uniform
N-weak continuity be valid. Using this continuity, we can in virtue of
Arzela-Ascoli theorem (see Dunford-Schwartz [11, Ch. IV, 6.7) extract
a subsequence } such that pointwise N-
weakly converges, uniformly on [0, T] ; in particular on [0, to], the
limit must be T( ~ )u. But this limit has in ti the value Con-

tradiction. In this manner we have verified that for any uewd and

to] N-weakly converges to T(t)u, for i - 00.

We can therofore intertwine che limit and the integrals in the last
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term of (5.29"), obtaining

This being valid for all to), q&#x3E;2:0, we deduce

a.e. on {O, to] . But in virtue of the Theorem in Sec. 3.3, the left term
is continuous in t, while the second is obviously also. We can conclude
that

In (5.31 ), the first integral is actually only over B while the second only
over wo n supp p and c B. Moreover 0 is on B an arbitrary
function in 6(8). Define on the Borel subsets of B (which are also
Borel sets in N) by

Then (5.31) can be written under the form
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for all This implies that 2: ’VtQ( w) for all Borel subsets
and consequently for any Borel set w in N we shall have

since does not intersect supp v.
In this manner we obtained the following theorem which improves

in case n = 3 the theorems in Sec. 3.2-3.

THEOREM 5. Let the space-dimension n be = 3, and let J.1 have
a bounded support in N. Then among the statistical solutions 
initial data constructed in Sec. 3.2-3, there exists one such that

for all T] and all Borel subsets oi in N.
In the sequel such solutions will be called accretive.

REMARKS. 1) The condition that the support of 11 be bounded
in N is inessential. Indeed the following construction works for any
(Borel) probability ¡1 on N, satisfying (3.5), and leads to an accretive
statistical solution with initial data It and satisfying the

strengthened energy inequality:

Split such that E and

(.1(n) (n =1, 2, ...) have bounded supports in N. Let { ~,rn~ } otT be the

solution with initial data provided by Theorem 5. Put

for all T]. It is easy to verify that has the desired

properties.

2) Since in whole the § 5 we have assumed that the right term
of the Navier-Stokes equations is time-independent, it is easy to show

(see for instance the beginning of § 6) that in Theorem 5 and Remark 2)
above we are allowed to consider .[0, o) instead [0, T] with T  00.
We shall use below this permissibility.
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Taking into account the preceding Remark 1 ) and 2) and lightly
improving the proof of Theorem 5 we can also obtain the following
more involved

THEOREM 5’ Let n = 3 and let 1:1 be any (Borel) probability in N
satisfying the condition (3.5). Then there exists a statistical solution

with initial data 1:1, satisfying the strengthened energy ine-

quality and

for all T &#x3E; t2 ? ti &#x3E;- 0 and Borel N.
This theorem will be used in Sec. 6.2.c).

REMARK. 3) Individual solutions, as statistical solutions are accre-
tive ; actually they satisfy also the stronger condition (5.32’) for all

~2 ~i~O and Borel sets in N. Indeed if t2 , ti and cv as before are

fixed, and then S1=1 if u(tl) be-

longs to the domains of and T(t2-tt)u(tl)eúJ; by the uniqueness
of the regular individual solutions we have thus

Ô2= 1, hence s2 &#x3E;- sl , i.e. (5.32’) is fulfilled.

b) It seems very reasonable to expect that for the solutions yielded
by Theorems 5 or 5’, a uniqueness theorem, less restrictive than Theorem
2 in Sec. 5.1.b), is valid. We shall give a sample of such loosened
condition.

THEOREM 6. Let n = 3 and be a (Borel) probability on N satisfying
(3.5). Let moreover be any accretive statistical solution with
initial data Then the condition

implies

for all te [0, T] and Borel sets 6o in N, thus, in particular, the uni-

queness of 
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PROOF. For let t(u) denote the supremum of those t for
which T(t)u is defined. Put ~n(u) = 0 if and if

t{u)  ~ ; obviously t(u) &#x3E; 0, so that 1t(u) is defined on whole Nl. Since
for any real number the set u : t( u ) &#x3E; ~~ I is open in Nl, (as
union of open sets), 1t(.) is a Borel function on Nl, thus

makes sense Since is accretive we will have for any to E [ o, T]

where again wro denotes the domain of T(to), i.e.

In virtue of (2.16") we have

whence

by (5.34). Integrating (5.36) with respect to toE [0, T] we obtain

thus by Fubini’s theorem
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where the integrant is = oo whenever ~(u)-1 _ T. Therefore necessarily
we have

Since toe [0, T], the last relation implies

The relation (5.35) is an easy consequence of this last fact. Indeed if

to &#x3E; 0 is again fixed and wo has the same meaning as above, and if

for a certain Borel set w in N, then

that is: A contradiction! Therefore (5.35) is valid for all te [0, T]
and Borel sets in N. The proof is complete.

REMARKS. 1) It is clear that if ’7t( u) and t(u) conserves their

meaning as in the proof above, then the Theorem 6 holds true also in
the case when (5.34) is replaced by the weaker condition

2) During the proof of Theorem 6 we established also the fact that
(5.34’) (hence (5.34) also) implies that except a set of p-measure 0,
for any uo there exists a regular (and unique) individual solution on
whole [0, T] with initial value uo (see (5.38)).

3) In virtue of Remark 3) in the preceding Sec. 5.4.a), Theorem 6
yields the following uniqueness theorem for individual solutions: Let

n = 3; then for any MoeN there exists at most one individual solution

u( ~ ) on (0, T) with initial data uo , such that
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However in this case a much better result is known, namely (Prodi [ 1 ] ) :
Let n = 3 and if there exists an individual solution u( ~ ) on
(0, T) with initial value uoeN such that

then u(.) is the unique solution on (0, T) with initial value uo . It is

very probable that there exists a « statistical analogue » of this theorem,
which would present an obvious interest.
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