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ABSTRACT

We present a novel method of statistical surface-based mor-
phometry based on the use of non-parametric permutation
tests. In order to evaluate morphological differences of brain
structures, we compare anatomical structures acquired at
different times and/or from different subjects. Registration
to a common coordinate system establishes corresponding
locations and the differences between such locations are
modeled as a displacement vector field (DVF). The analysis
of DVFs involves testing thousands of hypothesis for signs
of statistically significant effects. We randomly permute the
surface data among two groups to determine thresholds that
control the familywise (type 1) error rate. These thresholds
are based on the maximum distribution of the amplitude of
the vector fields, which implicitly accounts for spatial corre-
lation of the fields. We propose two normalization schemes
for achieving uniform spatial sensitivity. We demonstrate
their application in a shape similarity study of the lateral
ventricles of monozygotic twins and non-related subjects.

1. INTRODUCTION

The advancement of MRI has given us an invaluable tool
for extracting structural brain information. The study of
brain morphology has emerged as a new field of compu-
tational neuroanatomy and can provide great insights into
brain function and development, as well as investigate the
effects of many pathological diseases. In order to evalu-
ate morphological differences of brain structures we need
to compare structures extracted from many images acquired
at different times and from different subjects. A statisti-
cal analysis of these structures may rely on global features,
as in classical MRI-based volumetry, which measures and
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compares the volumes of homologous regions. Statistical
analysis of shape based features has also been proposed.
In shape analysis, anatomically corresponding locations be-
tween different images are computed and a mathematical
transformation between such locations, called deformation,
is evaluated. This deformation can be mathematically mod-
eled as a displacement vector field (DVF) and the study of
this field is called deformation-based morphometry. Recent
work includes computation of DVF’s using deformable reg-
istration schemes on images [1, 2] and using structural cor-
respondence establishing methods on boundary and medial
shape descriptions [3, 4].

Analysis of the DVFs involves testing from a few tens to
many thousands of hypothesis (one per surface element) for
statistically significant effects. It is important to control for
the multiple testing problem, and the most common mea-
sure of multiple false positives is the familywise error rate
(FWER).

The multiple testing problem has been an active area of
research in the functional neuroimaging community. The
most widely used methods in the analysis of neuroimaging
data use random field theory [5] [6] and make inferences
based on the maximum distribution. In this framework, a
closed form approximation for the tail of the maximum dis-
tribution is available, based on the expected value of the
Euler characteristic of the thresholded image [6]. However,
random field theory relies on many assumptions such as the
same parametric distribution at each spatial location, a point
spread function with two derivatives at the origin, sufficient
smoothness to justify the application of the continuous ran-
dom field theory, and a sufficiently high threshold for the
asymptotic results to be accurate.

In contrast, non-parametric methods rely on minimal as-
sumptions, deal with the multiple comparisons problem and
can be applied when the assumptions of the parametric ap-
proach are untenable. Non-parametric permutation tests are
exact, distribution free and adaptive to underlying corre-
lation patterns in the data. Further, they are conceptually
straightforward and, with recent improvements in comput-
ing power, are computationally tractable. They have been
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Fig. 1. Visualization of the distance map between the right
lateral ventricles of a twin-pair (superior view). A: The
two ventricles after alignment. B: Same as A, one ventricle
shown transparent and the other as grid-mesh. C: Distance
map with color-coded distance at each boundary-point.

applied in a wide range of functional imaging applications
[7] [8]. Sowell et al. [9] has used permutation tests to
validate statistical results of a random field study on brain
morphology changes between childhood, adolescence and
adulthood. In contrast to that work, the method presented
here produces a local threshold map applied directly to the
DVF.

2. METHOD

The objective of this study is to localize regions of brain
structures that exhibit statistically significant morphologi-
cal variation among two population groups while control-
ling the risk of any false positives. We find local thresholds
that control the FWER and at the same time achieve uniform
sensitivity among all surface elements.

2.1. Permutation Scheme

We assume we have two groups of DVFs, group A and
group B. Each DVF measures the difference between a brain
structure and a template or a designated comparison object.
For example, group A may be composed of lateral ventri-
cles of twins and each DVF models the morphological dif-
ference for each pair of twins (see Fig. 1). Group B may
have similarly constructed DVFs but from pairs of unre-
lated individuals of similar age and same gender. We want
to test the two groups for difference in the means at each
spatial location (see Fig. 2). Permutation tests are a valid
and tractable approach for such an application, as described
in the introduction. Our null hypothesis is that the distri-
bution of the DVF at each spatial element is the same for
every subject regardless of the group. Permutations among
the two groups satisfy the exchangeability condition, i.e.
they leave the distribution of the statistic of interest unal-
tered under the null hypothesis. Given n1 members of the
first group ak, k = 1 . . . n1 and n2 members of the second
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Fig. 2. Concept of statistical significance maps: For two
groups of objects, DVF maps are compared locally resulting
in a map of significant differences between groups.

Fig. 3. Illustration of the permutation scheme. We create
M permutation samples from the original data and form the
statistic Tij . The statistic is normalized into T n

ij and the data
are summarized in space to create Sj . The empirical distri-
bution of Sj , called F̂S is used to define a global threshold
Sth which corresponds to spatially varying thresholds Sth

i .

group bk, k = 1 . . . n2, we can create M ≤
(

n1 + n2
n2

)
per-

mutation samples. A value of M from 1000 and up should
yield results that are negligibly different from using all per-
mutations [10].

Our modeling proceeds by forming a vector of statistics
for each permutation sample j, called Tj , with elements:

Tij =
∣∣∣∣
∑n1

k=1 ‖a∗
ki‖

n1
−

∑n2
k=1 ‖b∗ki‖

n2

∣∣∣∣ (1)

where i is the spatial index, j the permutation index, and
k the group member index. Further, ‖a∗

ki‖ (‖b∗ki‖) is the
amplitude of the DVF at the ith spatial location of the kth

member of group A (group B). The symbol (∗) indicates
that the values a∗

ki and b∗ki are created by permutation (Fig.
3). In essence, Tij captures the difference of the amplitudes
of the DVFs among the two groups. The goal is to use this
statistic to estimate the maximum distribution of the vector
amplitude differences over all surface elements i. We may
do this by summarizing in space using a maximum statistic
Sj = maxi(Tij) and use the empirical distribution to ex-
tract thresholds that control the false positives to a desired
level. However, the method requires some modifications to
achieve uniform sensitivity across space.
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2.2. Uniform Sensitivity

Permutation tests are always valid given the assumption of
exchangeability under the null hypothesis. However, we
may face the problem of uneven sensitivity in the spatial
dimension if the null distribution varies across space. For
example, with a maximum statistic over space, surface ele-
ments for which the morphological structure varies signif-
icantly will contribute more to the maximum distribution
than others with smaller morphological variability. The im-
pact is a relatively generous threshold for the highly varying
locations and a stringent threshold for the other locations.
We can overcome this problem by including some form of
normalization in the statistic Tij . In this paper we propose
two different normalization schemes.

The first normalization scheme is based on computing
the standard deviation σi of the statistic Tij across permu-
tations for each surface element i and normalizing Tij with
this value: T σ

ij = Tij/σi. The normalized statistic T σ
ij has

a new empirical distribution over j which, under specific
assumptions, is invariant across all surface elements i. We
assume that, under the null hypothesis, the x,y and z vector
components of the DVFs are zero mean Gaussian random
variables with possibly different variances σx, σy and σz .
It is very hard to extract the theoretical distribution of Tij

based on eq 1, so we resorted to Monte Carlo simulations.
For 1000 times we simulated 100 samples of Tij (excluding
the outside absolute value operator) with n1 = n2 = 10
and tested how well they match a Gaussian distribution us-
ing a Lilliefors test. The 0.05 Lilliefors threshold is 0.0889
and only 51 out of 1000 samples exceeded this threshold,
so Tij pass the Gaussianity test. Similar experiments indi-
cated that the Gaussianity assumption is reasonable even for
n1 = n2 ≥ 5. Finally, other simulations demonstrated that
Tij has the same skewed distribution for all elements i, as
long as σx = σy = σz . Under the above conditions, the T σ

ij

normalization scheme guarantees uniform sensitivity.
Alternatively, we can also normalize based on p-values,

i.e. at each spatial location we compute the empirical distri-
bution across permutations and then replace the statistic Tij

for each permutation sample with its p-value. The p-value
at surface element i for permutation j, called T p

ij , is defined
by T p

ij = pi(Tij), where:

pi(t) =
1
M

∑
j

H(Tij − t), H(x) =
{

1 if y ≥ 0
0 if y < 0 (2)

We now guarantee that T p
ij has a uniform distribution under

Ho for each i.

2.3. Local Threshold Map

We can use the information contained in the normalized data
to define a local threshold map that controls the FWER to a

Tij Space- Global Local

Normalized Summarizing Threshold Threshold

T n
ij Sj Sth Sth

i

Method 1 T σ
ij maxi{T σ

ij} F̂−1
Sσ (1 − α) Sth · σi

Method 2 T p
ij mini{T p

ij} F̂−1
Sp (α) p−1

i (Sth)

Table 1. Normalization schemes, summary statistics and
thresholds for the two permutation methods.

MZ NR

L

R

2 mm 8 mm

Fig. 4. Color-coded average distance maps visualize the
absolute distances between pairs, averaged over the group.
The displays show a smaller average distance between MZ
twins compared to NR subjects.

desired level, say 5%, when applied to the original data. For
this it is necessary to estimate the maximum distibution of
the vector amplitude differences over all surface elements i.
We achieve this by summarizing in space using an extremal
statistic:

Sσ
j = maxi{T σ

ij}, Sp
j = mini{T p

ij} (3)

Notice that the minimum p-value plays the same role as the
maximum statistic in FWER. After summarizing in space
we can use the empirical distribution of Sj to define a thresh-
old Sth that controls the FWER. If F̂Sσ and F̂Sp are the
empirical cdfs of Sσ and Sp, then the appropriate global
thresholds for a level α test would be F̂−1

Sσ (1−α) andF̂−1
Sp (α)

respectively (Table 1). For example, if we choose a thresh-
old that leaves 5% of the area of the empirical distribution
on the right side for Sσ

j , resp. left side for Sp
j , then we have

5% probability of one or more false positives throughout
the entire surface. The threshold Sth cannot be directly ap-
plied to Ti0 (the statistic formed by the original data with
permutation index j = 0). Since the statistic Tij was nor-
malized separately for each surface element i, the same Sth

will correspond to different values of local thresholds at dif-
ferent surface elements. These local thresholds are found
with the inverse normalization transformation, where sur-
face element i shows significant variation if Ti0 ≥ Sthσi,
resp. Ti0 ≥ p−1

i (Sth).

3. RESULTS

We applied our method to a shape similarity study of lat-
eral ventricles, a fluid-filled space in the human brain. We
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Fig. 5. Left: Example empirical distribution of the statis-
tic Tij across j at a surface element i. Middle: Empirical
distribution of maximum statistic Sσ

j . Right: Empirical dis-
tribution of minimum statistic Sp

j .

0.001
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Fig. 6. Significance maps for the two normalization meth-
ods. The maps indicate regions where unrelated individuals
have more variability that twins. The methods perform sim-
ilarly on both the left and right lateral ventricle.

used 2 groups of subjects each consisting of 20 subjects (age
and gender matched): a monozygotic (MZ) twin group and
a non-related subject group (NR). In this study we are in-
terested in the difference in similarity of the lateral ventri-
cles between these groups. The ventricles were segmented
from single gradient-echo MRI via automatic brain tissue
classification and connectivity based postprocessing. Us-
ing the SPHARM surface description [3], each object was
described by 4002 surface points with known correspon-
dence. The difference between MZ twins and NR subjects
was computed as shown in Figure 1. We generated M =
50, 000 permutation samples and derived significance maps
according to the methods described in Table 1.

Figure 4 shows the average distance maps, which clearly
display a higher degree of similarity of the MZ group as
compared to the NR group. Figure 5 shows the empiri-
cal distributions of Sσ

j and Sp
j . The right tail of the max-

imum statistic Sσ
j is well behaved and the threshold value

F̂−1
Sσ (0.95) can thus be reliably computed. This is not the

case for the minimum statistic Sp
j , as the left tail is bounded

by zero and, due to discreteness of the emperical distribu-
tion, the threshold F̂−1

Sp (0.05) required many permutations
(M = 50, 000) for an accurate computation. The signifi-
cance maps produced by the two normalization schemes are
quite similar (Fig. 6), which demonstrates that the ventricle
data reasonably satisfy the assumptions of the first normal-
ization scheme.

4. CONCLUSION

We have presented a novel method for the statistical anal-
ysis of morphological differences of brain structures. We
have used permutation tests to extract local thresholds that
control the number of false positives at a specified level α
over all surface elements and our approach implicitly ac-
counts for spatial correlations of the data. Further, we have
proposed two normalization schemes to achieve uniform de-
tection sensitivity.

If the data are Gaussian under the null hypothesis, the
normalization scheme based on the standard deviation σi

may be used. Otherwise, we resort to the p-value normaliza-
tion scheme which requires more permutations but makes
no distributional assumptions.
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