
1

Statistical Techniques for Online Anomaly
Detection in Data Centers

Chengwei Wang, Krishnamurthy Viswanathan*, Lakshminarayan Choudur*, Vanish Talwar*, Wade Satterfield*,
Karsten Schwan

CERCS, Georgia Institute of Technology,*Hewlett-Packard

Abstract—Online anomaly detection is an important step
in data center management, requiring light-weight techniques
that provide sufficient accuracy for subsequent diagnosis and
management actions. This paper presents statistical techniques
based on the Tukey and Relative Entropy statistics, and applies
them to data collected from a production environment and to
data captured from a testbed for multi-tier web applications
running on server class machines. The proposed techniques are
lightweight and improve over standard Gaussian assumptions in
terms of performance.

I. I NTRODUCTION

Commercial data center environments are increasingly char-
acterized by extremely large scale and complexity. Individual
applications like Hadoop MapReduce and Web 2.0 can involve
thousands of servers. Utility clouds like Amazon EC2 or
Google App are able to serve more than 2 millions businesses
to run their own applications, each of which may have dif-
ferent workload characteristics. These facts make data center
management a difficult task, especially in systems where
malfunctions can lead to extensive losses in profit due to lack
of responsiveness or availability.

Our work seeks to improve system performance and avail-
ability by developing online, closed loop management solu-
tions that (i) detect problems, (ii) diagnose them to determine
potential remedies or mitigation methods, and (iii) trigger and
carry out such solutions. A key element of such research and
the topic of this paper is onlineanomaly detection, which
is to understand whether a system is behaving as expected
or whether it is behaving in ways that are unusual and
deserve further investigation and diagnosis. Anomaly detection
is important because it must be done continuously, as long asa
system is running and at scale – for entire data center systems.

We are interested in online anomaly detection solutions
that can be applied to continuous monitoring scenarios as
opposed to methods that rely on static profiling or limited sets
of historical data. There are several challenges in designing
effective solutions for such online anomaly detection in large
data centers. These include scale, for which the anomaly
detection methods must be ‘lightweight’, both in terms of the
number of metrics they require to run (the volume of moni-
toring data continuously captured and used), and in terms of
their runtime complexity for executing the detection methods.
Next, these methods should have the ability to handle multiple
metrics at the different levels of abstraction – hardware, system
software, middleware, or applications – present in data centers.
Furthermore, the methods need to accommodate the workload

characteristics and patterns including day of the week, and
hour of the day patterns of workload behavior. The methods
also need to be aware of and address the dynamic nature
of data center systems and applications, including dealing
with application arrivals and departures, changes in workload,
and system-level load balancing through say, virtual machine
migration. Finally, the solutions must exhibit good accuracy
and low false alarm for meaningful results.

The state of the art approaches for anomaly detection
deployed in today’s data centers apply a fixed threshold on the
metrics being monitored. These thresholds are usually com-
puted offline from training data and remain constant during the
entire process of anomaly detection. Often these thresholds are
applied to each individual measurement separately. Variants
such as Multivariate Adaptive Statistical Filtering (MASF) [3]
additionally maintain a separate threshold for data segmented
and aggregated by time (e.g., hour of day, day of week). How-
ever, these existing techniques assume the data distribution
to be Gaussian for determining the threshold values. This
assumption is frequently violated in practice. Furthermore,
fixed thresholds cannot adapt to loads that may change over
time or intermittent bursts, nor can they react to anomalous
behavior that may not show up as extremal large or small
values in the data. All of these lead to false alarms and reduced
accuracy with existing techniques.

We propose statistical techniques in this paper that over-
come these limitations improving accuracy and insights raised
by anomaly flags. More specifically, we make the following
contributions:

• We select two statistical techniques,Tukey methodand
the multinomial goodness-of-fit test based on theRelative
Entropy statistic, and adapt them to the specific needs
for anomaly detection in data centers. Algorithms using
these techniques are proposed that compute statistics on
data based on multiple time dimensions - entire past,
recent past, and context based on hour of day and day of
week. These statistics are then employed to determine if
specific points or windows are anomalies. The proposed
algorithms have low complexity and are scalable to
process large amounts of data.

• We have experimented the proposed algorithms with
data from a 3-tier RUBis (Internet Service) testbed with
injected performance and configuration anomalies, as
well as data from production testbeds. Our results have
shown improvement in accuracy and reduction in false
alarm rates compared to state of art Gaussian techniques.

jdigney
Text Box
12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011). May 23-27, 2011.

2

Further, our techniques are shown to be more adaptable
to varying workload changes and they learn the multiple
states of operation of the workload over time. Further-
more, we also illustrate how results from multiple time
dimensions and multiple techniques can be combined
to provide improved insights on application behavior to
administrators.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on existing tech-
niques. Section III describes our proposed statistical tech-
niques that overcome limitations of existing approaches. Ex-
perimental results are presented in Section IV. Section V
provides discussion on combining results from multiple time
dimensions. Section VI discusses related work, and we finally
conclude the paper in Section VII.

II. BACKGROUND

Anomalies manifest in data in a variety of ways. Two
common manifestations are those in which a data point is
atypical with reference to the normal behavior of the data
distribution, and secondly those when the distribution of the
data changes with time. One way of dealing with thefirst
problem is to use the distribution of the data to compute
thresholds. Typical data under normal process behavior will
oscillate within the threshold limits. Data points fallingbeyond
and below the upper and lower thresholds respectively are
flagged as anomalies. These thresholds are obtained under cer-
tain assumptions about the behavior (shape) of the distribution.
An understanding and quantitative representation of the data
distribution is obtained by studying the historical data. This
approach is known as parametric thresholding. To address the
secondproblem, the variability in the process over an extended
period of time is studied and analyzed by using the historical
repository of data. From this, an estimate of the variability
of the data is characterized and threshold limits are computed.
This approach avoids the necessity to make assumptions about
the shape of the distribution of the data. Such methods are
known as non-parametric methods.

In many applications involving statistical analysis of data,
the Gaussian distribution is the assumed underlying probability
model [12]. For example, a popular method for anomaly
detection in data centers is MASF [3] which relies on the
Gaussian law. MASF first segments the data by hour of day
and day of week. Subsequently, threshold limits are computed
based on the standard deviation (σ) of this segregated data.
Under Gaussian assumptions, 95% of the data is within the
2 standard deviations (σ) of the mean (µ), and 99 % of the
data is within 3 standard deviations of the meanµ. A data
point falling outside the3σ range occurs 27 times out of
10000 opportunities which is deemed as a rare event and thus
is flagged as an anomaly. So the limits can be adjusted to
3σ or 4σ, etc. The typical limits areµ ± 3σ. Although the
Gaussian assumption holds in general, some data points do not
conform to Gaussian behaviors. While, this may not always
be detrimental, it is recommended that other methods that do
not rely on restrictive normality assumptions be considered.
We present such methods in Section III.

Finally, we would like to point out that prior to the ap-
plication of an anomaly detection method, pre-processing of
data is usually done. This includes data cleansing to remove
any invalid and spurious data, as well as smoothing of data
using procedures such as (1) Moving average smoothing, (2)
Smoothing by Fourier transform, or (3) the Wavelet transform.

III. STATISTICAL APPROACHES

In this section, we will examine two classes of statistical
procedures for anomaly detection. The first class is based on
applying thresholds to individual data points. The second class
involves measuring the changes in distribution by windowing
the data and using that to determine anomalies.

A. Point thresholds

Within the class of point threshold techniques, we propose
Tukey[11] method for anomaly detection. Similar to Gaussian
methods, this method constructs a lower threshold and an
upper threshold to flag data as anomalous. However, the Tukey
procedure does not make any distributional assumptions about
the statistical behavior of the data as is the case with Gaussian
method.

The Tukey is a simple but effective procedure for identifying
anomalies. We describe it below. Letx1, x2, . . . , xn be a series
of observations such as the cpu utilization of a server. This
data is arranged in an ascending order from the smallest to
the largest observation. The ordered data is broken into four
quarters, the boundary of each quarter defined byQ1, Q2, and
Q3, called the 1st quartile, 2nd quartile, and 3rd quartile re-
spectively. The difference|Q3−Q1| is called the inter-quartile
range. The Tukey upper and lower thresholds for anomalies
respectively are:ltl = Q1 − 3|Q3−Q1| andQ3 +3|Q3 −Q1|.
Observations falling beyond these limits are called serious
anomalies and any observation,xi, i = 1, 2, . . . , n such that
Q3 + 1.5|Q3 − Q1| ≤ xi ≤ Q3 + 3.0|Q3 − Q1| called a
possible anomaly. SimilarlyQ1 − 3.0|Q3 − Q1| ≤ xi ≤
Q1 − 1.5|Q3 − Q1| a possibleanomaly on the lower side.
The method allows the user flexibility in setting the threshold
limits. For example, depending on a user’s experience, the
upper and lower anomaly limits can be set to,Q3+k|Q3−Q1|
andQ1−k|Q3−Q1|, wherek is an appropriately chosen scalar.
The lower and upper Tukey limits correspond to a distance
of 4.5 σ (standard deviations) from the sample mean if the
distribution of the data is Gaussian.

B. Windowing approaches

Identifying individual data points as anomalous can resultin
false alarms when, for example, sudden instantaneous spikes
in CPU or memory utilization are flagged. To avoid this,
one might seek to examine windows of data consisting of
a collection of points and then make a determination on the
window. A simple extension of the point threshold approach to
anomaly detection on windowed data is to apply the threshold
to the mean of the window of the data. The thresholds could be
computed from the entire past history or merely the past few
windows. While simple, this approach though fails to capture

3

a large fraction of anomalies (this will be shown in our results
as well). Hence, we instead propose a new approach to detect
anomalies which manifest as changes in the system behavior
inconsistent with what is expected.

Our approach is based on a classical question in hypothesis
testing [18], namely determining if the observed data is
consistent with a given distribution. In the classical hypothesis
testing problem, we are required to determine which of two
hypotheses, thenull hypothesisand thealternate hypothesis,
best describes the data. The two hypothesis are each defined by
a single distribution or a collection of distributions. Formally,
let X1, X2, . . . , Xn denote the observed sample of sizen.
Let P0 denote the distribution representing the null-hypothesis
and let P1 the alternate hypothesis. Then the optimal test
for minimizing the probability of falsely rejecting the null
hypothesis under a constraint on the probability of incorrectly
accepting the null hypothesis is given by the Neyman-Pearson
theorem. The theorem states that the optimal test is given by
determining if thelikelihood ratio

P0(X1, X2, . . . , Xn)

P1(X1, X2, . . . , Xn)
≥ T (1)

whereP0(X1, X2, . . . , Xn) is the probability assigned to the
observed sample byP0, P1(X1, X2, . . . , Xn) is the corre-
sponding probability assigned byP1, andT is a threshold that
can be determined based on the constraint on the probability
of incorrectly accepting the null hypothesis.

Sometimes the alternate hypothesis is merely the statement
that the observed data is not drawn from the null hypothesis.
Tests designed for this purpose are calledgoodness-of-fit
tests. For our problem, we invoke a particular test known
as themultinomial goodness-of-fit test(see e.g. [18]) that is
applied to a scenario where the dataXi are discrete random
variables that can take at mostk values, say{1, 2, . . . , k}.
Let P0 = (p1, p2, . . . , pk) where

∑
i
pi = 1 denote the

distribution corresponding to the null hypothesis (pi denotes
the probability of observingi). Let ni denote the number
of times i was observed in the sampleX1, X2, . . . , Xn. Let
P̂ = (p̂1, p̂2, . . . , p̂k) where p̂i = ni

n
denote the empirical

distribution of the observed sampleX1, X2, . . . , Xn. Then the
likelihood ratio in (1) reduces to

L = log
Πk

i=1
p̂ni

i

Πk

i=1
pni

i

= n

n∑

i=1

p̂i log
p̂i

pi

.

Note that therelative entropy(also known as the Kullback-
Leibler divergence [17]) between two distributionsQ =
(q1, q2, . . . , qk) andP = (p1, p2, . . . , pk) is given by

D(Q||P) =
∑

i

qi log
qi

pi

.

Thus the likelihood ratio isL = n∗D(P̂ ||P). The multinomial
goodness-of-fit test relies on the observation that if the null
hypothesisP is true, then as the number of samplesn grows
2 ∗ n ∗D(P̂ ||P) converges to a chi-squared distribution1 with

1A chi-squared distribution withm degrees of freedom is the sum of the
squares ofm independent identically distributed zero mean, unit variance
Gaussian random variables.

k − 1 degrees of freedom. Therefore the test is performed by
comparing2∗n∗D(P̂ ||P) with a threshold that is determined
based on the cumulative distribution function (cdf) of the chi-
squared distribution and a desired upper bound on the false
negative probability.

To apply the multinomial goodness-of-fit test, for the pur-
pose of anomaly detection we first quantize the metric being
measured and discretize it to a few values. For example, the
percentage of CPU utilization which takes values between0
and 100 can be quantized into 10 buckets each of width10.
Thus the quantized series of CPU utilization values takes one
of 10 different values. Then we window the data and perform
anomaly detection for each window. To do so, we select the
quantized data observed in a window, decide on a choice of the
null hypothesisP , and perform the multinomial goodness-of-
fit test with a threshold based on an acceptable false negative
probability. If the null hypothesis is rejected, then we raise an
alarm that the window contained an anomaly. If it is accepted,
then we declare that the window did not contain an anomaly.

Depending on the choice of the null hypothesis, one can
obtain a variety of different tests. We consider two different
choices in this paper. The first choice involves settingP =
(p1, p2, . . . pk) wherepi is the fraction of timesi appeared in
the past,i.e., before the current window. Intuitively this choice
declares a window to be anomalous if the distribution of the
metric values in that window differs significantly from the
distribution of metric values in the past. In the second choice
pi is set to be the fraction of timesi appears in the past few
windows. This choice declares a window to be anomalous if
the distribution of the metric values in that window differs
significantly from the distribution of metric values in the recent
past. Unlike the first choice, this choice distinguishes between
the cases where the distribution of the metric being monitored
changes in a gentle manner and where the distribution of the
metric changes abruptly.

In many real life applications, the nature of the load on a
data center is often not constant. In fact, it is strongly related
to the day of the week and the hour of the day. Thus applying
the hypothesis tests as described above directly may not yield
the desired results. Therefore, in such cases it is necessary
to contextualize the data, namely, compute the null hypothesis
based on the hour of day or the day of the week. Furthermore,
some systems may operate in multiple states. For example,
the system could encounter very small or no load for most
of the time and higher loads in bursts intermittently. In that
case, it is likely that the relative entropy based approaches
outlined here would flag the second state as anomalous. This
may not be desirable. We present an extension of the goodness-
of-fit approach as a way to ameliorate such problems. In this
extension, the test statistic is computed against several null
hypotheses as opposed to a single one. We formally describe
how the null hypotheses are selected and how the anomaly
detection is performed in Figure 1. We first describe the inputs
and intermediate variables in our algorithm. Inputs:

• Util is the timeseries of the metric on which the anomaly
needs to be detected

• Nbins is the number of bins into whichUtil is to be
quantized

4

• Utilmin and Utilmax are the minimum and maximum
values thatUtil can take

• n is the length of the time series being monitored
• W is the window size
• T is the threshold against which the test statistic is

compared. It is usually set to that point in the chi-squared
cdf with Nbins − 1 degrees of freedom that corresponds
to 0.95 or 0.99.

• cth is a threshold against whichci is compared to
determine if a hypothesis has occurred frequently enough.

Intermediate variables:
• m tracks the current number of null hypothesis
• Stepsize is the step size in time series quantization
• Utilcurrent is the current window of utilization values
• Bcurrent is the current window of bin values obtained by

quantizing the utilization values
• P̂ , the empirical frequency of the current window based

on Bcurrent.
• ci tracks the number of windows that agree with hypoth-

esisPi

Algorithm ANOMALY DETECTION USINGMULTINOMIAL
GOODNESS-OF-FIT

Input: (Util, Nbins, Utilmin, Utilmax, n, W , T , cth)

1) Setm = 0
2) SetWindex = 1
3) SetStepsize = (Utilmax − Utilmin)/Nbins

4) While (Windex ∗ W < n)

a) SetUtilcurrent = Util((Windex−1)∗W +1 : Windex∗
W)

b) SetBcurrent = ⌈((Utilcurrent − Utilmin)/Stepsize)⌉
c) ComputeP̂
d) If m = 0

• SetP1 = P̂ , m = 1, c1 = 1

e) Else if (2 ∗ W ∗ D(P̂ ||Pi) < T) for any hypothesisPi,
i ≤ m,
• Incrementci by 1 (If more than one suchi exists,

select the one with lowestD(P̂ ||Pi))
• If ci > cth,

– Declare window to be non-anomalous
• Else

– Declare window to be anomalous
f) Else

• Declare window to be anomalous
• Incrementm by 1, setPm = P̂ , andcm = 1

Fig. 1. Algorithm for anomaly detection with multiple null hypotheses

The algorithms works as follows. The current window
is selected in Step 4a) and the values in the window are
quantized in Step 4b). The algorithm computes the empirical
frequencyP̂ of the current window as in Step 4c). Observe
that P1, P2, . . . , Pm denote them null hypotheses at any
point in time. A test-statistic involvingP̂ and each of the
Pis is computed and compared to the thresholdT in Step
4e). If the test-statistic exceeds the threshold for all of the
null-hypotheses, the window is declared anomalous,m is
incremented by1 and a new hypothesis is created based on

the current window. If the smallest test-statistic is less than the
threshold but corresponds to a hypothesis that was accepted
less thancth times in the past, then the window is declared
anomalous, but the number of appearances of that hypothesis
is incremented. If neither of the two conditions is satisfied,
the window is declared non-anomalous and the appropriate
book-keeping performed.

The relative entropy based approaches described here have
several advantages. They are non-parametric, namely they do
not assume a particular form for the distribution of the data.
They can be easily extended to handle multi-dimensional time-
series thereby incorporating correlation, and can be adapted
to workloads whose distribution changes over time. While
relative entropy and hypothesis testing approaches have been
used for anomaly detection, we are not aware of any work
that uses it in the context of multinomial goodness of fit test.
The latter provides a systematic way (based on the cdf of the
chi-squared distribution) to choose a threshold above which
alarms are raised. This feature is not always present in other
works using the relative entropy metric. We also extend the
technique in a novel manner to adapt to multiple operating
states and for detecting contextual anomalies.

All the algorithms that we propose are computationally
lightweight. The algorithms require computing statisticsfor
current window and updating historical statistics. The compu-
tation overhead for the current window statistics is negligible.
Updating quantities such as mean and standard deviation can
clearly be performed in linear time, Further this can be donein
an online manner with very little memory as only the sum of
the observed values and the sum of the squares of the observed
values need to be maintained. For the Tukey method, we need
to compute quantiles, and for the relative entropy method, the
empirical frequency of previous windows. These can also be
computed in time linear in the input. Further, these quantities
can be well-approximated in one pass with limited memory,
without having to store all the observed data points [24].

IV. T HE RESULTS

We tested the algorithms discussed in Section III on two
different types of data. The first data set was one where
we could inject anomalies and validate the results returned
by our algorithms. It was obtained from an experimental
setup with a representative internet service - RUBiS [19], a
distributed online service implementing the core functionality
of an auction site. The second type of data set was collected
from production data centers. We present the results from our
analysis on these two datasets.

A. RUBiS Testbed Results

The RUBiS testbed uses 5 virtual machines (VM1 to VM5)
on Xen platform hosted on two physical servers (Host1 and
Host2). VM1, VM2, and VM3 are created on Host1. The
frontend server processing or redirecting service requests runs
in VM1. The application server handling the application logic
runs in VM2. The database backend server is deployed on
VM3. The deployment is typical in its use of multiple VMs

5

Method Statistics Over Recall FPR
Gaussian (windowed) Entire past 0.06 0.02
Gaussian (windowed) Recent windows 0.06 0.02
Gaussian(smoothed) Entire Past 0.58 0.08

Tukey(smoothed) Entire Past 0.76 0.04
Relative entropy Entire past 0.46 0.04
Relative entropy Recent past 0.74 0.04
Relative entropy Multiple Hypotheses 0.86 0.04

TABLE I
RECALL AND FALSE POSITIVE RATES FOR DIFFERENT TECHNIQUES WITH

RUBIS DATA

and the consolidation of such VMs onto a smaller number of
hosts.

A request load generator and an anomaly injector are
running on two virtual machines, VM4 and VM5, on Host2.
The generator creates 10 hours worth of service request load
for Host1 where the auction site resides. The load emulates
concurrent clients, sessions, and human activities. During the
experiment, the anomaly injector injects 50 anomalies into
the RUBiS online service in Host1. Those 50 anomalies
come from major sources of failures or performance issues
in online services [20]. We inject them into the testbed using
a uniform distribution. The virtual machine metrics and the
host metrics are collected using Xentop and analyzed in an
anomaly detector.

We present the results of analyzing the CPU utilizations
in Table I. The CPU utilization data was quantized into33
equally spaced bins, and for the windowing techniques, the
window length was set to100. For algorithms that use only the
recent past,10 windows of data were used. For the Gaussian
methods, for each window, anomaly detection was performed
on the CPU utilization of each of the three virtual servers
and an alarm raised if an anomaly is detected in at least
one of them. For the relative entropy methods, the sum of
the test statistics of each of the servers is compared to a
threshold (computed based on the fact that the sum of chi-
squared random variables is a chi-squared random variable).
As mentioned, there were total50 anomalies injected, and in
our evaluation, an anomaly is said to be detected if an alarm
is raised in a window containing the anomaly. The results are
presented in terms of statistical metrics - Recall and False
Positive Rate (FPR).

Recall =
of succesful detections

of total anomalies
(2)

False Positive Rate (FPR)=
of false alarms
of total alarms

. (3)

From Table I, it is clear that the windowed Gaussian tech-
niques perform poorly when applied to the RUBiS data.
The relative entropy-based algorithms and the Tukey method
perform much better with the multiple hypothesis relative
entropy technique giving the best results (detecting 86% of
the anomalies with a minimal false positive rate). Also, using
the few past windows to select the null hypothesis provides
better accuracy than using the entire past.

B. Production Data Center Results

In this section, we report results from analyzing data col-
lected from two different real world customer production data
centers over a30 and60 day period respectively (henceforth
called CUST1 and CUST2 respectively) [21]. The metrics
such as CPU and Memory utilization are sampled every5
minutes. We segmented this data by hour of day, and day of
week for both CUST1 and CUST2, and applied the anomaly
detection methods over them, thus performing context-based
evaluations. We primarily report results in this section onthese
context-based evaluations only. Also, since this is data from
production data centers, we had no control of the anomalies
that manifested, nor do we have knowledge about them. So,
in our evaluations, we simply report the number of anomalies
detected by the various techniques, and do a comparison
among them. The implementation for the Gaussian techniques
is based on the industry-standard MASF approach [3].

In Figure I, we present a representative plot of the windowed
techniques on the data of one of the servers for CUST1
contextualizing the data based on hour of day, as explained
in Section III. The results shown are for a fixed hour during
the day and for CPU Utilization data (this data is measured
in terms of number of cores utilized ranging from 0 to 8).
The alarms raised by different techniques are shown. To
interpret the plots, note that if any of the curves is non-zero,
then it implies that an alarm was raised by the technique
corresponding to the curve. The heights of the curves do
not carry any further meaning. We observe that the Gaussian
threshold based method does not detect the first unusual
increase in CPU utilization as soon as the Goodness-of-fit
based methods. The multiple hypothesis version learns the
behavior of the system and does not raise an alarm during
similar subsequent increases.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Time in minutes

C
P

U
 U

ti
liz

at
io

n

CPU Utilization

Gaussian method

Relative entropy

Relative entropy −multiple hypotheses

Fig. 2. Anomaly detection on real-world data (CUST1)

Next, we present some results from CUST2 data. We exam-
ined the CPU utilization of one of the servers and interleaved
the data according to hour of day. More specifically, for each
x ∈ {0, 1, 2, . . . , 23}, we grouped together all the measure-
ments made betweenx hours andx+1 hours on weekdays. We
tested the pointwise Gaussian and Tukey techniques, as well
as the relative entropy technique with multiple hypotheses. To

6

Hour of day # Anomalies # Anomalies # Anomalies Common Unique to RE Unique to Unique to
(Relative (Gaussian) (Tukey) Anomalies Gaussian Tukey

Entropy-RE)
0000 6 7 7 6 0 0 0
0100 4 6 1 1 0 2 0
0200 2 4 0 0 0 2 0
0300 5 4 2 1 2 0 0
0400 5 5 2 2 0 0 0
0500 4 5 2 1 1 1 0
0600 5 7 3 3 0 2 0
0700 4 6 7 4 0 0 1
0800 6 2 3 2 3 0 0
0900 7 2 14 2 0 0 7
1000 6 2 13 2 0 0 7
1100 7 2 3 1 5 0 0
1200 4 2 2 2 2 0 0
1300 1 2 1 1 0 1 0
1400 5 5 5 4 1 0 0
1500 6 5 12 4 1 0 6
1600 4 5 2 2 1 2 0
1700 4 3 3 2 2 0 0
1800 4 3 0 0 1 0 0
1900 5 3 3 3 2 0 0
2000 3 2 0 0 2 1 0
2100 6 5 8 4 1 0 2
2200 5 4 0 0 2 1 0
2300 6 10 6 5 0 3 0

TABLE II
COMPARISON OF VARIOUS TECHNIQUES ON REAL CUSTOMER DATA(CUST2): NUMBER OF ANOMALIES DETECTED BY EACH TECHNIQUE IN EACH HOUR

FOR WEEKDAYS

determine the limits for the pointwise Gaussian and Tukey
techniques, we used the first half of the data set to estimate
the mean, standard deviation and relevant quantiles. We then
applied the thresholds on the second half of the data set to
detect anomalies. The server in question had been allocateda
maximum of 16 cores and thus the values of CPU utilization
ranged between 0.0 and 16.0. To apply the relative entropy
detector, we used a bin width of2.0 which corresponds to8
bins. The window size was12 data points which corresponds
to an hour. Thus the relative entropy detector, at the end of
each hour, declares that window to be anomalous or otherwise.
To facilitate an apples-for-apples comparison, we processed
the alarms raised by the Gaussian and Tukey methods as
follows. For each of the techniques, if within one window
at least one alarm is raised, then the window is deemed
anomalous. This way we are able to compare the number of
windows that each of the techniques flags as anomalous. The
above comparison is performed for each of the24 hours. The
results are presented in Table II.

The first column in Table II specifies the hour of day that
was analyzed. The next three columns indicate number of
anomalies detected by the three techniques. The fifth column
states the number of anomalies detected by all of them and
the sixth, seventh and eighth columns the anomalies that were
uniquely detected by each of the techniques. For instance the
sixth column records the number of anomalies detected by the
relative entropy technique but not by the other two.

To briefly summarize the results, we observe that in most
cases the relative entropy technique identifies the anomalies
detected by the other two techniques, and flags a few more as
well. There are three notable exceptions hours -0900, 1000
and1500 where the Tukey method flags6−7 more anomalies
than the other techniques. A closer examination of the data

corresponding to these hours reveals that the CPU utilization
during these hours was mostly very low (< 0.5) leading to the
inter-quartile range being very small and therefore resulting in
a very low upper threshold. As a result, the algorithm flagged
a large number of windows as anomalous and it is reasonable
to surmise that some of these may be false alarms. On the
other hand, the data corresponding to hour1100 results in
the relative entropy technique returning5 anomalies that the
other two techniques do not flag. Some of these anomalies
are interesting when examined closely. The typical behavior
of the CPU utilization is as follows: it hovers between0.0
and 2.0 with occasional spikes. But often after spiking to a
value greater than6.0 for a few measurements, it drops back
down to a value around2.0. But in a couple of cases, the value
does not drop down entirely and remains between4.0 and6.0,
indicating perhaps a stuck thread. The Gaussian and Tukey
methods do not catch this anomaly as it does not manifest as
an extreme value. However, it is interesting that the relative
entropy is able to catch this.

Finally, we present results for data segmented by hour for
a given day of the week only. In other words, we string
together data by each hour for a given day over the entire data
collection period. The results we present consist of analyzing
the hours between 10 AM and 5 PM on Mondays only over the
collection period. Both cpu-utilization and memory utilization
methods were analyzed. The summary of the analysis is that
while fewer anomalies are flagged there are some significant
blips. This is presumably due to the server utilization over
short, hourly periods tend to be stable with sudden bursts
of activity. The data is summarized in Table III. It is clear
from the tabulated results that CPU-utilization shows more
variability than Memory utilization. The two anomaly detec-
tion techniques flag few anomalies common to each other.

7

Hour Parameter # Anomalies # Anomalies # Common
of day (Gaussian) (Tukey) Anomalies

10 CPU 0 0 0
10 Memory 12 0 0
11 CPU 0 26 0
11 Memory 0 0 0
12 CPU 3 11 3
12 Memory 0 0 0
13 CPU 2 2 2
13 Memory 1 1 1
14 CPU 1 0 0
14 Memory 0 0 0
15 CPU 15 11 11
15 Memory 12 0 0
16 CPU 0 0 0
16 Memory 0 0 0
17 CPU 0 0 0
17 Memory 0 0 0

TABLE III
COMPARISON OFGAUSSIAN AND TUKEY METHODS FORMONDAYS ONLY

(CUST2). THE DATA IS ANALYZED BY HOUR OF DAY AND DAY OF WEEK .

Only in the hours of 12, 13, and 15 do they trigger common
anomalies albeit few. Note that there is significant variability
in the performance of the two techniques. In the 10 A.M. hour,
while the Gaussian technique flags 12 anomalies, the Tukey
trigger none for memory utilization. On the other hand, in the
hour 11 A.M. hour, the Gaussian technique does not flag any
anomalies, while the Tukey flags as many as 13 each of lower
and upper anomalies in cpu-utilization (total 26). Although, the
Tukey method flags more anomalies overall (51) as opposed
to 46 by the Gaussian technique, the Tukey is better suited
to anomaly detection because of its generality, flexibility, and
ease of computation.

V. D ISCUSSION

As seen, the statistical algorithms for anomaly detection
analyze monitoring data over historical periods to make their
decisions. This historical period could be the entire past of
the workload operation, or it could be restricted to recent past
values only. In either of these cases, the considered data could
be organized based on continuous history over time, or it could
be segregated by context, e.g. hour of day or day or week.
Which historical period and organization type is chosen has
an effect on the results of the anomaly detection algorithms.
For example, for Gaussian and Tukey methods, this will affect
the value of thresholds chosen, and for Relative Entropy, itwill
affect the null hypotheses against which the current window
is evaluated.

Several factors play a role in selecting the appropriate
historical period. Workload behavior and pattern is one of
them. If the workload has a periodic behavior, then recent
past values that can give enough statistical significance might
suffice. Further, if the pattern is based on weekly or hourly
behavior, then organizing the data by context is preferable.
If the workload is long running and has exhibited aperiodic
behavior in the past, the entire past data would help smooth out
averages. If the workload has varying behavior that is time-
dependent or if it is originating from virtual machines that
have been migrated or subject to varying resource allocation in
shared environments, considering only recent windows might
help to eliminate noise from past variable behavior.

In enterprise environments with dedicated infrastructures, it
might be straightforward to select the appropriate historical
period and organization of data. However, in cloud and utility
computing environments with limited prior knowledge of
workload behavior, high churn, and shared infrastructure for
workloads, the most appropriate historical period and organi-
zation of data to choose may be challenging and expensive to
determine over large scale. Instead, we suggest an alternative
approach in which at any given time, we do multiple runs
of the anomaly detection algorithm in parallel, each run
leveraging data analyzed from a different historical period.
The results from these individual runs could then be combined
to provide overall insight and asystem statusindicator to the
administrator. For performing of multiple runs to be feasible,
the algorithm has to be lightweight. As discussed in previous
sections, our proposed algorithms are lightweight and could
be used for this approach.

Table IV(a) illustrates how the approach would work. The
table shows a sample trace and output of an anomaly detection
algorithm over time using data from different historical periods
(entire past, recent past) with and without consideration of
context. An output of 1 indicates that an anomaly flag is raised
for that time period, and 0 indicates otherwise. To combine
the results, we propose a weighted combination of these
output flags. This weighted combination can be mapped to
a coloring scheme shown in Table IV(b). The color represents
the overall system status for the system being monitored.
Table IV(a) shows the results when different weights are used.
Column 5 shows the system status with equal weights to
the different historical periods, Column 6 shows the system
status when workload patterns (hence context) are given higher
weight (1, 0.5, 1 for Columns 2, 3 and 4 respectively), and
Column 7 shows the system status when historical knowledge
is given higher weight (1, 0.5, 0.5 for Columns 2, 3, and 4
respectively).

While not shown, it is easy to see that the same approach
can be extended to combine results from multiple algorithms
as well. This could lead to two level of combinations - com-
binations for different historical periods for a given algorithm,
and then combinations of those across multiple algorithms.
The feasibility of this hybrid approach would however be
dependent on the complexity of algorithms so as to be able to
execute multiple algorithms on online data.

More broadly, the discussion in this section points us to the
different dimensions that anomaly detection algorithms have
to consider, and how a systematic approach can enable us to
obtain improved understanding of system behavior in complex,
and large-scale shared computing infrastructures such as being
represented by utility clouds.

VI. RELATED WORK

Most of current industry monitoring tools use fixed thresh-
olds for anomaly detection. Fixed upper and lower bounds
are determined apriori and remain constant during the entire
process of anomaly detection. MASF [3] is one of the popular
threshold-based techniques being adopted in industry. MASF
applies thresholds to data segmented by hour of day, and day of

8

(a) Anomaly Flags and Combined System Status

Time Anomaly Flags System Status
Entire Past Recent Past Recent Past Equal weight Weighted by Weighted by

(with Context) (No Context) (with Context) context history

t1 0 0 0 Green Green Green
t2 0 0 0 Green Green Green
..

t20 1 0 0 Yellow Yellow Yellow
t21 1 1 0 Orange Yellow Yellow
..

t60 1 1 1 Red Orange Orange
t61 1 1 1 Red Orange Orange
..

t90 1 0 1 Orange Orange Yellow

(b) Color Mapping of Weighted Sum

Weighted Sum (w) Color Problem Intensity
w >= 3 Red Very Severe

2 <= w < 3 Orange Severe
1 <= w < 2 Yellow Mild

w < 1 Green None

TABLE IV
ILLUSTRATION OF COMBINED SYSTEM STATUS

week. As discussed earlier, these techniques have limitations
of accuracy and false alarm rates due to their assumed data
distributions, and limited adaptibility to changing workloads.
These techniques also have poor scalability and lack of corre-
lation analysis.

Prior academic work has developed many useful methods
for anomaly detection, typically based on statistical tech-
niques [4], [5], [6], [7], [8], [9], [10]. A summary is provided
by [23]. However, few of them can operate at the scale of
future data center or cloud computing systems and/or have
the ’lightweight’ characteristic desired for online operation.
Reasons include their use of statistical algorithms with high
computing overheads and their use of onerously large amounts
of raw metric information. In addition, they may require prior
knowledge about application SLOs, service implementations,
request semantics, or they are focused on solving certain well-
defined problems at specific levels of abstraction (i.e., metric
levels) in data center systems. Similarly, techniques based on
neural networks require constant retraining and hence suffer
from the same overhead problems.

In contrast, the techniques we propose are lightweight
techniques that systematically improve on the state of art
techniques widely adopted in industry. We have proposed tech-
niques to improve on current point fixed-threshold approaches,
and we have also developed new windowing-based approaches
that observe changes in the distribution of data. Our techniques
are adaptable and can learn the workload characteristics over
time, improving accuracy and reducing false alarms. They also
meet the scalability needs of future data centers, are applicable
to multiple contexts of data (catching contextual anomalies),
and can be applied to multiple metrics in data centers.

VII. C ONCLUSIONS ANDFUTURE WORK

Anomaly Detection is an important component for closed
loop management in data centers. In this paper, we pre-
sented statistical approaches for online detection of anomalies.
Specifically, we have presented methods based on Tukey and
Relative Entropy statistics, and experimentally evaluated them.
The proposed approaches are lightweight and improve upon
prevalent Gaussian-based approaches.

As ongoing work, we are performing more evaluations on
synthetic as well as customer data. We are also exploring

further refinements to the techniques presented in this paper for
multiple metrics and for aggregation across multiple machines
at large scale. We also plan to do evaluations with other cloud
workloads and benchmarks.

REFERENCES

[1] ”Amazon EC2 Website”,http://aws.amazon.com/ec2/.
[2] ”Google App Website”,http://www.google.com/apps/.
[3] Jeffrey P. Buzen, Annie W. Shum, “MASF: Multivariate Adaptive Statis-

tical Filtering,” CMG Confernce, 1995.
[4] S. Agarwala andet. al., “E2EProf: Automated End-to-End Performance

Management for Enterprise Systems,” DSN, 2007.
[5] S. Agarwala and K. Schwan, “SysProf: Online DistributedBehavior

Diagnosis through Fine-grain System Monitoring,” ICDCS, 2006.
[6] Ira Cohen andet. al., “Correlating Instrumentation Data to System States:

A Building Block for Automated Diagnosis and Control,” OSDI, 2004.
[7] Bahl, Paramvir and et. al., “Towards highly reliable enterprise network

services via inference of multi-level dependencies,” SIGCOMM, 2007.
[8] Chen, Mike Y. and et. al., “Pinpoint: Problem Determination in Large,

Dynamic Internet Services,” DSN, 2002.
[9] A. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Usingmagpie for

request extraction and workload modelling,” OSDI’04, 2004.
[10] M.K. Aguilera and et. al., “Performance debugging for distributed

systems of black boxes,” SOSP ’03, 2003.
[11] J. Tukey, “Exploratory Data Analysis,” Addison Wesley, MA, 1977.
[12] D. Montgomery, G. Runger, N. Hubele “Engineering Statistics,” Wiley,

2006.
[13] I. Daubechies, “Ten Lectures on Wavelets,”CBMS-NSF Series in Ap-

plied Mathematics, No. 61, Society for Industrial and Applied Mathemat-
ics, 1992.

[14] R. Baeza-Yates, B. Reibero-Neto, “Modern Informationretreival,” ACM
press, Addison-Wesley, 1999

[15] R. Johnson, D. Wichern, “Applied Multivariate Statistical Analysis,”
Prentice Hall, 2001

[16] S. Mallat, “A Theory of Multiresolution Signal Decomposition: The
Wavelet Representation,” “A wavelet Tour of Signal Processing,” Aca-
demic Press, 2009.

[17] T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley-
Interscience Publication, 1991.

[18] E. L. Lehmann and J. P. Romano.Testing Statistical Hypothesis.
Springer, 2005.

[19] E. Cecchet, J. Marguerite, and W. Zwaenepoel.Performance and
scalability of ejb applicationsOOPSLA, 2002.

[20] C. Wang, V. Talwar, K. Schwan, P. Ranganathan.Online detection of
utility cloud anomalies using metric distributionsNOMS, 2010.

[21] ”Anonymized Production Data Center Traces”, HP Internal Correspon-
dence.

[22] Christopher M. BishopNeural networks for pattern recognitionOxford
Univ Press, 1997

[23] Varun Chandola, Arindam Banerjee, and Vipin KumarAnomaly Detec-
tion : A SurveyACM Computing Surveys, Vol. 41(3), July 2009

[24] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” Journal of Algorithms,
55(1):58-75, April 2005.

