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Abstract

Abstract: We derive new statistical tests for leave-one-out cross-validation
of Kriging models. Graphically, we present these tests as scatterplots augmented
with confidence intervals. We may wish to avoid extrapolation, which we define
as prediction of the output for a point that is a vertex of the convex hull of the
given input combinations. Moreover, we may use bootstrapping to estimate the
true variance of the Kriging predictor. The resulting tests (with or without ex-
trapolation or bootstrapping) have type-I and type-II error probabilities, which
we estimate through Monte Carlo experiments. To illustrate the application of
our tests, we use an example with two inputs and the popular borehole example
with eight inputs.

Keywords: validation, cross-validation, Kriging, Gaussian process, extrap-
olation, convex hull, Monte Carlo

JEL: C0, C1, C9, C15, C44

1 Introduction

In this publication we derive several variants of a new type of statistical test
for leave-one-out cross-validation (LOO-CV) of an estimated Kriging model.
Graphically, we may present this test through a new type of scatterplot that
adds confidence intervals (CIs) to the classic scatterplot (readers may take a
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peek at the plot in Fig. 8). We focus on Kriging (meta)models that approx-
imate the input/output (I/O) functions implicitly defined by the underlying
simulation models; however, Kriging may also be applied to real-world data.
The advantage of Kriging compared with alternative methods– such as neural
nets (NNs), radial basis functions (RBFs), and splines– is that Kriging also
quantifies the variance of its predictor– like regression analysis does; our test
uses this predictor variance. For a discussion of Kriging within the context of
LOO-CV we refer to Section 3; for a general discussion of Kriging we refer to
Kleijnen (2019).
LOO-CV for Kriging consists of the following steps (we present an algorithm

and variants, in Section 5): (i) Delete one of the n simulated I/O combinations
(say) (xi, vi) (i = 1, ..., n). (ii) Fit a Kriging model to the (n−1) remaining I/O
combinations (X−i,v−i). (These combinations are often called the "training
set".) (iii) Using the model fitted in step 2, compute ŷi(predicted output of
x, deleted in step 1), and s2(ŷi) (estimated variance of ŷi). (The "test set"
has a single member, in LOO-CV.) (iv) Apply the preceding three steps for all
combinations i = 1, ..., n.
CV is a very popular method; e.g., our Google search for "cross-validation"

delivered 146 million hits (on 14 August 2018). We review selected recent pub-
lications in Section 2. Our review suggests that our specific statistical test for
LOO-CV in Kriging is a novel test indeed.
We focus on deterministic simulation, but conjecture that extension to ran-

dom or stochastic simulation is straightforward (also see Section 8, which in-
cludes future research). Furthermore, we use a frequentist approach instead of
a Bayesian approach.
Note: An advantage of the frequentist approach is that it is not necessary to

specify a prior distribution for the Kriging (hyper)parameters; we find it hard
to specify such a prior distribution. We discuss the observed values for the esti-
mated Kriging parameters, in Section 6 on our Monte Carlo (MC) experiments.
Wang et al. (2018) discusses the use of historic data for the specification of a
prior distribution. Zou and Zhang (2018) also discusses frequentist and Bayesian
approaches for Kriging, and chooses the frequentist approach. For a general dis-
cussion of frequentist and Bayesian approaches we refer to Efron (2015). Hasty
readers may skip paragraphs that start with "Note:".
It is well known that Kriging may give an inaccurate approximation in case

of extrapolation (i.e., Kriging is meant for interpolation); see the discussion in
Kleijnen (2015, p. 187). If we wish to avoid such extrapolation in LOO-CV, we
may require that the left-out input combination xi is not a vertex of the convex
hull (CH) of X, which is the matrix with the n simulation input combinations.
An example of a CH is given in Fig. 2, which we shall discuss later In various
sections we shall investigate whether extrapolation is indeed a problem in LOO-
CV.
Altogether, our LOO-CV test computes the Studentized prediction errors

for the left-out combinations, and applies Bonferroni’s inequality to tests these
errors "jointly" or "experimentwise". Actually, we propose several variants of
our test, including the CH requirement and the unbiased bootstrapped predictor
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variance. We detail these variants in Section 5.
Like any other statistical test, our test has a type-I or α error rate (or

error probability). To estimate this rate, we use a MC experiment guarantee-
ing that the Kriging metamodel is "perfectly valid"; i.e., the metamodel and
the simulation model are identical (practical simulation models imply imper-
fect metamodels). So, we sample from a stationary Gaussian process (GP),
which implies a multivariate normal distribution with a given mean– e.g., a
constant, as assumed by so-called ordinary Kriging (OK)– and a given covari-
ance matrix– e.g., a matrix with an anisotropic Gaussian correlation function.
We limit our MC experiment to d = 2 inputs. To the best of our knowledge,
MC experiments aimed at estimating the α error rate of LOO-CV in Kriging,
are new.
Besides the type-I error rate, any test has a type-II or β error rate. We use

several MC experiments that control the magnitude of the approximation error
of the Kriging metamodel. More specifically, we fit OK metamodels to I/O
data sampled from several GPs that have means that show linear trends with
different slopes. (We might imagine a different MC experiment that would fit
an OK metamodel to I/O data sampled from a GP with a Matérn– instead of
a Gaussian– correlation function.)
Note: In general, MC experiments are more effective and effi cient than ex-

periments with realistic simulation models or simplified simulation models like
the borehole model in Section 7.2. Indeed, a Kriging metamodel of a given
simulation model gives an unknown approximation error, whereas MC experi-
ments enable perfect control of this error– starting with zero error (to estimate
the α error rate)– so MC experiments are more effective. Moreover, simulation
may require much computer time (unlike the borehole model), whereas MC
experimentation does not– so the latter is more effi cient.
To illustrate our LOO-CV we apply our validation test to two simple simula-

tion models. The first model is due to Gramacy (2016); it has d = 2 inputs and
an I/O function with many hilltops and fast-moving changes (see the Figure in
Appendix 4). The second model is the popular borehole model with d = 8 in-
puts, which is used in many publications; e.g., Erickson et al. (2018), Gramacy
(2016), Gramacy and Apley (2015), Santner et al. (2018. p. 222), and Sun et
al. (2018).
Our major contribution is a thorough investigation of several variants of a

new statistical tests for LOO-CV in Kriging. We also investigate the estimated
OK parameters if either the OK assumptions hold or the data show a linear
trend.
We organize the rest of this paper as follows. Section 2 reviews literature,

focussing on LOO-CV in Kriging. Section 3 summarizes OK in the context of
LOO-CV. Section 4 summarizes the type of Latin hypercube sampling (LHS)
that we assume for our experiments. Section 5 presents several variants of a
new test statistic for LOO-CV. Section 6 details the design and analysis of our
MC experiments for estimating the α and β error rates of our LOO-CV variants;
these experiments also improve our understanding of the roles of the Kriging
parameters. Section 7 applies our LOO-CV to Gramacy (2016)’s example and
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the borehole example. Section 8 summarizes conclusions and future research
topics.

2 Literature review

We focus on recent CV publications, so we do not discuss an old milestone pub-
lication such as Stone (1974). LOO-CV is discussed in Santner et al. (2018),
which is a classic textbook on Kriging; however, that discussion does not cover
the test that we derive in this paper. Bartz-Beielstein (2016) discusses k-fold CV
(if k = 1, then this equals LOO-CV), to select an "ensemble" (combination) of
different types of metamodels including Kriging metamodels. Viúdez-Moreiras
(2018) also discusses k-fold CV. Xiao et al. (2018) uses k-fold CV (including
LOO-CV) in sequential sampling for reliability problems, focusing on a so-called
learning function to select the next point to be simulated; this function is not a
measure of the metamodel accuracy (see Xiao et al., p. 409). Shu et al. (2018)
also uses LOO-CV to select the next point to be simulated; that LOO-CV mea-
sures the metamodel accuracy through either the root mean squared prediction
error (RMSPE) defined in (11) below or the maximum absolute error (MAE)
instead of our measure defined in (10); Garbo and German (2019) also uses
LOO-CV with the MSPE (the square of the RMSPE) to select the next point.
Rasmussen and Williams (2006) discusses LOO-CV within a Bayesian frame-
work. Bhosekar and Ierapetritou (2018) surveys k-fold CV including LOO-CV
for Kriging and other types of metamodels in simulation. Strano et al. (2018)
and Yin et al. (2018) apply LOO-CV to select the best type of metamodel.
Van Steenkiste et al. (2018) uses k-fold CV for sequential sensitivity analysis
(SA) through metamodels including Kriging metamodels, and the "root relative
squared error (CVRRSE)"– which is related to the coeffi cient of determination
R2– or the "Bayesian estimation error quotient"; also see Gorissen et al. (2010).
Bacchi et al. (2018) discusses k-fold CV for Kriging metamodels of a tsunami
simulation model, including MSPE, R2, and "residual analysis" where residuals
are defined as wi − ŷi (i = 1, ..., n). Kleijnen (2015, pp. 114—121) discusses
LOO-CV, focussing on linear regression metamodels– but also presenting ref-
erences and websites for Kriging metamodels. Law (2015) is the most popular
textbook in discrete-event simulation, and covers Kriging and linear regression
metamodels– but does not discuss CV.
Concerning the analysis of the CV results, most publications use visual

inspection of a scatterplot with the simulated outputs versus the predicted
outputs; e.g., Da Costa et al. (2018), Lupera Calahorrano et al. (2016) and
Quirante et al. (2018) use such plots for LOC-CV and Kriging. Parnianifard et
al. (2018, p. 4) "follow[s] Kleijnen (2015)", eyeballs the scatterplot, computes
the "standardized residuals", and claims that these residuals should fall in the
range [−3, 3]; however, this standardization uses the RMSPE instead of our mea-
sure (Shu et al. (2018) also uses the RMSPE, as we have already mentioned).
Many publications use the RMSPE, which should be as small as possible; e.g.,
Forrester and Keane (2009) considers a Kriging model with a RMSPE smaller
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than 2% as a reasonably good model. Ji et al. (2018) uses R2, and seems to
find R2> 0.80 acceptable. Zhang et al. (2017) uses the "correlation coeffi cient"
(but leaves that coeffi cient undefined; we conjecture it is R2) and a threshold
(that is subjective?). De Carvalho et al. (2017) applies LOC-CV to Kriging
and radial basis function (RBF) metamodels of a car-engine deterministic sim-
ulation model, quantifying prediction errors through R2, the "relative average
absolute error" (RAAE), and the "relative maximum absolute error" (RMAE);
that article concludes: "Most of the prediction residuals were lower than 3%".
The review in Bhosekar and Ierapetritou (2018) includes a table (namely, Table
4) with seven metrics for CV; however, these metrics do not include our statis-
tic. Bastos and O’Hagan (2009) considers validation of Kriging metamodels in a
Bayesian framework, but uses a training set and a validation set instead of CV;
Jin and Jung (2016) uses Bastos and O’Hagan (2009) and heuristic thresholds
for R2 and RMSPE. Luminari et al. (2018, pp. 73—74) uses k-fold CV, and
computes the quadratic difference between the Kriging predictor that uses all n
combinations and the Kriging predictor that uses only n−k combinations; next
this difference is compared with the predictor that uses all n points, and a value
below 6% is deemed acceptable. We point out that the preceding literature
review focuses on LOO-CV on Kriging, but LOO-CV is also applied in many
other modelling areas; e.g., Lin et al. (2019) uses LOO-CV in simulation via k
nearest neighbors.

3 Ordinary Kriging

We present the basics of OK in Section 3.1, and CIs for the OK predictor in
Section 3.2.

3.1 Basics of ordinary Kriging

We focus on OK instead of universal Kriging (UK). We use the notation in
Kleijnen (2018), except that we focus on LOO-CV so we denote the new input
combination to be predicted by xi instead of the usual x0, and we use the n− 1
old or training combinations X−i instead of the n old combinations X. OK
assumes the following (meta)model:

y(x) = µ+M(x) (1)

where x is a combination of the d simulation inputs xj (j = 1, ..., d), µ is

the constant mean E[y(x)], and M(x) is a zero-mean stationary GP. We let
X−i denote the (n − 1) × d matrix with the rows xi′ = (xi′;1, ..., xi′;d) with
i 6= i′. Furthermore, we use the symbol ΣM = (σi′;i′′) = (Cov(yi′ , yi′′)) (with
i′, i

′′ 6= i) to denote the (n− 1)× (n− 1) matrix with the covariances between
the metamodel’s (n − 1) old outputs. Analogously, we let σM (xi) = (σi;i′) =
(Cov(yi, yi′)) denote the (n−1)-dimensional vector with the covariances between
the new output yi(xi) and the (n− 1) old outputs yi′ . We let 1n−1 denote the
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(n − 1)-dimensional vector with all elements equal to 1. Finally, we let w−i
denote the (n− 1)-dimensional vector with the observed simulation outputs for
the (n− 1) non-deleted combinations.
If and only if OK assumes a valid metamodel of the underlying simulation

model, then we may write y = w. Assuming a valid metamodel, we determine
the best linear unbiased predictor (BLUP) ŷ(xi) for xi, using the n − 1 non-
deleted I/O combinations (X−i,w−i). This BLUP is a weighted average of
these w−i:

ŷ(xi) = λ
′
−iw−i. (2)

If these weights λ−i are selected optimally, then the resulting BLUP has mini-
mum variance and is unbiased. We can prove that this BLUP is

ŷ(xi) = µ+ σM (xi)
′Σ−1M (w−i−µ1n−1). (3)

We observe that the event w−i > µ1n−1 gives ŷ(xi) > µ. Furthermore, if we
denote Var(y) by τ2, then we can prove

MSPE[ŷ(xi)] = τ2 − σM (xi)′Σ−1M σM (xi) +
[1− 1′n−1Σ

−1
M σM (xi)]

2

1′n−1Σ
−1
M 1n−1

. (4)

This MSPE equals Var[ŷ(xi) if the metamodel is valid so ŷ(xi) is unbiased.
(Our test uses an estimator of this Var[ŷ(xi)]; see (12).)
Sometimes, it is convenient to switch from covariances to correlations; i.e.,

sometimes we switch to the correlation matrixR= (ρi′;i′′ ), which equals τ
−2ΣM ;

analogously, ρ(xi) = τ−2σM (xi). There are several types of correlation func-
tions; see (e.g.) Rasmussen and Williams (2006, pp. 80—104). In simulation,
however, the most popular function is the Gaussian correlation function. To de-
fine this function, we define the distance vector h = (hj) where hj = |xg;j − xg′;j |
and g, g′ = 1, ..., n, and the correlation factors θ = (θj); so, R = R(h,θ). These
definitions imply that the Gaussian correlation function is

ρ(h,θ) =
d∏
j=1

exp
(
−θjh2j

)
= exp (−

d∑
j=1

θjh
2
j ) with θj ≥ 0. (5)

We notice that this function is separable; such a correlation function is called
anisotropic. If θj ↓ 0, then exp

(
−θjh2j

)
↑ 1 for any distance hj ; i.e., input j

has a strong effect for any hj . If θj ↑ ∞, then exp
(
−θjh2j

)
↓ 0, so input j has

no effect. We use the symbol ψ to denote the vector with the (2 + d) Kriging
(hyper)parameters (µ, τ2, θ1, ..., θd)′.
In practice, we must estimate the (nuisance) OK parameters ψ. The most

popular estimator is the maximum likelihood estimator (MLE), which we denote
by ψ̂ = ψ̂(X,w). This MLE is the solution of

min
ψ
ln[
∣∣τ2R∣∣] + (w−µ1)

′
(τ2R)

−1
(w−µ1) with θ ≥ 0 (6)

where R = R(h,θ) and |R| denotes the determinant of R. This MLE implies
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the following explicit formula for µ̂:

µ̂ = (1′R−11)−11′R−1w, (7)

which is a weighted mean of the simulation outputs w. Furthermore, this MLE
implies

τ̂2 =
1

n
(w − µ̂1)′R−1(w − µ̂1), (8)

so τ̂2 = τ̂2(µ̂,R) is a weighted mean of the squared residuals (w−µ̂1). However,
this MLE does not give an explicit formula for θ̂, but requires an iterative search
for θ̂. Actually, solving (6) is a mathematical challenge; e.g., different ψ̂ may
result from different software packages or from different starting values for the
same package; see Erickson et al. (2018) and our MC experiments in Section 6.
We like to program in MATLAB, so we use the MATLAB Kriging toolbox

called DACE that is documented in Lophaven et al. (2002) (a more recent
MATLAB Kriging toolbox is "UQLab " documented in Lataniotis et al. (2015)).
Furthermore, we re-estimate ψ when we leave out another I/O combination; i.e.,
we compute ψ̂−i = ψ̂(X−i,w−i) (whereas Santner et al. (2018) does not re-
estimate ψ). To initialize the estimation of ψ̂−i, we use ψ̂. Wang and Haaland
(2018) also gives a (mathematically advanced) discussion of numeric errors in
Kriging.
To obtain ŷ(xi, ψ̂−i) and s2[ŷ(xi, ψ̂−i)], we plug the estimator ψ̂−i into

(3) and (4). Most publications ignore the consequences of this plugging-in;
i.e., they ignore the fact that ŷ(xi, ψ̂−i) becomes nonlinear and s

2[ŷ(xi, ψ̂−i)]
underestimates the true Kriging variance. We shall discuss bootstrapping to
obtain an unbiased variance estimator (see Section 5).

3.2 Confidence intervals for ordinary Kriging predictors

We may combine the preceding ŷ(xi) and s2[ŷ(xi, ψ̂−i)] in a two-sided CI with
nominal (prespecified) coverage 1− α based on the standard normal variable z
∼ N(0, 1) so zα/2 denotes the α/2 quantile of N(0, 1); i.e., we may assume

P [w(xi) ∈ ŷ(xi, ψ̂−i)± zα/2s[ŷ(xi, ψ̂−i)] = 1− α. (9)

Actually, the true coverage rate may not equal 1 − α; i.e., the expected type-I
error rate E(α̂) and the nominal α may differ– because of the following three
issues (we shall return to these issues, after presenting our basic LOO-CV algo-
rithm):
(i) The nonlinear plug-in predictor ŷ(xi, ψ̂−i) is biased.
(ii) The plug-in variance estimator s2[ŷ(xi, ψ̂−i)] underestimates the true

Var[ŷ(xi, ψ̂−i)].
(iii)

∣∣zα/2∣∣ < ∣∣tf ;α/2∣∣– where tf ;α/2 denotes the α/2 quantile of the Student
distribution with f (< ∞) degrees of freedom. We assume that tf ;α/2 with the
proper (but unknown) f is the correct factor for a CI that uses an estimated
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Figure 1: The quantile z1−[αE /(2n)] of the standard normal z as a function of
the sample size n, for the experimentwise error rate αE = 0.20, 0.10, or 0.05

standard deviation. We might use f = (n − 1) − (d + 2), inspired by the
well-known formula for f in linear regression analysis; namely, if q denotes the
number of estimated regression parameters and n the number of I/O observa-
tions, then f = n − q so our OK implies q = d+2 (because this OK estimates θ1,
..., θd, τ2, and µ) and LOO-CV uses n− 1 observations. (Following a Bayesian
approach, Bastos and O’Hagan (2009) also use a tf with a specific f -value.)
Whereas (9) uses the per comparison type-I error rate α, we wish to realize

a prespecified experimentwise type-I error rate (say) αE in LOO-CV; i.e., we
wish that all n CIs hold "simultaneously" (or "jointly"). A problem is that
as n increases, the expected number of (correlated) CIs that do not cover the
corresponding true values also increases so we get more false alarms. We use
a simple solution; i.e., we apply Bonferroni’s inequality, which implies that α
is divided by n so zα/2 in (9) becomes zα/(2n) (or z1−α/(2n) with |zα/(2n)| =
z1−α/(2n)). Obviously, this replacement increases the n individual halfwidths

zα/(2n)s[ŷ(xi, ψ̂−i)] (i = 1, ..., n); so it indeed reduces the probability of a
false alarm. Unfortunately, Bonferroni’s inequality is known to be conservative
so E(α̂E) ≤ αE . Altogether we hypothesize that αE = α/n gives acceptable
results. We shall test this hypothesis in several MC experiments; if we reject
this hypothesis, then we investigate possible explanations and solutions (see
Section 6).
Note: Our use of Bonferroni’s inequality implies that our validation criterion

is the maximum (instead of the average) of the n Studentized prediction errors
(see (13) below); for further discussion of various validation criteria we refer to
Kleijnen (2015, p. 120) and Gorissen et al. (2010).
Usually Bonferroni’s inequality is applied to only "a few" correlated statis-

tics. In our LOO-CV, however, we have n CIs. In Fig. 1 we display z1−[αE /(2n)]
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as a function of n with n = 1, ..., 250, for αE = 0.20, 0.10, or 0.05. We select
this range for n, because we shall present examples with n = 10d where d is 2
or 8 so the highest n is 80; moreover, realistic applications of Kriging may have
up to (say) 25 inputs, so n = 250. This Figure shows that the combination αE
= 0.10 and n = 1 implies z1−[αE /(2n)] = z0.95 = 1.64 (a familiar classic value); n
= 80 (as in the borehole example) implies z1−[αE /(2n)] ≈ z0.9994 = 2.50; n = 250
implies z1−[αE /(2n)] ≈ z0.9998 = 3.54. So, practical d-values imply that as n in-
creases, z1−[αE /(2n)] shows a decreasing increase. (Simes (1986) gives a (simple)
variant of Bonferroni’s inequality, which may make joint tests less conservative;
however, this improvement may be negligible.)
If we impose the CH condition (to avoid extrapolation), then n becomes

n−nCH where nCH denotes the number of vertices (corner points) of the CH of
Xn×d. Hence, there are fewer CIs– which implies a lower probability of false
alarms– and a lower

∣∣zαE /(2n)∣∣ so shorter CIs– which imply a higher probability
of false alarms. We shall investigate ; the net effect of these two effects in our
various MC experiments and our two applications. In practice, we may decide
apriori to impose the CH condition, so we determine which input combinations
determine the CH; next we apply LOO-CV only to n− nCH I/O combinations
instead of all n combinations, which saves computer time.

Note: The CI in (9) implies that the standardized residuals or Studentized
residuals should have he same distribution as z (standard normal variable):

w(xi)− ŷ(xi, ψ̂−i)
s[ŷ(xi, ψ̂−i)]

= z. (10)

Our standardization uses s[ŷ(xi, ψ̂−i)], whereas other publications (e.g., Da
Costa et al. (2018) and Parnianifard et al. (2018)) use

RMŜPE =

√∑n
i=1[w(xi)− ŷ(xi, ψ̂−i)]2

n
. (11)

Obviously, this RMSPE does not vary with i, whereas our s[ŷ(xi, ψ̂−i)] does.
Furthermore, RMSPE uses the average of all n points; i.e., RMSPE estimates
the square root of the integrated MSE (IMSE) where the integral is computed
over the whole design space.

4 Latin hypercube designs for Kriging

OK gives a global metamodel. Most experiments that use OK to analyze simu-
lation models use LHS to select the design matrix Xn×d– or briefly X.
Note: Besides LHS there are alternative space-filling designs. Examples are

orthogonal array, uniform, maximum entropy, minimax, maximin, integrated
mean squared prediction error, and “optimal” designs; see Kleijnen (2015, p.
198). Details on LHS are given in Kleijnen (2015, pp. 198—203).
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We focus on LHS with d inputs that have uniform (symbol U) marginal
distributions in the interval [0, 1], so xj ∼ U(0, 1). Moreover, this LHS samples
n midpoints, which are equispaced with distance 1/n over the interval [0, 1]; so,
these midpoints are 0.5/n, 1.5/n, ..., 1−0.5/n. In general, LHS samples without
replacement ; so, each midpoint is sampled only once in the sample of size n.
Altogether, xj = (xi;j) (with i = 1, ..., n and j = 1, ..., d) is a permutation of the
n midpoints; i.e., Xn×d is a stratified sample of n points from a d-dimensional
grid.
Note: We claim that sampling of points within subintervals (instead of mid-

points) has the disadvantage that it may give two values– in two neighboring
subintervals– that are very close together. So, the two resulting outputs w are
close together (assuming a smooth I/O function, as Kriging does) and give little
new information (because these outputs have a high positive correlation). Fur-
thermore, sampling of midpoints ensures that we obtain n realizations of xj that
are "wide apart"– which we conjecture gives better estimates of the correlation
parameters θj in the correlation function (5). Sampling midpoints never gives
x ↓ 0 or x ↑ 1 (x = 0 or x = 1 is impossible because x is continuous; x = ε or x
= 1 - ε is also undesirable); we wish to avoid these two extreme values because
Kriging can use the output near x = 0 only to predict the output at x > 0 (not
at x < 0), so Kriging can use x = 0 only in one direction; a similar argument
holds for x ↑ 1.
LHS implies that projection of the n points (in the d-dimensional input

space) onto the d individual axes gives n non-collapsing values per axis. Con-
sequently, it is relatively easy to estimate the d individual separable correlation
functions in (5). (The usual argument in favor of noncollapsing designs is that
some of the d inputs may be unimportant, so– unlike factorial designs– all n
input combinations are still informative for the remaining important inputs; we,
however, expect that all d inputs are important in Kriging with a low d-value.)
LHS does not impose a strict mathematical relationship between the sample

size n and the dimensionality d (whereas a grid with s subintervals implies n =
sd; e.g., a grid with 10 values per input has 10d points). Nevertheless, if LHS
uses a "small" n and a "large" d, then LHS covers [0, 1]d sparsely. For example,
if d = 8 (as in the borehole example, presented in Section 7.2) and n = 80,
then we sample only 80 gridpoints from the total of 808 = 1. 7× 1015 gridpoints
This sparsity implies that there are only a few old points close to the new point,
so the Kriging predictor may be inadequate. For LHS in Kriging aimed at
SA, Loeppky et al. (2009) gives the rule-of-thumb n = 10d, which implies n
≥ 10 if d ≥ 1. (If n ≥ 10, then we expect to estimate θj quite accurately.)
An example of a LHS design with d = 2 and n = 20 (and its CH) will be
presented in Fig. 2; these n = 20 observations cover the experimental area
relatively sparsely. In general, consider the original inputs zj with j = 1, ..., d
(zj should not be confused with the standard normal variable z). The volume of
the original experimental area increases exponentially with d, whereas Loeppky
et al. (2009) implies that n increases only linearly with d. This sparsity implies
that there are only a few points among the n − 1 points in LOO-CV (namely,
the n − 1 observations (X−i,w−i)) that are relatively close to xi (point to be
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predicted). Mathematically, there are several popular distance measures; we
focus on the Euclidean measure. The Euclidean distance between two points xj
and x′j in a d-dimensional space is [

∑d
j=1(xj − x′j)

2]1/2, which indeed increases
as d increases.
Note; There is much software for LHS. For example, Microsoft’s Excel spread-

sheet software has add-ins that include LHS; also see Oracle’s Crystal Ball, Pal-
isade’s @Risk, and Frontline Systems’Risk Solver. LHS is also available in the
MATLAB Statistics toolbox, the R package, the Open TURNS software, and
Sandia’s DAKOTA software. Various LHS algorithms are referenced in Kleijnen
(2015, p. 200); recent algorithms are detailed in Dong and Nakayama (2017),
and Le Guiban et al. (2018). Panagiotopoulos et al. (2018) uses LHS variants
for RBFs– instead of Kriging– metamodels for optimization through genetic
algorithms.
To implement LHS, we use MATLAB’s function lhsdesign. This function

has a parameter called "’smooth" that can be turned "off" or "on" where "off"
produces points at the midpoints of the n subintervals; the default is "on". The
random permutations in LHS may give a "bad" X. To decide on a "good" X,
we need a criterion. We decide to use the maximin criterion, which maximizes
the minimum Euclidean distance between the n d-dimensional points in [0, 1]d

(there are n(n − 1)/2 distances; some distances may have the same value).
This criterion is the default in MATLAB’s lhsdesign. This criterion means that
lhsdesign generates (say) M permutations, and selects the design among these
M permutations that maximizes the minimum distance between any two points
among the n points. We use MATLAB’s default M = 5.

5 Leave-one-out cross-validation

We present the basic variant of LOO-CV in Section 5.1, the CH variant in
Section 5.2, and the bootstrap variant in Section 5.3.

5.1 Basic variant of LOO-CV

In this section we present Algorithm 1 for LOO-CV. This algorithm adjusts the
algorithm in Kleijnen (2015, pp. 116—117), which is based on Kleijnen (1983)
and assumes a linear regression metamodel of a random simulation model–
instead of a Kriging metamodel of a deterministic simulation model. Our al-
gorithm starts with the original I/O simulation data (Xn×d,wn)– or briefly
(X,w)– and computes the corresponding ψ̂(X,w)– or briefly ψ̂. This ψ̂ is used
to initialize the search for ψ̂(X−i,w−i)– or ψ̂−i (Garbo and German (2019)–
and other publications discussed in our literature review in Section 2– do not
re-estimate ψ, but use the original ψ̂ to compute ŷ in LOO-CV; next they use
the RMSPE). This ψ̂−i– together with xi– gives the predictor ŷ(xi, ψ̂−i) or
briefly ŷ−i. This ŷ−i– together with wi– gives the prediction error

PEi = wi − ŷ−i.
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This PE is normally distributed because Kriging assumes a GP for wn; so
the marginal distribution of wi is normal, and– ignoring that ŷ−i uses ψ̂−i
instead of ψ– this GP implies that ŷ−i is normally distributed. Because we
have already defined SPE as the squared prediction error, we now introduce
the term prediction error standardized (PES) for the Studentized PE (so PES
is scale-independent):

PESi =
wi − ŷ−i
s(ŷ−i)

(12)

where s(ŷ−i) = s[ŷ(x−i, ψ̂−i)]. LOO-CV gives the n variables |PESi| (i =

1, ..., n), which are statistically dependent because they use common data;
e.g., if one of the observed simulation outputs wi is relatively high, then the
(n − 1) predictions for all other points xi′ are relatively high (also see (3)).
So we should not analyze |PESi| as if these n variables were independently
and identically distributed (IID). The exact analysis is diffi cult, so we resort
to the following simple approach: we do not reject the metamodel if all n
PES-values are nonsignificant. This approach implies that we do reject the
metamodel if one or more of the n PES-values are significant; this implies that
the maximum of these n values is significant. Bonferroni’s inequality implies
that the nominal experimentwise type-I error rate αE is divided by n, when we
compute the significance of each of the n individual PES-values. (Various steps
in the following algorithm may be executed simultaneously, so LOO-CV suits
parallel computers.)

Algorithm 1

1. Read (Xn×d,wn), and compute ψ̂ = ψ̂(Xn×d,wn).

2. Initialize: i = 1.

3. Delete (xi, wi) from (Xn×d,wn), to obtain (X−i,w−i).

4. Use (X−i,w−i) and ψ̂ to compute ψ̂−i = ψ̂(X−i,w−i).

5. Compute ŷ−i = ŷ(x−i, ψ̂−i) and s(ŷ−i) = s[ŷ(x−i, ψ̂−i)].

6. Compute PES for combination i.

7. If i < n then i = i+ 1 and return to step 3; else go to the next step.

8. Reject the Kriging metamodel if

max1≤i≤n |PESi| > z1−[αE /(2n)]. (13)

If the metamodel is not valid, then |wi − ŷ−i| increases (by definition) so
the numerator in (12) increases. Moreover, s(ŷ−i) increases because MSPE
[ŷ(x)] = Var[ŷ(x)] + (wi − ŷ−i)2; see the discussion of (4). Altogether, a non-
valid metamodel implies that both the numerator and the denominator in (12)
increase. The net effect on our test statistic maxi |PESi| is unknown so we shall
use MC experiment to quantify this effect (see Section 6).
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5.2 CH variant of LOO-CV

We may further adjust Kleijnen (1983), and require that the left-out point xi
not be a vertex of the CH of the n points in X; i.e., if xi does not satisfy
this requirement, then we do not include xi in LOO-CV. We then replace n
by n − nCH in Bonferroni’s inequality. To find this CH, we can use one of the
following two methods (method (ii) is much faster if d is high so n is high, as
we shall see below).
(i) The MATLAB functionK = convhulln(X) returns the matrixK with the

indices of the points inX that determine the facets of the CH ofX; this function
is based on Barber et al. (1996). If this CH has p facets, then K is a p × d
matrix. We notice that if the index of a specific point in X occurs in K, then
that index occurs more than once in K. We can use the function "convhulln" to
identify those points in X that are the same as the points corresponding with
an index in K; i.e., we can check whether the point xi (to be predicted from
the reduced set X−i) gives the same indices in K(X) and in K(X−i) (for this
check we use the MATLAB function "equal"). An example is Fig. 2 for X20×2
(generated by our LHS). This Figure displays n = 20 input combinations xi
(i = 1, ..., 20)– identified by the subscript i– and the CH formed by nCH =
6 combinations connected by (dashed) lines (these lines are colored red in the
PDF file). This Figure implies that K includes the index "4", so a CH point is
x4 = (1.7, 0.7)′. Altogether, this Figure gives n− nCH = 20 - 6 = 14; these 14
points include the combination x1 = (−0.5, 0.9)′. The results of this MATLAB
function agree with the results of human pattern recognition; however, such
recognition fails when there are d = 8 inputs (also see the borehole example in
Section 7.2), which we discuss now.

K(X80×8) (with X80×8 generated by our LHS) shows that the CH consists
of all n = 80 points xi (i = 1, ..., 80). We may explain this (surprising?) finding
as follows: X80×8 fills the high-dimensional input space only sparsely, so none
of the 80 points is a linear combination of the remaining 79 points.
Fig. 3 shows nCH (number of vertices) of Xn×d for different combinations

of n and d (instead of n = 10d ; see again Loeppky et al. (2009)). This Figure
shows that d = 1 implies that the CH has only two vertices; namely, min(xi)
and max(xi) (MATLAB requires d ≥ 2, but we do not need this function for d
= 1). For d = 2 and increasing n the CH has more vertices so nCH increases
(Fig. 2 showed that nCH = 6 for our X20×2; Fig. 3 does not show n = 20).
In general, the Figure shows that the higher n is, the higher nCH is. We notice
that n = 30 and d is 5 or 6 give nCH that does not increase, but equals 29 and
28, respectively; this is caused by the randomness of LHS.
(ii) We formulate the following linear programming (LP) problem where the

coeffi cients of the objective function fi′ (i′ 6= i) are irrelevant (we select fi′ =
1), because the question is whether this problem has a feasible solution:

min
ai′

∑
i6=i′

fi′ai′ such that
∑
i′ 6=i

ai′xi′ = xi,
∑
i′ 6=i

ai′=1, ai′ ≥ 0 with i′ 6= i. (14)

To solve this problem, we may use the MATLAB function linprog. If this

13



Figure 2: LHS design with n = 20 and d = 2; CH denoted by (dashed) lines

Figure 3: nCH versus n for various d in Xn×d
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n 10 30 50
method CH LP CH LP CH LP

d = 1 N/A 0.17 N/A 1.83 N/A 0.79
d = 2 0.01 0.17 0.01 0.46 0.03 0.75
d = 3 0.01 0.12 0.01 0.45 0.03 0.70
d = 4 0.01 0.12 0.02 0.39 0.04 0.63
d = 5 0.01 0.11 0.03 0.39 0.09 0.61
d = 6 0.01 0.11 0.06 0.37 0.36 0.67
d = 7 0.01 0.11 0.17 0.37 1.02 0.60
d = 8 0.01 0.11 0.45 0.35 4.34 0.56

n 80 100 500
method CH LP CH LP CH LP

d = 1 NA 0.95 NA 1.75 NA 10.00
d = 2 0.03 1.29 0.03 1.57 0.21 9.54
d = 3 0.02 1.30 0.04 1.50 0.31 9.72
d = 4 0.10 1.13 0.08 1.43 1.12 9.45
d = 5 0.25 1.07 0.40 1.29 7.74 8.87
d = 6 1.21 1.05 1.74 1.29 72.47 8.45
d = 7 5.28 0.96 8.81 1.20 643.98 8.12
d = 8 21.67 0.96 63.29 1.25 5616.84 7.86

Table 1: CPU times for convhulln method versus LP method, for various (d, n)
combinations

function finds no feasible point, then we exclude xi from LOO-CV with the CH
constraint.
Sub (i) and (ii): Table 1 shows the CPU times (in seconds) needed by method

(i) and method (ii), for various combinations of d and n. If we apply Loeppky
et al.’s rule (n ≥ 10d), then not all these combinations are practically relevant.
Interesting combinations are d= 8 and n= 80 (which we shall use in the borehole
example, which gives 21.67 seconds for the convexhulln method and 0.96 seconds
for the LP method (we conjecture that convhulln is so slow because it uses the
Delaunay triangularization.) We conclude that the LP method is much faster
if d is not very small; else both methods are so fast that their difference is
practically irrelevant.

5.3 Bootstrap variant of LOO-CV

Whether we do or do not impose the CH condition, we know that s(ŷ−i) (de-
nominator of PESi) underestimates the true Kriging variance; see the many
references in Kleijnen (2015, p. 189). Whereas in some applications (e.g., se-
quential sampling for estimating the optimum combination) it suffi ces to esti-
mate the relative magnitude of s(ŷi) for different xi, in LOO-CV we may need

15



to correct the biased value of s(ŷ−i) in order to obtain a valid CI. To obtain
such an unbiased estimator, we apply parametric bootstrapping. Several variants
of this bootstrapping are given in Kleijnen (2015, pp. 191-197).
Note: Den Hertog et al. (2006) details three variants of this bootstrap-

ping. However, our next algorithm gives an adaptation of the first variant only,
because only this variant is relevant in LOO-CV. Moreover, our adaptation is
useful, because we know that LOO-CV uses n − 1 "old" combinations and 1
"new" combination. Kleijnen (2015, pp. 194—197) discusses a bootstrap variant
called "conditional simulation" (CS), which may also be implemented through
the R software package called “DiceKriging”; see Roustant et al. (2012). How-
ever, Mehdad and Kleijnen (2015, p. 1808) proves that CS gives an estimate
that is smaller (albeit not significantly smaller) than the bootstrap estimate.
We prefer the bigger variance estimate, because it makes |PES| (which is the
ratio of |PE| and s(ŷ−i)) smaller, so it decreases the type-I error rate.

We point out that MSPE [ŷ(xi)] (defined in (4)) implies that if ŷ(xi) is bi-
ased (because the Kriging metamodel is only an approximation of the underlying
simulation model with output w(xi)), then MSPE[ŷ(xi)] > Var[ŷ(xi)]. We call
this metamodel bias. Moreover, the classic plug-in estimator s2[ŷ(xi, ψ̂−i)] (de-
fined above (9)) has bias, because this estimator ignores the fact that ŷ(xi, ψ̂−i)
is a nonlinear estimator. We call this plug-in bias. Den Hertog et al. (2006, pp.
405—408) compares s2[ŷ(xi, ψ̂−i)] with the bootstrapped estimator, in several
examples. We observe that in each example s2[ŷ(xi, ψ̂−i)] is biased– not only
because of plug-in bias (as Den Hertog et al. mentions)– but also because of
metamodel bias (the examples are not GPs but they use GPs to approximate
given deterministic functions). More specifically, one example (namely, Fig. 9
in Den Hertog et al.) shows that the value of the maximal classic estimate
is roughly 2.8, whereas the corresponding maximal bootstrapped value is 6.5
(obviously, the minimum estimates are zero, at "old" input combinations). Ac-
tually our LOO-CV uses the standard deviation instead of the variance, so the
difference between the classic and the bootstrapped estimates is smaller. We
shall give more numerical results in Section 6 on our MC experiments.
In Algorithm 2 we use the notation that is also used in the bootstrap litera-

ture; namely, the bootstrap observations are denoted by the superscript ∗, and
the bootstrap sample size by B (a classic value for B is 100).

Algorithm 2

1. Read sample size B, simulation I/O data (X,w), estimated Kriging para-

meters ψ̂ = (µ̂, τ̂2, θ̂
′
)′, and row index of I/O data to be deleted i (= 1,

..., n).

2. Initialize bootstrap sample: b = 1

3. Using X and ψ̂ (of step 1), sample "old" and "new" bootstrap outputs
w∗b = w∗b (X, ψ̂) from Nn(µ̂1n, Σ̂) with Σ̂ =τ̂2R(X, θ̂).
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4. Using w∗−i;b (with i of step 1 and w∗b of step 3) and X−i (of step 1),

compute the bootstrapped MLE ψ̂
∗
−i;b= (µ̂−i;b, τ̂

2
−i;b, θ̂

′
−i;b)

′.′

5. Using w∗−i;b and ψ̂
∗
−i;b (of step 4), compute ŷ

∗
−i = ŷ(xi, ψ̂

∗
−i;b), which is

the bootstrapped predictor for the deleted combination i that uses the
general predictor formula (3) and the definitions σ̂∗−i;b = σ̂M (xi, ψ̂

∗
−i;b),

and Σ̂
∗−1
−i;b = Σ̂

−1
−i (ψ̂

∗
−i;b):

ŷ∗−i;b = µ̂∗−i;b + σ̂
∗
−i;b

′
Σ̂
∗−1
−i;b(w

∗
−i;b − µ̂∗−i;b1n−1). (15)

6. Using ŷ∗−i;b (of step 5) and w
∗
i;b (of step 3), compute the bootstrap esti-

mator of the squared prediction error (SPE):

SPE∗−i;b = (ŷ
∗
−i;b − w∗i;b)2.

7. If b < B then b = b + 1 and return to step 3; else go to the next step.

8. Using SPE∗−i;b (of step 6) with b = 1, ..., B (see step 7), compute the
bootstrap estimator of MSPE:

MSPE∗−i =

∑B
b=1 SPE

∗
−i;b

B
. (16)

If we ignore the bias of the predictor ŷ∗−i, then
(
MSPE∗−i

)1/2
equals σ̂(ŷ∗−i)

which is the bootstrap estimator of σ[ŷ(xi, ψ̂)].

If σ̂(ŷ∗−i ) makes max1≤i≤n |PESi| in (13) nonsignificant, then another com-
bination may give a significant max1≤i≤n |PES|, so this combination needs
bootstrapping. To limit the required computer time, we might apply bootstrap-
ping only to those combinations that give a significant |PES|. The remaining
combinations will remain nonsignificant if we replace s(ŷ−i) in (12) by σ̂(ŷ∗−i )
and– as expected– s(ŷ−i) < σ̂(ŷ∗−i ).

6 Monte Carlo experiments

We use MC experiments to estimate the α error rate of our test in Section 6.1.
and the β error rate or power function of this test in Section 6.2.

6.1 Estimating the α error rate in MC experiments

In the Introduction (Section 1) we mentioned that (in general) the type-I error
rate with prespecified value α is defined as P(H0 rejected|H0) where the null-
hypothesis H0 is rejected if the test statistic exceeds its critical value that is
determined by α (also see (13)). In Section 3 we specified that OK assumes
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the metamodel defined in (1). This (1) implies an n-variate normal distribution
Nn, so our specific H0 is

H0 : w(Xn×d)∼Nn(µ1n,ΣM (Xn×d)). (17)

To sample from multivariate normal distributions– such as Nn defined in (17)–
we use the MATLAB function mvnrnd. Regarding the n×n matrix ΣM (Xn×d)
in (17), we assumed a Gaussian correlation function (with parameters θ) so
ΣM (Xn×d) = τ2R(θ,Xn×d) where R(θ,Xn×d) has all main-diagonal compo-
nents equal to 1, and components above this diagonal that decrease as |xi;j − xi′;j |
with i′ > i increases (j = 1, ..., d); θ determines the rate of this decrease. Al-
together, (17) implies (2 + d) parameters, collected in ψ = (µ, τ2, θ1, ..., θd)′.
Note: To implement this sampling in MATLAB, we use output of DACE.

This output includes the Cholesky triangular matrixes for the estimated R.
Furthermore, DACE gives the estimated τ2. Finally, DACE gives the estimated
µ for the normalized output and inputs. For details we refer to Lophaven et al.
(2002, p. 14). We shall return to the effects of this normalization, in Appendix
4.
To select specific values for this ψ, we use the estimated Kriging parameters

(ψ̂v) that we shall compute for the example with d = 2 in Gramacy (2016);
we detail this example in Section 7.1. This ψ combined with the input Xn×d
gives the I/O data (Xn×d,wn) where w is defined in (17). To this (X,w) we
fit an OK metamodel. For this fitting, we use the DACE software, which gives
ψ̂w or briefly ψ̂. (We use the MATLAB function full to fill R from the sparse
(lower-triangular) matrix in the Cholesky decomposition.)
Note; We have already observed that LHS guarantees that Xn×d is non-

collapsing ; i.e., the projection of a point xi in the d-dimensional input space
onto one of the d axes gives n values that are equidistant midpoints (see again
Section 4). However, the distance between two points xi and xi′ depends on
the specific realization of the LHS design. We limit our MC experiments to the
realization of Xn×d that is the best among M = 5 realizations; see Section 4.

In our MC experiments we sample (say) m times from Nn defined in (17)
with specific ψ = (µ, τ2,θ′)′. The m observations from Nn are IID. These ob-
servations are called macroreplications or (briefly) replications. These replica-
tions are IID, because they use nonoverlapping pseudo-random number (PRN)
streams. (We focus on deterministic simulation; in random simulation we would
distinguish between macroreplications and replications, because each input com-
bination may use multiple replications.)
These m observations on ψ̂r (r = 1, ..., m) enable us to make boxplots with

whiskers (or briefly "boxplots") that summarize the marginal distributions of
the 2 + d components of ψ̂. Actually, we use the MATLAB function boxplot,
which creates a boxplot where the central mark indicates the median, the bottom
and top edges indicate the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and the outliers use the ’+’
symbol; e.g., the MC experiment with d = 2 gives Fig. 4. This Figure is based
onX20×2 generated by LHS (see Section 4). The exact coordinates of the n = 20
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Figure 4: Boxplots for µ̂r, τ̂2r , θ̂1;r and θ̂2;r with r = 1, ..., 100 in MC experiment
with input X20×2 and constant mean output µ

points are given in Appendix 1. This gives the boxplots for µ̂r, τ̂2r , θ̂1;r, and θ̂2;r
computed through (7), (8), and (6) with w replaced by wr. This Figure should
give m = 100 estimates that do not deviate importantly from the true values
µ = -0.1142, τ2 = 0.0589, θ1 = 3.8555, and θ2 = 1.1970. We may check this
Figure visually. This inspection shows that the sample median of µ̂r lies close to
the true mean µ = -0.1142. However, the sample median of τ̂2r is approximately
0.2, whereas τ2 = 0.0589. The sample median of θ̂1;r ≈ 2, whereas θ1 = 3.8555;
the sample median of θ̂2;r ≈ 0.5, whereas θ2 = 1.1970. This inspection confirms
that it is indeed diffi cult to estimate the Kriging parameters– as Erickson et al.
(2018) observes when comparing software for computing the Kriging predictor
and its estimated variance, which depend on ψ̂, besides X20×2 and w20 (see
again our text below (6)).
Our basic variant of LOO-CV implies that we predict n new points, using

ψ̂−i;r (i = 1, ..., n). Upon projection of xi onto the d individual axes, 50% of
these new points lies in the interval 0.0 < xj < 0.5 (j = 1, ..., d) because we
use the type of LHS defined in Section 4; the other 50% lies in 0.5 < xj < 1.0.
In Fig. 5 we shall show PESi (defined in (12)) for only two of the m = 100
replications; namely, the first replication that gives a nonsignificant value for
maxi |PESi| (defined in (13), and the first replication that gives a significant
value.
Finally, we use allm replications to estimate α (type-I error-rate). Therefore

we define the binary variable br (with r = 1, ...,m) such that if– in replication
r– maxi |PESi| is significantly high, then br = 1; else br = 0:

br = 1 if max1≤i≤n |
wi;r − ŷ−i;r
s(ŷ−i;r)

| > z1−[αE /(2n)]; else br = 0. (18)
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Figure 5: Scatterplot for (wi, ŷi) augmented with ŷi ± zαE /(2n)s(ŷ−i) and ŷi =
wi in MC experiment with αE = 0.20, 0.10, 0.05, n = 20, d = 2, and constant
mean output

Hence the unbiased estimator of α is

α̂ = b =

∑m
r=1br
m

. (19)

To obtain this estimate α̂, we samplew from the multivariate normal distrib-
ution with parameter vector ψ; see (17). To select specific values for the compo-
nents of thisψ., we use the MLE ψ̂ = (µ̂, τ̂2, θ̂1, θ̂2)′ = (−0.1142, 0.0589, 3.8555, 1.1970)′
that we find when we fit an OK metamodel to the I/O data of Gramacy (2016)’s
example (which we shall detail in Section 7.1). We obtain m = 100 replications,
which gives (X20×2,w20;r) with r = 1, ..., 100. For each replication we use
DACE to obtain ψ̂r = (µ̂r, τ̂

2
r , θ̂1;r, θ̂2;r)

′. After preliminary experimentation,
we let DACE search for θ̂1;r and θ̂2;r in the range [0.01, 50.00]. The resulting ψ̂r
have already been displayed in Fig. 4. This ψ̂r gives the OK predictor ŷr and its
standard deviation s(ŷr). Our LOO-CV gives PESi;r (= (wi;r− ŷ−i;r)/s(ŷ−i;r))
and the validation statisticmax |PESi;r|, which defines br in (18) and gives α̂ = b
defined in (19). This LOO-CV gives the following specific results for our MC
experiment.
LOO-CV with n = 20 uses the quantile z1−[αE /(2n)] = z1−αE /40 for three

αEvalues. For αE = 0.20 this quantile is z0.995 = 2.58; likewise, αE = 0.10 gives
z0.9975 = 2.81, and αE = 0.05 gives z0.99875 = 3.02 (these increasing values are
also implied by Fig. 1) We do not present m = 100 tables, each with n = 20
rows (for i = 1, ..., n) and four columns (for w, ŷ, s(ŷ), and |PES|). Instead,
we present Fig. 5, which displays two augmented scatterplots with the n = 20
pairs (wi, ŷi) (i = 1, ..., n), the n CIs ŷi ± zαE /(2n)s(ŷ−i) for our three αE -
values, and the (45◦) line ŷi = w. These two plots correspond with two of the
m = 100 replications; namely, the first replication with a significant result and
the first replication with a nonsignificant result, for any of our three αEvalues,
respectively. Obviously, a replication gives a nonsignificant result if all its n
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CIs intersect the 45◦ line; else the replication is significant. These definitions
are equivalent to the definitions that use maxi |PESi|. In replication r = 2 all
20 CIs cover wi, even for the shortest CI (with αE = 0.20). In replication r =
1 even the longest CI (using αE = 0.05) for the highest wi does not cover the
true output.
Furthermore, the n pairs (wi, ŷi) in Fig. 5 are also used in the classic scat-

terplot, as follows. These (wi, ŷi) determine the line (say) ŷ = a + bw with a
and b determined through the least squares (LS) criterion (or L2-norm). This
line gives R2. Actually, Fig. 5 implies R2 = 0.43 for r = 1 and R2 = 0.22 for r
= 2. Intuitively we reject very low R2-values. However, in this MC experiment
the OK model is valid, because we sample the I/O data from (17) (this validity
is confirmed by our LOO-CV statistic max |PESi|). In general, scatterplots and
R2-values are mathematical instead of statistical plots and measures, so they
can also be used for alternative models such as NNs, RBFs, and splines– but
they lack no statistical critical values.
Next we proceed from these two replications to all m = 100 replications,

and compute α̂ (defined in (19)). The value αE = 0.20 gives α̂ = 45/100 =
0.45; αE = 0.10 gives α̂ = 0.32, and αE = 0.05 gives α̂ = 0.23. Obviously, these
α̂E -values are too high. To solve this problem, we try various solutions.
We may impose the CH condition. When we impose this condition, we

do not have to run the MC experiment again, but we apply LOO-CV to only
n−nCH of the n combinations. To identify the nCH vertices of the CH, we apply
the MATLAB function convhulln(X) to our specific X20×2. This function has
already given Fig. 2, which implies n− nCH = 20 - 6 = 14. We apply LOO-CV
to these 14 combinations, using αE/[2(n− nCH)] = αE/28 (instead of αE/(2n)
= αE/40). Hence, αE = 0.20 implies αE/28 ≈ 0.007 (instead of αE/40 =
0.005), so z

1−αE /(2nC H ) ≈ z0.993 = 2.45 (instead of z
1−αE /(2n) ≈ z0.995 = 2.58).

Likewise, αE = 0.10 implies αE/28 ≈ 0.0036 (instead of αE/40 = 0.0025), so
z
1−αE /(2nC H ) ≈ z0.9964 = 2.691 (instead of z0.9975 = 2.81); αE = 0.05 implies
αE/28 ≈ 0.0018 (instead of αE/40 = 0.0013), so z

1−αE /(2nC H ) ≈ z0.9982 = 2.91
(instead of z0.99875 = 3.02). Altogether, the CH-condition implies fewer CIs
that are shorter. Moreover, we select those n − nCH combinations that we
conjecture to be relatively easy to predict (because these combinations avoid
extrapolation). We do use all n−1 combinations to estimate the Kriging model
for the combination that is left out in our LOO-CV with the CH-condition.)
Imposing the CH-condition, we obtain the following results: αE = 0.20 gives
α̂ = 38/100 = 0.38 (without the CH-condition α̂ was 0.45); αE = 0.10 gives α̂
= 0.26 (was 0.32), and αE = 0.05 gives α̂ = 0.17 (was 0.23. We conclude that
in this example the CH requirement decreases α̂– for all three nominal rates
αE– but α̂ is still significantly high.
Because the CH-constraint does not give acceptable α̂-values, we investigate

the three issues listed below (9).
(i) The MC experiment with H0 defined in (17) enables us to estimate

E(ŷ−i;r|w−i;r) − E(wi;r|w−i;r), which is the bias of the (nonlinear plug-in pre-
dictor) ŷ−i;r = ŷ(xi, ψ̂−i;r) with ψ̂−i;r estimated from (X−i,w−i;r). We empha-
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Point Inside CH On CH

i t
(i)
m−1 t

(i)
m−1

2 0.84
3 1.35
4 2.31
5 0.86
6 1.58
10 1.12

Table 2: Significant bias for points inside the CH and on the CH, in MC exper-
iment with two inputs and constant mean output

size that the definition of this bias is slightly complicated because E(wi;r|w−i;r)
also varies with r (and i) (whereas E(wi;r) = E(wi) = µ) where i = 1, ..., n
and r = 1, ..., m. We define the (optimistic) null-hypothesis of no bias:

H
(PE)
0 : E(PEi;r) = 0 with PEi;r = ŷ−i;r − wi;r (20)

where PEi;r are m IID variables for combination i. To estimate the magnitude
of the bias, we compute the average of these m variables: PEi =

∑m
r=1PEi;r/m.

To test H(PE)
0 (defined in (20)), we compute t(i)m−1 = PEi/s(PEi) with s(PEi)

=
√∑m

r=1(PEi;r − PEi)2/[(m− 1)m]. Because we have n combinations, we may
(again) apply Bonferroni’s inequality with experimentwise error rate (say) α:

Reject H(PE)
0 if max

i
|t(i)m−1| > tm−1;1−α/(2n). (21)

Furthermore we can investigate whether– the absolute value of– the bias is
higher for the nCH combinations of the CH. We then apply the test in (21) to
the nCH combinations of the CH and the n−nCH combinations inside this CH,
respectively.
Our MC experiment withH0 defined in (17) gives Table 2, which shows those

combinations i that give
∣∣∣t(i)m−1∣∣∣ > tm−1;1−α/(2n) where tm−1;1−α/(2n) = 0.84 for

α = 0.20, 0.10, or 0.05 and the 14 combinations inside the CH and tm−1;1−α/(2n)
= 0.81 for the 6 combinations of the CH and α = 0.20 and tm−1;1−α/(2n) = 0.82
for α = 0.10 or 0.05 (these 14 + 6 combinations have already been displayed in
Fig. 2). This table suggests that some combinations give significant bias. More
specifically, the highest estimated bias occurs for 2 of the 6 combinations in
the CH; namely, the combinations 4 and 6. However, (less) significant bias also
occurs for 4 of the 14 combinations inside the CH; namely, the combinations 2,
3, 5, and 10. Nevertheless, this bias is so small that we decide to ignore this
bias– as is usual in OK.
(ii) A simple solution is to replace z in (13) by tf with f = (n−1) − (d+2).

This replacement indeed decreases α̂, but only slightly; i.e., if we impose the CH
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requirement (so n−nCH = 14) and αE is 0.20, 0.10, or 0.05, then α̂ is 0.35, 0.25,
0.15 (whereas z gives 0.38, 0.26, 0.17). So we conclude that this replacement
does not give an acceptable solution.
(iii) A computationally more demanding solution uses bootstrapping– through

Algorithm 2– to obtain an unbiased estimator of σ2[ŷ(xi, ψ̂−i)]. This bootstrap-
ping gives the following results: αE = 0.20 gives α̂E = 10/100 = 0.10 (was α̂E
= 0.45), αE = 0.10 gives α̂E = 0.05 (was α̂E = 0.32), and αE = 0.05 gives α̂E
= 0.04 (was α̂E = 0.23). Because these α̂E -values are too low, we may replace
tf by z; however, this replacement gives negligible increases of the α̂E -values.
Altogether, our LOO-CV (which uses Bonferroni’s inequality) combined with
bootstrapping is conservative.

6.2 Estimating the power function in MC experiments

Whereas there is a single null-hypothesis H0 defined in (17), there are infinitely
many alternative hypotheses H1. Actually, we choose to replace µ1n in H0 by
a first-order polynomial with coeffi cients βd = (β1, ..., βd)

′ and zero intercept,
which gives

H1 : w(Xn×d)∼N(Xn×dβd,ΣM (Xn×d)). (22)

We use βd to control the magnitude of the type-II (or β) error rate, which we
denote by βII (the subscript II distinguishes this rate from the parameters βj
(j = 1, ..., d) in the polynomial in (22)). Then 1− βII is the power of the test
(the test’s alarms are true instead of false). We define γ = 1− βII , so

γ = P (H0 rejected|H1). (23)

For simplicity’s sake we assign the same positive value β to each βj , so βj = β
≥ 0 and βd = β1d. Next we experiment with several values for β. The smallest
β-value is zero; obviously, if β = 0, then γ = α. Besides β = 0 we select more
values for β. Actually, we obtain MC results for various values for the signal-
to-noise ratio (say) g (so β = gτ); namely, g = 0, 1, 5, and 25. This experiment
estimates the power curve γ(β).
Note: To estimate γ(β), we again use br (defined in (18)). So the right-hand

side of (19) gives the estimator γ̂(β).. To improve the statistical accuracy of our
comparisons among γ̂(β) for the various values of g in β = gτ , we use common
random numbers (CRN). To implement CRN, we might use the following two
options: (i) We sample m times from Nn with zero means; (so, µ = 0 in (17));
we store the results in an n×m table; to estimate γ, we add x′iβ to each element
in this table. (ii) Instead of creating such a table, we initialize the PRN stream
with the same seed for each value of β (so i =1 and r = 1 use the same seed for
each β value). Actually, we select option (i).
We continue to use OK (which erroneously assumes E(w) = µ1, whereas

UK might correctly assume E(w) = Xβ). We expect that the MLE of the OK
parameters is biased: E(ψ̂) 6= ψ. More specifically, we use LHS, so E(x′i)β
= (0.5d)β, which gives E(µ̂) = 0.5dβ. Furthermore, the output w varies not
only because of τ2, but also because E(w) is not a constant but varies with x;
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g µ̂r τ̂2r θ̂1;r θ̂2;r
0 -0.0060 0.1972 1.9278 0.6388
1 0.0008 0.3251 1.6210 0.4232
5 0.1155 5.9077 0.9639 0.1058
25 1.3144 230.3007 0.4819 0.0529

Table 3: Sample medians of estimated OK parameters for trend g and two
inputs in MC experiment

i.e., E(τ̂2) > τ2. This increase of τ̂2 implies that s2[ŷ(xi)] increases; see the
first term in (4). Originally, we conjectured expected that θ̂ is unbiased (so,
E(θ̂j) = θj), but we shall return to this conjecture in our discussion of Table 3
below. If H1 in (22) holds, then the OK predictor ŷ is not optimal (actually, the
UK predictor– with correctly specified mean– would be optimal). In general,
however, OK is known to give a robust metamodel. So we expect that γ remains
relatively low, and increases as β increases.
Now we estimate the power γ of our LOO-CV test for I/O data with linear

trends and different slopes. We proceed as discussed around (23), so, we obtain
m = 100 samples from N20 defined in (22) with mean β1x1 + β2x2.
To understand the effects of g (trend slope) on the power curve γ(β), we first

investigate the effects of g on ψ̂ (estimated OK parameters). Fig. 4 in Appendix
2 gives the boxplots for all four g-values. We summarize these boxplots in Table
3, which displays the sample medians of the 100 estimated OK parameters in
the MC experiment with trend g and d = 2 inputs (so we have θ̂1;r and θ̂2;r)
(sample medians are more robust estimators than sample means). We analyze
this Table as follows.
Table 3 clearly shows that the sample median of µ̂r increases as g increases.

This increase makes sense because E(µ̂) = 0.5β1 + 0.5β2 = β = gτ . The
sample median of τ̂2r clearly increases as g increases; this makes sense, because
the output shows more spread as g increases (this increase of τ̂2r implies that
s2[ŷ(xi)] increases, which decreases |PES|). The sample medians of θ̂1;r and
θ̂2;r clearly decrease as g increases; i.e., a stronger trend implies that OK assigns
higher weights to observations that are closer to the combination to be predicted
(higher weights imply higher correlations, which imply lower θ; see (5)).

Finally, Table 4 shows the estimated power γ̂. Part (a) shows that γ̂ increases
as g increases– as is to be expected. If g = 0, then (by definition) γ̂ = α̂; in
this part of the table, α̂ is much too high (α̂ � αE). Therefore we add the CH
requirement, and obtain part (b). This part shows that– for any of the three
αE -values– γ̂ tends to increase as g increases. If g = 0, then we still have γ̂
= α̂ � αE (g = 25 gives γ̂ slightly smaller than γ̂ without the CH condition).
We conclude that the CH constraint improves our results, but does not give
good results. In part (c) we bootstrap the predictor variance, using a bootstrap
sample size B = 100. This part shows that– for any of the three αE -values– γ̂
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g αE = 0.20 αE = 0.10 αE = 0.05
(a) Basic variant

0 0.45 0.32 0.23
1 0.50 0.38 0.24
5 0.83 0.81 0.78
25 0.93 0.88 0.87

(b) CH variant
0 0.35 0.25 0.14
1 0.35 0.25 0.19
5 0.77 0.73 0.61
25 0.89 0.84 0.81

(c) Bootstrap variant
0 0.10 0.05 0.04
1 0.12 0.06 0.03
5 0.71 0.61 0.50
25 0.97 0.95 0.93

Table 4: Estimated power in MC experiment with trend g and two inputs

tends to increase as g increases. If g = 0, then γ̂ = α̂ � αE , so Bonferroni’s
inequality is indeed conservative. If g = 25, then the estimated power is slightly
larger when the variance estimator is bootstrapped. We conclude that in this
MC example it is worthwhile to bootstrap the variance.

7 Two examples

We apply our LOO-CV to Gramacy (2016)’s example (with d = 2) and the
borehole model (with d = 8). Each example gives the I/O data (Zn×d,vn) where
we use the symbol vn– or briefly v– to denote the output vector (v resembles
w, used in the preceding MC experiments). The Kriging method treats the
underlying simulation model as a black box, so OK uses only the simulation I/O
data (Zn×d,vn). For this Kriging, we again use the DACE software, which also
gives ψ̂v (MLE of the parameters of the OK model for v). Finally, we apply our
LOO-CV to these two examples. In general, OK gives a robust metamodel, so
we expect that in these two examples OK gives a metamodel that is not rejected
by our LOO-CV.

7.1 Gramacy (2016)’s example with two inputs

Gramacy (2016) presents an example with d = 2 original dimensionless inputs
zj (j = 1, 2) with the ranges [lj , uj ] = [−2, 2]. To select n, we again follow
the rule-of-thumb in Loeppky et al. (2009), so n = 10d = 20 (see Section
4). We generate a single LHS design X20×2 (using the midpoints of the n
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Figure 6: I/O data (z1;i, z2;i, vi) with i = 1, ..., 20 of example in Gramacy (2016)

subintervals for input xj with j = 1, 2; also see the LHS in Section 4, and the
MC experiment with d = 2 inputs in Section 6). This X20×2 gives Z20×2, using
the linear transformation zj = −2 + 4xj . Using this Z20×2 as input for the
simulation model gives the I/O data (z1;i, z2;i, vi) (with i = 1, ..., 20). We plot
these I/O data that have negative vi-values, in Fig. 6 which is a 3D plot with 20
vertical lines that start at (z1;i, z2;i, 0) (empty circles) and end at (z1;i, z2;i, vi)
(solid circles).
Actually, this simulation model is a single explicit mathematical function;

because OK does not know the white box inside the black box, we present this
function in Appendix 3. Moreover, we present the d = 2 scatterplots (zj;i, vi)
that use the I/O data in Fig. 6; such scatterplots may be used for SA (as
Kleijnen and Helton (1999) does, albeit not in a Kriging context). Neither
Fig. 6 (presented above) nor the Figure in Appendix 3 gives much insight
into the behavior of the black box. Nevertheless, we apply OK to the I/O data
(Z20n×d,vi) (LOO-CV focusses on prediction, not SA).
Note: We could have investigated many X20×2-matrixes (sampled through

LHS or specified through some other type of space-filling design). However, we
consider the X20×2 specified in Fig. 2 to be representative for applications of
our LOO-CV to the example in Gramacy (2016).
Using these I/O data (X20×2,v20), DACE gives ψ̂v. Appendix 3 includes

comments on this ψ̂v. For example, because f(z1) = f(z2) if z1 = z2, we
conjecture that θ̂1/θ̂2 ≈ 1. The results in this appendix do not contradict this
conjecture.
Using these (X,v) and ψ̂v, DASE gives ŷ (Kriging predictor) and s

2(ŷ−i)
(estimated variance). In the upper pane of Fig. 7 we display the resulting
augmented scatterplot, which implies that LOO-CV does not reject the OK
metamodel. The corresponding max |PESi| is 2.33, which is not significant
(because our basic LOO-CV with n = 20 uses z1−[αE /(2n)] = z1−αE /40 so αE =
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Figure 7: Scatterplot for (vi, ŷi) augmented with ŷi ± zαE /(2n)s(ŷ−i) and ŷi =
vi, in Gramcy (2016)’s example with d = 2, n = 20 (upper pane) and n− nCH
= 14 (lower pane)

0.20 gives z0.995 = 2.58; obviously, αE < 0.20 gives z1−αE /40 > 2.58).
Given these results, we do not need to impose the CH condition. Nevertheless

it may be interesting to check if max |PESi| = |PES18| occurs at a point in the
CH. This CH was shown in Fig. 2, using the standardized input x. So we find
that max |PESi| occurs at z18 = (−0.9,−1.1)′, which lies inside the CH. (The
next highest |PESi| is 1.82 and occurs at z6 = (−0.1, 1.9)′, which is one of the
CH vertices.)
Note: The classic scatterplot gives R2 = 0.26 without the CH condition, and

R2 = 0.10 with the CH condition, so these plots suggest that the OK metamodel
is inadequate! (Actually, we conjectured that R2 with the CH condition would
be higher than R2 without the CH condition.)
Furthermore these results imply that we do not need bootstrapping to esti-

mate V ar(ŷ−i). We know that the OK metamodel is not a perfect metamodel
so the OK metamodel has some bias. This bias implies that MSPE [ŷ(xi,ψ)]
exceeds V ar[ŷ(xi,ψ)]. This property makes the estimator based on (4) over-
estimate V ar(ŷ−i). On the other hand, s2[ŷ(xi, ψ̂−i)] used in (9) ignores the
plug-in character of the OK predictor, so it underestimates V ar(ŷ−i). We do
not know the net result. In practice we may ignore these complications, and
use classic Kriging software to compute s2[ŷ(xi, ψ̂−i)]; only if LOO-CV rejects
the fitted OK metamodel, we may decide to apply bootstrapping to estimate
V ar[ŷ(xi, ψ̂−i)].

7.2 Borehole example with eight inputs

Kleijnen and Van Beers (2019) gives details on the borehole model, but we
summarize this model as follows. The borehole model has the output (say) v

27



j Name of original input zj , and measurement unit Symbol Range [lj , uj ]

1 Radius of borehole, in meters (m) rw 0.05, 0.15
2 Radius of influence in m r 100, 50000
3 Transmissivity of upper aquifer in m2/year Tu 63070, 115600
4 Potentiometric head of upper aquifer in m Hu 990, 1110
5 Transmissivity of lower aquifer in m2/year Tl 63.1, 116
6 Potentiometric head of lower aquifer in m Hl 700, 820
7 Length of borehole in m L 1120, 1680
8 Hydraulic conductivity of borehole in m/year Kw 9855, 12045

Table 5: Borehole inputs

and the d = 8 original inputs zj (so j = 1, ..., 8). These zj and their ranges
[lj , uj ] are listed in Table 5 (the subscript w in rw or z1 has nothing to do with
our output w in Nn). The output v denotes the water flow rate, measured in
m3 per year.
Analogously to our approach to the example in Gramacy (2016) presented

in Section 7.1, we use the standardized inputs 0 ≤ xj ≤ 1; i.e., we use the ranges
[lj , uj ] of z in Table 5 and the linear transformations xj = (zj−lj)/(uj−lj) (this
standardization is also used in DASE; see Lophaven et al. (2002, eq. (2.1)). We
use LHS to sample xi;j with i = 1, ..., n, and transform xi;j into zi;j . We again
follow Loeppky et al. (2009) so n = 10d = 80 (Gramacy (2016) uses n = 50 or n
= 200 and Kleijnen and Van Beers (2019) uses n = 60). Next we obtain the I/O
data (Zn×d,vn). Because d = 8 we cannot plot the analogue of Fig. 6 with d =
2. We can make the d = 8 scatterplots (zj;i, vi); see the Figure in Appendix 4.
Our interpretation of these plots is that z1 (or rw) has the strongest (positive)
effect, whereas the other seven effects have no clear (main or first-order) effects.
(This interpretation suggests UK with a first-order polynomial in rw, but we
limit our investigation to OK.) We use the I/O data (Z,v) of the borehole model
to compute the OK metamodel. Appendix 4 includes the (white box) function
v(z1, ..., z8) and a detailed SA.
Note: We use the MATLAB function lhsdesign with M = 5 random permu-

tations (see Section 4); to enable other researchers to reproduce our results,
we mention that we initialize the PRN-stream with the MATLAB function
“rng(’default’)".
Using X−i and ψ̂−i, DACE computes ŷ−i and s(ŷ−i) for i = 1, ..., n = 80.

Using these DACE results, we compute |PESi| We find that max1≤i≤n |PESi|
= |PES71| = 0.33, which is not significant at all, for any of the three critical
values z1−αE /(2n) and tf ;1−αE /(2n) with f = (n - 1) - (d + 2). More precisely, αE
= 0.20 gives z0.9988 = 3.0233 and t69;0.9988 = 3.1383; αE = 0.10 gives z0.9994 =
3.2272 and t69,0.9994 = 3.3659; and αE = 0.05 gives z0.9997 = 3.4205 and t69;0.9997
= 3.5847. To summarize our LOO-CV, we make an augmented scatterplot with
80 CIs with αE = 0.20; see Fig. 8. This Figure implies that all 80 CIs intersect
the 45◦ line, so LOO-CV does not reject the validity of the OK metamodel.
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Figure 8: Scatterplot for (vi, ŷi) augmented with ŷi ± zαE /(2n)s(ŷ−i) and ŷi =
vi, in borehole example with d = 8, αE = 0.20, n = 80

Obviously, scatterplots with αE = 0.10 or αE = 0.05 give longer CIs, so these
CIs also overlap the 45◦ line. (The classic scatterplot gives R2 = 0.997 with
intercept a = 1.276 and slope b = 0.983, so R2 is very high, but we do not
know whether the fitted line significantly deviates from the 45◦ line so the OK
metamodel is not adequate.)
Given these results, we do not need to impose the CH condition for our

X80×8. Nevertheless, it is interesting that we find that the CH has nCH = n
= 80 vertices, so zero points remain to apply LOO-CV. If we increased n from
80 to 100, then we would find n− nCH = 100 - 97 so we could apply LOO-CV
to these 3 points (while computing ŷ from 99 points). Anyhow, a high d-value
may imply that many points of the available n points require extrapolation.
Moreover, we may decide not to bootstrap the predictor variances σ[ŷ(xi, ψ̂−i)],

because we assume that such bootstrapping increases these variances which
makes maxi |PESi| even less significant. Nevertheless, for x71 (which gave
max1≤i≤n |PESi|= 0.33) we do obtain the bootstrapped estimator of σ[ŷ(xi, ψ̂−i)],
which gives maxi |PESi| = 0.25 (was 0.33).
Altogether, our results may explain why many researchers use OK for the

borehole example.
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8 Conclusions and future research

Our main conclusions are: (i) In practice, LOO-CV often does not reject the
OK metamodel. (ii) However, if the basic variant of LOO-CV rejects the OK
model, then imposing the CH constraint hardly improves LOO-CV. (iii) Re-
placing the normal quantile by a Student quantile hardly affects LOO-CV. (iv)
Bootstrapping the predictor variance makes LOO-CV– which uses Bonferroni’s
inequality– conservative.
Furthermore we conclude that our MC experiments explain why OK is ro-

bust ; i.e., OK gives valid approximations– tested through LOO-CV– even if the
I/O data show a linear trend. This trend implies that the MLEs of the Kriging
parameters increase the variance of the OK predictor; these MLEs change the
correlation coeffi cients such that OK assigns higher weights to outputs of nearby
points. (if the OK assumptions hold, then these MLEs may give outliers.)
Future research may address the following topics: (i) LHS may use non-

uniform distributions, which is the case in uncertainty analysis. Actually, trian-
gular distributions are discussed in Kleijnen and Van Beers (2019), using either
midpoints or points sampled within subintervals. (ii) If LOO-CV rejects the
OK (meta)model, then we may either apply an alternative Kriging model (e.g.,
UK) or collect additional I/O data. (iii) We may extend LOO-CV to random
(instead of deterministic) simulation. In such a simulation we distinguish be-
tween the extrinsic noise M(x) and the intrinsic noise caused by PRNs; this
intrinsic noise may have either a homogeneous (constant) variance or heteroge-
neous variances. (iv) We may investigate k-fold CV with k > 1.
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i 1 2 3 4 5 6 7 8 9 10

x1 -0.5 -0.7 1.5 1.7 -1.5 -0.1 -0.3 0.5 1.1 1.3
x2 0.9 -0.7 0.1 0.7 1.5 1.9 0.3 -1.9 -1.7 -0.5

i 11 12 13 14 15 16 17 18 19 20

x1 -1.1 0.9 0.7 -1.7 -1.9 0.1 1.9 -0.9 0.3 -1.3
x2 1.3 -0.9 1.1 -1.3 1.7 -0.3 -1.5 -1.1 0.5 -0.1

Table 6: A LHS design for twenty combinations of two inputs

Zou L. and X. Zhang (2018), Stochastic Kriging for inadequate simulation
models. arXiv:1802.00677v2 [stat.ME] 13 Feb 2018
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Appendix 1: LHS design for twenty combinations of two inputs
Table 6 displays our LHS design with n = 20 combinations of the d = 2

standardized inputs x1;i and x2;i with i = 1, ..., n.

Appendix 2: Boxplots with estimated Kriging parameters in MC
experiment with four slopes of linear trend
Fig. 9 displays boxplots for the Kriging parameters µ̂r, τ̂2r , θ̂1;r and θ̂2;r with

r = 1, ..., 100 in the MC experiment with input X20×2 and a linear trend with
slope β = gτ with g = 0, 1, 5, and 25, respectively. We observe that g = 25
gives a box for θ̂1;r with zero length; the first, second, and third quantiles have
the same value (namely, 0.4819). Furthermore, θ̂2;r varies between 0.0602 and
0.8839, but 65 (out of 100) estimates coincide with the sample median.
Appendix 3: Details of Gramacy (2016) example
Fig. 11 displays the two scatterplots (zj;i, vi) with j = 1, 2 for Gramacy’s

example.
Actually, the I/O data of the black box in Gramacy’s example are determined

by the following (white box) explicit mathematical function:

v(z1, z2) = −f(z1)f(z2) with − 2 ≤ zj ≤ 2 and (24)

f(zj) = e−(zj−1)
2

+ e−0.8(zj+1)
2

− 0.05 sin(8(zj + 0.1)). (25)

Fig. 12 gives the 3D plot of this function using as many as N = 40,401 input
combinations defined by the 201 × 201 grid in [−2, 2]2. This plot shows that
this function is very "wiggly", which agrees with our interpretation of the plots
with only n = 20 I/O data. (Fig. 11 and Fig. 12 show that v is extreme
if zj is extreme.) OK assumes a constant mean, which seems a reasonable
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Figure 9: Boxplots for OK parameters in MC experiment with 100 replications,
20 combinations of two inputs and slope g = 0, 1, 5, and 25 of linear trend

assumption (unlike the borehole example which has a monotonically increasing
I/O function).
Note: Gramacy (2016) considers N = 40,401 I/O points. Because such a

high N value gives computational problems when computing the OK predictor
and its variance, Gramacy uses only n = 50 points– among these N points–
that lie close to a given new input combination for which the output has to be
predicted. Whereas Gramacy uses a rather complicated procedure to select these
n points, Kleijnen and Van Beers (2019) simply uses the n nearest neighbors of
this new input combination. Anyhow, we expect that a local set of I/O data
gives an adequate OK model, because there are relatively many neighboring
points to obtain an accurate interpolator. We, however, are not interested in
local prediction, but in prediction over the whole area [−2, 2]2.
We find it hard to explain the specific values for θ̂j (also see our discussion

of the prior distribution for θj in the Bayesian approach to GP, in the Introduc-
tion). We may compare the relative values of θ̂j (j = 1, 2) in this example (with
f(z1) = f(z2) if z1 = z2; see (25)), so we conjecture θ1/θ2 = 1 or θ̂1/θ̂2 ≈ 1.
However, our specific LHS design gives θ̂1/θ̂2 = 3.8555/1.1970 = 3. 2. To inves-
tigate this difference between θ̂1 and θ̂2, we sample 100 LHS designs– all with
the same n = 20 and the same range [0, 50] for θ̂1 and θ̂2 in DACE’s search for
the MLEs. This sample gives Fig. 13, which is the bivariate plot of the resulting
pairs (θ̂1, θ̂2) with r = 1, ..., 100. Actually, some points in this plot coincide;
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Figure 10: Boxplots for OK parameters in MC experiment with 100 replications.
20 combinations of two inputs and slope g = 0, 1, 5, and 25 of linear trend

Figure 11: Scatterplots (z1;i, vi) and (z2;i, vi) using I/O data of example in
Gramacy (2016)
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Figure 12: Gramacy (2016)’s example with I/O data at N = 40,401 points

Figure 13: Bivariate plot of pairs (θ̂1;r, θ̂2;r) (r = 1, ..., 100) with 0 ≤ θ̂j;r ≤ 50
(j = 1, 2) in 100 LHS designs for Gramacy (2016)’s example
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i.e., (0.078, 25) occurs two times, and (0.63, 10) occurs four times. Two points
are very close; namely, (0.04, 20) and (0.16, 20). Furthermore, this plot shows
that two replications give θ̂2 = 50, which is the upper limit in DACE’s search for
the MLEs (in practice, we would relax this limit, and continue DACE’s search).
More important, the plot shows that 53 of these 100 designs give θ̂2 > θ̂1; i.e.,
53 points lie above the line with unit slope and zero intercept (see the solid,
non-dashed line). This result does not contradict our conjecture (namely, θv;1
= θv;2). The plot also shows the first-order polynomial fitted through LS, which
turns out to have intercept 3.89 and slope 0.94 (see dashed line). This intercept
is close to the "true" value θv;1 = θv;2 ≈ 3 (the value 3 is explained in the next
Note). Most of the 100 (estimated) points cluster around the (true) point (3, 3);
i.e., DACE’s search does give "reasonable" estimates. If we use ρθ to denote
Pearson’s correlation coeffi cient for the pair (θ̂1, θ̂2), then this fitted line gives
ρ̂θ = 0.49 (the relationship between ρ2θ for a two-dimensional random variable
and R2 for a model with one or more independent variables or predictors and
one dependent variable or response is discussed in Kleijnen (2015, p. 113)). We
know that the LS criterion gives results that are sensitive to outliers, so in the
plot we might remove outliers such as the two points with θ̂2 = 50. However,
we do not further refine our analysis of the fitted line, because this line does
not contradict our conjecture (namely, θv;1 = θv;2). The rather low value of
ρ̂θ (namely, 0.49) is explained by the rather high standard deviations of θ̂1 and
θ̂2; namely, 6.98 and 13.47, while the sample means are 5.08 and 8.68 and the
sample medians are 2.50 and 3.54.
Note: We do obtain θ̂1 ≈ θ̂2 if we use a grid (instead of LHS); e.g., n × n

grids with n is 4, 5, 10, 25 give (0.3125 0.2210), (2.5000 2.4148), (2.9730 2.9730),
(3.2421 3.3856). Obviously, the estimates do not equal the true values θv;j (j =
1, 2), which implies that the estimates λ̂−i of the Kriging weights do not equal
the true values λ−i, so the plug-in Kriging predictor is not the BLUP. To fur-
ther investigate Gramacy’s example (in which z1 and z2 play the same role),we
replace the Kriging metamodel by a simpler metamodel; namely, the second-
degree polynomial. We conjecture that in this polynomial the first-order effects
of z1 and z2 are the same, and so are their purely quadratic effects. Indeed,
when we fit this polynomial to the I/O data of our LHS design with n = 20, then
we obtain estimated first-order effects that are nearly the same (namely, 0.03),
and purely quadratic effects that are also nearly the same (namely, 0.09) (the
two-factor interaction is 0.00, and the intercept is -0.98). The 4× 4 grid (which
is the grid with the minimum size when fitting the Kriging metamodel) gives es-
timated first-order effects that are exactly the same (namely, 0.005), and purely
quadratic effects that are also exactly the same (namely, 0.104) (the two-factor
interaction is -0.000, and the intercept is -0.963). Altogether, the LHS and the
grid designs confirm our conjecture; i.e., z1 and z2 have the same first-order and
purely quadratic effects in the second-degree polynomial metamodel.

Appendix 4: Details of the borehole example
Fig. 14 displays the scatterplots (zj;i, vi) with j = 1, ..., 8 and i = 1, ..., 80
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Figure 14: Scatterplots (zj;i, vi) with j = 1, ..., 8 and i = 1, ...., 80 using I/O
data of borehole example

for all inputs. Actually, we compute v from the following (white box) function:

v =
2πTu(Hu −Hl)

ln(r/rw)(1 +
2LTu

ln(r/rw)r2wdw
+ Tu

Tl
)
. (26)

Computer codes in MATLAB and R for this model are available on
https://www.sfu.ca/~ssurjano/borehole.html.
Obviously, (26) is nonlinear and has non-additive effects. The interpretation

of the simulation experiment should use the original I/O data, as we explain
now.
We make 3D plots (like Fig. 12); i.e., we plot the output vi (i = 1, ...., n)

versus two original inputs while keeping the other six original inputs constant at
the midpoints of their ranges. Santner et al. (2018) estimates that rw is the most
important input and that the three inputs L, Hl, and Hu have approximately
equally important effects. In the left-hand pane of Fig. 15 we use a grid of
N = 21 × 21 input combinations (rw, L) while keeping the other six inputs
constant; the right-hand pane gives a similar plot for (r, Tu). We point out
that the range of w is relatively small in the right-hand side, so the effect of
r is relatively small (the effect of Tuis unimportant). We also make such 3D
plots for all other combinations of two inputs; these plots are very similar, so
we do not display them. Moreover, we make contourplots. These 3D plots and
contourplots confirm Santner et al.’s conclusion that rw has the most important
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Figure 15: Borehole example: I/O function withN = 21×21 input combinations
(rw, L) (left pane) and (r, Tu) (right pane) versus output w

main effect and has important interactions. Moreover, these plots suggest that
the I/O function is monotonic; i.e., the borehole model looks complicated, but
seems to give a simpler I/O function than Gramacy’s example in Appendix 3.
Santner et al. (2018, Fig 7.10 and Table 7.11) quantifies the importance of

zj through the estimated "main effect" and the "total sensitivity index"; this
index measures the contribution to the total output variance due to zj including
all variances caused by all the interactions between zj and any other inputs (we
shall further discuss main effects and indices below).
Using (X80×8,v80), DACE gives ψ̂. This MLE includes µ̂ = 76.74 (which

agrees with the mean output in the left-hand pane of Fig. 15). Furthermore,
τ̂ = 40.10 (which also agrees with the spread in the outputs observed in this
pane). When searching for the values of θ̂j that maximize its log-likelihood
function, we did some preliminary tests which suggest that the interval [0.001, 5]
is appropriate for this search. This gives the following θ̂j-values (for j = 1, ...,
8), where we display the first three decimal units because the lower limit of
our search (namely, 0.001) also uses three decimals: 0.310, 0.067, 0.015, 0.017,
0.001, 0.007, 0.011, 0.002. So θ̂5 = .001, which equals the lower limit; i.e., a
better estimate of θ5 might have a lower value than 0.001. We now discuss the
use of these θ̂j for SA of the borehole example.

Originally we conjectured that θ̂1 would be the smallest of the θ̂j-values, be-
cause rw (or z1) seems the most important input (see Fig. 15). The magnitudes
of 1/θ̂j (not θ̂j) are also shown in the boxplot in Sun (2018, p. 12), but not in a
CV context; that boxplot confirms our results. More precisely, our definition of
the Gaussian correlation function equals the definition in Lophaven et al. (2002,
p. 6). Our definition equals the definition in Sun et al. (2018, p. 6) provided we
replace our θjh2j by h

2
j/θj . Moreover, in Section 3 we mentioned that different

software may give different θ̂.
Now, however, we revisit our original conjecture; i.e., now we notice that

the Gaussian correlation function is determined not only by θ̂j , but also by
h2j where hj = |xg;j − xg′;j | (g, g′ = 1, ..., n). If we use the original inputs,
then θj becomes (say) θz;j , and hj becomes hz;j which depends on the range
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[lj , uj ]. In Zn×d (determined by Xn×d sampled by LHS) the common length
of the n subranges of zj is (uj − lj)/n. So the observed distances between two
outputs at the midpoints of these subranges are a multiple of this length; e.g.,
there are n− 1 observations on outputs with inputs at the distance (uj − lj)/n
and there is a single observation on the two outputs with the longest distance
(uj − lj)(n− 1)/n. In general, there are i observations on outputs with inputs
that are (uj − lj)(n − i)/n apart (with i = 1, ..., n). The range of rw is
very small compared with the ranges of the other seven inputs. We observe
that Gramacy (2016)’s example in Appendix 3 has inputs with the same range
(namely, [−2, 2]). Similar scaling effects occur in linear regression, as we explain
next.
In general, low-order polynomial linear-regression gives a good local predic-

tion (Taylor-series argument), whereas Kriging gives a good global prediction.
More precisely, linear regression gives ŷ = x′β̂ = z′β̂z where β̂ = (X

′X)
−1

X′w

and β̂z = (Z′Z)
−1

Z′w; however, numerical inaccuracies affect β̂z more than
β̂. A low-order polynomial helps SA, because this polynomial implies d main
effects, d(d − 1)/2 two-factor interactions, and d– diminishing or increasing–
rates of return. Standardization of the inputs such that the standardized values
range between -1 and +1 immediately shows which input has the most impor-
tant estimated main effect; namely, the input with he highest absolute value of
the estimated main effect (classic "response surface methodology" or RSM does
not standardize, so its steepest-ascent direction is scale-dependent). Analysis
of variance (ANOVA) estimates higher-order interactions including the interac-
tions among all d inputs. Kriging may speed-up functional ANOVA (FANOVA)
or global SA (GSA), which uses Sobol’s indices including "total sensitivity in-
dices". (Sobol’s indices– and Shapley’s value in game theory– can also estimate
interactions; see Kleijnen (2015, pp. 216—218) and Song et al. (2016).). Because
Kriging is primarily predictive, most analysts do not pay much attention to the
individual parameters within ψ (vector with 2 + d Kriging parameters), but
focus on the Kriging predictor ŷ(xi, ψ̂)– as we also do in LOO-CV. For more
discussion we refer to Kleijnen (2015).
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