
PSYCHOMETRIKA—VOL. 75, NO. 1, 120–139
MARCH 2010
DOI: 10.1007/S11336-009-9129-9

STATISTICAL TESTS OF CONDITIONAL INDEPENDENCE BETWEEN RESPONSES
AND/OR RESPONSE TIMES ON TEST ITEMS
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Three plausible assumptions of conditional independence in a hierarchical model for responses and
response times on test items are identified. For each of the assumptions, a Lagrange multiplier test of
the null hypothesis of conditional independence against a parametric alternative is derived. The tests have
closed-form statistics that are easy to calculate from the standard estimates of the person parameters in the
model. In addition, simple closed-form estimators of the parameters under the alternatives of conditional
dependence are presented, which can be used to explore model modification. The tests were applied to a
data set from a large-scale computerized exam and showed excellent power to detect even minor violations
of conditional independence.
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1. Introduction

For a population of test takers, the responses to different test items typically correlate posi-
tively. Intuitively, this correlation may seem to make sense: a test taker who knows the answer to
one item is likely to be more proficient than one who does not know it and should therefore have
a higher probability of knowing the answer to the other item as well. However, as is well known,
this argument confounds the correlation between the responses to test items with the impact of
the proficiencies of the test takers. If we kept the proficiencies of the test takers constant—or
in a more statistical language: condition on them—the argument would no longer hold, and the
correlation between the responses would disappear. This is exactly what is postulated in the as-
sumption of conditional (or “local”) independence in item response theory (IRT) (e.g., Birnbaum,
1968; Lord, 1980).

Observe that this assumption of conditional independence supposes two different levels of
randomness. At the level of a fixed test taker, the responses to test items are assumed to vary
independently across replications. But at the level of a population of test takers, the proficiency
also varies, and this variation creates the observed correlation between the lower-level responses.
Examples of such hidden sources of covariation between observed variables can be found in
almost any area of applied statistics. When one is identified, the correlation between the observed
variables is usually referred to as “spurious correlation,” and the change in the correlation upon
conditioning on the covariate is known as Simpson’s paradox.
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The same paradox may occur in response-time (RT) analyses. Instead of responses and pro-
ficiency, the two pertinent notions are now the RTs on the test items and the speed at which the
test takers operate. The two are not the same; if two test takers respond to different test items
and one produces a longer RT, it would be wrong to conclude that this person has worked at
a slower speed. The solution to the item administered to this person may have required much
more labor, and the person might actually have worked faster on it than the other person on the
less-labor-intensive item.

It is helpful to notice an analogy between this notion of speed of cognitive labor and that
of speed of motion in physics (van der Linden, 2009a). Without any reference to the distances
traveled, it would be wrong to conclude that one car has moved faster than another only because
it arrived earlier.

If test takers do differ in the speed at which they solve items, these differences serve as a
potential source of covariation between the RTs on test items, and test takers with shorter RTs
on one item can be expected to have shorter time on other items as well. Although we observe a
positive correlation between pairs of items, the correlation will thus vanish as soon as we keep
speed constant. Hence, it seems appropriate to assume conditional independence between RTs
given speed as well.

An even more interesting relation exists between RTs and responses on a single item. De-
scriptive studies of RTs generally report negative correlations between them in the sense of longer
RTs for incorrect than for correct solutions (e.g., Bergstrom, Gershon, & Lunz, 1994; Hornke,
2005, 2000; Swanson, Featherman, Case, Luecht, & Nungester, 1999; Swanson, Case, Ripkey,
Clauser, & Holtman, 2001). This finding appeals to a general belief that test takers who do not
know a solution, struggle longer and eventually are likely to settle on a wrong answer. These
negative correlations are, however, entirely at odds with decades of experimental research on the
speed-accuracy tradeoff in psychology, which have shown that, for a large variety of tasks, the
likelihood of a correct solution tends to increase monotonically with time and thus that correct-
ness and response time correlate positively (e.g., Luce, 1986, Section 6.5).

Usually, such conflicts between observed correlations point at hidden covariates as well.
In the current case, the likely candidate is not proficiency or speed on their own but a higher-
level relationship between them: If the two correlate positively in a population of test takers, the
responses and RTs on a single item will tend to correlate negatively. A correct response is then
likely to be the result of higher proficiency, and, as higher proficiency tends to be associated with
higher speed, will be accompanied by a shorter RT.

On the other hand, a speed-accuracy tradeoff is a monotonically increasing relationship be-
tween speed and proficiency (i.e., a negative correlation) within a person. Therefore, experi-
mental realization of the tradeoff will manifest itself as a positive correlation between time and
correctness of the responses across different conditions of speed. But if speed and proficiency
are held constant, these relationships between the two factors can no longer manifest themselves,
and the responses and RTs should become independent. In sum, it also seems plausible to assume
conditional independence between responses and RTs given proficiency and speed.

The preceding arguments were for a single test item (independence either between responses
or RTs) or a pair of test items only (independencies between responses and RTs). The general-
ization to a full tests involves an additional assumption, namely that of constancy of speed and
proficiency during the test. For instance, if constancy of speed was not guaranteed, any change
of speed between two items would lead to a local violation of independence between the RTs on
them. In fact, the speed-accuracy tradeoff suggests an accompanying change in proficiency and
therefore a violation of the assumption of independence between the responses as well. However,
as a test taker has better control of his/her speed than proficiency, we view constancy of speed as
the more fundamental assumption of the two.

Of course, assumptions of constancy are idealizations; in real-world testing, speed and pro-
ficiency will always fluctuate somewhat, and violations of conditional independence should be
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expected. These violations are no problem as long as they are minor and unsystematic. But larger,
systematic violations may be indicative of more fundamental problems with the design of the test
or the behavior of the test takers. Examples of possible design flaws are unrealistic time limits
that force the test takers to speed up toward the end of test, fatigue because of an unduly large
number of items in the test, and uncertainty about how to begin the test as the result of incomplete
instructions.

In order to detect such flaws, we need statistical tools to check the validity of the conditional
independence assumptions just identified. This paper offers two types of tools: formal statistical
tests of these assumptions and estimates of relevant parameters under an alternative hypotheses of
dependence that allow us to predict the impact of a modification of the assumption. The problem
of statistical tests of the hypothesis of conditional independence between responses have received
considerable earlier attention in the literature (e.g., Chen & Thissen 1997; Glas, 1999; Orlando
& Thissen 2000; Yen, 1984), but the study of independence between RTs on different items and
between responses and RTs on the same item is new.

In this research, we used the theory of Lagrange multiplier (LM) tests because it allowed us
to follow an integrated approach to the three types of independence. Also, an advantage of the
use of LM tests is the necessity to formulate specific parametric alternatives to the hypothesis
of conditional independence. Equally important, LM statistics are generally easy to calculate;
for the current set of hypotheses, they even turn out to be simple closed-form expressions based
on standard estimates of the person parameters in the response or RT model. The proposed es-
timates of the alternative parameters, which allow us to explore the effects of modification of
the independence assumptions, follow as a simple by-product of the LM statistics. For a general
introduction to the LM test, which is equivalent to the Rao (1948) score test, see, for instance,
Aitchison and Silvey (1958), Lehmann (1999, Section 7.7) or Silvey (1975, Section 7.4). LM
tests have been used earlier to diagnose other violations of the fit of IRT models; for the cur-
rent research, the results in Glas (1999), Glas and Dagohoy (2007), and Glas and Suárez Falcón
(2003) are particularly important.

Obviously, the model we use as the null model to test the hypotheses of conditional inde-
pendence has to be hierarchical with two different levels for the observations and dependencies
between the parameters. Its first level consists of two distinct components, one for the distribu-
tions of the responses for a fixed person on a fixed item and the other for the distributions of the
RTs. The second level has distinct components both for the joint distributions of the person and
the item parameters in the first-level models. This type of hierarchical framework of modeling
was proposed in van der Linden (2007). In the current research, we used the framework with
precisely the component models suggested in this reference because these are well established
and statistically fully tractable models. However, different specifications of the component mod-
els are certainly possible (e.g., more specific response models or models for polytomous items;
exponential or Weibull models for the RTs instead of the lognormal model). For these alter-
native choices, the development of the statistical tests of conditional independence would have
proceeded along the same lines.

2. Modeling Framework

On the first level, the Bernoulli distribution of response Uij of a fixed person j = 1, . . . ,N

on a dichotomous item i = 1, . . . , n is assumed to be indexed by a probability of success that
follows the well-known three-parameter logistic (3PL) model from IRT (Birnbaum, 1968; Lord,
1980). The probability is

Pij = Pr{Uij = 1; θj ;ai, bi, ci} ≡ ci + (1 − ci)
{
1 + exp

[−ai(θj − bi)
]}−1

, (1)
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where θj ∈ R is the ability of test taker j , and bi ∈ R, ai ∈ R
+, and ci ∈ [0,1] are the difficulty,

discrimination, and guessing parameters for item i, respectively. Since θj is a person parameter
that controls the probability of a correct response on the items, we will also refer to it as a
parameter for the accuracy with which test taker j works on the items.

For the distribution of response time Tij of test taker j on item i, we use a lognormal model,

f (tij ; τj ,αi, βi) = αi

tij
√

2π
exp

{
−1

2

[
αi

(
ln tij − (βi − τj )

)]2
}
, (2)

where τj ∈ R is the speed at which test taker j operates on the test, βi ∈ R is the time intensity
of item i, and αi ∈ R

+ is its discrimination parameter. The sequel of this paper relies heavily on
the fact that the model is equivalent to that of a normal distribution for the logarithm of the RT.

A key feature of the two models in (1)–(2) is their separate parameterization of the effects
of the test taker and item on the response and RT distributions. In fact, except for the absence of a
guessing parameters in the RT model, the two sets of parameters have analogous interpretations:
θj and τj are parameters for the test taker’s effect on the response and RT distributions, bi and
βi represent the effects of the item on the locations of these distributions, and ai and αi control
their variances. The next two components of the framework capitalize on these analogies.

The second-level population model describes the joint distribution of all first-level person
parameters in the population of test takers as a bivariate normal distribution

(θj , τj ) ∼ MVN(μP ,�P ) (3)

with mean vector

μP = (μθ ,μτ ) (4)

and covariance matrix

�P =
(

σ 2
θ σθτ

σθτ σ 2
τ

)
. (5)

Likewise, for the distribution of the first-level item parameters in the domain of test items,
we assume a multivariate normal distribution

(ai, bi, ci, αi, βi) ∼ MVN(μI ,�I ) (6)

with mean vector

μI = (μa,μb,μc,μα,μβ) (7)

and covariance matrix

�I =

⎛

⎜⎜⎜⎜
⎝

σ 2
a σab σac σaα σaβ

σba σ 2
b σbc σbα σbβ

σca σcb σ 2
c σcα σcβ

σαa σαb σαc σ 2
α σαβ

σβa σβb σβc σβα σ 2
β

⎞

⎟⎟⎟⎟
⎠

. (8)

In order to make the assumption of normality in (6) more plausible, some of the item parameters
may have to be transformed first. In van der Linden (2007), it is suggested to use a log transfor-
mation for the discrimination parameters and a logit transformation for the guessing parameter
for this purpose. The statistical tests of conditional independence presented below do not depend
on the assumption of normality, though.
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The modeling framework is not yet identifiable. A straightforward way of obtaining identi-
fiability is to set

μθ = μτ = 0 (9)

and

σ 2
θ = 1. (10)

Bayesian methods of simultaneous estimation of all unknown parameters and model valida-
tion are given in Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der
Linden (2009), and van der Linden (2007). The choice of lognormal models for RTs has a longer
history. A lognormal model with an entirely different parameterization was presented in Thissen
(1983). A restricted version of the model in (2) with αi = α was used to represent marginal RT
distributions across test takers in an item bank by Schnipke and Scrams (1997). The current ver-
sion of the model was proposed by van der Linden (2006); for statistical methods for estimating
its parameters and evaluating its fit to empirical RTs, see this reference.

The lognormal model has been applied to detect differential speededness in multistage test-
ing (van der Linden, Breithaupt, Chuah, & Zhang, 2007), to enhance test design (van der Linden,
2005, Section 9.5), to control speededness in adaptive testing (van der Linden, 2009b), and to
detect aberrant test behavior (van der Linden & Guo 2008). The entire two-level framework can
be exploited to increase IRT parameter estimation (van der Linden, Klein Entink, & Fox, 2008)
as well as item selection in adaptive testing (van der Linden, 2008). Glas and van der Linden
(2005) show that the combination of the two first-level models in (1) and (2) can be conceived of
as an instance of a multidimensional IRT model for mixed response data.

3. Three Types of Conditional Independence

The first-level models have no common person or item parameters. This feature reflects
the fact that the responses and RTs are assumed to be conditional independent. However, these
models are linked through the covariance matrices �P and �I in (5) and (8). These second-
level covariances allow for observed correlation between the responses and/or RTs of different
test takers and/or items.

As already indicated, for the entire hierarchical framework, three different assumptions of
conditional independence are entertained:

1. Independence between responses given θ . Formally, this assumption is defined as

f
(
ui1, . . . , uiG | θ) =

G∏

g=1

f
(
uig | θ)

(11)

for θ ∈ R and each possible subset of items of size G ≤ n with indices (i1, . . . , iG), where
f (ui1, . . . , uiG | θ) and f (uig | θ) denote the probability functions of the responses on the
subset of items and the individual items in it, respectively.

2. Independence between RTs given τ . This assumption is defined as

f
(
ti1, . . . , tiG | τ) =

G∏

g=1

f
(
tig | τ)

(12)

for τ ∈ R and each possible subset of items of size G ≤ n with indices (i1, . . . , iG), where
f (ti1, . . . , tiG | τ) and f (tig | τ) are the densities of the RTs on the subset of items and
the individual items in it, respectively.
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3. Independence between responses and RTs given θ and τ . That is,

f
(
ui, ti | θ, τ

) = f
(
ui | θ)

f
(
ti | τ)

(13)

for θ, τ ∈ R and i = 1, . . . ,N.

Let θ = (θ1, . . . , θN), τ = (τ1, . . . , τN), uj = (u1j , . . . , unj ), tj = (t1j , . . . , tnj ), u =
(u1, . . . ,uN), and t = (t1, . . . , tN). Assuming that the items have been calibrated with suffi-
cient precision to treat them as known, along with the standard assumptions of between-person
independence of responses and RTs, the three independence assumptions imply the following
product for the likelihood function of person parameters θ and τ :

f
(
θ ,τ | u, t

) =
N∏

j=1

n∏

i=1

f
(
uij | θj

)
f

(
tij | τj

)
. (14)

Observe that for this full likelihood to factorize, the independence assumptions are required
only for G = n. Nevertheless, checks on the conditional independence in real-world IRT appli-
cations typically are at the level of the adjacent pairs of items in the test. Although this choice
is practically motivated, it does not seem to have any serious consequences. As indicated earlier,
close relationships exist between violations of the assumptions of conditional independence and
constancy of the speed and ability parameters during the test. If a test taker does not change speed
between any pair of adjacent items in a test, and therefore the ability parameter remains constant
as well, it seems safe to conclude to conditional independence at the level of all n items in the
test.

4. Theory of LM Tests

The general approach we follow is to embed the models in (1) or (2) in a larger model with
a plausible additional parameter that generates a violation of the independence assumption of
concern. We then check the responses and RTs to see if the additional parameter can be assumed
to vanish.

More generally, assume that the original model has parameters η1 and the alternative model
additional parameters η2. The hypothesis we want to test is

H0 : η2 = 0 (15)

against

H1 : η2 �= 0. (16)

Let η = (η1,η2). The statistic for an LM test of (15) against (16) is defined as

LM(η) = h(η)′H(η,η)−1h(η)
∣∣
η1=η̂1,η2=0, (17)

where h(η) is our generic notation for a score function, that is, the vector of first-order derivatives
of the loglikelihood of the alternative model with respect to a vector of parameters η,

h(η) = ∂

∂η
lnL(η;x). (18)
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Likewise, H(η,η) is our notation for an observed information matrix with elements

h(ηp,ηq) = − ∂2

∂ηp∂ηq

lnL(η;x). (19)

Finally, η̂1 is the maximum-likelihood estimate (MLE) of η1, and x represents the data. The
LM statistic is asymptotically χ2 distributed with number of degrees of freedom equal to the
dimension of η2 (e.g., Lehmann, 1999, Section 7.7; Silvey, 1975, Section 7.4).

Observe that the statistic in (17) is evaluated for the estimated model under the null hypoth-
esis, H0 : η2 = 0. Hence, we only need to estimate η1. However, at the MLE of η1, h(̂η1) = 0.
These facts simplify the calculation of LM statistics enormously. The convenience of this fea-
ture will become clear in the applications of the test to the three different types of conditional
independence below.

When the test is of a single parameter η2 equal to zero, the LM statistic in (17) can be written
as

LM(η2) = h(η2)
2

h(η2, η2) − H(η1,η2)′H(η1, η1)
−1H(η1, η2)

∣∣∣∣
η1=η̂1,η2=0

. (20)

To interpret (20), it is helpful to remember that, under the alternative model, the MLE of η2
will also satisfy the likelihood equation, hence, h(̂η2) = 0. Writing the numerator as [h(η2) −
0]2|η2=0, we are able to view this statistic as the standardized squared distance between the score
function for the alternative parameter η2 under the null model (i.e., at η2 = 0) and at its estimated
value under the alternative model (i.e., at η2 = η̂2). The standardizing factor can be shown to be
equal to the asymptotic variance of h2(η2) adjusted for the estimation of η1.

LM tests have nice statistical properties. For example, they are consistent, invariant under
reparameterization, locally (i.e., for values of η2 close to H0) most powerful, and asymptotically
equivalent to the likelihood-ratio (LR) and Wald tests (Lehmann, 1999, Sect. 7.7).

The tests presented in the next sections are for the case of items that have already been
calibrated with enough precision to treat their item parameters (ai, bi, ci) and (αi, βi) as known.
This calibration is a prerequisite, for instance, for IRT-based test assembly and computerized
adaptive testing. In a study of person fit under different polytomous IRT models by Glas and
Dagohoy (2007), estimation of the item parameters had no noticeable impact neither on the
type I error nor on the power of LM tests for different types of model violation. These results are
assumed to hold generally for real-world applications of IRT models, which typically have many
more responses per item than per test taker.

The only parameters with estimation error are thus the person parameters θj and τj . As a
consequence, the expression for the LM statistic in (20) simplifies further because parameter
vector η1 now also reduces to a scalar η1.

4.1. Estimating the Alternative Parameters

Because LM tests are locally most powerful, with an increase in sample size, they will
quickly tend to reject their null hypothesis for minor violations. This behavior should be wel-
comed. In our view, the primary purpose of the proposed tests is to identify which items can be
treated as conforming to the model. Tests with higher power enable us to make such decisions
with more reliance. On the other hand, rejection of one of the null hypotheses does not neces-
sarily imply that the item is bad. The violation may just be minor but detectable because of the
combination of larger sample sizes and the local power of the test close to the null value of the
alternative parameter.

As a secondary step of analysis, for these flagged items, it is therefore helpful to have esti-
mates of the values that their alternative parameters would take when they were left free. Such
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estimates are common in other areas of applied statistics, e.g., linear covariance structure mod-
eling (Sörbom, 1989), where they are used as indices to support the more explorative practice of
model modification. But they can be used equally well for the models in this paper, as we will
demonstrate in the empirical example below.

A standard approach is to use the result of one Newton–Raphson iteration for the alternative
parameter η2 from its value under H0 as its estimator; that is, η

(0)
2 = 0 minus the score function

times the inverse of the Hessian both evaluated at this value. Or, more formally,

η̃
(1)
2 =

{
η

(0)
2 + h(η

(0)
2 )

1

h(η
(0)
2 ,η

(0)
2 ) − H(η1,η

(0)
2 )′H(η1,η1)

−1H(η1, η
(0)
2 )

}∣∣∣∣
η1=η̂1,η

(0)
2 =0

. (21)

The estimate has the same components as the LM statistic in (20) and is thus immediately avail-
able as a by-product of it.

Observe that (21) is not a maximum-likelihood estimate (MLE) of η2. In particular, as the
step is taken from the null value rather than an efficient initial estimate of η2, it misses the
(asymptotic) efficiency of the MLE. But in earlier empirical studies of IRT model fit (Glas,
1999), this one step-estimator yielded quite satisfactory approximations to the MLEs.

5. Test of Independence Between Responses

The alternative model is identical to that for a test of conditional independence for marginal
maximum likelihood estimation of the item parameters in the 3PL model in Glas and Suárez
Falcón (2003). Suppose that the test is for the pair of items (i, k). The alternative model is the
conditional probability

Pikj = Pr
{
Uij = 1; θj , δik | Ukj = ukj

}

= ci + (1 − ci)
[
1 + exp

[−ai(θj − bi − ukj δik)
]]−1

. (22)

The model allows for different distributions of Uij given Ukj = 0 and Ukj = 1, where the size of
the differences between the two distributions depends on the value of additional parameter δik . As
the response probability in the regular model in (1) is equal to the expected value of the response
by the test taker, new parameter δik can be interpreted as a shift in the expected response on item
i triggered by a correct response to item k by the same test taker.

Observe that the regular 3PL model follows for δik = 0. Therefore, for item pairs (i, k), we
test the hypothesis

H0 : δik = 0 (23)

against

H1 : δik �= 0. (24)

For test takers j = 1, . . . ,N on items i = 1, . . . , n with response matrix u =(uij ), the log-
likelihood of (θ , δik) is

� = �(θ , δik) = lnL(θ , δik;u)

=
N∑

j=1

[
uij lnPikj + (1 − uij ) ln(1 − Pikj )

]

+
N∑

j=1

n∑

l=1
l �=i

[
ulj lnPlj + (1 − ulj ) ln(1 − Plj )

]
(25)
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with Plj the regular response model defined in (1). For incomplete sampling designs, such as in
computerized adaptive testing, not all test takers need to respond to the same items. If so, the
sums are assumed to be taken only over the items actually taken.

By (20), the test statistic is

LM(δik) = h(δik)
2

h(δik, δik) − H(θ , δik)′H(θ, θ)−1H(θ , δik)

∣∣∣∣
θ=θ̂ ,δik=0

, (26)

where H(θ , θ) is an N × N diagonal matrix with elements − ∂2�

∂θ2 , and H(θ , δik) is a vector of

length N with elements − ∂2�
∂δik∂θj

. It follows that (26) can be rewritten as

LM(δik) =
(∑N

j=1
∂�

∂δik

)2

∑N
j=1

{− ∂2�

∂δ2
ik

+ ( ∂2�
∂δik∂θj

)2( ∂2�

∂θ2
j

)−1
}

∣∣∣∣
θ=θ̂ ,δik=0

. (27)

Using the first- and second-order derivatives in Appendix A, the statistic simplifies to

LM(δik) =
(∑N

j=1[ukj υ̂ij (uij − P̂ij )]
)2

∑N
j=1

(−aiukj ζ̂ij + (aiukj ζ̂ij )2
∑n

l=1 ai ζ̂ij

) , (28)

where P̂ij is the response probability in (1) evaluated at the MLE of θj , and υ̂ij and ζ̂ij are the
expressions in (A.1) and (A.2) for Pijk = P̂ij . The statistic has an asymptotic χ2 distribution
with one degree of freedom.

Observe that the statistic is in closed form and that the estimates of θ required for it are part
of the standard output of an IRT analysis.

6. Test of Independence Between RTs

As already noted, the RT model in (2) can be viewed as a normal density for lnTij . This fact
suggests using the following bivariate normal distribution of the logtimes on the pairs of items
(i, k) as an alternative:

f
(
ln tij , ln tkj | τj , ρik

) = αiαk

2π

√
1 − ρ2

ik

exp

{ −1

2(1 − ρ2
ik)

(
ψ2

ij − 2ρikψijψkj + ψ2
kj

)}
, (29)

where

ψij = αi

[
ln tij − (βi − τj )

]
. (30)

The alternative model has the extra parameter |ρik| ≤ 1, which is the correlation between the
logtimes on items i and k by the same test taker. The same model has been proposed to use RTs
for the detection collusion between pairs of test takers during a test (van der Linden, 2009c); for
technical details, see this reference.

Obviously, under conditional independence, the correlation is equal to zero. Thus, for item
pairs (i, k), the hypothesis to be tested is

H0 : ρik = 0 (31)
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against

H1 : ρik �= 0. (32)

Under the null hypothesis, (29) factorizes into the product of the two densities for the RTs on
item i and item k in (2).

For test takers j = 1, . . . ,N on items i = 1, . . . , n with RT matrix t =(tij ), the loglikelihood
of (τ , ρik) can be written as

�(τ , ρik) = const − N

2
ln

(
1 − ρ2

ik

)

−
N∑

j=1

1

2(1 − ρ2
ik)

(
ψ2

ij − 2ρikψijψkj + ψ2
kj

)

−
N∑

j=1

n∑

l=1
l �=i,k

1

2
ψ2

lj . (33)

In this application, the matrices H(τ ,τ ) and H(τ , ρik) specialize in the same way as before.
Therefore, test statistic LM (ρik) is defined analogous to (27) with θj and δik replaced by τj

and ρik , respectively. Using the derivatives in the Appendix A, the statistic can be written as

LM(ρik) =
(∑N

j=1 ψ̂ij ψ̂kj

)2

∑N
j=1

(
ψ̂2

ij + ψ̂2
kj − 1 − (αkψ̂ij+αiψ̂kj)2

∑n
i=1 α2

i

) , (34)

where

ψ̂ij = αi

[
ln tij − (

βi − τ̂j

)]
. (35)

From (2) it is easy to verify that

τ̂j =
∑n

i=1 α2
i (βi − ln tij )

∑n
i=1 α2

i

(36)

is the MLE of τj . Substituting this estimate, (34) is simple to calculate.

7. Test of Independence Between Responses and RTs

We replace (13) by the equivalent independence assumption

f
(
tij | uij , τj

) = f
(
tij | τj

)
, uij = 0,1, (37)

for all i and j . This form of the assumption is preferred over the alternate form f (uij | tij , θj ) =
f (uij | θj ), t ∈ R, for all i and j , for the following reasons: First, we only have to check the
equality of the two conditional distributions of Tij given Uij = 0 and 1 instead of the equality of
an entire family of distributions of Uij given the continuous measure Tij = tij . Second, for the
same number of test takers, the estimation of location parameter τj in a normal distribution from
continuous data is expected to be more accurate than the estimation of θj in an IRT model for
binary data. Third, because the MLE of τj has the simple closed-form in (36), the statistic for
the version of independence in (37) will be easier to calculate.
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The alternative to the RT model in (2) is

f (tij ; τj , λi) = αi

tij
√

2π
exp

{
−1

2

[
αi

(
ln tij − (βi − τj − uijλi)

)]2
}
. (38)

In this model, new parameter λi represents a shift in the location of the distribution of the RT on
the item triggered by a correct response on it. As different RT distributions on an item given a cor-
rect and an incorrect response for the same test taker is the same thing as conditional dependence
between responses and RTs, λi can be interpreted as a direct measure of it.

Thus, for item i, the hypothesis to be tested is

H0 : λi = 0 (39)

against

H1 : λi �= 0. (40)

The loglikelihood can be written as

�(τ , λi) = ln�(τ , λi;ui , ti )

= const − 1

2

N∑

j=1

ξ2
ij − 1

2

N∑

j=1

N∑

l=1
l �=i

ξ2
lj (41)

with

ξij = αi

[
ln tij − (βi − τj − uijλi)

]
(42)

and

ξlj = αl

[
ln tlj − (βl − τj )

]

for

l = 1, . . . ,N and l �= i.

Using the derivatives in Appendix A, from (27) the test statistic for the hypotheses in (39)–
(40) follows as

LM(λi) =
(∑N

j=1 uijαi ξ̂ij

)2

∑N
j=1

(
uijα

2
i − (uij α2

i )2
∑

i α2
i

) (43)

with ξ̂ij the estimate of ξij evaluated at τj = τ̂j and λi = 0, where τ̂j is the MLE in (36).

8. Generalization to Higher-Order Independencies

As noted earlier, the tests of (23) and (31) against their alternatives are typically applied to
check adjacent pairs of items, that is, with k = i − 1. Although we expect any type of violation
of conditional independence to manifest itself primarily at this level, the result of not having to
reject any of these tests is necessary but not sufficient for the full assumptions in (11) and (12)
to hold. This observation does not hold for the third type of conditional independence in (13),
which has to be checked for the individual items only.
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However, when violations of independencies between larger sets of consecutive items are to
be checked, simultaneous versions of (26) and (34) are to be preferred over repeated applications
of the tests for k = i − 1, k = i − 2, and so on. Such generalizations are now outlined.

For a triple of items (i, k, l), the alternative model in (22) can be generalized to

Piklj = ci + (1 − ci)
{
1 + exp

[−ai(θj − bi − ukj δik − ulj δil)
]}−1

. (44)

Let δi = (δik, δil). In order to test the hypothesis H0 : δi = 0, we need an LM statistic for para-
meter vector η = (θ , δi ). Using the fact that we evaluate the statistic at θ = θ̂ , (17) can now be
written as

LM(δi ) = h(δi )
′[H(δi , δi ) − H(δi , θ)H(θ, θ)H(θ , δi )

]−1h(δi )
∣∣
θ=θ̂ ,δi=0, (45)

where H(θ, θ) is the same N × N diagonal matrix as above, but, analogous to (A.2), we now
have ζiklj with Piklj substituted for Pikj . The matrices H(δi , δi ) and H(θ , δi ) have sizes 2 × 2
and N × 2, respectively. The first-order and second-order derivatives of the loglikelihood with
respect to δil and the mixed derivatives with respect to θj and δil in these matrices are entirely
analogous to (A.4) and (A.7). The only new element is

∂2�

∂δikδil

= ∂2�(θj , δik, δil;ukj , ulj )

∂δikδil

= aiukjulj υiklj ζiklj (46)

(now also with υiklj instead of υikj ). Evaluation of (45) is therefore straightforward. The statistic
has an asymptotic χ2 distribution with two degrees of freedom.

The generalization of the test for the RTs is more involved. For a combination of G items,
the alternative model in (29) becomes the multivariate normal

f (ln tj ; τj ,�) = 1

2π |�|−1/2
exp

(
−1

2
ψ ′

j�
−1ψj

)
(47)

with � a G × G covariance matrix with (known) diagonal elements α−2
i and off-diagonal ele-

ments ρik , and ψj a vector of size G with (30) as elements.
Let ρ be a vectorized form of the lower off-diagonal part of �. To test the hypothesis H0:

ρ = 0, we need the version of (45) for parameter vector η = (τ ,ρ). However, for G > 2, it
becomes more convenient to reparameterize (47) and work with the inverse of �. (Observe that
the null hypothesis implies a diagonal form of � and �−1.) The elements of the matrices in (45)
can now be derived from Lehmann (1999, Example 7.5.5). The statistic has an asymptotic χ2

distribution with G(G − 1)/2 degrees of freedom.

9. Empirical Example

An empirical study was conducted to see how well each of the tests behaved for a data set of
N = 1,104 test takers on a large-scale computerized examination of 96 items. The examination
had a multistage format with one routing test and second and third stages of two alternative
24-item subtests each. Prior to their earlier operational use, the items in the examination had
been pretested and calibrated using the 3PL model in (1). In addition, in an earlier study, we used
the RTs for the same sample of test takers on these items to calibrate them under the lognormal
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FIGURE 1.
Frequency distribution of significance probabilities of LM(δik ) (n = 96).

model in (2). The model showed an excellent global fit to these RTs, except for a negligible
tendency to shorter times in the lower tail of the distributions for some of the items (van der
Linden et al., 2007, Figs. 2–4).

The test of the hypothesis of independence between responses and RTs in (39) was con-
ducted for each of the 96 items involved in this study. Because the order of the items in the three
subtests was randomized for each test taker, we conducted the other two tests only for the sub-
sets of test takers who took a pair of items in the same order. More specifically, these tests were
conducted for each of the 96 items in combination with the item that preceded it most frequently
in the sample of test takers. The number of test takers for the pairs that were selected ranged
from 24 to 79. This setup allowed us to use each individual item in this study. For each of these
three cases, we also calculated the estimates of the alternative parameters in (21). As each of
these statistics and estimates has a simple closed form with known quantities, they were easy to
calculate.

Figures 1, 2, and 3 display the distributions of the significance probabilities of the LM(δik),
LM(ρik), and LM(λi) statistics in (28), (34), and (43) for the set of 96 items, respectively. The
numbers of probabilities significant at the 5% level for the three tests were 17, 63, and 56, re-
spectively. These results seem to suggest much larger numbers of violations of the assumption
of conditional independence for the RTs as well as between the responses and the RTs relative
to the assumption of independence between the responses only. Our next step should be to check
these flagged items for the seriousness of their violations. When the violations are only minor, we
know the hierarchical modeling framework with the current response and RT models still offers
a useful explanation of the dependencies between these test items. Also, given the power of the
test to detect these minor violations, it seems safe to assume that the quality of the remaining
items in the test is entirely satisfactory.
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FIGURE 2.
Frequency distribution of significance probabilities of LM(ρik ) (n = 96).

FIGURE 3.
Frequency distribution of significance probabilities of LM(λi ) (n = 96).
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FIGURE 4.
Frequency distribution of estimates of δik (n = 96).

Figures 4, 5, and 6 show the estimates of the alternative parameters in (21). The difference
in sample size explains the large number of significant but negligible violations for LM(λi). This
statistic was calculated across all 1,104 test takers in the data set, whereas the other two tests
were only for the much smaller subsets of 24–79 test takers that responded to a common pair of
items. As shown in Fig. 6, all estimates of λi center about zero with a standard deviation equal to
0.008. As λi is a parameter for the difference in the location of the logtime distributions between
a correct and an incorrect response, the values for this parameter can be interpreted directly:
Following (9), the average speed parameter for the test takers was set equal to zero. Besides,
the average estimate of the time intensity parameter βi of the items was 4.06. Hence, for an
average test taker on an average item, a positive shift of a standard deviation of 0.008 in location
would be equal to the difference between the values of 4.068 and 4.060 on the logarithmic scale,
which is just 0.47 second on the regular time scale. (The average RT in the total data set was
75.39 seconds.)

Although the number of significant results for LM(ρik) was also large, the average estimate
of ρik was only 0.06 with a standard deviation of 0.02 (see Fig. 5). These values do not seem to
have any practical consequences either. The fact that the majority of the estimates was positive
is consistent with a warm-up effect for the examination found in the earlier study of the same
data set, in which a plot of the mean residual RTs against the administrative position of the items
revealed that the test takers tended to operate slightly slower in the beginning and compensate
later on in the examination (van der Linden et al., 2007, Fig. 7). Although systematic, the effect
was quite minor, though: the difference between the mean residual RTs on the earlier and later
items in the examination was approximately 1.7 seconds.

The distribution of the estimates of δik centered about zero with a standard deviation equal
to 0.16 (see Fig. 4), which suggests more serious violation of the assumption of independence
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FIGURE 5.
Frequency distribution of estimates of ρik (n = 96).

FIGURE 6.
Frequency distribution of estimates of λi (n = 96).
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between the responses. Parameter δik can be interpreted as a change in the probability of a correct
response due to a previous correct response. Following (9), the average ability parameter for the
test takers was also set equal to zero in this study. The average estimate of the item parameters
for the model in (1) was: a = 0.597, b = −0.297, and c = 0.142. Hence, for an average test taker
on an item with these average parameter values, a value of δik equal to one standard deviation
(0.16) would mean a shift in the response probability from 0.533 to 0.567. This shift would still
not be dramatic but should certainly raise more concerns than the shift for the RT distributions
associated with the typical λi estimate above. In fact, for a few items, the estimates of δij were
much larger than 0.16. Figure 4 shows an estimate for one item that was even equal to 0.88.
This estimate would certainly deserve closer inspection to find a reason for the violation of the
independence assumption.

Because nearly all parameter estimates were generally small and irregular, we were unable
to infer any systematic pattern between them. The correlations between the estimates were: rδρ =
−0.016, rδλ = −0.023, and rρλ = −0.095.

10. Concluding

The goal of this research was to identify different plausible assumptions of conditional in-
dependence between responses and RT on test items. The assumptions are necessary for the
hierarchical modeling framework in (1)–(8) to hold. Also, violations of these assumptions are
indicative of potential design flaws in the test. The theory of Lagrange multiplier tests was used
to derive formal statistical tests of the assumptions of conditional independence as well as easy-
to-calculate estimates of the critical parameters under the alternative hypotheses of dependence
that can be used to further diagnose the items. An empirical example showed how to use these
statistical tools and suggested that, except for the violation of the assumption of conditional in-
dependent responses for an occasional item, all three assumptions were quite plausible.

The LM tests presented in this paper are not the only possibilities that may come to mind. For
example, a standard test for the correlation in the bivariate normal distribution in (29) is Fisher’s z

test. In addition, a t test may seem attractive as a more conventional alternative for the shift in the
normal distribution in (38). Finally, the statistical literature offers several tests of independence in
a 2×2 table that may apply to the current case of conditional independence between dichotomous
responses. But LM tests force us to be specific about the alternative hypothesis of dependence,
have simple closed-form statistics, entail easy to calculate estimates of the alternative parameters,
and have strong properties of optimality. Besides, it is attractive to be able to deal with all three
hypothesis testing problems in the same statistical framework.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.

Appendix A. First-Order and Second-Order Derivatives

For the first two sets of derivatives, the focus is on an item pair (i, k); for the third set, it is
on a single item i.
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A.1. Independence Between Responses

Let

υikj = ai(Pikj − ci)

(1 − ci)Pikj

, (A.1)

ζikj = υikj

1 − Pikj

(1 − ci)

{
uij ci

Pikj

− Pikj

}
. (A.2)

The following derivatives of the loglikelihood in (25) are required (e.g., Lord, 1980):

∂�

∂θj

=
n∑

i=1

υikj (uij − Pikj ), (A.3)

∂�

∂δik

= −ukjυikj (uij − Pikj ), (A.4)

∂2�

∂θ2
j

=
n∑

i=1

aiζikj , (A.5)

∂2�

∂δ2
ik

= aiukj ζikj , (A.6)

∂�

∂δikθj

= −aiukj ζikj . (A.7)

Since the statistic for the test of independence between a pair of responses will be evaluated
at δik = 0, an attractive consequence is that its response probabilities do not depend on the
response on item k but are just the probabilities in (1). Hence, in (28), Pij can be substituted for
Pikj . Likewise, υij and ζij can be substituted for υikj and ζikj .

A.2. Independence Between RTs

Let

ψij = αi

[
ln tij − (βi − τj )

]
. (A.8)

The following derivatives of the loglikelihood in (33) are required:

∂�

∂τj

= − 1

(1 − ρ2
ik)

[
αiψij − ρik(αkψij + αiψkj ) + αkψkj

] −
n∑

l=1
l �=i,k

αlψlj , (A.9)

∂�

∂ρik

= ρik + ψijψkj

1 − ρ2
ik

− ρik(ψ
2
ij − 2ρikψijψkj + ψ2

kj )

(1 − ρ2
ik)

2
, (A.10)

∂2�

∂τ 2
j

= −α2
i + 2ρikαiαk − α2

k

(1 − ρ2
ik)

−
n∑

l=1
l �=i,k

α2
l , (A.11)

∂2�

∂ρ2
ik

= 1 + ρ2
ik − ψ2

ij + 6ρikψijψkj − ψ2
kj

(1 − ρ2
ik)

2
− 4ρ2

ik(ψ
2
ij − 2ρikψijψkj + ψ2

kj )

(1 − ρ2
ik)

3
, (A.12)

∂2�

∂τj ∂ρik

= αkψij + αiψkj

(1 − ρ2
ik)

− 2ρik[αiψij − ρik(αkψij + αiψkj ) + αkψkj ]
(1 − ρ2

ik)
2

. (A.13)
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The statistic for the test of independence between pairs of RTs will be evaluated at ρik = 0.

As a result, the derivatives simplify considerably.

A.3. Independence Between Responses and RTs

Let

ξij = αi

[
ln tij − (βi − τj − uijλi)

]
. (A.14)

The following derivatives of the loglikelihood in (41) are required:

∂�

∂τj

= −αiξij , (A.15)

∂�

∂λi

= −αiuij ξij , (A.16)

∂2�

∂τ 2
j

= −α2
i , (A.17)

∂2�

∂λ2
i

= −α2
i uij , (A.18)

∂2�

∂τj ∂λi

= −α2
i uij . (A.19)

The statistic for the test of independence between a responses and an RT will be evaluated at
λi = 0. Hence, ξij reduces to the argument of the regular lognormal model, and the LM statistic
simplifies considerably.
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