Statistical Theory and Modeling for Turbulent Flows

Second Edition

P. A. Durbin

Iowa State University, USA

B. A. Pettersson Reif

Norwegian Defence Research Establishment (FFI), Norway

A John Wiley and Sons, Ltd., Publication

Contents

Preface	xi
Preface to second edition	Xi
Preface to first edition	Xi
Motivation	X11
Epitome	X111
Acknowledgements	X111
Part I FUNDAMENTALS OF TURBULENCE	1
1 Introduction	3
1.1 The turbulence problem	4
1.2 Closure modeling	9
1.3 Categories of turbulent flow	10
Exercises	14
2 Mathematical and statistical background	15
2.1 Dimensional analysis	15
2.1.1 Scales of turbulence	18
2.2 Statistical tools	19
2.2.1 Averages and probability density functions	19
2.2.2 Correlations	25
2.3 Cartesian tensors	34
2.3.1 Isotropic tensors	36
2.3.2 Tensor functions of tensors; Cayley—Hamilton theorem	37
Exercises	42
3 Reynolds averaged Navier—Stokes equations	45
3.1 Background to the equations	46
3.2 Reynolds averaged equations	48
3.3 Terms of kinetic energy and Reynolds stress budgets	49
3.4 Passive contaminant transport	54
Exercises	56

viii CONTENTS

4 Parallel and self-similar shear flows	57
4.1 Plane channel flow	58
4.1.1 Logarithmic layer	61
4.1.2 Roughness	63
4.2 Boundary layer	65
4.2.1 Entrainment	69
4.3 Free-shear layers	70
4.3.1 Spreading rates	76
4.3.2 Remarks on self-similar boundary layers	76
4.4 Heat and mass transfer	77
4.4.1 Parallel flow and boundary layers	78
4.4.2 Dispersion from elevated sources	82
Exercises	86
5 Vorticity and vortical structures	91
5.1 Structures	93
5.1.1 Free-shear layers	93
5.1.2 Boundary layers	97
5.1.3 Non-random vortices	102
5.2 Vorticity and dissipation	102
5.2.1 Vortex stretching and relative dispersion	104
5.2.2 Mean-squared vorticity equation	106
Exercises	108
Part II SINGLE POINT CLOSURE MODELING	109
6 Models with scalar variables	111
6.1 Boundary-layer methods	112
6.1.1 Integral boundary-layer methods	113
6.1.2 Mixing length model	115
6.2 The $k-s$ model	121
6.2.1 Analytical solutions to the $k-s$ model	123
6.2.2 Boundary conditions and near-wall modifications	128
6.2.3 Weak solution at edges of free-shear flow; free-stream sen	
6.3 The k — ω model	136
6.4 Stagnation-point anomaly	139
6.5 The question of transition	141
6.5.1 Reliance on the turbulence model	144
6.5.2 Intermittency equation	145
6.5.3 Laminar fluctuations	147
6.6 Eddy viscosity transport models	148
Exercises	152
7 Models with tensor variables	155
7.1 Second-moment transport	155
7.1.1 A simple illustration	150

	CONTENTS	ix
7.1.2 Closing the Reynolds stress transport equation		157
7.1.3 Models for the slow part		159
7.1.4 Models for the rapid part		162
7.2 Analytic solutions to SMC models		169
7.2.1 Homogeneous shear flow		169
7.2.2 Curved shear flow		172
7.2.3 Algebraic stress approximation and nonlinear eddy		
viscosity		176
7.3 Non-homogeneity		179
7.3.1 Turbulent transport		180
7.3.2 Near-wall modeling		181
7.3.3 No-slip condition		182
7.3.4 Nonlocal wall effects		184
7.4 Reynolds averaged computation		194
7.4.1 Numerical issues		195
7.4.2 Examples of Reynolds averaged computation		198
Exercises		213
8 Advanced topics		217
8.1 Further modeling principles		217
8.1.1 Galilean invariance and frame rotation		219
8.1.2 Realizability		221
8.2 Second-moment closure and Langevin equations		224
8.3 Moving equilibrium solutions of SMC		226
8.3.1 Criterion for steady mean flow		227
8.3.2 Solution in two-dimensional mean flow		228
8.3.3 Bifurcations		231
8.4 Passive scalar flux modeling		235
8.4.1 Scalar diffusivity models		235
8.4.2 Tensor diffusivity models		236
8.4.3 Scalar flux transport		238
8.4.4 Scalar variance		241
8.5 Active scalar flux modeling: effects of buoyancy		242
8.5.1 Second-moment transport models		245
8.5.2 Stratified shear flow		246
Exercises		247
Part III THEORY OF HOMOGENEOUS TURBULENCE		249
9 Mathematical representations		251
9.1 Fourier transforms		252
9.2 Three-dimensional energy spectrum of homogeneous turbule	nce	254
9.2.1 Spectrum tensor and velocity covariances		255
9.2.2 Modeling the energy spectrum		257
Exercises		266

x CONTENTS

10 Navier—Stokes equations in spectral space	269
10.1 Convolution integrals as triad interaction	269
10.2 Evolution of spectra	271
10.2.1 Small-k behavior and energy decay	271
10.2.2 Energy cascade	273
10.2.3 Final period of decay	276
Exercises	277
11 Rapid distortion theory	281
11.1 Irrotational mean flow	282
11.1.1 Cauchy form of vorticity equation	282
11.1.2 Distortion of a Fourier mode	285
11.1.3 Calculation of covariances	287
11.2 General homogeneous distortions	291
11.2.1 Homogeneous shear	293
11.2.2 Turbulence near a wall	296
Exercises	300
Part IV TURBULENCE SIMULATION	303
12 Eddy-resolving simulation	305
12.1 Direct numerical simulation	306
12.1.1 Grid requirements	306
12.1.2 Numerical dissipation	308
12.1.3 Energy-conserving schemes	310
12.2 Illustrations	313
12.3 Pseudo-spectral method	318
Exercises	322
13 Simulation of large eddies	325
13.1 Large eddy simulation	325
13.1.1 Filtering	326
13.1.2 Subgrid models	330
13.2 Detached eddy simulation	339
Exercises	343
References	345
Index	353