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Abstract

A statistical theory is developed for the stochastic Burgers equation in the in-
viscid limit. Master equations for the probability density functions of velocity,
velocity difference, and velocity gradient are derived. No closure assumptions
are made. Instead, closure is achieved through a dimension reduction process;
namely, the unclosed terms are expressed in terms of statistical quantities for
the singular structures of the velocity field, here the shocks. Master equations
for the environment of the shocks are further expressed in terms of the statistics
of singular structures on the shocks, namely, the points of shock generation and
collisions. The scaling laws of the structure functions are derived through the
analysis of the master equations. Rigorous bounds on the decay of the tail prob-
abilities for the velocity gradient are obtained using realizability constraints. We
also establish that the probability density function Q(ξ) of the velocity gradient
decays as |ξ|−7/2 as ξ →−∞. c© 2000 John Wiley & Sons, Inc.
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1 Introduction

Consider the randomly forced Burgers equation

ut + uux = νuxx + f ,(1.1)

where f (x, t) is a zero-mean, Gaussian, statistically homogeneous, and white-in-Should there be a

comma in

〈 f (x,t) f (y,s)〉? Communications on Pure and Applied Mathematics, Vol. LIII, 0001–0050 (2000)
c© 2000 John Wiley & Sons, Inc. CCC 0010–3640/00/000001-50



2 W. E AND E. VANDEN EIJNDEN

time random process with covariance

〈 f (x, t) f (y,s)〉 = 2B(x− y)δ(t − s) ,

and B(x) is a smooth function. In the language of stochastic differential equations,
(1.1) must be interpreted as

du = (−uux +νuxx)dt + dW(x, t) ,

where dW (x, t) is a white-noise process satisfying

dW (x, t)dW (y, t) = 2B(x− y)dt .

We will be interested in the statistical behavior of the stationary states (invariant
measures) of (1.1) if they exist, or the transient states with possibly random initial
data. There are two main reasons for considering this problem. The first is that
(1.1) and its multidimensional version are among the simplest nonlinear models
in nonequilibrium statistical mechanics. As such they serve as qualitative models
for a wide variety of problems including charge density waves [19], vortex lines
in high-temperature superconductors [5], dislocations in disordered solids and ki-
netic roughening of interfaces in epitaxial growth [29], formation of large-scale
structures in the universe [35, 39], etc. The connection between these problems
and (1.1) can be understood as follows: Consider an elastic string in a random
potential V (x,s). The string is assumed to be directed in the sense that there is a
timelike direction, assumed to be s, such that the configuration of the string is a
graph over the s-axis. Let Z(x, t) be the partition function for the configurations of
the string in the interval 0 ≤ s ≤ t, pinned at position x at time t,

Z(x, t) =
〈
e−β

∫ t
0 V (w(s),s)ds

∣∣w(t) = x
〉

,

where 〈· | w(t) = x〉 denotes the expectation over all Brownian paths w(·) such that
w(t) = x, β = 1/kT , k is the Boltzmann constant, and T is the temperature. The
free energy ϕ(x, t) = lnZ(x, t) then satisfies

ϕt +
1
2
|∇ϕ|2 = ν∆ϕ+V ,

where ν = kT . This is the well-known Kardar-Parisi-Zhang equation [27]. In one
dimension, if we let u = ϕx and f = Vx, we obtain (1.1).

The second reason for studying (1.1) is in some sense a technical one. For a
long time, (1.1) has served as the benchmark for field-theoretic techniques such
as the direct interaction approximation or the renormalization group methods de-
veloped for solving the problem of hydrodynamic turbulence. This role of (1.1)
is made more evident by the recent flourish of activities introducing fairly so-
phisticated techniques in field theory to hydrodynamics [8, 25, 32]. In this con-
text, (1.1) is often referred to as Burgers turbulence. Since the phenomenology
of the so-called Burgers turbulence is far simpler than that of real turbulence, one
hopes that exact results can be obtained which can then be used to benchmark
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the methods. However, so far our experience has proved otherwise: The prob-
lem of Burgers turbulence is complicated enough that a wide variety of predic-
tions have been made as a consequence of the wide variety of techniques used
[1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 17, 22, 23, 24, 25, 26, 28, 32, 34, 36, 37, 39].

The main purpose of the present paper is to clarify this situation and to obtain
exact results that are expected for Burgers turbulence. Along the way we will also
develop some technical aspects that we believe will be useful for other problems.
The main issues that interest us are the scaling of the structure functions and the as-
ymptotic behavior of the probability density functions (PDF) in the inviscid limit.
The former is well-understood heuristically, but we will derive the results from
self-consistent asymptotics on the master equation for the PDF of the velocity dif-
ference. The latter is at the moment very controversial, and we hope to settle the
controversy by deriving exact results on the asymptotic behavior for the PDFs.

From a technical point of view we insist on working with master equations for
the PDFs and making no closure assumptions. The unclosed terms are expressed
in terms of the statistics of singular dissipative structures of the field, here the
shocks. We then derive a master equation for the statistics of the environment of
the shocks by relating them to the singular structures on the shocks, namely, the
points of shock creation and collisions. These are then amenable to local analysis.
In this way we achieve closure through dimension reduction. We then extract in-
formation on the asymptotic behavior of PDFs using realizability constraints and
self-consistent asymptotics. We certainly hope that this philosophy will be useful
for other problems.

One main issue that will be addressed in this paper is the behavior of the PDF
of the velocity gradient. Assuming statistical homogeneity, let Qν(ξ, t) be the PDF
of ξ = ux. Qν satisfies

Qν
t = ξQν +

(
ξ2Qν

)
ξ
+ B1Qν

ξξ −ν
(〈ξxx | ξ〉Qν

)
ξ

,

where B1 = −Bxx(0) and 〈ξxx | ξ〉 is the average of ξxx conditional on ξ. This
equation is unclosed since the explicit form of the last term, representing the effect
of the dissipation, is unknown. We are interested in Qν at the inviscid limit:

Q(ξ, t) = lim
ν→0

Qν(ξ, t) .

In order to derive an equation for Q, one needs to evaluate

F(ξ, t) = − lim
ν→0

ν
(〈ξxx | ξ〉Qν

)
ξ
.

This is where the difficulty arises.
Remembering that ux(x, t) = lim∆x→0(u(x + ∆x, t)− u(x, t))/∆x, the procedure

outlined above pertains to the process of first taking the limit as ∆x → 0, then the
limit as ν → 0. It is natural to consider also the other situation, when the limit
ν → 0 is taken first. In this case the limiting form of (1.1) (notice that we now
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write the nonlinear term in a conservative form),

ut +
1
2

(
u2)

x = f ,(1.2)

has to be interpreted in a weak sense by requiring∫∫ {
uϕt +

1
2

u2ϕx + fϕ

}
dxdt = 0(1.3)

for all compactly supported smooth functions ϕ. The solutions u satisfying (1.3)
are called weak solutions. In order to ensure a well-defined dynamics for (1.2), i.e.,
existence and uniqueness of solutions with given initial data, an additional entropy
condition has to be imposed on weak solutions. This amounts to requiring

u(x+, t) ≤ u(x−, t)(1.4)

for all (x, t). The entropy condition (1.4) is the effect of the viscous term in the
inviscid limit. There is a huge mathematical literature on (1.2) for the deterministic
case. Standard references are [30, 31, 38]. The random case was studied recently
in the paper by E, Khanin, Mazel, and Sinai [14].

The first step in the present paper is to derive master equations for single and
multipoint PDFs of u satisfying (1.2). In particular, we derive an equation for the
PDF of η(x,y, t) = (u(x+ y)−u(x, t))/y, Qδ(η,x, t). We are interested in

Q(ξ, t) = lim
x→0

Qδ(ξ,x, t) .

One natural question is whether

Q = Q .(1.5)

We will present a very strong argument that (1.5) holds for generic initial data and
for the type of forces described after (1.1). Some of our results also apply to Q for
the more general case when it is possibly different from Q.

The issue now reduces to the evaluation or approximation of F(ξ, t). Several
different proposals have been made; each leads at statistical steady state (Qt = 0)
to an asymptotic expression of the form

Q(ξ) ∼
{

C−|ξ|−α as ξ →−∞
C+ξβe−ξ3/(3B1) as ξ → +∞ ,

but with a variety of values for the exponents α and β (here the C±’s are con-
stants). By invoking operator product expansion, Polyakov [32] suggested that
F = aQ+ bξQ, with a = 0 and b = −1

2 . This leads to α = 5
2 and β = 1

2 . Boldyrev
[6, 7] considered the same closure with −1 ≤ b ≤ 0, which gives 2 ≤ α ≤ 3 and
β = 1 + b. Based on heuristic arguments, Bouchaud and Mézard [9] introduced
a Langevin equation for velocity gradient, which gives 2 ≤ α ≤ 3, β = 0. The
instant-on analysis [4, 18, 25] predicts the right tail of Q without giving a precise
value for β, and it does not give any specific prediction for the left tail. E et al.
[13] made a geometrical evaluation of the effect of F based on the observation that
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large negative gradients are generated near shock creation. Their analysis gives
a rigorous upper bound for α: α ≤ 7

2 . In [13], it was claimed that this bound is
actually reached, i.e., α = 7

2 . Finally, Gotoh and Kraichnan [24] argued that the

viscous term is negligible to leading order for large |ξ|, i.e., F ≈ 0 for |ξ| � B1/3
1 ,

giving rise to α = 3 and β = 1.
In this paper, we will first give a more detailed proof of the bound

α > 3,

announced in [17]. We will then show that

α =
7
2

by studying the master equation for the environment of the shocks.
This relies on knowing the local behavior near the most singular structures (here

the points of shock creation). Points of shock creation were isolated in [14] as a
mechanism for obtaining large negative values of ux and resulted in the predic-
tion that α = 7

2 . From this point of view, the present paper provides the missing
step establishing the fact that points of shock creation provide the leading-order
contribution to the left tail of Q.

Concerning the style of presentation, for the most part our working assumptions
will be the following:

1. Solutions of (1.2) are piecewise smooth.
2. Shock paths are smooth except at the points of collision.
3. Shocks are created at zero amplitude and shock strengths add up at collision.

The theorems and lemmas are proved under these assumptions. Fully rigorous
proofs of these statements are not yet available, even though these are considered
part of the folklore in this subject. On the other hand, our primary purpose in this
paper is to develop an approach according to which various asymptotic limiting be-
haviors can be calculated. We will therefore leave the full proof of these statements
to future work.

Before ending this introduction, we make some remarks about notations and
nomenclature. In analogy with fluid mechanics, u will be referred to as the velocity
field. We will denote the multipoint PDFs of u(·, t) as Zν(u1,x1, . . . ,un,xn, t), i.e.,

Prob(a1 < u(x1, t) ≤ b1, . . . ,an < u(xn, t) ≤ bn) =
∫ b1

a1

· · ·
∫ bn

an

Zν(u1,x1, . . . ,un,xn, t)du1 · · ·dun .

The superscript ν refers to the viscous case, ν > 0. In the inviscid limit we will
denote the multipoint PDFs of u(·, t) by Z(u1,x1 . . . ,un,xn, t). Statistical stationary
values will be denoted by the subscript ∞, e.g., Zν

∞ or Z∞. We reserve the special
notations Rν(u,x, t) = Zν(u,x, t) and R(u,x, t) = Z(u,x, t) for the one-point PDF of
u(x, t). Qν(ξ, t) denotes the PDF of ξ(x, t), and its inviscid limit is Q(ξ, t).
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Statistical symmetries, or equality in law, will be denoted by
(d)=. Two such

symmetries will be used repeatedly. The first is statistical homogeneity,

u(x, t) (d)= u(x+ y, t) for all y .(1.6)

(1.6) holds if for all measurable, real-valued functionals Φ(u(·, t)), we have

〈Φ(u(·, t))〉 = 〈Φ(u(·+ y, t))〉 for all y .

Note that from (1.1) and the assumptions on f , it follows that (1.6) holds for all

times if u0(x)
(d)= u0(x + y), where u0(·) = u(·,0) is the initial velocity field. Also,

if a statistical steady state exists and is unique, then it satisfies (1.6). The second
symmetry will be referred to as statistical parity invariance and is related to the
invariance of (1.1) under the transformation x →−x, u →−u. This implies that

u(x, t) (d)= −u(−x, t)(1.7)

or

〈Φ(u(·, t))〉 = 〈Φ(−u(−(·), t))〉 .

(1.7) holds for all times if u0(x)
(d)= −u0(−x). (1.7) is also satisfied at statistical

steady state.
We will use (Ω,H ,P ) to denote the probability space for the forcing f , and

(Ω0,H0,P0) to denote the probability space for the initial data u0, where Ω0 is the
Skorohod space D(I) on an interval I and H0 is the Borel σ-algebra. P0 is assumed
to be independent of P . When I is a finite interval, we assume periodic boundary
conditions. Note that the existence of stationary states is proved only in this case
[14].

2 Velocity and Velocity Differences

Let uν(x, t, f ,u0) be the solution of (1.1) with forcing f and initial data u0.
It follows from standard results (for the deterministic case, see [30, 31]) that for
fixed t

uν(·, t, f ,u0) → u(·, t, f ,u0) as ν → 0,

P×P0-almost surely, in L2
loc(I). Hence

Zν → Z

weakly. For the statistically stationary states, it was established in [14] that we
have

Zν
∞ → Z∞

weakly. Therefore to study the inviscid limit of statistical quantities of u, such as
the PDFs of u and δu(x,y, t) = u(x+ y, t)−u(y, t), it is enough to consider (1.2).
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It is useful, however, to write this equation in a modified form more convenient
for calculations. To this end, let

u±(x, t) = u(x±, t) .

For any function g(u) = g(u(x, t)), we define two average functions

[g(u)]A =
1
2
(g(u+)+ g(u−)) , [g(u)]B =

∫ 1

0
g(u− +β(u+ −u−))dβ .(2.1)

It is shown in [40] that (1.2) is equivalent to

ut +[u]Aux = f ,(2.2)

or, in the language of stochastic differential equations,

du = −[u]Auxdt + dW (x, t) .(2.3)

Equation (2.1) assigns an unambiguous meaning to the quantity [u]Aux when the
solutions of (2.2) develop shocks. Moreover, the following chain and product rules
hold:

gx(u) = [gu(u)]Bux ,(2.4)

(g(u)h(u))x7 = [g(u)]Ahx(u)+ [h(u)]Agx(u) .(2.5)

Similar rules apply for derivatives in t. As an example of these rules, we have that
the integral of the term [u]Aux across a shock located at x = y is given by (using
[u]A = [u]B)

∫ y+

y−
[u]Aux dx =

∫ y+

y−
1
2
(u2)x dx =

1
2

(
u2

+ −u2
−
)
.

It is also convenient to define

ū(x, t) =
1
2
(u+(x, t)+ u−(x, t)) , s(x, t) = u+(x, t)−u−(x, t) .

In terms of (ū,s), the two averages in (2.1) are

[g(u)]A =
1
2

(
g

(
ū+

s
2

)
+ g

(
ū− s

2

))
, [g(u)]B =

∫ 1/2

−1/2
g(ū +βs)dβ .

We will denote by {yj} the set of shock positions at time t. Hence the set

{(y j , ū(y j, t),s(y j, t))}
quantifies the shocks at time t.
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2.1 Master Equation for the Inviscid Burgers Equation

We now turn to R(u,x, t), the one-point PDF of the solution of (2.2). We have

THEOREM 2.1 R satisfies

Rt = −uRx −
∫

R

K(u−u′)Rx(u′,x, t)du′ + B0Ruu + G ,(2.6)

where B0 = B(0), K(u) = (H(u)−H(−u))/2, H(·) is the Heaviside function, and
G(u,x, t) is given by

G(u,x, t) =


 ∫

R−

∫ u−s/2

u+s/2
(u− ū)(ū,s,x, t)dū ds




u

.(2.7)

Here (ū,s,x, t) is defined such that (ū,s,x, t)dūdsdx gives the average number
of shocks in [x,x + dx) with ū(y, t) ∈ [ū, ū + dū) and s(y, t) ∈ [s,s + ds), where y ∈
[x,x+ dx) is the shock location.

Remarks. 1. G can be referred to as a dissipative anomaly. It can be written
more explicitly as

G(u,x, t) =
1
2

∫

R−

s

(


(
u− s

2
,s,x, t

)
+

(
u+

s
2

,s,x, t

))
ds

−
∫ 1/2

−1/2

∫

R−

s(u+βs,s,x, t)dsdβ .

(2.8)

2. (ū,s,x, t) can be equivalently defined as

(ū,s,x, t) =
1

(2π)2

∫

R×R

eiλū+iµŝ(λ,µ,x, t)dλdµ ,

where

̂(λ,µ,x, t) =
〈

∑
j

e−iλū(yj ,t)−iµs(yj ,t)δ(x− y j)
〉

.

Equations (2.6) and (2.7) do not require statistical homogeneity, nor that the
number density of shocks ρ = ρ(t) be finite. For homogeneous situations such that
ρ is finite, these equations simplify. Since Rx = 0, (2.6) reduces to

Rt = B0Ruu + G(2.9)

where G(u,x, t) = G(u, t). Since the shock characteristics are independent of its
location, we have

(ū,s,x, t) = ρS(ū,s, t)
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where S(ū,s, t) is the PDF of (ū(y0, t),s(y0, t)), conditional on the property that y0

is a shock position (because of the statistical homogeneity, y0 is a dummy variable).
Thus (2.7) reduces to

G(u, t) = ρ


 ∫

R−

∫ u−s/2

u+s/2
(u− ū)S(ū,s, t)dūds




u

.(2.10)

At the statistical stationary state, Rt = 0 in (2.9), and one readily verifies from
this equation that

R∞(u) =
ρ

2B0

∫

R−

∫ u−s/2

u+s/2

(
s2

4
− (u− ū)2

)
S∞(ū,s)dūds .(2.11)

Clearly, R∞ ≥ 0 since S∞(ū,s) ≥ 0. In addition, by direct computation we obtain∫

R

R∞ du = − ρ

12B0

〈
s3〉 .

Thus, from the requirement that R∞ be normalized to unity, we get

B0 = − ρ

12

〈
s3〉 .(2.12)

PROOF OF THEOREM 2.1: Let θ(λ,x, t) = e−iλu(x,t). 〈θ〉 is the characteristic
function of u(x, t), and R is given by

R(u,x, t) =
1

2π

∫

R

eiλu〈θ(λ,x, t)〉dλ.

Using

dW (x, t)dW (y, t) = 2B(x− y)dt ,

it follows from (2.3), (2.4), and (2.5) that

dθ =
(− iλ[u]Aux[θ]B −λ2B0θ

)
dt − iλθdW(x, t) ;

thus

〈θ〉t = iλ〈[u]Aux[θ]B〉−λ2B0〈θ〉 .
Note that the terms involving the force contain θ, not [θ]B. This is because θ = [θ]B
except when there is a shock, and this is a set of zero probability. Of course, this
argument does not apply for the convection term, since ux is infinite at shocks. To
average the convective term iλ[u]Aux[θ]B, we use

θx = −iλux[θ]B
to get

iλ
〈
[u]Aux[θ]B

〉
= −〈[u]Aθx

〉
= −〈uθ

〉
x +
〈
ux[θ]A

〉
.
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For convenience, we write this equation as

iλ
〈
[u]Aux[θ]B

〉
= −i〈θ〉xλ + iλ−1〈θ〉x +

〈
ux
(
[θ]A − [θ]B

)〉
.

Combining these expressions gives

〈θ〉t = −i〈θ〉xλ + iλ−1〈θ〉x −λ2B0〈θ〉+ Ĝ ,(2.13)

where Ĝ(λ,x, t) is given by

Ĝ(λ,x, t) =
〈
ux
(
[θ]A − [θ]B

)〉
.

To proceed with the evaluation of Ĝ, note that the only contributions to this
term are from the shocks, since [θ]A = [θ]B except at shocks. Let {yj} denote the
positions of the shocks at time t. Since ux(y j, t) = s(y j, t)δ(x− y j) at the shocks, Ĝ
can be understood as

Ĝ(λ,x, t) =
〈

∑
j

s jδ(x− y j)
(
[θ(λ,y j, t)]A − [θ(λ,y j, t)]B

)〉
,(2.14)

where s j = s(y j, t). Using (2.1),

Ĝ(λ,x, t) =
〈

∑
j

s jδ(x− y j)e−iλū j

(
eiλs j/2 + e−iλs j/2 −2

∫ 1/2

−1/2
e−iλβs j dβ

)〉
,

where ū j = ū(y j, t). The use of (ū,s,x, t) shows that this average is

Ĝ(λ,x, t) =
∫

R×R−

s
2

e−iλū
(

eiλs/2 + e−iλs/2 −2
∫ 1/2

−1/2
e−iλβs dβ

)
(ū,s,x, t)dū ds .

Going back to the variable u, we get (2.8), hence (2.6).

Remark. Under the assumption of ergodicity with respect to spatial translations,
an alternative derivation of (2.10) is to go back to (2.14) and use the equivalence
between ensemble average and spatial average. Then

Ĝ(λ, t) = lim
L→∞

1
2L

∫ L

−L
∑

j

s jδ(x− y j)
(
[θ(λ,y j, t)]A − [θ(λ,y j, t)]B

)
dx

= lim
L→∞

N
2L

1
N

N

∑
j=1

s j
(
[θ(λ,y j, t)]A − [θ(λ,y j, t)]B

)
,

where N is the number of shocks in the interval [−L,L]. By using the ergodicity
again, it follows that the sum is equal to

Ĝ(λ, t) = ρ
∫

R×R−

s
2

e−iλū
(

eiλs/2 + e−iλs/2 −2
∫ 1/2

−1/2
e−iλβs dβ

)
S(ū,s, t)dūds ,

where we used limL→∞ N/(2L) = ρ. Going back to the variable u, we get (2.10).
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2.2 An Alternative Derivation

The derivation of (2.6) (or (2.9) for statistically homogeneous situations) given
above is rigorous but rather unintuitive. In fact, the effect of the viscous term is
buried in the definition of the two averages in (2.1), and it is not at all clear at this
stage whether (2.6) arises in the limit of the equation for Rν as ν → 0. Recall that
Rν satisfies (see (A.4) in the appendix)

Rν
t = B0Rν

uu −ν
(〈uxx | u〉Rν

)
u ,

assuming statistical homogeneity. Here we give another, less rigorous but more
intuitive, derivation of (2.9) and (2.10) by working with the equation for Rν , and
calculating directly the limit of the viscous term as ν → 0. In particular, we will
compute explicitly that the dissipative anomaly (2.10) is given by

G(u, t) = − lim
ν→0

ν
(〈uxx | u〉R)u .(2.15)

This will give strong support to the claim that R = limν→0 Rν satisfies (2.9).
Assuming spatial ergodicity, the average of the dissipative term can be ex-

pressed as

ν〈uxx | u〉Rν = ν〈uxx(x, t)δ(u−u(x, t))〉

= ν lim
L→∞

1
2L

∫ L

−L
uxx(x, t)δ(u−u(x, t))dx .

(2.16)

Clearly, in the limit as ν → 0, only small intervals around the shocks will contribute
to the integral. In these intervals, boundary layer analysis can be used to obtain an
accurate approximation of u(x, t).

The basic idea is to split u into the sum of an inner solution near the shock and
an outer solution away from the shock, and using systematic matched asymptotics
to construct uniform approximation of u (for details, see, e.g., [21]). For the outer
solution, we look for an approximation in the form of a series in ν:

u = uout = u0 +νu1 + O(ν2) .

Then u0 satisfies

u0t + u0u0x = f ,

i.e., the Burgers equation without the dissipation term. In order to deal with the
inner solution around the shock, let y = y(t) be the position of a shock, define the
stretched variable z = (x− y)/ν, and let

uin(x, t) = v

(
x− y

ν
+ δ, t

)
,

where δ is a perturbation of the shock position to be determined later. Then v
satisfies

νvt +(v− ū+νγ)vz = vzz +ν f ,(2.17)
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where ū = dy/dt, γ = dδ/dt, and, to O(ν2), ν f can be evaluated at x = y (and can
thus be considered as a function of t only).

We study (2.17) by regular perturbation analysis. We look for a solution in the
form

v = v0 +νv1 + O
(
ν2) .

To leading order, from (2.17) we get for v0 the equation

(v0 − ū)v0z = v0zz .

The boundary condition for this equation arises from the matching condition with
uout = u0 +νu1 + O(ν2):

lim
z→±∞

v0 = lim
x→y

u0 ≡ ū± s
2

,

where s = s(t) is the shock strength. It is understood that for small ν, matching
takes place for small values of |x−y| and large values of |z|= |x−y|/ν. This gives

v0 = ū− s
2

tanh
(sz

4

)
.

These results show that, to O(ν), (2.16) can be estimated as

ν〈uxx | u〉Rν = ν lim
L→∞

N
2L

1
N ∑

j

∫

� j

uin
xxδ(u−uin(x, t))dx ,

where � j is an interval centered at yj with width � O(ν). Going to the stretched
variable z = (x− y)/ν and taking the limit as L → ∞, we get

ν〈uxx | u〉Rν = ρ

∫

R×R−

S(ū,s, t)
∫

R

v0zz(z, t)δ(u− v0(z, t))dzdū ds ,

where S(ū,s, t) is the PDF of (ū(y0, t),s(y0, t)) conditional on y0 being a shock
location. The z-integral can be evaluated exactly using

v0zz dz =
v0zz

v0z
dv0 = (v0 − ū)dv0 ,

where we used the equation (v0 − ū)v0z = v0zz. This leads to

ν〈uxx | u〉Rν = −ρ

∫

R×R−

S(ū,s, t)
∫ ū−s/2

ū+s/2
(v0 − ū)δ(u− v0)dv0 dūds .

Hence,

lim
ν→0

ν〈uxx | u〉Rν = −ρ
∫

R−

∫ u−s/2

u+s/2
(u− ū)S(ū,s, t)dū ds .

Using this expression in (2.15), we get (2.7).
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2.3 Computing the Anomalies

Here we derive equations for the moments of R. For simplicity, consider a sta-

tistically homogeneous case and assume that u(x, t) (d)= −u(−x, t). Then S(ū,s, t) =
S(−ū,s, t), G(u, t) = G(−u, t), and R(u, t) = R(−u, t). This means that all moments
of odd orders of R are zero. For moments of even orders, we get from (2.9) the fol-
lowing equations (n ∈ N0):

d
dt

〈
u2n
〉

= 2n(2n−1)B0
〈
u2n−2〉+ h2n ,

where h2n is the anomaly term

h2n =
∫

R

u2nGdu = − ρ

22n(2n+ 1)
(〈

(2ū− s)2n(ū+ ns)
〉− 〈(2ū + s)2n(ū−ns)

〉)

(h2n+1 = 0 by parity). An alternative definition of h2n is

h2n = 2n lim
ν→0

ν
〈
u2n−1uxx

〉
= −2n(2n−1) lim

ν→0
ν
〈
u2n−2u2

x

〉
.

This gives, for instance,

h2 = −2 lim
ν→0

ν〈u2
x〉 =

ρ

6

〈
s3〉 .

At statistical steady state, it gives

〈
u2n〉=

C2nρ

B0

(〈
(2ū− s)2n+2(ū+(n+ 1)s)

〉− 〈(2ū + s)2n+2(ū− (n+ 1)s)
〉)

,

where Cn = n!/2n+2(n+ 3)!. These expressions can also be obtained from (2.11).
In particular, for n = 2, we again obtain (2.12).

2.4 Multipoint PDF

We now turn to Z(u1,x1, . . . ,un,xn, t), the multipoint PDF of u. We have the
following:

THEOREM 2.2 Z satisfies

Zt = −
n

∑
p=1

upZxp +
n

∑
p,q=1

B(xp − xq)Zupuq

−
n

∑
p=1

∫

R

K(up −u′)Zxp(u1,x1, . . . ,u′,xp, . . . ,un,xn, t)du′

+
n

∑
p=1

G(up,xp,u2,x2 . . . ,up−1,xp−1,up+1,xp+1, . . . ,un,xn, t) ,

(2.18)
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where K(u) = (H(u)−H(−u))/2, H(·) is the Heaviside function, and G is given
by

G(u1,x1, . . . ,un,xn, t) =
 ∫

R−

∫ u1−s/2

u1+s/2
(u1 − ū)(ū,s,x1,u2,x2, . . . ,un,xn, t)dūds




u1

.
(2.19)

Here (ū,s,x1,u2,x2 . . . ,un,xn, t) is defined such that

(ū,s,x1,u2,x2, . . . ,un,xnt)dūdsdu2 · · ·dun dx

gives the average number of shocks in [x1,x1 +dx) with ū(y, t)∈ [ū, ū+dū), s(y, t)∈
[s,s + ds) where y ∈ [x1,x1 + dx) is a shock location, and u(x2, t) ∈ [u2,u2 + du2),
. . . , u(xn, t) ∈ [un,un + dun).

We will omit the proof of Theorem 2.2 since it is a straightforward generaliza-
tion of the one given for Theorem 2.1.

For the two-point PDF, Z(u1,x1,u2,x2, t), (2.18) becomes

Zt = −u1Zx1 −
∫

R

K(u1 −u′)Zx1(u
′,x1,u2,x2, t)du′

−u2Zx2 −
∫

R

K(u2 −u′)Zx2(u1,x1,u′,x2, t)du′

+ B0Zu1u1 + B0Zu2u2 + 2B(x1 − x2)Zu1u2

+ G(u1,x1,u2,x2, t)+ G(u2,x2,u1,x1, t) .

(2.20)

Assuming statistical homogeneity, (2.20) can be simplified. First,

Z(u1,y,u2,x+ y, t) = Z(u1,0,u2,x, t) ≡ Z(u1,u2,x, t) .

Second, assuming that the number density of shocks ρ is finite,

(ū,s,y,u,x+ y, t) = ρT (ū,s,u,x, t) ,

where T (ū,s,u,x, t) is the PDF of

(ū(y0, t),s(y0, t),u(y0 + x, t)) ,
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conditional on y0 being a shock position. Thus for statistically homogeneous situ-
ations, (2.20) reduces to the following equation for Z(u1,u2,x, t):

Zt = −(u2 −u1)Zx −
∫

R

K(u2 −u′)Zx(u1,u′,x, t)du′

+
∫

R

K(u1 −u′)Zx(u′,u2,x, t)du′ + B0Zu1u1 + B0Zu2u2 + 2B(x)Zu1u2

+ G(u1,u2,x, t)+ G(u2,u1,−x, t) ,

(2.21)

where

G(u1,u2,x, t) = ρ


 ∫

R−

∫ u1−s/2

u1+s/2
(u1 − ū)T (ū,s,u2,x, t)dūds




u1

.(2.22)

2.5 Velocity Difference and Structure Functions

Assuming statistical homogeneity and letting Zδ(δu,x, t) be the PDF of the ve-
locity difference δu(x,y, t) = u(x+y, t)−u(y, t), Zδ(w,x, t) is related to Z(u1,u2,x, t)
by

Zδ(w,x, t) =
∫

R

Z
(

u− w
2

, u+
w
2

, x, t
)

du .

The following corollary then follows immediately from (2.21) and (2.22):

COROLLARY 2.3 Zδ satisfies

Zδ
t = −wZδ

x −2
∫

R

H(w′ −w)Zδ
x (w

′,x, t)dw

+ 2(B0 −B(x))Zδ
ww + Gδ(w,x, t) ,

(2.23)

where K(w) = (H(w)−H(−w))/2, H(·) is the Heaviside function, and

Gδ(w,x, t) =
∫

R

G
(

u− w
2

,u+
w
2

,x, t
)

du+
∫

R

G
(

u+
w
2

,u− w
2

,−x, t
)

du .(2.24)

Remark. Gδ can be put into a form that is more convenient for the calculations.
Let

δu+(x,y0, t) = u(y0 + |x|, t)−u+(y0, t) ,

δu−(x,y0, t) = u−(y0, t)−u(y0 −|x|, t) ,

and let U±(s,δu±,x, t) be the PDFs of (s(y0, t),δu±(x,y0, t)) conditional on y being
a shock position. Then, assuming the number density of shocks ρ is finite, Gδ can
be expressed as

Gδ(w,x, t) = Gδ
+(w,x, t)+ Gδ

−(w,x, t) ,
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where

Gδ
±(w,x, t) =

ρ

2

∫

R−

s(U±(s, sgn(x)w− s,x, t)+U±(s, sgn(x)w,x, t))ds

−ρ

∫

R−

∫ 1

0
sU±(s, sgn(x)w−βs,x, t)dβ ds .

We now consider some consequences of (2.23). We have the following two
theorems:

THEOREM 2.4 In the limit as x → 0,

Zδ(w,x, t) = δ(w)−|x|(ρδ(w)+ 〈ξ〉δ1(w)−ρS(w, t))+ o(x) ,

= (1−ρ|x|)1
x

Q
(w

x
, t
)

+ |x|ρS(w, t)+ o(x) ,
(2.25)

where δ1(w) = dδ(w)/dw and o(x) must be interpreted in the sense of weak con-
vergence. Q(ξ, t) is the PDF of ξ(x, t), the regular part of the velocity gradient,
i.e.,

ux(x, t) = ξ(x, t)+∑
j

s(y j, t)δ(y− y j) ,

and S(s, t) is the PDF of s(y0, t) conditional on y0 being a shock location.

THEOREM 2.5 (Structure Function Scaling) Let

〈|δu|a〉 =
∫

R

|w|aZδ(w,x, t)dw .(2.26)

In the limit as x → 0,

〈|δu|a〉 =



|x|a〈|ξ|a〉+ o(xa) if 0 ≤ a < 1

|x|(〈|ξ|〉+ρ〈|s|〉)+ o(x) if a = 1

|x|ρ〈|s|a〉+ o(x) if 1 < a .

(2.27)

In terms of the moments, (2.27) is (n ∈ N0)〈
δu2n〉= |x|ρ〈s2n〉+ o(x) ,

〈
δu2n+1〉= xρ

〈
s2n+1〉+ o(x) .(2.28)

Remark. The first moment satisfies 〈δu〉 = 0 for all (x, t). This is a consequence of
statistical homogeneity, and it is readily verified since multiplying (2.23) by w and
integrating gives in 〈δu〉t = 0. On the other hand, from (2.23), the second moment
satisfies

〈δu2〉t = −1
3
〈δu3〉x +

ρ

3
〈s3〉+ 4(B0 −B(x)) .(2.29)

At statistical steady state, this equation reduces to the following ordinary differen-
tial equation for 〈δu3〉:

d
dx

〈δu3〉 = ρ〈s3〉−12(B0 −B(x)) = −12(2B0 −B(x)) ,(2.30)
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where we used (2.12). The solution of this equation for the boundary condition
〈δu3(x = 0)〉 = 0 is

〈δu3〉 = −12
∫ x

0
(2B0 −B(y))dy ,(2.31)

implying, in particular, that 〈δu3〉 is analytic in x at statistical steady state.

An equation for Q(ξ, t) will be derived in Section 3. To interpret (2.25), note
that Zδ can be decomposed into

Zδ(w,x, t) = pns(x, t)Zδ(w,x, t | no shock)+ (1− pns(x, t))Zδ(w,x, t | shock) ,

where pns(x, t) is the probability that there is no shock in [y,y + x), Zδ(w,x, t |
no shock) is the PDF of δu(x,y, t) conditional on the property that there is no shock
in [y,y+ x), and Zδ(w,x, t | shock) is the PDF of δu(x,y, t) conditional on the prop-
erty that there is at least one shock in [y,y+ x). Since by definition of ρ we have

pns = 1−ρ|x|+ o(x) ,

(2.25) states that

Zδ(w,x, t | no shock) = (1−ρ|x|)1
x

Q
(w

x
, t
)

+ o(x) ,

Zδ(w,x, t | shock) = S(w, t)+ o(1) .

This is consistent with the picture that δu(x,y, t) = xξ(y, t) + o(x) if there is no
shock in [y,y+x), and w(x,y, t) = s(y0, t)+o(1) if y0 ∈ [y,x+y) is a shock position.

PROOF OF THEOREM 2.4: We will consider the case x > 0. The case x < 0
can be treated similarly. Note first that, in the limit as x → 0, we have

xZδ(xξ,x, t) → Q(ξ, t)

weakly. We postpone the proof of this fact until Section 3. It implies that

Zδ(w,x, t) = δ(w)+ o(1)

weakly. Define

A(w, t) = lim
x→0

x−1(Zδ(w,x, t)− δ(w)
)

= lim
x→0

Zδ
x (w,x, t) .

Taking the limit as x → 0 in the equation for Zδ, it follows that A satisfies

0 = −wA−2
∫

R

H(w−w′)A(w′,x, t)dw′ + B(w, t) ,(2.32)

where we used limx→0(B0 −B(x)) = 0 and we defined

B(w, t) = lim
x→0

Gδ(w,x, t) .

To evaluate B, note that as x → 0

δu±(x,y0, t) → 0
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almost surely. This implies that, as x → 0,

U±(s,w,x, t) → S(s, t)δ(w) ,

where S(s, t) is the PDF of s(y0, t) conditional on y0 being a shock location. Hence,
from the expression for Gδ,

B(w, t) = ρwS(w, t)+ρ〈s〉δ(w)+ 2ρ

∫ w

−∞
S(w′, t)dw′ −2ρH(w) ,

where H(·) is the Heaviside function and we used S(s, t) = 0 for s > 0. Inserting
this expression in (2.32), the solution of this equation is

A(w, t) = −δ(w)+ρ〈s〉δ1(w)+ρS(w, t) .

Here we used the identity wδ1(w) = −δ(w). Using (3.4), ρ〈s〉 = −〈ξ〉, this can be
restated as

A(w, t) = −δ(w)−〈ξ〉δ1(w)+ρS(w, t) .

Combining the above results, we have

Zδ(w,x, t) = δ(w)− x(δ(w)+ 〈ξ〉δ1(w)−ρS(w, t))+ o(x)

weakly. This establishes the first equation in (2.25) for x > 0. Reorganizing this
expression as

Zδ(w,x, t) = (1−ρx)(δ(w)− x〈ξ〉δ1(w))+ xρS(w, t)+ o(x)(2.33)

and using the identity

δ(w)− x〈ξ〉δ1(w) =
1
x

Q
(w

x
, t
)

+ o(x) ,

we obtain the second equation in (2.25) for x > 0.

PROOF OF THEOREM 2.5: We will prove (2.27) directly for moments of inte-
ger order higher than 1. For other values of a, (2.27) follows from (2.25) and the
fact that the tails are controlled by higher-order moments. Note first that for a > 0

lim
x→0

〈|δu|a〉 = 0,

since δu(x,y, t) → 0 almost surely as x → 0. Now, multiply (2.23) by wn (n ∈ N,
n ≥ 2), integrate, and take the limit as x → 0±. The result is

0 = −a±n+1 +
2

n+ 1
a±n+1 + b±n ,

where

a±n = lim
x→0±

x−1〈δun〉 = lim
x→0±

〈δun〉x , b±n = lim
x→0±

∫

R

wnGδ(w,x, t)dw .

Note that

(sgn(x))n
∫

R

wnGδ(w,x, t)dw
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=
ρ

2
〈s(δu+ + s)n〉+ ρ

2
〈sδun

+〉−ρ
∫ 1

0
〈s(δu+ +βs)n〉dβ +

ρ

2
〈s(δu− + s)n〉

+
ρ

2
〈sδun

−〉−ρ
∫ 1

0
〈s(δu− + s)n〉dβ .

Since δu±(x,y0, t) → 0 almost surely as x → 0, it follows that

b±n = (±1)nρ〈sn+1〉
(

1− 2
n+ 1

)
.

Inserting this expression in the equation for a±n gives

a±n+1 = lim
x→0±

x−1〈δun+1〉 = (±1)nρ〈sn+1〉 .
Thus

〈δu2n〉 = |x|ρ〈s2n〉+ o(x) , 〈δu2n+1〉 = xρ〈s2n+1〉+ o(x) .

This proves (2.28).
We now prove (2.27) for 0 ≤ a ≤ 1. The proof for other values of a is similar.

Let

f δ(w,x, t) = (1−ρ|x|)1
x

Q
(w

x
, t
)

+ |x|ρS(w, t) ,

gδ(w,x, t) = δ(w)−|x|(ρδ(w)+ 〈ξ〉δ1(w)−ρS(w, t)) ,

and write for M > 0∫

R

|w|a(Zδ − f δ)dw =
∫

|w|≤M

|w|a(Zδ − f δ)dw+
∫

|w|>M

|w|a(Zδ − f δ)dw .

The first term at the right-hand side is o(x) because of (2.25). To estimate the
second term, note that for M large enough

∫

|w|>M

|w|aZδ dw ≤
∫

|w|>M

w2Zδ dw ≤
∣∣∣∣∣
∫

R

w2(Zδ −gδ)dw

∣∣∣∣∣+
∫

|w|>M

w2gδ dw

= o(x)+ |x|ρ
∫

|w|>M

w2S(w, t)dw

= o(x)+ O(x)
∫

|w|>M

w2S(w, t)dw .

∫

|w|>M

|w|a f δ dw = |x|a(1−|x|ρ)
∫

|ξ|>M/x

|ξ|aQ(ξ, t)dξ + |x|ρ
∫

w>M

|w|aS(w, t)dw

= o(xa)+ O(x)
∫

w>M

|w|aS(w, t)dw .
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Since M can be made arbitrarily large, we get∫

R

|w|a(Zδ − f δ)dw ≤ o(xa)+ δMO(x) ,

where δM → 0 as M → ∞. Noting that
∫

R

|w|a f δ dw =

{
|x|a〈|ξ|a〉 if 0 ≤ a < 1

|x|(〈|ξ|〉+ρ〈|s|〉) if a = 1,

we obtain (2.27) for 0 ≤ a ≤ 1.

3 Velocity Gradient

We now turn to the study of the PDF of the velocity gradient for the solutions
of (2.2). Since the solutions typically contain discontinuities, it is already an issue
whether the PDF for the velocity gradient is well-defined. Heuristically, it is well-
defined since u only fails to be differentiable at no more than countably many
points. We will therefore be concerned with the PDF of the regular part of the
gradient.

3.1 Master Equation for the PDF of the Velocity Gradient
We focus on the statistically homogeneous case with finite-number density of

shocks and derive an equation for Q(ξ, t), the PDF of ξ(x, t), defined as the regular
part of the velocity gradient, i.e.,

ux(x, t) = ξ(x, t)+∑
j

s(y j)δ(x− y j) ,

where ξ(·, t) ∈ L1(I). We will prove the following:

THEOREM 3.1 Q satisfies

Qt = ξQ+
(
ξ2Q

)
ξ
+ B1Qξξ + F(ξ, t) ,(3.1)

where B1 = −Bxx(0) and

F(ξ, t) = ρ

∫

R−

sV (s,ξ, t)ds .(3.2)

Here V (s,ξ, t) = (V+(s,ξ, t)+V−(s,ξ, t))/2, and V±(s,ξ±, t) are the PDFs of

(s(y0, t),ξ±(y0, t) = ux(y0±, t)) ,

conditional on the property that y0 is a shock position.

The consequences of (3.1) will be studied in Section 3.3. Note that if u(x, t) (d)=
−u(−x, t), then

(ξ+(x, t),s(x, t)) (d)= (ξ−(−x, t),s(−x, t))

and V+(s,ξ, t) = V−(s,ξ, t) = V (s,ξ, t).
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PROOF OF THEOREM 3.1: Let Qδ(η,x, t) be the PDF of η(x,y, t) = (u(x+ y, t)
−u(y, t))/x. Qδ is related to Z and Zδ by

Qδ(η,x, t) = xZδ(xη,x, t) = x
∫

R

Z
(

u− xη
2

,u+
xη
2

,x, t
)

du .

From (2.23) it follows that Qδ satisfies

Qδ
t = ηQδ +

(
η2Qδ

)
η
+ B1(x)Qδ

ηη − xηQδ
x

−2x
∫

R

H(η−η′)Qδ
x(η

′,x, t)dη′ + Fδ(η,x, t) ,(3.3)

where B1(x) = 2(B0 −B(x))/x2 and

Fδ(η,x, t) = Fδ
1 (η,x, t)+ Fδ

2 (η,x, t)+ Fδ
3 (η,x, t) ,

with

Fδ
1 (η,x, t) = ρ

∫

R−

sV δ(s,η,x, t)ds ,

Fδ
2 (η,x, t) = ρ

∫

R−

sV δ

(
s,η− s

|x| ,x, t

)
ds ,

Fδ
3 (η,x, t) = −2ρ

∫

R−

∫ 1

0
sV δ

(
s,η− βs

|x| ,x, t

)
dβ ds .

Here V δ(s,η,x, t) = (V δ
+(s,η,x, t)+V δ−(s,η,x, t))/2, V δ±(s,η,x, t) are the PDFs of

(s(y0, t),η±(y0,x, t)) ,

with η±(y0,x, t) = ±(u(y0 ±|x|, t)−u±(y0, t))/|x|, conditional on the property that
y0 is a shock position.

Define

Q(ξ, t) = lim
x→0

Qδ(ξ,x, t) .

It is easy to see that∫

R

Fδ
1 (η,x, t)dη = ρ〈s〉 ,

∫

R

Fδ
2 (η,x, t)dη = ρ

∫

R×R−

sV δ(s,η,x, t)dηds = ρ〈s〉 ,

∫

R

Fδ
3 (η,x, t) = −2ρ

∫

R×R−

sV δ(s,η,x, t)dηds = −2ρ〈s〉 ,
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consistent with the fact that ∫

R

Fδ(η,x, t)dη = 0 .

Hence,
d
dt

∫

R

Qδ(η,x, t)dη = 0,
∫

R

ηQδ(η,x, t)dη = 0 .

In the limit as x → 0, η+ and η− converge, respectively, to the gradient of the
velocity at the left and right sides of the shock. Moreover, pointwise in η, we have

lim
x→0

Fδ
2 (η,x, t) = lim

x→0
Fδ

3 (η,x, t) = 0, lim
x→0

Fδ
1 (η,x, t) = F(η, t) ,

with F given by (3.2). Therefore, a standard argument with test functions applied
to (3.3) shows that in the limit as x → 0, Qδ converges weakly to Q, solution of
(3.1).

Remark. Fδ
2 and Fδ

3 are examples of what we will call “ghost terms,” i.e., terms
that have finite total moments but in the limit converge pointwise to zero. Due to
the ghost terms, it is not clear at the moment whether Q satisfies

∫
R

Q(ξ, t)dξ = 1.
This will be established as a consequence of Lemma 3.2.

3.2 Alternative Limiting Processes

Using BV calculus, one works at ν = 0 and accesses the statistics of the veloc-
ity gradient by taking x → 0 in (u(x + y, t)− u(y, t))/x. This procedure gives an
equation for

Q(ξ, t) = lim
x→0

Qδ(ξ,x, t) ,

where Qδ(ξ,x, t) is the PDF of (u(x+y, t)−u(y, t))/x. In this section, we revert the
order of the limits: We take x → 0 first, working at finite ν, and then let ν → 0. As
in Section 2.2, this is done using boundary layer analysis and matched asymptotics.
In this way, we will obtain an equation for

Q(ξ, t) = lim
ν→0

Qν(ξ, t) ,

which will turn out to be identical to the one for Q. To the extent that boundary
layer analysis can be justified, this strongly suggests that the limits x→ 0 and ν → 0
commute.

For statistically homogeneous situations, recall that Qν(ξ, t) satisfies (see (A.5)
in the appendix)

Qν
t = ξQν +

(
ξ2Qν

)
ξ
+ B1Qν

ξξ −ν
(〈ξxx | ξ〉Qν

)
ξ
.

The average of the dissipative term can be expressed as

ν〈ξxx | ξ〉Qν = ν lim
L→∞

1
2L

∫ L

−L
ξxx(x, t)δ(ξ − ξ(x, t))dx .
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As in Section 2.2, we will evaluate this integral using the approximation for ξxx pro-
vided by the boundary layer analysis. However, this analysis has to be developed
further in order to evaluate the dissipative term for the velocity gradient. Recall
that ξin = uin

x = v0z/ν + v1z + O(ν). Inside the shock, the O(1) contribution of
v1z is clearly negligible compared to the O(ν−1) contribution of v0z/ν. However,
the contribution of v1z is important at the border of the shock because v0z decays
exponentially fast there.

To evaluate v1z at the shock boundaries z →±∞, consider the equation for v1
that we get from (2.17):

v0t +(v0 − ū)v1z + v0z(v1 +γ) = v1zz + f .

The general solution of this equation can be expressed as

v1 = C1e
∫ z

0 (v0(z′)−ū)dz′

+
∫ z

0

(
C2 +(v0(z′)− ū)γ +

∫ z′

0
v0t(z′′)dz′′ − f z′

)
e

∫ z
z′ (v0(z′′)−ū)dz′′ dz′ ,

where C1 and C2 are constants. They, as well as γ, have to be determined by
matching with uout = u0 + νu1 + O(ν2) [21]. We will not dwell on this problem
since C1, C2, and γ do not enter the expression for v1z as z →±∞. Indeed, using
the expression for v0, direct computation shows that v1 reduces asymptotically to

v1 =
1
s

(
2

dū
dt

− ds
dt

−2 f

)
z+

2
s2

(
C2s+

ds
dt

−2
dū
dt

− s2γ

2
+ 2 f

)
+ O

(
e−sz/2

)
as z →−∞ ,

and

v1 = −1
s

(
2

dū
dt

+
ds
dt

−2 f

)
z− 2

s2

(
C2s+

ds
dt

+ 2
dū
dt

+
s2γ

2
−2 f

)
+ O

(
esz/2

)
as z → +∞ .

Thus

lim
z→±∞

v1z = ∓2
s

dū
dt

− 1
s

ds
dt

± 2 f
s

≡ ξ± ,

where the last equality is simply a definition of ξ±. Note that these can be reorga-
nized to give

ds
dt

= − s
2

(
ξ+ + ξ−

)
,

dū
dt

= − s
4

(
ξ+− ξ−

)
+ f .

In the limit as ν → 0, these are the equations of motion along the shock.
Using these results, to O(ν), (2.16) can be estimated as

ν〈ξxx|ξ〉Qν =

νρ

∫

R×R−×R×R

S(ū,s,ξ+,ξ−, t)
∫

�

ξin
xx(x, t)δ(ξ− ξin(x, t))dxdū dsdξ+ dξ− ,
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where � is a small interval around y with width � O(ν), S(ū,s,ξ+,ξ−, t) is the PDF
of (ū(y0, t),s(y0, t),ξ+(y0, t),ξ−(y0, t)), conditional on y0 being a shock location
(ξ+ and ξ− have to be included for reasons to be made clear later).

We now go to the stretched coordinate z = (x− y)/ν and use the result of Sec-
tion 2.2, namely,

ξin = ν−1v0z + v1z + O(ν) .

To O(ν), both terms must be included. However, the contribution of v1z is impor-
tant only at the border of the shock where v0z falls exponentially fast and can be
neglected inside the shock. Thus, ξin ≈ ξ̄ = ν−1v0z + ξ±, and we have

ν〈ξxx|ξ〉Qν =

ρ

∫

R×R−×R×R

S(ū,s,ξ+,ξ−, t)
∫

R

ξ̄zz(z, t)δ(ξ − ξ̄(z, t))dzdū dsdξ+ dξ− .

To perform the z integral, we change the integration variable to ξ′ = ξ̄ − ξ− for
z < 0 and to ξ′ = ξ̄− ξ+ for z > 0. For z < 0

((v0 − ū)(ξ̄− ξ−))z = ξ̄zz , (v0 − ū) =
(

1
4

s2 + 2ν(ξ̄− ξ−)
)1/2

= − s
2

+ O(ν) ,

and we have

ξ̄zz dz =
ξ̄zz

(ξ̄− ξ±)z
dξ′ = −(s/2(ξ̄− ξ±))z

(ξ̄− ξ±)z
dξ′ = − s

2
dξ′ .

Similarly, for z > 0

((v0 − ū)(ξ̄− ξ+))z = ξ̄zz , (v0 − ū) = −
(

1
4

s2 + 2ν(ξ̄− ξ+)
)1/2

=
s
2

+ O(ν) ,

and we have

ξ̄zz dz =
ξ̄zz

(ξ̄− ξ±)z
dξ′ =

(s/2(ξ̄− ξ±))z

(ξ̄− ξ±)z
dξ′ =

s
2

dξ′ .

This leads to

ν〈ξxx | ξ〉Qν

= ρ
∫

R×R−×R×R

S(ū,s,ξ+,ξ−, t)
∫ 0

−s2/(8ν)

s
2
δ(ξ− ξ′ − ξ−)dξ′ dūdsdξ+ dξ−

+ρ
∫

R×R−×R×R

S(ū,s,ξ+,ξ−, t)
∫ 0

−s2/(8ν)

s
2
δ(ξ− ξ′ − ξ+)dξ′ dūdsdξ+ dξ− .

Letting ν → 0 and integrating gives

lim
ν→0

ν〈ξxx | ξ〉Qν = ρ
∫

R−

∫ ∞

ξ
sV (s,ξ′, t)dξ′ ds ,
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where we used the consistency constraint∫

R×R

S(ū,s,ξ+,ξ−, t)dūdξ∓ = V±(s,ξ±, t) .

Thus

− lim
ν→0

ν
(〈ξxx | ξ〉Qν

)
ξ
= ρ

∫

R−

sV (s,ξ, t)ds = F(ξ, t) .

3.3 Consequences of the Master Equation

First we observe the following:

LEMMA 3.2

〈ξ〉+ρ〈s〉 = 0 or
∫

R

ξQ(ξ, t)dξ = −ρ〈s〉 .(3.4)

PROOF: Denote by uν the solution of (1.1) for finite ν. Then 〈uν
x 〉 = 0. Let

ϕ(x) be a compactly supported smooth function. We have

0 =
∫

ϕ〈uν
x 〉dx =

〈∫
ϕuν

x dx

〉
= −

〈∫
ϕxuν dx

〉
.

In the limit as ν → 0, uν → u, the solution of (2.2). Thus

0 = −
〈∫

ϕxudx

〉
.

Denote by yj the location of the shocks. We can write
∫

ϕxudx = −∑
j

∫ y j+1

y j

ϕux dx−∑
j

ϕ(y j)s(y j, t) .

Averaging this result, we get ∫
ϕ(〈ξ〉+ρ〈s〉)dx = 0

for all compactly supported smooth functions ϕ. Hence (3.4).

Notice that for finite ν or x,
∫

R
ξQν(ξ, t)dξ =

∫
R

ξQδ(ξ,x, t)dξ = 0. In the lan-
guage of Kraichnan [28], (3.4) represents a flow of probability of ξ from the smooth
part of the velocity field to the shocks. It reflects the fact that no matter how small
ν is, the dissipation range has a finite effect on inertial range statistics.

As a consequence of (3.1) and (3.4), we have

d
dt

∫

R

Q(ξ, t)dξ = 0;
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i.e., the normalization of Q is preserved. For the initial data we are interested in,
this implies ∫

R

Q(ξ, t)dξ = 1 .

LEMMA 3.3
d
dt

(ρ〈s〉) = −ρ

2
(〈sξ+〉+ 〈sξ−〉) .(3.5)

In particular,
∫
R

ξF(ξ, t)dξ = ρ(〈sξ+〉+ 〈sξ−〉)/2 exists and is finite.

PROOF: Since ρ〈s〉 and its derivative are finite by assumption, the existence of
the integral

∫
R

ξF(ξ, t)dξ = ρ(〈sξ+〉+ 〈sξ−〉)/2 follows from the argument below
and a standard cutoff argument on large values of ξ±.

Using

u±t + u±ξ± = f ,

where ξ±(x, t) = ux(x±, t) and dyj/dt = ū(yj, t), we have

d
dt

u+(y j, t) =
dyj

dt
ξ+(y j, t)+ u+t(y j, t)

= ū(y j, t)ξ+(y j, t)−u+(y j, t)ξ+(y j, t)+ f (y j, t)

= −1
2

s(y j, t)ξ+(y j, t)+ f (y j, t) .

Similarly,

d
dt

u−(y j, t) =
1
2

s(y j, t)ξ−(y j, t)+ f (y j, t) .

These equations can be reorganized into

d
dt

ū(y j, t) = −1
4

s(y j , t)(ξ+(y j, t)− ξ−(y j, t))+ f (y j, t)

and
d
dt

s(y j, t) = −1
2

s(y j, t)(ξ+(y j, t)+ ξ−(y j, t)) .

Consider now

ρ〈s〉 =
〈

∑
j

s(x, t)δ(x− yj)
〉

=
〈

∑
j

s(y j, t)δ(x− y j)
〉

.(3.6)

Using the equation for s(yj , t) and dyj/dt = ū(yj, t), we have

d
dt

(ρ〈s〉) = −ρ

2
(〈sξ+〉+ 〈sξ−〉)−

〈
∑

j

s(y j , t)ū(y j, t)δ(x− y j)
〉

x

+ contribution from shock creation and collision.

The second term on the right-hand side is zero by homogeneity. Thus to obtain
(3.5) it remains to prove that the contribution of shock creation and collision vanish.
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To understand how this term arises and why it vanishes, assume a shock is created
at position y1 at time t1. Then the sum under the average in (3.6) involves a term
like

T1 = s(y1, t)δ(x− y1)H(t − t1)

where H(·) is the Heaviside function. Time differentiation gives

dT1

dt
=

ds(y1, t)
dt

δ(x− y1)H(t − t1)− s(y1, t)ū(y1, t)δ1(x− y1)

+ s(y1, t)δ(x− y1)δ(t − t1) .

The last term accounts for shock creation. Since the shock amplitude is zero at
creation,

s(y1, t)δ(x− y1)δ(t − t1) = s(y1, t1)δ(x− y1)δ(t − t1) = 0 .

This means that shock creation makes no contribution to the time derivative of
(3.6). Consider now the collision events. Assume at time t1 the shocks located at
y2 and y3 merge into one shock located at y1. Obviously y1(t1) = y2(t1) = y3(t1).
Such an event contributes to the sum under the average in (3.6) by a term like

T2 = s(y1, t)δ(x− y1)H(t − t1)+ (s(y2, t)δ(x− y2)+ s(y3, t)δ(x− y3))H(t1 − t) .

Time differentiation gives

dT2

dt
=

ds(y1, t)
dt

δ(x− y1)H(t − t1)+
ds(y2, t)

dt
δ(x− y2)H(t1 − t)

+
ds(y3, t)

dt
δ(x− y3)H(t1 − t)− s(y1, t)ū(y1, t)δ1(x− y1)H(t − t1)

− (s(y2, t)ū(y2, t)δ1(x− y2)+ s(y3, t)ū(y3, t)δ1(x− y3)
)
H(t1 − t)

+
(
s(y1, t)δ(x− y1)− s(y2, t)δ(x− y2)− s(y3, t)δ(x− y3)

)
δ(t − t1) .

The term involving δ(t − t1) arises from shock collision. Since y1(t1) = y2(t1) =
y3(t1) and shock amplitudes add up at collision,

lim
t→0+

s(y1(t1 + t), t1 + t)δ(x− y1(t1 + t))

= lim
t→0+

(s(y2(t1 − t), t1 − t)δ(x− y2(t1 − t))

+ s(y3(t1 − t), t1 − t)δ(x− y3(t1 − t))) ,

the term in the equation for T2 involving δ(t − t1) vanishes. This means that shock
collision makes no contribution to the time derivative of (3.6). Hence (3.5).

COROLLARY 3.4 We have

lim
|ξ|→∞

|ξ|3Q(ξ, t) = 0,(3.7)

i.e., Q decays faster than |ξ|−3 as ξ →−∞.
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PROOF: Taking the first moment of (3.1) leads to

d
dt
〈ξ〉 =

[
ξ3Q

]+∞
−∞ +

∫

R

ξFdξ =
[
ξ3Q

]+∞
−∞ +

ρ

2
(〈sξ+〉+ 〈sξ−〉) .

Using (3.4) this equation can be written as

d
dt

(
ρ〈s〉) = −[ξ3Q

]+∞
−∞ − ρ

2
(〈sξ+〉+ 〈sξ−〉) .

Using (3.5) we obtain that the boundary term must be zero. Since ξ3Q has a dif-
ferent sign for large negative and positive values of ξ, one must have separately
limξ→−∞ |ξ|3Q = 0 and limξ→+∞ |ξ|3Q = 0. Hence (3.7).

Remark. Lemma 3.3 uses the facts that shocks are created at zero amplitude and
shock strengths add up at collision, which are our working assumptions. It is pos-
sible to construct pathological situations, such as the unforced case with piecewise
linear initial data [33], in which case shocks are created at finite amplitude. In this
case Lemma 3.3 is changed to

LEMMA 3.5
d
dt

(ρ〈s〉) = −ρ

2
(〈sξ+〉+ 〈sξ−〉)−Dc ,(3.8)

where

Dc = −σ1〈s1〉−σ2〈s2〉 ≥ 0 .

Here σ1 and σ2 are, respectively, the space-time number density of shock creation
and collision points, 〈s1〉≤ 0 is the average shock amplitude at creation, and 〈s2〉≤
0 is the average gain of amplitude at shock collision. In this case

Q(ξ, t) ∼ Dc|ξ|−3 as ξ →−∞ .(3.9)

Lemma 3.5 follows from a direct adaptation of the proof of Lemma 3.3.

3.4 Realizability and Asymptotics for the Statistical Steady State

We now turn to the study of (3.1) at steady state

0 = ξQ+
(
ξ2Q

)
ξ
+ B1Qξξ + F(ξ) ,(3.10)

where F(ξ) = limt→∞ F(ξ, t). We shall prove the following:

THEOREM 3.6 The realizability constraint Q ∈ L1(R), Q ≥ 0, implies

lim
ξ→+∞

ξ−2eΛF(ξ) = 0,(3.11)

where Λ = −ξ3/3B1. Assuming (3.11), the only positive solution of (3.10) can be
expressed as

Q∞(ξ) =
1

B1

∫ ξ

−∞
ξ′F(ξ′)dξ′ − ξe−Λ

B1

∫ ξ

−∞
eΛ′

G(ξ′)dξ′ ,(3.12)
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where

G(ξ) = F(ξ)+
ξ

B1

∫ ξ

−∞
ξ′F(ξ′)dξ′ .

Furthermore,

Q∞(ξ) ∼
{
|ξ|−3 ∫ ξ

−∞ ξ′F(ξ′)dξ′ as ξ →−∞
C+ξe−Λ as ξ → +∞ ,

(3.13)

where

C+ = − 1
B1

∫

R

eΛG(ξ)dξ .

Under the conditions of Theorem 3.6, we also have the following lemma:

LEMMA 3.7 Q∞ can be expressed as

Q∞(ξ) = −ξe−Λ

B1

∫ ξ

−∞
ξ′−2eΛ′

∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′ dξ′ for ξ < 0,(3.14)

and

Q∞(ξ) = C+ξe−Λ − ξe−Λ

B1

∫ +∞

ξ
ξ′−2eΛ′

∫ +∞

ξ′
ξ′′F(ξ′′)dξ′′ dξ′ for ξ > 0.(3.15)

Remarks. 1. ξF(ξ) is integrable as a consequence of Lemma 3.3. In particular,
(3.5) at steady state gives∫

R

ξFdξ =
ρ

2
(〈sξ+〉+ 〈sξ−〉) = 0 .

2. C+ is finite if (3.11) holds. To see this, note that because of the factor eΛ, a
problem may arise at ξ = +∞ only. (3.11) implies that we can write

F(ξ) = e−Λ f (ξ)

with f (ξ) = o(ξ2) as ξ → +∞. Using
∫

R
ξFdξ = 0, we write G(ξ) as

G(ξ) = F(ξ)− ξ

B1

∫ +∞

ξ
ξ′F(ξ′)dξ′ = e−Λ f (ξ)− ξ

B1

∫ +∞

ξ
ξ′e−Λ′

f (ξ′)dξ′ .

Since e−Λ′
= −B1ξ

′−2(e−Λ′
)ξ′ , after integration by parts we have

G(ξ) = −ξ
∫ +∞

ξ
(ξ′−1 f (ξ′))ξ′e−Λ′

dξ′ .

Moreover, since f (ξ) = o(ξ2) as ξ → +∞, (ξ−1 f (ξ))ξ = o(1) and

G(ξ) =
∫ +∞

ξ
o(1)e−Λ′

dξ′ = o

(∫ +∞

ξ
e−Λ′

dξ′
)

= o
(
ξ−2e−Λ) ,

where at the last step we used e−Λ = O((ξ−2e−Λ)ξ). Thus

eΛG(ξ) = o(ξ−2) as ξ → +∞ ,
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which implies that C+ is finite. Similarly, we can show that the last integral
in (3.15) is finite if and only if (3.11) holds. Indeed, using F(ξ) = o(ξ2e−Λ)
as ξ → +∞, we have∫ +∞

ξ′
ξ′′F(ξ′′)dξ′′ =

∫ +∞

ξ′
o(ξ′′3e−Λ′′

)dξ′′ = o
(∫ +∞

ξ′
ξ′′3e−Λ′′

dξ′′
)

= o(ξ′e−Λ′
) ,

where we used ξ3e−Λ = O((ξe−Λ)ξ). Thus

ξ′−2eΛ′
∫ +∞

ξ′
ξ′′F(ξ′′)dξ′′ = o(ξ′−1) as ξ → +∞ ,(3.16)

which is the necessary and sufficient condition for the last integral in (3.15)
to be finite.

PROOF OF LEMMA 3.7: To show (3.14), we start from the explicit expression
for the integral involving G in (3.12)

− ξe−Λ

B1

∫ ξ

−∞
eΛ′

G(ξ′)dξ′ =

− ξe−Λ

B1

∫ ξ

−∞
eΛ′

F(ξ′)dξ′ − ξe−Λ

B2
1

∫ ξ

−∞
eΛ′

ξ′
∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′dξ′

and integrate by parts the second integral using eΛ
′
= B1ξ

′−2(eΛ′
)ξ′ . The result is

− ξe−Λ

B1

∫ ξ

−∞
eΛ′

G(ξ′)dξ′ =

− 1
B1

∫ ξ

−∞
ξ′F(ξ′)dξ′ − ξe−Λ

B1

∫ ξ

−∞
ξ′−2eΛ′

∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′ dξ′ .

Inserting this into (3.12) gives (3.14).
To show (3.15), we use

∫
R

ξFdξ = 0 and write (3.12) as

Q∞(ξ) = C+ξe−Λ − 1
B1

∫ +∞

ξ
ξ′F(ξ′)dξ′ +

ξe−Λ

B1

∫ +∞

ξ
eΛ′

G(ξ′)dξ′ .

Using
∫
R

ξFdξ = 0, we write explicitly the integral involving G in this expression
as

ξe−Λ

B1

∫ +∞

ξ
eΛ′

G(ξ′)dξ′ =

ξe−Λ

B1

∫ +∞

ξ
eΛ′

F(ξ′)dξ′ − ξe−Λ

B2
1

∫ +∞

ξ
eΛ′

ξ′
∫ +∞

ξ′
ξ′′F(ξ′′)dξ′′ dξ′

and integrate by parts the second integral using eΛ
′
= B1ξ

′−2(eΛ′
)ξ′ :

ξe−Λ

B1

∫ +∞

ξ
eΛ′

G(ξ′)dξ′ =
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1
B1

∫ +∞

ξ
ξ′F(ξ′)dξ′ − ξe−Λ

B1

∫ +∞

ξ
ξ′−2eΛ′

∫ +∞

ξ′
ξ′′F(ξ′′)dξ′′ dξ′ .

Inserting this in the last expression for Q∞ gives (3.15)

PROOF OF THEOREM 3.6: The general solution of (3.10) is Q = Q∞ +C1Q1 +
C2Q2, where C1 and C2 are constants and Q1 and Q2 are two linearly independent
solutions of the homogeneous equation associated with (3.10). Two such solutions
are

Q1(ξ) = ξe−Λ ,(3.17)

Q2(ξ) = 1− ξe−Λ

B1

∫ ξ

−∞
ξ′eΛ′

dξ′ .(3.18)

For ξ < 0, by using eΛ′
= B1ξ

′−2(eΛ′
)ξ′ , after integration by parts Q2 can be written

as

Q2(ξ) = −ξe−Λ
∫ ξ

−∞
ξ′−2eΛ′

dξ′ .(3.19)

We now show that realizability requires C1 = C2 = 0. First, one readily checks
that limξ→−∞ Q∞ = limξ→−∞ Q2 = 0, while Q1 grows unbounded as ξ → −∞.
Hence in order that Q be integrable, we must set C1 = 0 and the general solution of
(3.10) is

Q(ξ) = C2Q2(ξ)+ Q∞(ξ) .

We evaluate this solution asymptotically as ξ → ±∞. Consider Q2 for large neg-
ative ξ first. Using eΛ′

= B1ξ
′−2(eΛ′

)ξ′ , after integration by parts we write (3.19)
as

Q2(ξ) = B1|ξ|−3 −4B1ξe−Λ
∫ ξ

−∞
ξ′−5eΛ′

dξ′ .

Since ξ−5eΛ = O((ξ−7eΛ)ξ) as ξ → −∞, the integral in this expression is of the
order

ξe−Λ
∫ ξ

−∞
ξ′−5eΛ′

dξ′ = ξe−Λ
∫ ξ

−∞
O((ξ′−7eΛ′

)ξ′)dξ′

= O

(
ξe−Λ

∫ ξ

−∞
(ξ′−7eΛ′

)ξ′ dξ′
)

= O(ξ−6) .

Thus

Q2(ξ) = B1|ξ|−3 + O(ξ−6) as ξ →−∞ .

Consider now Q∞ for large negative ξ. Using eΛ′
= B1ξ

′−2(eΛ′
)ξ′ , after integration

by parts we write (3.14) as

Q∞(ξ) = |ξ|−3
∫ ξ

−∞
ξ′F(ξ′)dξ′ξe−Λ

∫ ξ

−∞

(
ξ′−4

∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′

)
ξ′

eΛ′
dξ′ .
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As ξ →−∞,

ξe−Λ
∫ ξ

−∞

(
ξ′−4

∫ ξ′

−∞
ξ′′ F(ξ′′)dξ′′

)
ξ′

eΛ′
dξ′ = ξe−Λ

∫ ξ

−∞
o(ξ′−5)eΛ′

dξ′

= o

(
ξe−Λ

∫ ξ

−∞
ξ′−5eΛ′

dξ′
)

= o(ξ−6) ,

where we used the estimate above. Thus

Q∞(ξ) = |ξ|−3
∫ ξ

−∞
ξ′F(ξ′)dξ′ + o(ξ−6) as ξ →−∞ .

Combining these expressions, we have

Q(ξ) = C2B1|ξ|−3 + |ξ|−3
∫ ξ

−∞
ξ′F(ξ′)dξ′ + O(C2ξ

−6)+ o
(
ξ−6)

as ξ →−∞ .

(3.20)

Consider now Q2 for large positive ξ. Write (3.18) as

Q2(ξ) = 1− ξe−Λ

B1

∫ ξ�

−∞
ξ′eΛ′

dξ′ − ξe−Λ

B1

∫ ξ

ξ�

ξ′eΛ′
dξ′ ,

where ξ� > 0 is arbitrary but fixed. Using eΛ′
= B1ξ

′−2(eΛ′
)ξ′ , after integration by

parts of the second integral we get

Q2(ξ) = ξξ−1
� e−Λ+Λ� − ξe−Λ

B1

∫ ξ�

−∞
ξ′eΛ′

dξ′ − ξe−Λ
∫ ξ

ξ�

ξ′−2eΛ′
dξ′

= −ξe−Λ
∫ ξ

ξ�

ξ′−2eΛ′
dξ′ + O(ξe−Λ) .

Integrating by parts again gives

Q2(ξ) = −B1ξ
−3 −4B1ξe−Λ

∫ ξ

ξ�

ξ′−5eΛ′
dξ′ + O(ξe−Λ) .

Since ξ−5eΛ = O((ξ−7eΛ)ξ) as ξ → +∞, the remaining integral can be estimated
as above, yielding

Q2(ξ) = −B1ξ
−3 + O

(
ξ−6) .

Consider now Q∞ for large positive ξ. We must distinguish two cases. If (3.11)
does not hold, then in (3.12) we decompose

ξe−Λ

B1

∫ ξ

−∞
eΛ′

G(ξ′)dξ′ =
ξe−Λ

B1

∫ ξ�

−∞
eΛ′

G(ξ′)dξ′ +
ξe−Λ

B1

∫ ξ

ξ�

eΛ′
G(ξ′)dξ′

=
ξe−Λ

B1

∫ ξ

ξ�

eΛ′
G(ξ′)dξ′ + O(ξe−Λ)

and write

Q∞(ξ) =
1

B1

∫ ξ

−∞
ξ′F(ξ′)dξ′ − ξe−Λ

B1

∫ ξ

ξ�

eΛ′
G(ξ′)dξ′ + O(ξe−Λ) .
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The second integral in this expression is

− ξe−Λ

B1

∫ ξ

ξ�

eΛ′
G(ξ′)dξ′ =

− ξe−Λ

B1

∫ ξ

ξ�

eΛ′
F(ξ′)dξ′ − ξe−Λ

B2
1

∫ ξ

ξ�

eΛ′
ξ′

∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′ dξ′ .

Integrating by parts the second integral using eΛ
′
= B1ξ

′−2(e−Λ′
)ξ′ gives

− ξe−Λ

B1

∫ ξ

ξ�

eΛ′
G(ξ′)dξ′ =

− 1
B1

∫ ξ

−∞
ξ′F(ξ′)dξ′ − ξe−Λ

B1

∫ ξ

ξ�

ξ′−2eΛ′
∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′dξ′ + O(ξe−Λ) .

Thus

Q∞(ξ) = −ξe−Λ

B1

∫ ξ

ξ�

ξ′−2eΛ′
∫ ξ′

−∞
ξ′′F(ξ′′)dξ′′dξ′ + O(ξe−Λ) .

Integrating by parts again using eΛ′
= B1ξ

′−2(eΛ′
)ξ′ gives

Q∞(ξ) = −ξ−3
∫ ξ

−∞
ξ′F(ξ′)dξ′

+ ξe−Λ
∫ ξ

ξ�

(
ξ′−4

∫ ξ′

−∞
ξ′′ F(ξ′′)dξ′′

)
ξ′

eΛ′
dξ′ + O(ξe−Λ) .

The last integral can be estimated as for the large negative ξ. Using
∫

R
ξFdξ = 0,

this leads to

Q∞(ξ) = ξ−3
∫ +∞

ξ
ξ′F(ξ′)dξ′ + o

(
ξ−6) .

Hence,

Q(ξ) = −C2B1ξ
−3 + ξ−3

∫ +∞

ξ
ξ′F(ξ′)dξ′ + O(C2ξ

−6)+ o(ξ−6)

as ξ → +∞ .

(3.21)

In contrast, if (3.11) holds, then we can use (3.15). From (3.16) it follows that the
integral term in this expression is o(ξe−Λ) as ξ → +∞. Thus,

Q(ξ) = C+ξe−Λ + o(ξe−Λ)

and

Q∞(ξ) = −C2B1ξ
−3 +C+ξe−Λ + O(C2ξ

−6)+ o(ξe−Λ) as ξ → +∞ .(3.22)

In (3.20), (3.21), and (3.22), if the C2 term at the right-hand side is nonzero, then
it will dominate the second term. Since the C2 term has the opposite sign when
ξ →±∞, for Q∞ to be nonnegative we must have C2 = 0. This proves that Q = Q∞.
Furthermore, since the F term at the right-hand side of (3.21) is negative (recall
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that F ≤ 0), this solution must be rejected in order that Q be nonnegative. Thus
(3.11) must hold, and we get (3.13).

Remark. If the assumptions of Lemma 3.3 do not apply, i.e., if shocks are not
created at zero amplitude or shock strength does not add up at collision, then from
(3.8) at steady state we have ∫

R

ξF(ξ)dξ = −Dc .

This implies that (3.21) has to be changed to

Q(ξ) = −C2B1ξ
−3 + Dcξ

−3 + ξ−3
∫ +∞

ξ
ξ′F(ξ′)dξ′ + O(C2ξ

−6)+ o(ξ−6)

as ξ → +∞ .

This solution cannot be dismissed as being unrealizable since the second term at
the right-hand side can balance the first one. In particular, for C2 = Dc/B1 we
obtain from (3.20) Q(ξ) = Dc|ξ|−3 + o(ξ−3) as ξ →−∞, consistent with (3.9).

3.5 Statistics for the Environment of the Shocks

We now turn to the statistics for the environment of the shocks. For simplicity

we will focus on statistically homogeneous situations such that u(x, t)(d)=−u(−x, t).
Define

s(x,y0, t) = u

(
y0 +

x
2

, t

)
−u

(
y0 − x

2
, t

)
,

and let W (s,ξ+,ξ−,x, t) be the PDF of(
s(x,y0, t),ξ

(
y0 +

x
2

, t

)
,ξ

(
y0 − x

2
, t

))
,

conditional on y0 being a shock location. Since u(x, t) (d)= −u(−x, t), it follows that

W (s,ξ+,ξ−,x, t) = W (s,ξ−,ξ+,x, t) .

V (s,ξ, t) and W (s,ξ+,ξ−,x, t) are related by

V (s,ξ, t) = lim
x→0+

∫

R

W (s,ξ′,ξ,x, t)dξ′(3.23)

(recall that V = V+ = V− if u(x, t) (d)= −u(−x, t)). Thus,

F(ξ, t) = ρ lim
x→0+

∫

R−×R

W (s,ξ′,ξ,x, t)dsdξ′ .(3.24)

We have the following:
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THEOREM 3.8 W satisfies

(ρW )t = −ρsWx + 2ρ(B0 −B(x))Wss

+
ρ

2
ξ+W +ρ

(
ξ2
+W
)
ξ+

+
ρ

2
ξ−W +ρ

(
ξ2
−W
)
ξ−

+ρB1
(
Wξ+ξ+ +Wξ−ξ−

)
+ 2ρB1(x)Wξ+ξ−

−ρB2(x)
(
Wsξ+ +Wsξ−

)
+ ς1 − ς2 + J ,

(3.25)

with B1(x) = −Bxx(x) and B2(x) = Bx(x). ς1(s,ξ+,ξ−,x, t) is defined such that

ς1(s,ξ+,ξ−,x, t)dsdξ− dξ+ dzdt

gives the average number of shock creation points in [z,z+ dz)× [t, t + dt) with

s(x,y1, t1) ∈ [s,s+ ds) ,

ξ

(
y1 +

x
2

, t1

)
∈ [ξ+,ξ+ + dξ+) ,

ξ

(
y1 − x

2
, t1

)
∈ [ξ−,ξ− + dξ−) ,

conditional on (y1, t1) ∈ ([z,z + dz)× [t, t + dt)) being a point of shock creation
(because of the statistical homogeneity, z is a dummy variable). ς2(s,ξ+,ξ−,x, t) is
defined such that

ς2(s,ξ+,ξ−,x, t)dsdξ− dξ+ dzdt

gives the average number of shock collision points in [z,z+ dz)× [t, t + dt) with

s(x,y2, t2) ∈ [s,s+ ds) ,

ξ

(
y2 +

x
2

, t2

)
∈ [ξ+,ξ+ + dξ+) ,

ξ

(
y2 − x

2
, t2

)
∈ [ξ−,ξ− + dξ−) ,

conditional on (y2, t2) ∈ ([z,z + dz)× [t, t + dt)) being a point of shock collision.
Finally, J(s,ξ+,ξ−,x, t) accounts for the possibility of having another shock in be-
tween [yj − x/2,y j + x/2] and satisfies

J(s,ξ+,ξ−,x, t) = O(x) .

At statistical steady state, the definitions for ς1 and ς2 simplify. Indeed, in the
limit as t → +∞, we have

ς1(s,ξ+,ξ−,x, t) → σ1S1(s,ξ+,ξ−,x) ,

where σ1 is the space-time number density of shock creation points, S1(s,ξ+,ξ−,x)
is the PDF of (

s(x,y1, t1),ξ
(

y1 +
x
2

, t1

)
,ξ

(
y1 − x

2
, t1

))
,
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conditional on a shock being created at (y1, t1), and

ς i
2(s,ξ+,ξ−,x, t) → σ2S2(s,ξ+,ξ−,x) ,

where σ2 is the space-time number density of shock collision points and S2(s,ξ+,
ξ−,x) is the PDF of(

s(x,y2, t2),ξ
(

y2 +
x
2

, t2

)
,ξ

(
y2 − x

2
, t2

))
,

conditional on two shocks colliding at (y2, t2).

Remark (On the Strategy for the Proof of Theorem 3.8). Ideally, in order to prove
Theorem 3.8 we should follow the strategy in Section 3 for the derivation of the
equation for Q. Let X(u1,x1, . . . ,u6,x6, t) be the PDF of

(u(y0 + x1, t), . . . ,u(y0 + x6, t)) ,

conditional on y0 being a shock location. Knowing the equation for X , one can
easily derive an equation for the conditional PDF of(

u

(
y0 +

x
2

, t

)
,u

(
y0 +

x
2

, t

)
,η

(
y0 +

x
2

,y, t

)
,η

(
y0 − x

2
,y, t

))
where η(x,z, t) = (u(x + z, t)− u(z, t))/z. Letting z → 0, one derives an equation
for W . Clearly, this derivation is rather tedious and, as we now show, unnecessary
for our purpose.

Recall that

ρX(u1,x1, . . . ,u6,x6, t)

=
1

(2π)6

∫

R×···×R

eiλ1u1+···+iλ6u6

×
〈

∑
j

e−iλ1u(z+x1,t)−···−iλ6u(z+x6,t)δ(z− y j)

〉
dλ1 · · ·dλ6 .

The average under the integral is the characteristic function associated with X , and
an equation for this quantity can be derived using the equation for u(z+ xp, t)

du = −[u]Auxp dt + dW(z+ xp, t) , p = 1, . . . ,6 .

Instead of reproducing these straightforward calculations, we note simply that for
homogeneous situations the resulting equation for X will contain terms propor-
tional to

ρ2(xp, t) =

〈
∑
j,k

δ(xp + z− yk)δ(z− y j)

〉
.

These terms account for the probability of having another shock, say y1, between
y0 and y0 + xp; they are the origin of J in (3.25). Note also that technically, the
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ρ2(xp, t)’s arise because of the average [u]A in the equation for u(z + xp, t). Now,
the key point is to note that

ρ(xp, t) = O(xp) .

As a direct result,

J(s,ξ+,ξ−,x, t) = O(x) .

We are eventually interested in the limit as x → 0 of W . As will be argued in
Section 3.6, in this limit the O(x) terms in (3.25) are negligible. Thus, we will not
dwell on obtaining an explicit expression for J. Instead, we will derive (3.25) using
(W̄ (x, t) = Wx(x, t))

du = −uux± dt + dW (z+ x±, t) ,

dξ = −(uξx± + ξ2)dt + dW̄ (z+ x±, t) ,
(3.26)

as if no shock were present between z and z + x±. The errors we are making are
accounted for by the term J.

PROOF OF THEOREM 3.8: Define

θ(λ+,λ−,µ+,µ−,x+,x−,z, t) =

e−iλ+u(z+x+,t)−iλ−u(z+x−,t)−iµ+ξ(z+x+,t)−iµ−ξ(z+x−,t) .

Then

ρW (s,ξ+,ξ−,x, t)

=
1

(2π)3

∫

R×R×R

e−iλs−iµ+ξ+−iµ−ξ−

×
〈

∑
j

θ(λ,−λ,µ+,µ−,
x
2

,− x
2

,z, t)δ(z− y j)

〉
dλdµ+ dµ− .

We first derive an equation for 〈Θ〉 = 〈∑ j θδ(z− y j)〉, then for W . We use the
following rules from Ito calculus:

dW (x, t)dW (y, t) = 2B(x− y)dt ,

dW̄ (x, t)dW̄ (y, t) = 2B1(x− y)dt ,

dW (x, t)dW̄ (y, t) = −2B2(x− y)dt ,

where B1(x) = −Bxx(x) and B2(x) = Bx(x). Thus, from (3.26), we obtain (using
B2(0) = 0)

dθ = i(λ+u+u+x+
+λ−u−u−x−)θ dt

− (λ2
+B0 +λ2

−B0 + 2λ+λ−B(x+− x−))θ dt

+ i(µ+u+ξ+x+
+µ+ξ2

+ +µ−u−ξ−x− +µ−ξ2
−)θ dt

− (µ2
+B1 +µ2

−B1 + 2µ+µ−B1(x+ − x−))θ dt
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− (λ−µ+−λ+µ−)B2(x+ − x−)θ dt

− iλ+θ dW (z+ x+, t)− iλ−θ dW (z+ x−, t)

− iµ+θdW̄(z+ x+, t)− iµ−θ dW̄ (z+ x−, t) ,

where u± = u(z + x±, t) and ξ± = ξ(z + x±, t). Similarly, using dyj/dt = ū(yj, t),
we get

d ∑
j

δ(z− y j) = −∑
j

ū(y j, t)δ1(z− y j)dt +∑
k

δ(z− yk)δ(t − tk)dt

−∑
l

δ(z− yl)δ(t − tl)dt ,

where the (yk, tk)’s are the points of shock creation and the (yl , tl)’s are the points
of shock collisions. Using

θδ1(z− y j) = (θδ(z− y j))z − θx+δ(z− y j)− θx−δ(z− y j)

and noting that 〈·〉z = 0 by statistical homogeneity, we find that

〈Θ〉t = iλ+〈u+u+x+
Θ〉+ iλ−〈u−u−x−Θ〉

− (λ2
+B0 +λ2

−B0 + 2λ+λ−B(x+ − x−))〈Θ〉

+ iµ+〈(u+ξ+x+
+ ξ2

+)Θ〉+ iµ−〈(u−ξ−x− + ξ2
−)Θ〉

− (µ2
+B1 +µ2

−B1 + 2µ+µ−B1(x+ − x−))〈Θ〉

− (λ−µ+−λ+µ−)B2(x+ − x−)〈Θ〉

+

〈
∑

j
ū(y j, t)(θx+ + θx−)δ(z− y j)

〉
+ Σ1 −Σ2 ,

where Σ1 and Σ2 account, respectively, for shock creation and collision events.
These are given by

Σ1(λ+,λ−,µ+,µ−,x+,x−, t) =〈
∑
k

e−iλ+u+−iλ−u−−iµ+ξ+−iµ−ξ−δ(z− yk)δ(t − tk)
〉

,

Σ2(λ+,λ−,µ+,µ−,x+,x−, t) =〈
∑

l

e−iλ+u+−iλ−u−−iµ+ξ+−iµ−ξ−δ(z− yl)δ(t − tl)
〉

.
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To average the convective terms we use

iλ±〈u±u±x±Θ〉+ iµ±〈(u±ξ±x± + ξ2
±)Θ〉 = −〈u±Θx±〉− iµ±〈Θ〉µ±µ±

= −〈u±Θ〉x± + 〈ξ±Θ〉− iµ±〈Θ〉µ±µ±

= −i〈Θ〉x±λ± + i〈Θ〉µ± − iµ±〈Θ〉µ±µ± .

For the term involving ū(yj, t) = (u+(y j, t)+ u−(y j, t))/2, we note that

u+(y j, t)θx+ = u(y j + x+, t)θx+ − x+

∫ 1

0
ξ(y j +βx+, t)dβ θx+

= (u(y j + x+, t)θ)x+ − ξ(y j + x+, t)θ

− x+

∫ 1

0
ξ(y j +βx+, t)dβθx+

= iθx+λ+ − iθµ+ − x+

∫ 1

0
ξ(y j +βx+, t)dβ θx+ .

A similar expression holds for u−(y j, t)θx− . Also,

u+(y j, t)θx− = (u(y j + x+, t)θ)x− − x+

∫ 1

0
ξ(y j +βx+, t)dβθx−

= iθx−λ+ − x+

∫ 1

0
ξ(y j +βx+, t)dβθx−

and a similar expression holds for u−(y j, t)θx+ . Thus

2

〈
∑

j
ū(y j, t)(θx+ + θx−)δ(z− y j)

〉
=

i〈Θ〉x+λ+ + i〈Θ〉x−λ+ + i〈Θ〉x+λ− + i〈Θ〉x−λ− − i〈Θ〉µ+ − i〈Θ〉µ− −R

where

R(λ+,λ−,µ+,µ−,x+,x−)

= x+

〈
∑

j

∫ 1

0
ξ(y j +βx+, t)dβ (θx+ + θx−)δ(z− y j)

〉

+ x−
〈

∑
j

∫ 1

0
ξ(y j +βx−, t)dβ (θx+ + θx−)δ(z− y j)

〉
.
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Combining the above expressions leads to the following equation for 〈Θ〉:

〈Θ〉t = − i
2
(〈Θ〉x+λ+ + 〈Θ〉x−λ− −〈Θ〉x+λ− −〈Θ〉x−λ+)

− (λ2
+B0 +λ2

−B0 + 2λ+λ−B(x+ − x−))〈Θ〉
+

i
2
(〈Θ〉µ+ + 〈Θ〉µ−)− iµ+〈Θ〉µ+µ+ − iµ−〈Θ〉µ−µ−

− (µ2
+B1 +µ2

−B1 + 2µ+µ−B1(x+ − x−))〈Θ〉
− (λ−µ+−λ+µ−)B2(x+ − x−)〈Θ〉+ Σ1 −Σ2 −R .

To obtain an equation for W , we note the following remarkable property of R:

LEMMA 3.9

R

(
λ+,λ−,µ+,µ−,

x
2

,− x
2

)
= 0 .

PROOF: To prove this, write

R

(
λ+,λ−,µ+,µ−,

x
2

,− x
2

)

=
x
2

lim
x̄→0

∂
∂x̄

〈
∑

j

∫ 1

0

(
ξ(y j +β

x
2

, t

)
− ξ

(
y j −β

x
2

, t

))
dβ

× θ

(
λ+,λ−,µ+,µ−, x̄+

x
2

, x̄− x
2

,z, t

)
δ(z− y j)

〉
.

We claim that

A =
〈

∑
j

∫ 1

0

(
ξ

(
y j +β

x
2

, t

)
− ξ

(
y j −β

x
2

, t

))
dβ

× θ

(
λ+,λ−,µ+,µ−, x̄+

x
2

, x̄− x
2

,z, t

)
δ(z− y j)

〉
= 0 .

Indeed, the symmetry u(x, t) (d)= −u(−x, t), ξ(x, t) (d)= ξ(−x, t) requires that A be in-
variant under the transformation

z →−z, x → x , x̄ →−x̄ , yj →−y j , λ± →−λ∓ , µ± → µ∓ .

On the other hand, one checks explicitly that A →−A under the same transforma-
tion. Hence A = 0 and R = 0.
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We now continue with the proof of Theorem 3.8. Combining the above expres-
sions, on the subset λ+ = λ, λ− = −λ, x+ = x/2, x− = −x/2, 〈Θ〉 satisfies

〈Θ〉t = −i〈Θ〉xλ −2λ2(B0 −B(x))〈Θ〉
+

i
2
(〈Θ〉µ+ + 〈Θ〉µ−)− iµ+〈Θ〉µ+µ+ − iµ−〈Θ〉µ−µ−

− (µ2
+B1 +µ2

−B1 + 2µ+µ−B1(x))〈Θ〉
+(λµ+ +λµ−)B2(x)〈Θ〉+ Σ1 −Σ2 ,

where the Σ1 and Σ2 are evaluated at λ+ = λ, λ− = −λ, x+ = x/2,x− = −x/2.
Going to the variables (s,ξ+,ξ−) we obtain (3.25).

3.6 The Exponent 7
2

In this section we will derive the following result:
For large negative ξ, F behaves as

F(ξ) ∼C|ξ|−5/2 as ξ →−∞ .(3.27)

A direct consequence of (3.27) is

Q∞(ξ) ∼
{

C−|ξ|−7/2 as ξ →−∞
C+ξe−Λ as ξ → +∞ ,

(3.28)

The argument for (3.27) uses the following property of S1(s,ξ+, ξ̄,x), the PDF(
s(y1,x, t1),ξ+

(
y1 +

x
2

, t1

)
,ξ−
(

y1 − x
2

, t1

))
,

conditional on a shock being created at (y1, t1):
In the limit as x → 0,

x−1S1
(
s̄x1/3, ξ̄+x−2/3, ξ̄−x−2/3,x

)→ P(s̄)δ
(

ξ̄+− s̄
3

)
δ
(
ξ̄+− ξ̄−

)
,(3.29)

where P(·) is a PDF supported on (−∞,0]. Equation (3.29) shows that, in the
original variables, S1 is asymptotically

S1
(
s,ξ+,ξ−,x

)∼ x−1/3P
(
sx1/3)δ(ξ+ − sx−1

3

)
δ
(
ξ+− ξ−

)
.(3.30)

We first derive (3.27), then (3.29).

Derivation of (3.27)

Recall that

F(ξ) = ρ lim
x→0+

∫

R−×R

W∞(s,ξ′,ξ,x)dsdξ′ ,

where W∞ is the statistical steady state value of W . Thus, evaluating F amounts to
evaluating W , which we will do by analyzing (3.25). We note first that this equation
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describes the process of shock creation, motion, and then collision. Since collision
only occurs if shocks are present, it is natural to represent the effect of collision as
proportional to the density of shocks in the systems; i.e., we write

ς2 = ρg(s,ξ+,ξ−,x)W

for some function g(s,ξ−,ξ+,x) that is assumed to be smooth in s, ξ±, and x. This
amounts to assuming that the characteristics of the shocks around the collision
points are not very different from the characteristics of the shocks away from the
collision points. For instance, if they were identical, we would have ς2 = σ2W and
hence g = σ2/ρ. Next, since we are interested in W evaluated at x = 0, we neglect
the terms

B2(x) = O(x) , 2(B0 −B(x)) = O(x2) , J = O(x) ,

in (3.25). Finally, since we are interested in the limit as ξ± →−∞, we neglect the
forcing terms in ξ±, proportional to B1 or B1(x). This amounts to saying that as
far as the statistics of the shocks at large negative values of ξ± are concerned, the
effect of the forcing is to maintain a statistical steady state.

Under these approximations, (3.25) reduces to

(ρW )t = −ρsWx +
ρ

2
(ξ+ + ξ−)W +ρ

(
ξ2
+W
)
ξ+

+ρ
(
ξ2
−W
)
ξ−
−ρgW + ς1 .(3.31)

Assuming no shocks are present at the initial time, the equation must be solved
with the initial condition ρW (s,ξ+,ξ−,x,0) = 0. The solution is

ρW (s,ξ+,ξ−,x, t) =
∫ t

0
((1− ξ+τ)(1− ξ−τ))−5/2

× exp

(
−

∫ τ

0
g

(
s,

ξ+

1− ξ+τ ′ ,
ξ−

1− ξ−τ ′ ,x− τ ′s
)

dτ ′
)

× ς1

(
s,

ξ+

1− ξ+τ
,

ξ−
1− ξ−τ

,x− τs, t − τ

)
dτ .

The statistical steady state solution is obtained in the limit as t → ∞ of this expres-
sion. Using

lim
t→∞

ς1(s,ξ+,ξ−,x, t) = σ1S1(s,ξ+,ξ−,x) ,

we obtain

ρW∞(s,ξ+,ξ−,x) = σ1

∫ ∞

0
((1− ξ+τ)(1− ξ−τ))−5/2

× exp

(
−

∫ τ

0
g

(
s,

ξ+

1− ξ+τ ′ ,
ξ−

1− ξ−τ ′ ,x− τ ′s
)

dτ ′
)

×S1

(
s,

ξ+

1− ξ+τ
,

ξ−
1− ξ−τ

,x− τs

)
dτ .
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At x = 0, using (3.30) for S1, we get

ρW∞(s,ξ+,ξ−,0)

= σ1

∫ ∞

0
((1− ξ+τ)(1− ξ−τ))−5/2

× exp

(
−

∫ τ

0
g

(
s,

ξ+

1− ξ+τ ′ ,
ξ−

1− ξ−τ ′ ,−τ ′s
)

dτ ′
)

× (|s|τ)−1/3P

(
− s2/3

τ 1/3

)
δ

(
ξ+

1− ξ+τ
+

1
3τ

)
δ

(
ξ+

1− ξ+τ
− ξ−

1− ξ−τ

)
dτ .

Since

δ

(
ξ+

1− ξ+τ
− ξ−

1− ξ−τ

)
= (1− ξ+τ)2δ(ξ+ − ξ−) ,

we have W∞(s,ξ+,ξ−,0) ∝ δ(ξ+ − ξ−). Using the relation (3.23) between W and
V , this implies that W∞(s,ξ+,ξ−,0) = V∞(s,ξ+)δ(ξ+ − ξ−) and leads to

ρV∞(s,ξ) = σ1

∫ ∞

0
(1− ξτ)−3(|s|τ)−1/3P

(
− s2/3

τ 1/3

)
δ

(
ξ

1− ξτ
+

1
3τ

)

× exp

(
−

∫ τ

0
g

(
s,

ξ

1− ξτ ′ ,
ξ

1− ξτ ′ ,−τ ′s
)

dτ ′
)

dτ .

To perform the integration over τ , we use

δ

(
ξ

1− ξτ
+

1
3τ

)
=

9
8ξ2 δ

(
τ +

1
2ξ

)
.

Since we are considering ξ �−1, the exponential factor evaluated at τ =−1/(2ξ)
is

exp

(
−

∫ −1/(2ξ)

0
g

(
s,

ξ

1− ξτ ′ ,
ξ

1− ξτ ′ ,−τ ′s
)

dτ ′
)

= 1+ O(ξ−1) .

This means that shock collision events make no contribution to leading order, leav-
ing us with

ρV∞(s,ξ) = C̄σ1|s|−1/3|ξ|−5/3P
(
−(2s2|ξ|)1/3

)
,

where C̄ = 24/3/3. Hence,

F(ξ) = −C̄σ1

∫

R−

s2/3|ξ|−5/3P
(
−(2s2|ξ|)1/3

)
ds = −C|ξ|−5/2 ,(3.32)

where C = 2−1/2σ1
∫
R− |b|3/2P(b)db.
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Derivation of (3.29)

We use local analysis around the shock creation points [20]. Consider a shock
created at y1 at time t1 with velocity u1 = u(y1, t1). Assuming x is an analytical
function of u, we have locally

x = a

(
u

(
y1 +

x
2

, t1

)
−u1

)3

+ O

(
u

(
y1 +

x
2

, t1

)
−u1

)4

) ,(3.33)

where a ≤ 0 is a random quantity. Setting a = (2/b)3 gives Extra ) in (3.33). Please

delete or add (.
u

(
y1 +

x
2

, t1

)
= u1 +

b
2

x1/3 + O(x2/3) .

Hence

s(y1,x, t1) = u

(
y1 +

x
2

, t1

)
−u

(
y1 − x

2
, t1

)
= bx1/3 + O(x2/3)(3.34)

and

ξ

(
y1 +

x
2

, t1

)
=

b
3

x−2/3 + O(x−1/3) .(3.35)

Note that these formulae are only valid if there is no other shock in [y1 − x/2,y1 +
x/2]. Since the probability of having another shock in [y1−x/2,y1 +x/2] is at most
O(x), the errors we incur by using (3.34)–(3.35) are of higher order.

Recall that

S1(s,ξ+,ξ−,x) =
1

(2π)3

∫

R×R×R

eiλs+iµ+ξ++iµ−ξ−Ω(λ,µ+,µ−,x)dλdµ+ dµ− ,

where

σ1Ω(λ,µ+,µ−,x) =〈
∑
k

e−iλs(yk ,x,tk)−iµ+ξ(yk+ x
2 ,tk)−iµ−ξ(yk− x

2 ,tk)δ(z− yk)δ(t − tk)
〉

.

Ω is the characteristic function associated with S1. Similarly,

Ω(λ̄x−1/3, µ̄+x2/3, µ̄−x2/3,x)

is the characteristic function associated with the rescaled PDF

xS1(s̄x1/3, ξ̄+x−2/3, ξ̄−x−2/3,x) .

We evaluate Ω(λ̄x−1/3, µ̄+x2/3, µ̄−x2/3,x) in the limit as x → 0 using (3.34) and
(3.35) for s(y1,x, t1), ξ(y1 + x/2, t1). This gives

σ1Ω(λ̄x−1/3, µ̄+x2/3, µ̄−x2/3,x) =〈
∑
k

e−iλ̄b−i(µ̄++µ̄−)b/3δ(z− yk)δ(t − tk)
〉

+ O(x1/3) .
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In the limit as x → 0, b and (yk, tk) are the only random quantities to be averaged
over. Furthermore, b is statistically independent of (yk, tk) because of statistical
homogeneity and stationarity. Let P(b) be the PDF of b. Then

σ1 lim
x→0

Ω(λ̄x−1/3, µ̄+x2/3, µ̄−x2/3,x)

=
〈

∑
k

δ(z− yk)δ(t − tk)
〉∫

R−

P(b)e−iλ̄b−i(µ̄++µ̄−)b/3 db

= σ1

∫

R−

P(b)e−iλ̄b−i(µ̄++µ̄−)b/3 db .

Direct evaluation of this expression gives (3.29) in the variables (s̄,ξ̄+, ξ̄−).

3.7 Connection with the Geometric Picture

Here we compute directly the contribution to F in the neighborhood of shock
creation. This is a reformulation of the argument presented in [13] in terms of
quantities defined in the present paper. Assume a shock is created at time t = 0,
position x = y1, and with velocity u = u1. Then locally (compare (3.33))

x = y1 +(u−u1)t + a(u−u1)3 + O((u−u1)2t) ,

where a ≤ 0 is a random quantity. For the purpose of comparison with (3.32), it is
useful to set a = (2/b)3. Since for t � 1 to leading order the shock is located at
x = y1, to leading order u−(y1, t), u+(y1, t) are solutions of 0 = (u−u1)t +(2(u−
u1)/b)3. Thus

u±(y1, t) = u1 ∓
( |b|3t

8

)1/2

+ O(t) ,

s(y1, t) = −
( |b|3t

2

)1/2

+ O(t) .(3.36)

Similarly, to leading order ξ−(y1, t) and ξ+(y1, t) are solutions of

1 = ξt + 3(2/b)3(u±−u1)2ξ .

Thus

ξ±(y1, t) = − 1
2t

+ O(1) .(3.37)

Recall that from (3.24) (using ξ+(x, t) (d)= ξ−(−x, t))

F(ξ) =
1

2π

∫

R

eiµξ

〈
∑

j

s(z, t)e−iµξ+(z,t)δ(z− y j)
〉

dµ

=
〈

∑
j

s(z, t)δ(ξ − ξ+(z, t))δ(z− y j)
〉

.
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Under the assumption of ergodicity with respect to time translation, F(ξ) can be
evaluated from

F(ξ) = lim
L,T→+∞

1
2LT

∫ T

0

∫ L

−L
∑

j

s(z, t)δ(ξ − ξ+(z, t))δ(z− y j)dzdt

= lim
L,T→+∞

1
2LT

∫ T

0

N

∑
j=1

s(y j, t)δ(ξ− ξ+(y j, t))dt ,

where N is number of shocks in [−L,L]. The contribution to F near shock creation
points, say F1, can be evaluated for large negative ξ using (3.36), (3.37) for s(y1, t),
ξ+(y1, t). This gives in the limit as ξ →−∞

F1(ξ) ∼−σ1

∫

R−

P(b)
∫

R+

( |b|3t
2

)1/2

δ

(
ξ +

1
2t

)
dt db = −C|ξ|−5/2 ,

where C = 2−1/2σ1
∫
R− |b|3/2P(b)db. Comparing with (3.32), we conclude that

F1(ξ) = F(ξ) to leading order.

4 Conclusions

To recapitulate the highlights of this paper, by writing down and working with
the master equations in the inviscid limit, we have shown that the scaling of the
structure functions is related to the shocks that are the singular structures in the
limiting flow. The scaling of the PDFs, on the other hand, is related to the shock
creation and collision points, which are singularities on the singular structures.

The present paper provides a framework within which various statistical quan-
tities of the stochastic Burgers equation can be calculated using self-consistent
asymptotics without making closure assumptions. The main examples used here
are the asymptotic behavior of structure functions and the PDF of the velocity
gradient. It seems likely that other statistical quantities, such as the tails of the ve-
locity PDF and the PDF for velocity difference, can also be analyzed in the present
framework by exploiting further the source terms in (2.6) and (2.23).

Appendix: Master Equations for the Viscous Case

In this appendix we list results for the PDFs in the viscous case. The master
equations below were previously derived, e.g., in [23, 24, 32].

Let Pν(u,ξ,x, t) be the PDF of (u(x, t),ξ(x, t)) for solutions of (1.1). First we
have the following:

LEMMA A.1 Pν satisfies

Pν
t = −uPν

x + ξP+
(
ξ2Pν

)
ξ
+ B0Pν

uu + B1Pν
ξξ

−ν
(〈uxx|u,ξ〉Pν

)
u −ν

(〈ξxx|u,ξ〉Pν
)
ξ

,
(A.1)
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where B0 = B(0), B1 = −Bxx(0), and 〈· | u,ξ〉 denotes the conditional average on
u and ξ.

(A.1) is unclosed since the form of 〈uxx | u,ξ〉 and 〈ξxx | u,ξ〉 entering the viscous
terms is unknown. Most work has resorted to various closure assumptions. Our
main goal has been to find ways to extract information from the master equations
such as (A.1) without making any closure assumption. Note that from the identity

Pν
xx = −(〈uxx | u,ξ〉Pν)u − (〈ξxx | u,ξ〉Pν)ξ

+(〈u2
x | u,ξ〉Pν)uu + 2(〈uxξx | u,ξ〉Pν)uξ +(〈ξ2

x | u,ξ〉Pν)ξξ ,

the viscous term in (A.1) can also be written as (using 〈u2
x | u,ξ〉= ξ2, 〈uxξx | u,ξ〉=

ξ〈ξx | u,ξ〉)
−ν
(〈uxx | u,ξ)〉Pν

)
u −ν

(〈ξxx | u,ξ)〉Pν
)
ξ
=

νPν
xx −νξ2Pν

uu −ν
(〈ξ2

x | u,ξ〉Pν
)
ξξ
−2ν

(
ξ〈ξx | u,ξ〉Pν

)
uξ

.

Thus, viscous effects give rise to antidiffusion terms since ξ2 ≥ 0 and 〈ξ2
x | u,ξ〉 ≥ 0:

This is natural since viscosity tends to shrink the distribution Pν towards the origin.
Since ξ = ux, we have 〈a(u)〉x = 〈au(u)ξ〉 for all smooth and compactly sup-

ported functions a(·). This is expressed as the following:

LEMMA A.2 The consistency relation∫

R

Pν
x dξ +

∫

R

ξPν
u dξ = 0(A.2)

holds for all time for the solution of (A.1) if it holds initially.

Lemma A.2 can be proven upon noting that A =
∫

R
Pν

x dξ +
∫

R
ξPν

u dξ satisfies
At = −uAx + B0Auu, an equation that can obtained by integration of (A.1). Since
A ≡ 0 initially, it is zero for all time. In the statistically homogeneous case, (A.2)
reduces to

∫
R

ξPν
u dξ = 0 (or equivalently 〈a(u)〉x = 〈au(u)ξ〉 = 0). (A.2) also en-

sures that this equation preserves the normalization of Pν . In fact, we have the
following corollary:

COROLLARY A.3 The solution of (A.1) satisfies

d
dt

∫

R×R

Pν dudξ = 0;(A.3)

i.e.,
∫
R×R

Pνdudξ = 1 for the initial data we are interested in.

(A.3) follows immediately from integrating (A.1):

d
dt

∫

R×R

Pνdudξ = −〈ux〉+ 〈ξ〉+ boundary terms = 0 .
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The first two terms on the right-hand side cancel because of (A.3); the boundary
terms vanish because for finite ν, Pν decays faster than algebraically in ξ as |ξ| →
+∞.

Consider the reduced distributions

Qν(ξ,x, t) =
∫

R

Pν(u,ξ,x, t)du , Rν(u,x, t) =
∫

R

Pν(u,ξ,x, t)dξ .

Equation (A.2), written after integration over u as∫ u

−∞
Rν

x (u′,x, t)du′ +
∫

R

ξPνdξ = 0,

can be used to derive from (A.1) an equation for Rν :

Rν
t = −uRν

x −
∫ u

−∞
Rν

x (u′,x, t)du′ + B0Rν
uu −ν(〈uxx | u〉Rν)u .(A.4)

For statistically homogeneous situations, Pν
x = 0 in (A.1). Then, using

∫
dξ ξPν = 0

and (A.1) leads to the following equations for Rν and Qν :

Rν
t = B0Rν

uu −ν
(〈uxx | u〉Rν

)
u .(A.5)

Qν
t = ξQν +

(
ξ2Qν

)
ξ
+ B1Qν

ξξ −ν
(〈ξxx | ξ〉Qν

)
ξ
.(A.6)
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