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We propose an approach, based on statistical mechanics, to predict the saturated state of a single-pass,
high-gain free-electron laser. In analogy with the violent relaxation process in self-gravitating systems and in
the Euler equation of two-dimensional turbulence, the initial relaxation of the laser can be described by the
statistical mechanics of an associated Vlasov equation. The laser field intensity and the electron bunching
parameter reach a quasistationary value which is well fitted by a Vlasov stationary state if the number of
electronsN is sufficiently large. FiniteN effects (granularity) finally drive the system to Boltzmann-Gibbs
statistical equilibrium, but this occurs on times that are unphysical(i.e., excessively long undulators). All
theoretical predictions are successfully tested by means of finite-N numerical experiments.
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The interaction of charged particles with electromagnetic
fields is a topic of paramount importance in a large variety of
physical phenomena, from plasma dynamics to astrophysical
systems. On the energy exchange between particles and field
also relies the possibility of generating coherent and tunable
radiation sources, such as free-electron lasers(FELs). In this
case a relativistic electron beam propagating through a peri-
odic magnetic field(produced by an undulator) interacts with
a copropagating electromagnetic wave. Lasing occurs be-
cause the undulator field and the radiation combine to pro-
duce a beat wave that travels slower than the speed of light
and can be synchronized with electrons. Among different
schemes, single-pass, high-gain FELs are currently attracting
growing interests[1], as they are promising sources of pow-
erful and coherent light in the UV andX ranges[2–4]. In the
high-gain regime, both the light intensity and the longitudi-
nal bunching of the electron beam increase exponentially
along the undulator, until they reach saturation due to non-
linear effects. Understanding this saturation process is impor-
tant to estimate, and thenoptimize, the performance and
building costs of a FEL.

Theoretical analyses usually rely ondynamicalmethods
in combination with detailed, but rather complicated, nu-
merical simulations. In this paper, we propose an approach,
which is based onstatistical mechanics, to study the satu-
rated state of a high-gain single-pass FEL. We restrict our
analysis to the steady-state regime, which amounts to neglect
the variation of the electromagnetic wave within the electron
pulse length(small electrons’ radiation slippage). However,
it is important to stress that because of its intrinsic flexibility,
we believe that our statistical approach will be applicable
also to alternative schemes, such as harmonic generation[5].

The starting point of our study is the Colson-Bonifacio
model[6]. Under the hypotheses of one-dimensional motion

and monochromatic radiation, the steady-state equations for
the j th electron of the beam coupled to radiation read

du j

dz̄
= pj , s1d

dpj

dz̄
= − Aeiu j − A*e−iu j , s2d

dA

dz̄
= idA +

1

N
o

j

e−iu j , s3d

where N is the number of electrons in a single-radiation
wavelength andz̄=2kurzgr

2/ kgl0
2 is the rescaled longitudinal

coordinate, which plays the role of time. Here,r
=sawvp/4ckud2/3/gr is the so-called Pierce parameter,gr the
resonant energy,kgl0 the mean energy of the electrons at the
undulator’s entrance,ku the wave vector of the undulator,
vp=se2n/m«0d1/2 the plasma frequency,c the speed of light,
and e and m respectively the charge and mass of one elec-
tron. Further,aw=eBw/kumc2, whereBw is the rms undulator
field, for the case of a helical undulator. By introducingk as
the wave number of the FEL radiation, the phaseu is defined
by u=sk+kudz−2drkuzgr

2/ kgl0
2 and its conjugate momentum

p=sg−kgl0d / srkgl0d. A is the scaled field amplitude, a com-
plex vector, transversal toz, A =sAx,Ayd f7g. Finally, the de-
tuning parameter is given byd=skgl0

2−gr
2d / s2rgr

2d, and mea-
sures the average relative deviation from the resonance
condition.

Although very simple, such a model captures the main
features of the dynamics of the single-pass FEL, as shown by
a systematic comparison with numerical predictions based on
more complete approaches[8,9]. Using this model, we are
able to predict analytically the mean saturated laser intensity,
the electron-beam bunching, and the electrons’ velocity dis-
tribution, for a wide class of initial conditions(i.e., energy
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spread, bunching, and radiation intensity). The analytical re-
sults agree very well with numerical simulations.

The above system of equations can be derived from the
Hamiltonian

H = o
j=1

N
pj

2

2
− NdI + 2ÎIo

j=1

N

sinsu j − wd, s4d

where the intensityI and the phasew of the wave are related
to A =Ax+ iAy=ÎIe−iw. In addition to the “energy”H, the
total momentum P=o j pj +NAA * is also a conserved
quantity. Let us note that one can always takeP=0, upon
a shift in the detuningf10g; thus, we always supposeP
=0 in the following.

It is important to emphasize that Hamiltonian(4) models
the interaction between radiation and electrons. Hence, it de-
scribes a quite universal phenomenon which is encountered
in many branches of physics. As an example, in the context
of plasma theory, the so-called plasma-wave Hamiltonian(4)
characterizes the self-consistent interaction between a Lang-
muir wave andN particles, after an appropriate redefinition
of the variables involved[10]. Establishing a formal bridge
between these two areas allows to recast in the context of the
single-pass LINAC FEL numerous results originally derived
in the framework of plasma physics. In addition, Hamil-
tonian(4) can be viewed as a direct generalization of mean-
field models[11–13], which are widely studied nowadays
because of their intriguing features: statistical ensemble in-
equivalence, negative specific heat, and dynamical stabiliza-
tion of out-of-equilibrium structures.

In plasma physics, it was numerically shown[10,14] that,
in the region of instability, wave amplification occurs in two
steps. One first observes an exponential growth of the wave
amplitude, followed by damped oscillations around a well-
defined level. However, the system does not reach a station-
ary state and this initial stage is followed by a slow relax-
ation towards the final statistical equilibrium. An example of
this behavior is shown in Fig. 1.

The separation into two distinct time scales characterizes
also the dynamics of self-gravitating systems and is a well-
known phenomenon in astrophysics[15,16]. The intermedi-
ate quasistationary states live longer and longer as the num-
ber of particlesN is increased. It is believed that galaxies
sN.1011d are well described by Vlasov equilibrium[15],
which characterizes the quasistationary state of theN-particle
system(see below). On the contrary, Boltzmann-Gibbs sta-
tistics applies to the “smaller”sN.106d globular clusters.

A typical evolution of the radiation intensityI as a func-
tion of the longitudinal coordinatez̄, according to the free-
electron laser model, Eqs.(1)–(3), is displayed in Fig. 1;
starting from a very weak radiation, the intensity grows ex-
ponentially and saturates, oscillating around a well-defined
value. This growth and first relaxation of the system(usually
called “violent relaxation” in astrophysics) is governed by
the Vlasov equation[11,17], which is rigorously derived by
taking the continuum limit(N→` at fixed volume and en-
ergy per particle). On longer time scales, whose duration
strongly depends on the particle numberN (see the inset of
Fig. 1), there is a slow drift of the intensity of the beam

towards the final asymptotic plateau determined by the
Boltzmann-Gibbs statistics. Such process is driven by granu-
larity, a finite-N effect [11,15,16]. This final relaxation takes
place on an extremely long time scale, well beyond the
physical constraints imposed by a reasonable undulator
length. We thus concentrate in the following on the Vlasov
description of the dynamics.

A linear analysis[6] leads directly to the determination of
the boundaries of the instability domain, which are mainly
controlled by the detuningd and by the initial energy per
electron. In the case of a monoenergetic electron beam, the
instability disappears ford.dc.1.9. Linear analysis also
provides estimates of the growth rate ofI. However, getting
insights on the saturated state requires a nonlinear study of
the system; the standard approach to this problem is mainly
dynamical, as for instance in Ref.[18]. In the following we
discuss a procedure based on statistical mechanics.

As previously discussed, we are interested in the interme-
diate metastable state and, therefore, we will first consider
the statistical theory of the Vlasov equation, originally intro-
duced in the astrophysical context[15,16]. The basic idea is
to coarse-grain the microscopic one-particle distribution
function fsu ,p,td, which is stirred and filamented at smaller
and smaller scales by the Vlasov time evolution. An entropy

is then associated to the coarse-grained distributionf̄, which
essentially counts the number of microscopic configurations.
Equilibrium is then computed by maximizing this entropy
while imposing the dynamical constraints. A rigorous de-
scription of this procedure can be found in Ref.[19] in the
context of two-dimensional Euler hydrodynamics.

In the continuum limit, Eqs.(1)–(3) lead to the following
Vlasov-wave system:

] f

] z̄
= − p

] f

] u
+ 2sAxcosu − Aysin ud

] f

] p
, s5d

FIG. 1. Typical evolution of the radiation intensity using Eqs.
(1)–(3); the detuningd is set to 0, the energy per electronH /N
=0.2 andN=104 electrons are simulated. The inset presents aver-
aged simulations on longer times for different values ofN:53103

(curve 1), 400 (curve 2), and 100(curve 3).
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] Ax

] z̄
= − dAy +

1

2p
E f cosu dudp, s6d

] Ay

] z̄
= dAx −

1

2p
E f sin ududp. s7d

Note that these equations have been studied numerically in a
recent work by Vinokurovet al. [20], for the cased=0. The
Vlasov-wave equations(5)–(7) conserve the pseudoenergy

« =E dpdu
p2

2
fsu,pd − dsAx

2 + Ay
2d

+ 2E dpdu fsu,pdsAx sin u + Ay cosud, s8d

and the total momentum

s =E dpdu pfsu,pd + Ax
2 + Ay

2. s9d

For the sake of simplicity, let us suppose that the beam is
initially unbunched, and that energies are distributed accord-
ing to a step function, such that

fsu,p,t = 0d = f0 =
1

4pp̄
if − p̄ ø p ø p̄

=0 otherwise.

s10d

As far as one is dealing with small energy dispersions, the
profile s10d, called waterbag initial condition, represents a
good approximation of a more natural Gaussian initial distri-
bution. Numerical tests fully confirm the validity of this
simple observation. According to Eq.s10d, f takes only two
distinct values, and coarse graining amounts to perform a
local average of both. The entropy per particle associated

with the coarse-grained distributionf̄ is then a mixing en-
tropy f11,16g and reads

ss f̄d = −E dpduF f̄

f0
ln

f̄

f0
+ S1 −

f̄

f0
DlnS1 −

f̄

f0
DG . s11d

As the electromagnetic radiation represents only two degrees
of freedom within thes2N+2d of Hamiltonians4d, its contri-
bution to entropy can be neglected.

The equilibrium state is computed[11] by solving the
constrained variational problem:

Ss«,sd = max
f̄,Ax,Ay

Sss f̄duHs f̄,Ax,Ayd = N«;

E dudpf̄ = 1; Ps f̄,Ax,Ayd = sD . s12d

Introducing three Lagrange multipliersb, l, and m for the
energy, momentum, and normalization constraints and dif-

ferentiating Eq.s12d with respect tof̄, one gets the equilib-
rium distribution

f̄ = f0
e−bsp2/2+2A sin ud−lp−m

1 + e−bsp2/2+2A sin ud−lp−m
. s13d

By differentiating Eq.s12d with respect toAx and Ay, one
obtains in addition the expression for the amplitude of the
wave,

A = ÎAx
2 + Ay

2 =
b

bd − l
E dpdu sin u f̄su,pd. s14d

Using the above equations for the three constraints, the sta-
tistical equilibrium calculation is now reduced to finding the
values ofb, l, and m as functions of energy« and total
momentums. This last step, performed numerically using
for example a Newton-Raphson method, leads directly to the
estimates of the main physical parameters.

Furthermore, let us stress that in the limit of a vanishing
energy dispersion, the area occupied by thef = f0 level in the
one-particle phase space is small, so that the coarse-grained

distribution f̄ verifies f̄ ! f0 everywhere. The second term in
the entropy(11) is thus negligible, and Eq.(13) reduces to
the Gibbs distribution

f̄ ~ e−bsp2/2+2A sin ud−lp. s15d

Vlasov equilibrium is in that case equivalent to the full sta-
tistical equilibrium. Then, solving the constraint equations
yields

b = A3 − dA, s16d

A = S« − dA2 +
3

2
A4DQsbd, s17d

whereb= uo je
iu ju /N is the bunching parameter andQ is the

reciprocal function of I1sxd / I0sxd, In being the modified
Bessel function of ordern. Let us note that Eqs.s16d and
s17d give the microcanonical solution of Hamiltonians4d.
The canonical solution of the same Hamiltonian in the con-
text of plasma physics was obtained in Ref.f21g. It turns out
that the two ensembles are equivalent, which was not granted
a priori for such a self-consistent system with infinite range
interactionsf13g. Let us remark that Eqs.s16d ands17d were
obtained in Ref.f18g using several hypotheses, suggested
only by numerical simulations. Here, a statistical mechanics
approach gives a complete and self-consistent framework to
justify their derivation. In particular, let us emphasize that,
contrary to the previous approach, it is not necessary to
choosea priori the distributionf, which is fully determined
by the method of solution.

Figure 2 presents the comparison between the analytical
predictions and the numerical simulations performed using
Eqs.(1)–(3) in the case of a monoenergetic beam. Numerical
data are time averaged. The agreement is remarkably good
for d,0.5 and is accurate up to the threshold valuedc, al-
though phase-space mixing is probably less effective for
larger detuning. Ford.dc, there is no amplification, hence,
both intensity and bunching stick to their initial vanishing
values. This transition, purely dynamical, cannot be repro-
duced by the statistical analysis.
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In the case of a non-monoenergetic beam, Fig. 3 presents
the comparison between the estimates of the above theoreti-
cal analysis and the results of direct numerical simulations of
Hamiltonian (4), after time averaging. The comparison is
shown in the energy range that allows the amplification pro-
cess to take place. The good agreement for intensity and
bunching provides therefore ana posteriori, but striking,
support for Vlasov statistical equilibrium.

In this paper, we have proposed an approach to study the
saturated state of the compton free-electron laser, based on a
statistical mechanics approachin the framework of Colson-
Bonifacio’s model[6]. By drawing analogies with the statis-
tical theory of violent relaxation in astrophysics and two-
dimensional Euler turbulence, we have derived analytical
estimates of the saturated intensity and bunching. In addition
to providing a deeper insight into the physical behavior of

this system, the results of our theory agree very well with
numerical simulations. Due to its intrinsic flexibility, it may
be possible to adapt the statistical approach to more complete
models and complex schemes, thus allowing a direct com-
parison between analytical studies and experiments on real
devices. Such a statistical approach could be used as a tool to
define future strategies aiming atoptimizing FEL perfor-
mance.

We would like to thank Y. Elskens, L. Giannessi, and S.
Reiche for useful discussions.
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FIG. 2. Comparison between theory(solid and long-dashed
lines) and simulations(symbols) for a monoenergetic beam, varying
the detuningd. The vertical dotted line,d=dc.1.9, represents the
transition from the low to the high-gain regime.

FIG. 3. Comparison between theory(solid and long-dashed
lines) and simulations(symbols) for a non-monoenergetic beam
when the energy«, characterizing the velocity dispersion of the
initial electron beam, is varied. The dotted lines represent the inten-
sity and bunching predicted by the full statistical equilibrium given
by Eqs.(16) and(17), not very appropriate here, whereas the solid
line and long-dashed lines refer to the Vlasov equilibrium defined
by Eqs.(13) and(14). The discrepancy between theory and numeri-
cal experiments is small over the whole range of explored energies.
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